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Some recent studies of the AdS/CFT correspondence for condensed matter systems involve the Fermi

liquid theory as a boundary field theory. Adding B-flux to the boundary D-branes leads in a certain

limit to the noncommutative Fermi liquid, which calls for a field theory description of its critical

behavior. As a preliminary step to more general consideration, the modification of the Landau’s Fermi

liquid theory due to noncommutativity of spatial coordinates is studied in this paper. We carry out the

renormalization of interactions at tree level and one loop in a weakly coupled fermion system in two

spatial dimensions. Channels ZS, ZS’ and BCS are discussed in detail. It is shown that while the

Gaussian fixed-point remains unchanged, the BCS instability is modified due to the space

noncommutativity.
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I. INTRODUCTION

Since more than 10 years ago, noncommutative quantum
field theory arising from string theory [1–4] has received a
great deal of attention. (For excellent reviews, see [5,6].
For a reprint volume, see [7]. The Wightman axioms for
noncommutative quantum field theory were studied in [8].)
One of the most interesting results in the analysis of
perturbative dynamics of noncommutative scalar field
theories on a Euclidean space R4, is the existence of a
mixing of the UV and IR behaviors [9] and its origin from
the theory of open strings [4].

However, application of noncommutative quantum field
theory to low energy (low temperature) many-body sys-
tems other than the fractional quantum Hall effect (FQHE)
has not been yet discussed extensively in the literature. It is
known that the low energy dynamics of a quantum many-
body system can be described by an effective field theory.
It would be interesting to study the modifications due to
spatial noncommutativity. In this paper, we are particularly
interested in studying the effective field theory of non-
relativistic weakly interacting fermions at low temperature.

In the absence of spatial noncommutativity, such sys-
tems are described phenomenologically, as well as quan-
tum field theoretically, by the so-called normal Fermi
liquid theory (see Refs. [10–13] for a traditional perspec-
tive). This theory has also been studied in the functional
integration approach in [14]. Recently, a great deal has
been worked out concerning the Fermi liquid theory in the
context of an effective field theory and its characterization
in terms of the renormalization group [15–21]. Within this

modern perspective, the renormalization group methods
have been used to study the interacting fermion systems,
and the Landau’s theory of the Fermi liquid is derived as a
fixed point of the renormalization group flow. The
Landau’s theory of Fermi liquid theory is a very important
paradigm: it may be implicitly ‘‘hidden’’ in unphysical
Hilbert spaces, as suggested in [22], in phenomena like
high Tc superconductivity and the FQHE, which are
normally thought of as non-Fermi liquids.
Recently, the string/M-theory community has also

shown great interest in the theory of Fermi liquids, and
has been able to relate it to various situations and pro-
cesses. For instance, it was found in [23] that noncritical
M-theory in 2þ 1 dimensions can be described in terms of
a nonrelativistic Fermi liquid. Moreover, the topology of
the Fermi surface in the Fermi liquid theory has also been
described through K-theory [24]. In the context of the AdS/
CFT correspondence, there are also certain relations with
the Fermi liquid theory. Semiconductors also have been
studied in this context, predicting the dynamical generation
of mass gap and metal-insulator quantum phase transition
at zero temperature [25]. Moreover, it has been shown that
string theory in the background of dyon black holes in four-
dimensional anti-de Sitter spacetime is holographic dual to
conformally invariant composite Dirac fermion metal de-
scribed by a relativistic Fermi liquid theory [26]. Non-
Fermi liquids are also studied from the same perspective
[27]. Detailed analysis of computations of the correspon-
dence implies the existence of a Fermi liquid operators in
N ¼ 4 SYM whose anomalous dimensions behave similar
to Fermi liquids in condensed matter systems [28]. Further
analysis of the gravitational dual of the Fermi liquid in the
N ¼ 4 super Yang-Mills theory coupled to fundamental
hypermultiplet at nonvanishing chemical potential have
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been studied in [29]. Here, an interesting checking on
the structure of the zero sound (ZS) and the first sounds
was verified. More recently, in Ref. [30], it is was found an
interesting description of the physical properties of holo-
graphic metals near charged black holes in anti-de Sitter
space, and the fractionalized Fermi liquid phase of the
lattice Anderson model.

In the present work, we introduce noncommutativity
between spatial coordinates, in order to avoid
unitarity and causality problems. Namely, the noncommu-
tativity will be defined in Rd

? � R: We have d noncom-
mutative spatial coordinates that satisfy ½x̂i; x̂j� ¼ i�ij,
where �ij is antisymmetric and real. The time t is con-
sidered as a commutative coordinate, so we require that
�0i ¼ 0. For the study of the field theory in this space,
one usually thinks of a deformation in the product in the
space of functions, i.e., the noncommutative space Rd

? can
be regarded as the algebra over the usual Rd with a
deformation of the product of functions into the Moyal
star product, defined by

ð�1 ? �2ÞðxÞ ¼ exp

�
i

2
���@y�@z�

�
�1ðyÞ�2ðzÞjy¼z¼x: (1)

One property of this product is that the quadratic part of
the action in a field theory, up to a total divergence, is
exactly the same as that in the commutative case.
Therefore, the propagators remain the usual ones, while
the noncommutativity modifies the interactions.

