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Gravity solutions dual to d-dimensional field theories at finite charge density have a near-horizon

region, which is AdS2 � Rd�1. The scale invariance of the AdS2 region implies that at low energies the

dual field theory exhibits emergent quantum critical behavior controlled by a (0þ 1)-dimensional

conformal field theories (CFT). This interpretation sheds light on recently-discovered holographic

descriptions of Fermi surfaces, allowing an analytic understanding of their low-energy excitations. For

example, the scaling behavior near the Fermi surfaces is determined by conformal dimensions in the

emergent IR CFT. In particular, when the operator is marginal in the IR CFT, the corresponding spectral

function is precisely of the ‘‘marginal Fermi liquid’’ form, postulated to describe the optimally doped

cuprates.
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I. INTRODUCTION

The AdS/CFT correspondence [1] has opened new ave-
nues for studying strongly-coupled many-body phenomena
by relating certain interacting quantum field theories to
classical gravity (or string) systems. Compared to conven-
tional methods of dealing with many-body problems, this
approach has some remarkable features, which make it
particularly valuable:

(1) Putting the boundary theory at finite temperature
and finite density corresponds to putting a black
hole in the bulk geometry. Questions about compli-
cated many-body phenomena at strong coupling are
now mapped to single- or few-body classical prob-
lems in a black hole background.

(2) Highly dynamical, strong-coupling phenomena in
the dual field theories can often be understood on
the gravity side using simple geometric pictures.

(3) At small curvature and low energies, a gravity the-
ory reduces to a universal sector: classical Einstein
gravity plus matter fields. Through the duality, this
limit typically translates into the strong-coupling
and large-N limit of the boundary theory, where N
characterizes the number of species. Thus by work-
ing with Einstein gravity (plus various matter fields)
one can extract certain universal properties of a
large number of strongly-coupled quantum field
theories.

In this paper, following [2,3], we continue the study of non-
Fermi liquids using the AdS/CFT correspondence (see,
also, [4]).

Consider a d-dimensional conformal field theory (CFT)
with a global Uð1Þ symmetry that has an anti-de Sitter
(AdS) gravity dual. Examples of such theories include
the N ¼ 4 super-Yang-Mills (SYM) theory in d ¼ 4,
the N ¼ 8 M2-brane theory in d ¼ 3, the (2,0) multiple

M5-brane theory in d ¼ 6, and many others with less
supersymmetry. With the help of the AdS/CFT correspon-
dence, many important insights have been obtained into
strongly-coupled dynamics in these systems, both near the
vacuum and at a finite temperature. In particular, as a
relative of QCD, thermal N ¼ 4 SYM theory has been
used as a valuable guide for understanding the strongly-
coupled Quark-Gluon Plasma of QCD.
It is also natural to ask what happens to the resulting

many-body system when we put such a theory at a finite
Uð1Þ charge density (and zero temperature). Immediate
questions include: What kind of quantum liquid is it?
Does the system have a Fermi surface? If yes, is it a
Landau Fermi liquid? A precise understanding of the
ground states of these finite density systems at strong
coupling should help expand the horizon of our knowledge
of quantum liquids and may find applications to real con-
densed matter systems.
On the gravity side, such a finite density system is

described by an extremal charged black hole in
dþ 1-dimensional anti-de Sitter space-time (AdSdþ1)
[5]. The metric of the extremal black hole has two interest-
ing features, which give some clues regarding the nature of
the system. The first is that the black hole has a finite
horizon area at zero temperature, suggesting a large
ground-state degeneracy (or approximate degeneracy) in
the large N limit. The second is that the near-horizon
geometry is given by AdS2 � Rd�1, which appears to
indicate that at low frequencies the boundary system
should develop an enhanced symmetry group including
scaling invariance. In particular, it is natural to expect
that quantum gravity (or string theory) in this region may
be described by a boundary CFT. It has been argued in [6]
that the asymptotic symmetry group of the near-horizon
AdS2 region is generated by a single copy of Virasoro
algebra with a nontrivial central charge, suggesting a pos-
sible description in terms of some chiral 2d CFT.
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More clues to the system were found in [3] from study-
ing spectral functions of a family of spinor operators
(following the earlier work of [2]):

(1) The system possesses sharp quasiparticle-like fer-
mionic excitations at low energies near some dis-
crete shells in momentum space, which strongly
suggests the presence of Fermi surfaces.1 In particu-
lar, the excitations exhibit scaling behavior as a
Fermi surface is approached with scaling exponents
different from that of a Landau Fermi liquid.2 The
scaling behavior is consistent with the general be-
havior discussed by Senthil in [7] for a critical Fermi
surface at the critical point of a continuous metal-
insulator transition.