Some earlier papers on noncommutative field theory in
the context of condensed matter systems have been col-
lected in the book [7], mainly on the FQHE. For more
papers see, for instance, [31–34]. Renormalization group
flow in noncommutative Landau-Ginzburg theory for ther-
mal phase transitions of Bose fluids was presented in [35].
The aim of this paper is to discuss renormalization group
flow in the noncommutative Fermi liquid theory. Recently,
some nonrelativistic systems in noncommutative spaces
have been discussed in Refs. [36–40]. The study of the
renormalization group flow in the noncommutative Gross-
Neveu model of interacting fermions has been carried out
in [41]. Moreover, a superconducting vortex liquid system
in the lowest Landau level approximation was studied from
the viewpoint of the noncommutative field theory in [42].
We expect that our study of renormalization group flow for
noncommutative Fermi liquids could shed more light on
the above topics and subjects.

The present paper is organized as follows: in Sec. II, we
give an overview of the Fermi liquid theory in order to
introduce the notation and conventions. In Sec. III, we
introduce the noncommutative deformation of the Fermi
liquid theory, in particular, the tree-level renormalization
is carried out. Section IV is devoted to the study of the
one-loop renormalization in two spatial dimensions.
Conclusions and final remarks are compiled in Sec. V.

II. OVERVIEW OF THE NORMAL
FERMI LIQUID THEORY

Wewill understand by a normal Fermi liquid a system of
nonrelativistic weakly interacting fermions in, say, 3þ 1
dimensions. The first description for this system was pro-
posed by Landau, and it is of a phenomenological nature
[13]. The main assumption of the Landau approach to
Fermi liquid, is that there exists a one to one correspon-
dence between the electrons in a noninteracting gas of
fermions and some elementary excitations of the interact-
ing system known as quasiparticles. These excitations are
characterized by its energy EðpÞ. Starting from the assump-
tion that the ground state of the weakly interacting system
can be generated adiabatically from some eigenstate of the
ideal system. The effective interactions will be reflected in
the behavior of the quasiparticles, as effective particles, i.e.
free particles dressed with the interaction.
The quasiparticle picture makes sense only very near

from the Fermi surface, i.e. it is relevant only for excita-
tions at very low temperature. It is well known that many
materials behave as a Fermi liquid at temperatures much
below the Fermi energy. Moreover, if we consider a pure
system at zero temperature, the lifetime of the quasipar-
ticles changes as the inverse of the square of E� EF,
where EF is the Fermi energy.
Let nðpÞ be the distribution function of quasiparticles;

this function must be defined in such a way that the energy
of the Fermi liquid E is determined in a unique way and the
ground state corresponds to the distribution function in
which all states inside the Fermi surface are occupied. In
the ideal system, the relation between the energy of any
state and their corresponding distribution function is given
by

E ¼
Z
p
nðpÞ p

2

2m

d3p

ð2�ℏÞ3 : (2)

Once the interaction is taken into account, the last
relation is modified; now this can be expressed through a
functional relation E½nðpÞ�, whose form depends on the
distribution of all particles in the liquid, and in general we
cannot know it explicitly. Nevertheless, if nðpÞ is very
close to the distribution function of the ground state, it is
convenient make a Taylor expansion of E½nðpÞ� around this
state and we get to the first order

E ¼ E0 þ
Z
p
EðpÞ�nðpÞ d3p

ð2�ℏÞ3 ; (3)

where E0 is a fixed ground state energy and EðpÞ is the
functional derivative of E with respect to distribution
function, and it is also a functional of nðpÞ. If �nðpÞ
describes a state with an additional quasiparticle with
momenta p, the energy of this state is E0 þR
p EðpÞd3p=ð2�ℏÞ3, then EðpÞ is related to the energy of

the quasiparticle. On the Fermi surface EðpÞ is associated
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to the Fermi energy EF, which at zero temperature corre-
sponds to a chemical potential �jT¼0 ¼ EF ¼ EðpFÞ.

Near the Fermi surface we can expand EðpÞ around it as

E ðpÞ ¼ EF þ vF � ðp� pFÞ þ � � � (4)

where vF ¼ rpEjp¼pF
. In the case when these excitations

correspond to real particles of the system, we have that
vF ¼ pF=m.

A. Interaction of quasiparticles

We remark that when the distribution function is
changed, for instance, by adding a quasiparticle, it changes
not only the total energy of the system, but also it changes
the energy of the quasiparticles E. This is because E is a
functional of the density. Since the total energy of the
system is not the simple sum of the individual energy of
each quasiparticle, it is necessary to consider an expansion
to second order as follows:

E�E0¼
Z
p
ðEðpÞ��Þ�nðpÞþ1

2

Z
p;p0

fðp;p0Þ�nðpÞ�nðp0Þ;

(5)

where the subindices of the integrals stand for the integra-
tion variables. The coefficient fðp;p0Þ is the second func-
tional derivative of the energy respect to density functional
and is known as the interaction term of the quasiparticles.
(It vanishes for the ideal Fermi gas.) For low energy
excitations, the variations �nðpÞ and �nðp0Þ for the two
quasiparticles are nonzero only for p and p0 near the Fermi
surface. For this reason the function fðp;p0Þ is, in practice,
evaluated only on the Fermi surface jpj ¼ jp0j ¼ jpFj, so it
depends only on the directions of p and p0 and the spin �
and �0, respectively, of the quasiparticles.

In Landau’s theory, the deviation from equilibrium state
of the Fermi liquid is studied through the Boltzmann
transport equation, with the usual conditions, that the de
Broglie wavelength of the quasiparticle must be small in
comparison with the characteristic wavelength where the
distribution function varies considerably. Furthermore, we
can see that the collision of the quasiparticles produces
ordinary hydrodynamic sound waves. However it is also
found that when the system is at zero temperature there
must exist another type of ‘‘sound waves,’’ to which the
collision of quasiparticles is not relevant. What is relevant
is the change in shape of the Fermi surface at different
spacetime points. These sound waves are known as zero
sound waves .

Fermi liquid theory has been studied also from the view-
point of the quantum field theory by using the canonical
formalism, recovering the Landau’s Fermi liquid theory in
the normal phase as well as in the superfluid phase [11,13].
In this formalism the four-point proper vertex is related
with the zero sound waves. This part of the vertex function
is called zero sound channel, and this is the most important

process to recover the phenomenological theory of the
Fermi liquid.
From an effective theory perspective, Polchinski [16]

was able to recover the Landau’s theory of Fermi liquid. In
this work, a system of interacting fermions was studied
from the symmetries, respected by the possible terms in the
action of the system. In this context, we are interested in
the computation of the possible modifications that arise in a
theory of interacting fermions in noncommutative space.

III. NONCOMMUTATIVE
FERMI LIQUID THEORY

Though normally space noncommmutativity is consid-
ered as originated from small distance physics, it is well
known to lead nonlocal properties such as the UV/IR
mixing. We are interested in a nonrelativistic effective
theory, which is defined with a UV cutoff � such that the
degrees of freedom with p ¼ jpj>� do not enter
the description of the system. It is reasonable to study the
nontrivial effects induced by noncommutativity on large
distance physics. In favor of this idea, we note that working
at low energies does not prevent the emergence of new
characteristics in noncommutative theories [37], because
of the UV/IR mixing. From the viewpoint of the particles,
we may also argue that at low energies, the effective
interactions between particles are not genuinely pointlike.
Moreover, as mentioned in the book [21], the electrons can
be considered as effectively nonlocal particles due to their
Fermi statistics. Therefore, it is legitimate to examine non-
local effects arising from space noncommutativity on the
interactions in the effective theory.

A. The effective action

In this subsection, we briefly overview the effective
action. We adopt the Euclidean formulation of the func-
tional integral formalism. For a system of interacting fer-
mions, the partition function is given by

Z½�;�y�¼
Z
½dc �½dc y�exp

�
�S0�SIþ

Z
c y�þ

Z
�yc

�
;

(6)

where � and �y are the sources, c and c y are the
fermionic fields which we take as Grassmann variables.
S0 is the free action and SI is the interacting term.
For the usual Fermi gas, the two-point function is given

by

Gðx; yÞ ¼
Z ddþ1P

ð2�Þdþ1

expfi½P � ðx� yÞ þ i!ð�x � �yÞ�g
i!� ðP2

2m ��Þ :

(7)

For a liquid of fermions, it is usual to assume that a
substantial change occurs, in the weakly interacting theory,
in the propagator Gðx; yÞ which is of the form
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Gðx; yÞ ¼
Z ddþ1P

ð2�Þdþ1

expfi½P � ðx� yÞ þ i!ð�x � �yÞ�g
i!� ðEðPÞ � EFÞ :

(8)

Since we are interested only in correlations at low
energy, let us define two sets of variables [16,17,35]:

�< ¼ �ðPÞ for 0<P<�=s;

�> ¼ �ðPÞ for �=s � P � �: (9)

Our action can be divided into two parts, corresponding to
fast modes�> and slow modes�<, so that the total action
is given by

S½�<;�>� ¼ S0ð�<Þ þ S0ð�>Þ þ SIð�<;�>Þ: (10)

Then the partition function is given by

Z ¼
Z
½d�>�½d�<�e�S0ð�<Þe�S0ð�>Þe�SIð�<;�>Þ; (11)

which can be rewritten as

Z ¼
Z
½d�<�e�S0ð�<Þ: (12)

This defines the effective action S0ð�<Þ:

e�S0ð�<Þ ¼ e�S0ð�<Þ
Z
½d�>�e�S0ð�>Þe�SIð�<;�>Þ: (13)

This expression can be further rewritten as

e�S0ð�<Þ ¼ e�S0ð�<Þhe�SIð�<;�>Þi0>; (14)

where h�i0> stands for the average value with respect to the
fast modes of the action S0. This effective action can be
computed through approximation methods by means of the
cumulant expansion, that relates the correlation function of
the exponential with the exponential of the correlations
functions, i.e.

he�i ¼ exp

�
h�i þ 1

2
½h�2i � h�i2� þ � � �

�
: (15)

We construct an effective action which defines new
coupling functions between the fields. These new functions
must be compared with the original ones in the action, but
these quantities are defined in different kinematic regions,
0<P<�=s and 0<P<�, respectively. So it is neces-
sary to rescale the momenta P0 ¼ sP in the effective action
to recover the original scale. We also need to rescale the
fields to define the new fields:

�0ðp0Þ ¼ 	�1�<ðp0=sÞ; (16)

where we choose the real prefactor 	 so that the quadratic
part of the action in terms of the new fields have a fixed
coefficient (independent of s).

In summary, the renormalization process goes in three
steps: 1) Eliminate the fast modes, that is to integrate out
the momenta with values inside the interval ½�=s;��;

2) Introduce a momentum scaling P ! sP and recover the
original cutoff �; 3) Introduce the scaled fields �0ðp0Þ ¼
	�1�<ðp0=sÞ and rewrite the effective action in terms of the
new fields. The quadratic kinetic term of the action should
have the same coefficient as before.
In practice, one carries out the above renormalization

procedure in two stages: First, we look at the free action and
fix the coefficient by appropriate rescaling of the new fields.
In this way, we will be able to find the Gaussian fixed point,
corresponding to an ideal noninteracting system. After that,
we examine how the interaction terms scale under renor-
malization and classify them as relevant, irrelevant or mar-
ginal terms under the renormalization group flow.
In particular for our theory, the free action is given by

S ¼
Z 1

�1
d!