(2) For a finite range of momenta, the spectral function
becomes periodic in log! in the low-frequency
limit. Such log-periodic behavior gives rise to a
discrete scaling symmetry, which is typical of a
complex scaling exponent.

Note that the above scaling behavior is emergent, a con-
sequence of collective dynamics of many particles, not
related to the conformal invariance of the UV theory,
which is broken by finite density.

The results of [3] were obtained by solving numerically
the Dirac equation for bulk spinor fields dual to boundary
operators, and it was not possible to identify the specific
geometric feature of the black hole, which is responsible
for the emergence of the scaling behavior. Nevertheless, as
speculated in [3], it is natural to suspect that the AdS2
region of the black hole may be responsible.

In this paper, we show that at low frequencies,3 the
retarded Green’s functions4 of generic operators in the
boundary theory exhibit quantum critical behavior. This
critical behavior is determined by the AdS2 region of the
black hole; assuming it exists, a CFT1 dual to this region of
the geometry (which we will call the ‘‘IR CFT’’) can be
said to govern the critical behavior.

The spirit of the discussion of this paper will be similar
to that of [3]; we will not be restricted to any specific

theory. Since Einstein gravity coupled to matter fields
captures universal features of a large class of field theories
with a gravity dual, wewill simply work with this universal
sector, essentially scanning many possible CFTs.5

The role played by the IR CFT in determining the low-
frequency form of the Green’s functions of the
d-dimensional theory requires some explanation. Each
operator O in the UV theory gives rise to a tower of
operators O ~k in the IR CFT labeled by spatial momentum

~k. The small ! expansion of the retarded Green’s function

GRð!; ~kÞ for O contains an analytic part, which is gov-
erned by the UV physics and a nonanalytic part, which is
proportional to the retarded Green’s function of O ~k in the

IR CFT. The kind of low-energy behavior that occurs
depends on the dimension �k of the operator O ~k in the

IR CFT and the behavior of GRð! ¼ 0; ~kÞ.6 For example,
when �k is complex, one finds the log-periodic behavior

described earlier. When GRð! ¼ 0; ~kÞ has a pole at some

finite momentum j ~kj ¼ kF (with �kF real), one then finds

gapless excitations around j ~kj ¼ kF indicative of a Fermi
surface.
Our discussion is general and should be applicable to

operators of any spin. In particular, both types of scaling
behavior mentioned earlier for spinors also applies to
scalars. But due to Bose statistics of the operator in the
boundary theory, this behavior is associated with instabil-
ities of the ground state. In contrast, there is no instability
for spinors, even when the dimension is complex.
Our results give a nice understanding of the low-energy

scaling behavior around the Fermi surface. The scaling
exponents are controlled by the dimension of the corre-
sponding operator in the IR CFT. When the operator is
relevant (in the IR CFT), the quasiparticle is unstable. Its
width is linearly proportional to its energy and the quasi-
particle residue vanishes approaching the Fermi surface.
When the operator is irrelevant, the quasiparticle becomes
stable, scaling toward the Fermi surface with a nonzero
quasiparticle residue. When the operator is marginal, the
spectral function then has the form for a ‘‘marginal Fermi
liquid’’ introduced in the phenomenological study of the
normal state of high Tc cuprates [8].
It is also worth emphasizing two important features of

our system. The first is that in the IR, the theory has
not only an emergent scaling symmetry but an SLð2; RÞ

1Note that since the underlying system is spherically symmet-
ric and the Fermi surfaces are round.

2In [4], a different family of operators were studied at finite
temperature. The authors concluded there that the scaling be-
havior resembles that of a Fermi liquid. We will discuss those
operators in Sec. VID.