Z �

��
ddPðc y

�ðPÞi!c �ðPÞ
� ðEðPÞ � EFÞc y

�ðPÞc �ðPÞÞ; (17)

where � is the spin index and EF is the Fermi energy that
correspond to chemical potential at zero temperature.
The first step is to integrate out the fields c and c y in

the partition function within �=s < P<�, which means
integrating out the fast modes. We can see that this results
in a Gaussian integral, up to an irrelevant numerical factor.
In view of the facts that the ground state is determined by

the Fermi surface, and that when the energy goes to zero
the momentummust go to the Fermi surface, it is natural to
write the momentum of our excitation as

P ¼ kþ p; (18)

where k is a vector on the Fermi surface and p is normal to
this surface.
As we are interested only in the region near to Fermi

surface, the generic energy E can be expanded in series as

E ðPÞ � EF ¼ p � vFðkÞ þOðp2Þ: (19)

With this decomposition, we should scale the momentum
as k ! k, p ! sp and ! ! s!. Making the substitution

in the free action, we find that the field scales as s�3=2, i.e.

c 0ð!;k0;p0Þ ¼ s�3=2c ð!;k;pÞ.
We will focus on studying the Fermi liquid in a two-

dimensional plane (i.e. d ¼ 2) with a circular Fermi sur-
face. For this case, the momentum decomposition (19) is
still valid, but note that

jpj ¼ jPj � jkj: (20)

Then, the integral measure in polar coordinates is
PFdpd�, where PF ¼ jkj. As we are interested only in
the region close the Fermi surface, we only need to scale
the radial component according the previous prescription.
The free action becomes

S0¼
Z d!

2�

Z d�

2�

Z dp

2�
c y

�ð!;�;pÞði!�pvFÞc �ð!;�;pÞ;
(21)
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where we replaced the measure Pdp by PFdp and ab-
sorbed a factor of

ffiffiffiffiffiffi
PF

p
in each one of the fermionic fields.

With this scaling for the fields, the free action is a fixed-
point action, and we can make the perturbative expansion
around it.

B. Proper form of the noncommutative interaction term

The noncommutative interaction action that we study is
the quartic interaction term, which in the coordinate rep-
resentation is given by

SI ¼
Z

d�d2xd2yc yðxÞ ? c ðxÞ
? Vðx� yÞ ? c yðyÞ ? c ðyÞ: (22)

We note that we consider only noncommutativity between
spatial coordinates, and our potential is time independent.
So we can write this integral as

SI ¼
Z

d2xd�xd
2yd�yc

yðxÞ ? c ðxÞ
? Vðx� yÞ�ð�x � �yÞ ? c yðyÞ ? c ðyÞ: (23)

To make considerations of symmetry constraints sim-
pler, we will work in momentum space. The above expres-
sion can be rewritten as

SI ¼
Z
P
c yðP4Þc ðP3Þc yðP2Þc ðP1Þ

� VðP4;P3;P2;P1Þe�ði=2ÞðP1^P2þP3^P4Þ; (24)

where we write explicitly the star product as p ^ q �
���p�q�.

Before studying the scaling of the fields to classify the
interaction potential, we need to check the behavior of
our action under the interchange of particles. Reordering
the terms in the integral (24), considering the rules of the
Grassmann variables and renaming of the variables, we
have

SI ¼
Z
P
c yðP4Þc yðP3Þc ðP2Þc ðP1Þ

� VðP4;P3;P2;P1Þe½�ði=2ÞðP1^P4þP2^P3Þ�: (25)

For the usual commutative case, it is necessary to im-
pose that the interaction potential be antisymmetric with
respect to their variables, in such way that the action is
invariant under the change of the order of the fields, i.e.,
VðP4;P3;P2;P1Þ¼VðP3;P4;P1;P2Þ¼�VðP3;P4;P2;P1Þ¼
�VðP4;P3;P1;P2Þ. However for our present case, we have
an additional phase factor coming from space noncommu-
tativity. The presence of this factor makes the symmetry
consideration in the noncommutative case a bit more
complicated.

If we exchange the labels of momenta P4 and P3, the
integral must be unchanged:

SI ¼
Z
P
c yðP3Þc yðP4Þc ðP2Þc ðP1Þ

� VðP3;P4;P2;P1Þe�ði=2ÞðP1^P3þP2^P4Þ: (26)

Now, interchanging the fields with momentum labels P3

and P4, we need to introduce a minus sign as follows:

SI ¼ �
Z
P
c yðP4Þc yðP3Þc ðP2Þc ðP1Þ

� VðP3;P4;P2;P1Þe�ði=2ÞðP1^P3þP2^P4Þ: (27)

Moreover, we can absorb the minus sign using the anti-
symmetry property of the interaction potential and, for the
usual case, we recover the original action. But in this
process we also have an additional phase factor, which is
not the same as before, then we need to add the two
integrals in order to recover the symmetry of the action.
Thus, we are finally led to the action given by

SI ¼
Z
P
c yðP4Þc yðP3Þc ðP2Þc ðP1ÞU�ðP4;P3;P2;P1Þ;

(28)

with

U�ðP4;P3;P2;P1Þ
¼ 1

2
VðP4;P3;P2;P1Þ½e�ði=2ÞðP1^P4þP2^P3Þ

þ e�ði=2ÞðP1^P3þP2^P4Þ�: (29)

We have checked that with the additional phase term in
U�, the above action SI has the desired antisymmetry
property.
As a particular example, we can simplify the bilocal

potential Vðx� yÞ by taking it to be a local interaction
coupling constant by assuming Vðx� yÞ ¼ g�ðx� yÞ and
substituting it in Eq. (22). We get

SI¼g
Z
d�d2xd2yc yðxÞ?c ðxÞ?�ðx�yÞ?c yðyÞ?c ðyÞ:

(30)

In momentum space, we have a similar expression to the
previous one for the general case. After reordering the
fields, we have

SI ¼ g
Z
P
c yðP4Þc yðP3Þc ðP2Þc ðP1Þe�ði=2ÞðP1^P4þP2^P3Þ:

(31)

If we make the same procedure as earlier, and impose that
the interaction coupling should keep the symmetries of the
full vertex with four external lines as in general case, we
find that this interaction term becomes

SI ¼ �g
Z
P
c yðP4Þc yðP3Þc ðP2Þc ðP1Þe�ði=2ÞðP1^P3þP2^P4Þ:

(32)
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Then for compliance the requirements mentioned, we can
see that it is necessary to introduce two terms in the
interaction term of the action, as has been proposed in
[43] as a generalization of the noncommutative interaction
Lagrangian for fermions, in analogy the case of the com-
plex scalar fields [44] and we have

SI ¼ 1

2
g
Z
P
c yðP4Þc yðP3Þc ðP2Þc ðP1Þ

� ½e�ði=2ÞðP1^P4þP2^P3Þ � e�ði=2ÞðP1^P3þP2^P4Þ�; (33)

where the minus sign between the phase terms is character-
istic of this particular case. Because this term vanishes in
the commutative case, as it should be, when there are no
internal degrees of freedom (as here we are discussing
spinless fermions) [45]. Finally, we have seen that only
with symmetry arguments of the Lagrangian, the addi-
tional terms in the interaction action arise in a natural way.

Therefore, space noncommutativity leads to the appear-
ance of additional phase terms that multiply the quartic
interaction. Following the renormalization group analysis
[35], we keep the star product structure of this interaction
term intact, and apply renormalization group transforma-
tions only to the coefficient function VðP4;P3;P2;P1Þ.
Consequently, as we will see in Sec. IV, the interactions
of the type (32) are already included in the renormalization
group flow from action (28).

The integral measure is given by

Z
P
¼

�Y3
i¼1

Z 2�

0

d�i

2�

Z �

��

dp

2�

Z 1

�1
d!

2�

�

ð�� jp4jÞ; (34)

where p4 ¼ jP4j � PF. In this measure, we have incorpo-
rated the constraints on the momenta due to energy and
momentum conservation. While energy conservation does
not constrain the integration over the remaining energy
variable, which can still take any value, the same is not
true for the momentum variables. The four momenta
should be restricted to be in a ring-shaped region of thick-
ness 2� around the Fermi surface. If we choose freely
three of the momenta, the fourth momentum could be
outside this region. To avoid this situation, we have intro-
duced a Heaviside function for the fourth momentum.

C. Renormalization of the interaction at tree level

Having obtained the complete form for the noncommu-
tative interaction term, we proceed to perform the renor-
malization group analysis according to the procedure
mentioned in the previous subsection. First, we note that
as we have the step function in (34) depending on p4 we
must study carefully the scaling of this function, because
p4 depend not only on other p’s but also on PF [17]:

p4¼jðPFþp1Þ�1þðPFþp2Þ�2�ðPFþp3Þ�3j�PF;

(35)

where�i is the unit vector in the direction of Pi, i.e.,�i ¼
i cos�i þ j sin�i. Here, �i is the azimuthal angle of mo-
mentum Pi.
Making the scaling of the momentum, we find that the

step function changes as


ð�� jp4jðp1; p2; p3; PFÞÞ
! 
ð�� jp0

4jðp0
1; p

0
2; p

0
3; sPFÞÞ: (36)

Therefore, the step function 
, after the renormalization
group transformation, does not have the same dependence
on the new variables as the 
 function did before the
transformation, because PF ! sPF.
In order to understand how to scale the interaction part

properly, let us make a smooth cut off for p4:


ð�� jp4jÞ ! e�p4=�: (37)

We rewrite (35) as

p4¼jPFð�1þ�2��3Þþp1�1þp2�2�p3�3j�PF;

and define �1 þ�2 ��3 ¼ �. In the previous expres-
sion, we can drop the terms of order OðpÞ, because in the
regime that we are interested this gives a sum of order �
which will be smoothly suppressed by the exponential
decay and p4 � PF.
Under the renormalization group, at tree level we have

Y3
i¼1

Z �

��

dpi

2�

Z 2�

0

d�i

2�

�
Z 1

�1
d!i

2�
e�ðPF=�Þjj�j�1jU�ðp; !;�Þc yc yc c

! Y3
i¼1

Z �

��

dp0
i

2�

Z 2�

0

d�i

2�

�
Z 1

�1
d!0

i

2�
e�ðsPF=�Þj�j�1jU�

�
p0

s
;
!0

s
;�

�
c yc yc c :

(38)

We write

e�ðsPF=�Þjj�j�1j ¼ e�ðPF=�Þjj�j�1je�½ðs�1ÞPF=��jj�j�1j; (39)

so that the measure after and before of the transformation

have the same factor e�ðPF=�Þjj�j�1j. We can now compare
the actions and identify the new quartic coupling as