3By ‘‘low frequency,’’ we mean frequency close to the chemi-
cal potential. How this arises from the AdS/CFT dictionary will
be explained below.

4We focus on the retarded Green’s function as its imaginary
part directly gives the spectral function, which reflects the
density of states which couple to an operator. It is also the
simplest observable to compute in the Lorentzian signature in
AdS/CFT. The scaling behavior is of course also present in other
types of correlation functions. We also expect similar scaling
behavior to exist in higher-point functions, which will be left for
future study.

5There are two caveats to this universality. First, there may
exist certain operator dimensions or charges, which do not arise
in a consistent gravity theory with UV completion. Second, as
we discuss further in the final section, the black hole we study
here exhibits a zero-temperature entropy; such violations of the
third law of thermodynamics usually resolve themselves by
instabilities. Whether and which such instabilities arise is sensi-
tive to the spectrum of other operators, such as charged scalars.

6The behavior at exactly zero frequency GRð! ¼ 0; ~kÞ is
controlled by UV physics, not by the IR CFT.
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conformal symmetry (maybe even Virasoro algebra). The
other is that the critical behavior (including around
the Fermi surfaces) only appears in the frequency, not in
the spatial momentum directions.

The plan of the paper is as follows. In Sec. II, we
introduce the charged AdS black hole and its AdS2 near-
horizon region. In Sec. III, we determine the low-energy
behavior of Green’s functions in the dual field theory, using
scalars as illustration. The discussion for spinors is rather
parallel and presented in Appendix A. In Secs. IV, V, and
VI, we apply this result to demonstrate three forms of
emergent quantum critical behavior in the dual field the-
ory: scaling behavior of the spectral density (Sec. IV),
periodic behavior in log! at small momentum (Sec. V),
and finally (Sec. VI) the Fermi surfaces found in [3]. We
conclude in Sec. VII with a discussion of various results
and possible future generalizations. We have included
various technical appendixes. In particular in
Appendix D, we give retarded functions of charged scalars
and spinors in the AdS2=CFT1 correspondence.

II. CHARGED BLACK HOLES IN ADS AND
EMERGENT INFRARED CFT

A. Black hole geometry

Consider a d-dimensional CFT with a global Uð1Þ sym-
metry that has a gravity dual. At finite charge density, the
system can be described by a charged black hole in
dþ 1-dimensional anti-de Sitter space-time (AdSdþ1) [5]
with the current J� in the CFT mapped to a Uð1Þ gauge
field AM in AdS.

The action for a vector field AM coupled to AdSdþ1

gravity can be written as

S ¼ 1

2�2

Z
ddþ1x

ffiffiffiffiffiffiffi�g
p �

Rþ dðd� 1Þ
R2

� R2

g2F
FMNF

MN

�
;

(1)

where g2F is an effective dimensionless gauge coupling7

and R is the curvature radius of AdS. The equations of
motion following from (1) are solved by the geometry of a
charged black hole [5,9]

ds2�gMNdx
MdxN ¼ r2

R2
ð�fdt2þd~x2ÞþR2

r2
dr2

f
(2)

with

f ¼ 1þ Q2

r2d�2
�M

rd
; At ¼ �

�
1� rd�2

0

rd�2

�
: (3)

r0 is the horizon radius determined by the largest positive
root of the redshift factor

fðr0Þ ¼ 0;! M ¼ rd0 þ
Q2

rd�2
0

(4)

and

� � gFQ

cdR
2rd�2

0

; cd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 2Þ
d� 1

s
: (5)

The geometry (2) and (3) describes the boundary theory
at a finite density with the charge, energy, and entropy
densities, respectively, given by

� ¼ 2ðd� 2Þ
cd

Q

�2Rd�1gF
; (6)

� ¼ d� 1

2�2

M

Rdþ1
; s ¼ 2�

�2

�
r0
R

�
d�1

: (7)

The temperature of system can be identified with the
Hawking temperature of the black hole, which is

T ¼ dr0
4�R2

�
1� ðd� 2ÞQ2

dr2d�2
0

�
(8)

and � in (5) corresponds to the chemical potential. It can
be readily checked from the above equations that the first
law of thermodynamics is satisfied

d� ¼ Tdsþ�d�: (9)