U0
�ðp0; !0; �Þ ¼ e�½ðs�1ÞPF=��jj�j�1jU�

�
p0

s
;
!0

s
;�

�
: (40)

Thus, we conclude that the only coupling that survives
the renormalization group transformation without decay
corresponds to the cases in which

j�j ¼ j�1 þ�2 ��3j ¼ 1: (41)

Then we can analyze the renormalizability properties fo-
cusing on the cases that have a nontrivial contribution.
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Such cases are those that satisfy the following angular
conditions: [17]

Case I: �4 ¼ �1; ðhence �2 ¼ �3Þ (42)

Case II: �4 ¼ �2; ðhence �1 ¼ �3Þ (43)

Case III: �1 ¼ ��2; ðhence �3 ¼ ��4Þ: (44)

Thus for couplings obeying these conditions, we have

V 0ðp0; !0; �Þ ¼ V

�
p0

s
;
!0

s
; �

�
: (45)

It follows that the coupling function V is renormalized to a
function that may depend on � but independent of p and
!, when the cutoff is reduced (i.e. s > 1).

We see that the tree-level fixed point is characterized by
three independent functions and not by a handful of
couplings. They are given by

U�½�4 ¼ �1;�3 ¼ �2;�2;�1� ¼ F�ð�1;�2Þ; (46)

U�½�4 ¼ �2;�3 ¼ �1;�2;�1� ¼ F0
�ð�1;�2Þ; (47)

U�½�4 ¼ �3 þ �;�2 ¼ �1 þ �� ¼ V�ð�1;�3Þ: (48)

Now we are interested in studying how these restrictions
affect the phase term. In general, we have

p ^ q ¼ �ðpxqy � pyqxÞ: (49)

By choosing polar coordinates with angle�, it follows that

p ^ q ¼ �pq½cosð�pÞ sinð�qÞ � cosð�qÞ sinð�pÞ�
¼ �pq sinð�q ��pÞ: (50)

Then the phase is written as

1

2
½e�ði�=2ÞðP1P4 sinð�4��1ÞþP2P3 sinð�3��2ÞÞ

þ e�ði�=2ÞðP2P4 sinð�4��2ÞþP1P3 sinð�3��1ÞÞ�: (51)

This, combined with the conditions for the angles, can
be rewritten as

F�ð�1;�2Þ ¼ Vð�4 ¼ �1;�3 ¼ �2;�2;�1Þ
� 1

2
½1þ e�ði�=2ÞðP2P4 sinð�1��2ÞþP1P3 sinð�2��1ÞÞ�; (52)

F0
�ð�1;�2Þ ¼ Vð�4 ¼ �2;�3 ¼ �1;�2;�1Þ
� 1

2
½1þ e�ði�=2ÞðP1P4 sinð�2��1ÞþP2P3 sinð�1��2ÞÞ�; (53)

V�ð�1;�3Þ ¼ Vð�4 ¼ ��3;�3;�2 ¼ ��1;�1Þ
� 1

2
½e�ði�=2ÞðP1P4 sinð�3��1þ�ÞþP2P3 sinð�3��1þ�ÞÞ

þ e�ði�=2ÞðP2P4 sinð�3��1ÞþP1P3 sinð�3��1ÞÞ�; (54)

or in a shorter form

F�ð�1;�2Þ ¼ Vð�4 ¼ �1;�3 ¼ �2;�2;�1Þ
� 1

2
½1þ e�ði�=2Þ½ðP2P4�P1P3Þ sinð�1��2Þ��; (55)

F0
�ð�1;�2Þ ¼ Vð�4 ¼ �2;�3 ¼ �1;�2;�1Þ
� 1

2
½1þ e�ði�=2Þ½ðP1P4�P2P3Þ sinð�2��1Þ��; (56)

V�ð�1;�3Þ ¼ Vð�4 ¼ �3 þ �;�2 ¼ �1 þ �Þ
� 1

2
½e�ði�=2Þ½ðP2P3þP1P4Þ sinð�1��3Þ�

þ e�ði�=2Þ½ðP2P4þP1P3Þ sinð�3��1Þ��: (57)

We notice that in the first two expressions the original
antisymmetry of the interaction potential is lost; never-
theless when we interchange, say, P1 and P2 the first
expression passes to the second. So the Fermi statistics is
preserved. In the third function, interchanging two mo-
menta is equivalent to adding an angle � to, say, �1, and
the phase term is invariant.

IV. ONE-LOOP RENORMALIZATION
OF THE INTERACTION

In the previous section, we have seen that we can write
the interaction term in the same form as in the usual
commutative case, absorbing the phase factors in the U�

function; then we can expand perturbatively as usual,
resulting in the same type of diagrams. The difference is
that now we have extra interesting phase factors.
For consistency, we must compute to second order in

U�, which is equivalent to working at second order in the
cumulant expansion:

1

2
½hð�SÞ2i � h�Si2�: (58)

All disconnected diagrams are cancelled by the term
h�Si2, and the diagrams having nonvanishing contribution
are those shown in Fig. 1. The analytic expressions are

P1 P2

P3P4

k

k+q

P2P1

P3
P4

k

k+q’

P1 P2

P3P4

k Q−k

FIG. 1. Diagrams contributing to one loop in the four-point
function.
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dU� ¼
Z 1

1

Z
d�

d!dK

4�2

Z 2�

0

d�

2�

U�ðP4;Kþ q;K;P1ÞU�ðK;P3;P2;Kþ qÞ
½i!� EðKÞ�½i!� EðKþ qÞ�

�
Z 1

1

Z
d�

d!dK

4�2

Z 2�

0

d�

2�

U�ðP3;Kþ q0;K;P1ÞU�ðK;P4;P2;Kþ q0Þ
½i!� EðKÞ�½i!� EðKþ q0Þ�

� 1

2

Z 1

1

Z
d�

d!dK

4�2

Z 2�

0

d�

2�

U�ðQ�K;K;P2;P1ÞU�ðP4;P3;Q�K;KÞ
½i!� EðKÞ�½�i!� EðQ�KÞ� ; (59)

where q ¼ P1 � P4, q
0 ¼ P1 � P3 andQ ¼ P1 þ P2. The

subscript d� of the integral indicates that both loop mo-
menta in the diagram must be in the thin shell being
integrated. One of the internal line carries momentum K,
which is restricted to the region defined by � around the
Fermi surface. Implicitly the momentum of the other in-
ternal line is Kþ q in the ZS channel, Kþ q0 in the ZS’
channel, and Q�K in the BCS channel, respectively. We
also impose the same conditions for the momentum vari-
ables P1, P2, P3, P4 to survive the renormalization at tree
level.

Before discussing the contribution of each diagram, let
us pay attention to the phase factors in these integrals, since
they contain the effects of space noncommutativity. We
notice that the phase term in the first integral is reduced to

1

2

�
cos

�
P1 ^ P4 þ P2 ^ P3

2

�

þ cos

�
P1 ^ P4 � P2 ^ P3 þ 2K ^ ðP1 � P4Þ

2

��
: (60)

Analogously, for the second integral we have

1

2

�
cos

�
P1 ^ P3 þ P2 ^ P4

2

�

þ cos

�
P1 ^ P3 � P2 ^ P4 þ 2K ^ ðP4 � P2Þ

2

��
: (61)

And finally, for the third integral the phase factor becomes

1

2

�
cos½K ^ ðP4 � P1Þ þ 1

2
Q ^ ðP1 � P4Þ�

þ cos½K ^ ðP4 � P2Þ þ 1

2
Q ^ ðP2 � P4Þ�

�
: (62)

A. Case I

In this subsection, we will analyze the first case (see
Eq. (42)) that survives the renormalization group analysis,
for the previous three channels: the ZS, the ZS’ and the
BCS ones respectively, in the noncommutative theory. We
can see that in all diagrams we have planar and nonplanar
contributions, then we need to make a careful analysis of
each diagram under the renormalization conditions ob-
tained at tree level.
For the condition that defines the function F (42), the

phase factor in the first integral (or the ZS channel) is

cos

�ðP1P4 � P2P3Þ�sinð�2 ��1Þ
2

�

þ cos

�ðP1P4 þ P2P3Þ�sinð�2 ��1Þ
2

þ�Kq sinð�q ��Þ
�
: (63)

But as ðP1 � P4Þbf�1 � 0 this factor is reduced to

1þ cos½
Kq sinð�q ��Þ�; (64)

and considering that q ¼ P1 � P4 � 0, this diagram is
reduced to the usual commutative one.
The phase factor for the ZS’ diagram is

1

2

�
cos

�
P1 ^ P3 þ P2 ^ P4

2

�

þ cos

�
P1 ^ P3 � P2 ^ P4 þ 2K ^ ðP4 � P2Þ

2

��
: (65)

With the condition (42), this factor is reduced to

1

2
f1þ cos½P1P3� sinð�1 ��3Þ þ Kq0�sinð�q ��Þ�g:

(66)

In this case, one has q0 � kF, thus the integral over the
angle must be restricted to an interval d�=kF (see Fig. 2).
The integration is

1

2

Z d!

2�

Z
d�

dK

2�

Z
d�2�

�Vð�1;�ÞVð�;�3Þ½1þcos½aþKq0�sinð�q��Þ��
½i!�EðKÞ�½i!�EðKþq0Þ� ;

(67)

where a ¼ P1P3� sinð�1 ��3Þ. This integral have two
contributions: The first one is planar, while the second one

Λd

2Λ

P P

Q-kk

I

II

Q

1 2

FIG. 2 (color online). Configuration of momenta near Fermi
surface with shell width 2�.
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needs a careful study. As q0 � kF, the poles of ! are in
different half-planes, then this integral becomes

1

2

Z d!

2�

Z
d�

dK

2�

Z
d�2�

�Vð�1;�ÞVð�;�3Þ½1þcos½aþKq0�sinð�q��Þ��
EðKÞ�EðKþq0Þ :

(68)

Now observe that K is within an interval d� around �, so
we can expand the cosine in series forK around�, then we
get

cosðaþ2Kq0�sinð�q��ÞÞ
� cosðaþq0��sinð�q��ÞÞ�q0�ð��KÞsinð�q��Þ
�sinðaþq0��sinð�q��ÞÞþOð�2Þ: (69)

With this expansion, the integral over K from the first term
in the expansion gives us a term of order d� and the !
integral gives a denominator of order � due to the restric-
tion of the angle to the range d�=kF. Thus this integral is
of order ðd�=�Þðd�=kFÞ; and the �-function vanishes in
the limit jd�j=� ! 0.

The next term in the expansion is proportional to �;
nevertheless, this term gives a contribution proportional
to d� after integration over K, so the contribution to
�-function is marginal. This conclusion is also valid for
higher order terms in �.

For the BCS diagram, after using the condition (42), one
can easily see that the phase factor is of the form

1

2

�
1þ cos

�
K ^ q0 � 1

2
Q ^ q0

��
: (70)

This has the same form as the ZS’ diagram, and the
integral limits are similar. So the contribution to the
�-function vanishes also in the limit d�=� ! 0.

The analysis for the function F� indicates that for the
case I, the space noncommutativity does not induce any
relevant corrections and F is a fixed point to this order.

B. Case II

For the case II (see the condition (43)), we have the
situation similar to that for the case I, in view of inter-
changing P4 $ P3. This is expected, because the function
F0
� allows one to recover the Fermi statistics.

C. Case III

In this case, we take into account the condition III (44)
for each diagram, then for the ZS diagram the phase factor
becomes

1

2
fcos½P1P4� sinð�4 ��1Þ þ cos½Kq�sinð�q ��Þ�g;

(71)

and the phase factor for the ZS’ diagram is given by

1

2
fcos½P1P3� sinð�4 ��1� þ cos½Kq0�sinð�q ��Þ�g:

(72)

For these diagrams, the integral in ! gives a denomina-
tor of order�, and the cosine function in the numerator can
be expanded as above, then the contribution to �-function
vanishes.
However, for the BCS diagram the phase factor is found

to be

1

2

�
cos

�
q ^ K þ 1

2
Q ^ q

�
þ cos

�
q0 ^ K þ 1

2
Q ^ q0

��
:

(73)

For this diagram the angle is not restricted, so it can take
any value. Also in this diagram, the integration over !
gives a denominator of order �. Then we focus on the
integration over K. Let us call the phase factor as P . The
integral to calculate is

� 1

2

Z 2�

0

d�

2�

Z
d�

dK

2�

Vð�1 ��ÞVð���3Þ
EðKÞ þ EðQ� KÞ P : (74)

We note thatK is in the region around Fermi surface and so
isQ� K. Thus we can take the approximation EðKÞ � vK
and EðQ� KÞ � vðQ� KÞ, and therefore EðKÞ þ EðQ�
KÞ � vQ which is of order �. Then (74) gives

� 1

4�

Z 2�

0

d�

2�

Z
d�

dK

2�
Vð�1 ��ÞVð���3Þ

� fcosðqK�sinð���qÞÞ þ cosðq0K�sinð���q0 ÞÞg:
(75)

As in the earlier cases, we expand the cosine function
around � so we have a similar expression as (69) for
each term in the phase factor. We will consider only the
first terms up to order�. Now the integration inK becomes
easy and, for the same reason as in the previous cases, the
terms proportional to ðd�Þ2 can be neglected, because this
kind of terms make the �-function vanish in the limit
d�=� ! 0. After we make the change d�=� ¼ dt, we
have a usual commutative contribution with a factor of 1
half, plus the modifications due to noncommutativity; that
is,

dVð�1��3Þ
dt

¼�1

2

Z 2�

0

d�

8�2
Vð�1��ÞVð���3Þfcos½q��sinð���qÞ�

�q��sinð���qÞsin½q��sinð���qÞ�þðq$q0Þg:
(76)

At this point, it is convenient to express the functions
Vð�Þ in terms of their Fourier components (or angular-
momentum modes):
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Vð�Þ ¼ X1
l¼0

Vle
�il�; where Vl ¼

Z 2�

0

d�

2�
eil�Vð�Þ:

(77)

This finally leads to a flow equation for the angular-
momentum modes of V, in which different modes are
coupled. After integration, we have a renormalization
flow equation

X1
l¼0

dVl

dt
e�ilð�1��3Þ

¼ � 1

8�

X1
l;l0¼0

VlVl0e
�iðl�1�l0�3Þeiðl0�lÞ�q

�
d

dx�
x�Jl0�lðx�Þ

�

þ ðq $ q0Þ; (78)

where x� ¼ q��. We see that in this renormalization flow
equation, there are highly nontrivial contributions from
space noncommutativity, that affect the behavior of the
BCS instability.

V. CONCLUDING REMARKS

In this paper, we have used the renormalization group
approach to study how noncommutativity of spatial coor-
dinates affects the low energy behavior of a system of
weakly interacting fermions. The physics of the Gaussian
fixed point still corresponds to the Landau theory, whose
excitations are still the Landau quasiparticles, not the bare
particles, as in the ordinary Fermi-Landau liquids. But the
properties of Landau quasiparticles gets modified, in

consistency with the UV-IR mixing, a general feature of
noncommutative field theory. In particular, we found that
at one loop level, the pairing instability in the BCS channel
(say, in d ¼ 2 cases) gets modified through the noncom-
mutative corrections to the flow equation for the interaction
function V�.
In our study, we have considered the simplest case with a

circular Fermi surface in two spatial dimensions. It would
be worthwhile to analyze the more general cases. Also, we
have concentrated on low-energy phenomena happening
near the Fermi surface. We expect that working away from
the Fermi surface, one could have some new nontrivial
contributions from the noncommutative parameter. Some
work in this regard is in progress.
Finally, we would like to make the remark that in our

analysis, we are interested only in the one-loop noncom-
mutative corrections appearing in the low energy regime of
the weakly interacting theory. At this level the theory is
stable, as we can see from the fact that there are no
corrections due to the noncommutativity in self energy.
Nonplanar corrections in the BCS channel is expected to
contribute to the two-point function at two loop, but going
to higher loops is beyond the scope of the present paper.
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[18] T. Chen, J. Frölich, and M. Steifert, arXiv:cond-mat/

9508063.
[19] N. Dupuis, Eur. Phys. J. B 3, 315 (1998); Phys. Rev. B 54,

3040 (1996).
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