Note that Q has a dimension of ½L�d�1 and it is conve-
nient to parametrize it as

Q �
ffiffiffiffiffiffiffiffiffiffiffiffi
d

d� 2

s
rd�1� ; (10)

by introducing a length scale r�. In order for the metric (2)
not to have a naked singularity, one needs

M � 2ðd� 1Þ
d� 2

rd� ! r0 � r�: (11)

In terms of r�, the expressions for charge density �, chemi-
cal potential �, and temperature can be simplified as

� ¼ 1

�2

�
r�
R

�
d�1 1

ed
; (12)

� ¼ dðd� 1Þ
d� 2

r�
R2

�
r�
r0

�
d�2

ed; (13)

T ¼ dr0
4�R2

�
1� r2d�2�

r2d�2
0

�
; (14)

where we have introduced

ed � gFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd� 1Þp : (15)

Note that r� can be considered as fixed by the charge
density of the boundary theory.

7It is defined so that for a typical supergravity Lagrangian it is
a constant of order Oð1Þ. gF is related in the boundary theory to
the normalization of the two-point function of J�.
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B. AdS2 and scaling limits

In this paper, we will be mostly interested in the behav-
ior of the system at zero temperature, in which the limit the
inequalities in (11) are saturated

T ¼ 0 ! r0 ¼ r� and M ¼ 2ðd� 1Þ
d� 2

rd� : (16)

Note that the horizon area remains nonzero at zero tem-
perature and thus this finite charge density system has a
nonzero ‘‘ground-state’’ entropy density,8 which can be
expressed in terms of charge density as

s ¼ ð2�edÞ�: (17)

In the zero-temperature limit (16), the redshift factor f
in (2) develops a double zero at the horizon

f ¼ dðd� 1Þ ðr� r�Þ2
r2�

þ � � � : (18)

As a result, very close to the horizon the metric becomes
AdS2 � Rd�1 with the curvature radius of AdS2 given by

R2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þp R: (19)

More explicitly, considering the scaling limit

r�r� ¼�
R2
2

�
; t¼��1	; �!0 with �;	 finite;

(20)

we find that the metric (2) becomes AdS2 � Rd�1:

ds2 ¼ R2
2

�2
ð�d	2 þ d�2Þ þ r2�

R2
d~x2 (21)

with

A	 ¼ ed
�
: (22)

The scaling limit (20) can also be generalized to finite
temperature by writing in addition to (20)

r0 � r� ¼ �
R2
2

�0
with �0 finite (23)

after which the metric becomes a black hole in AdS2 times
Rd�1:

ds2 ¼ R2
2

�2

�
�
�
1� �2

�20

�
d	2 þ d�2

1� �2

�2
0

�
þ r2�

R2
d~x2 (24)

with

A	 ¼ ed
�

�
1� �

�0

�
(25)

and a temperature (with respect to 	)

T ¼ 1

2��0
: (26)

Note that in the scaling limit (20), finite 	 corresponds to
the long time limit of the original time coordinate. Thus, in
the language of the boundary theory, (21) and (24) should
apply to the low-frequency limit

!

�
;
T

�
! 0; !� T; (27)

where ! is the frequency conjugate to t.

C. Emergent IR CFT

One expects that gravity in the near-horizonAdS2 region
(21) of an extremal charged AdS black hole should be
described by a CFT1 dual. Little is known about this
AdS2=CFT1 duality.

9 For example, it is not clear whether
the dual theory is a conformal quantum mechanics or a
chiral sector of a (1þ 1)-dimensional CFT. It has been
argued in [6] that the asymptotic symmetry group of the
near-horizon AdS2 region is generated by a single copy of
Virasoro algebra with a nontrivial central charge, suggest-
ing a possible description in terms of some chiral 2d
CFT.10 Some of the problems associated with AdS2, such
as the fragmentation instability and the impossibility of
adding finite-energy excitations [11] are ameliorated by the
infinite volume of the Rd�1 factor in the geometry (21).
The scaling picture of the last subsection suggests that in

the low-frequency limit, the d-dimensional boundary the-
ory at finite charge density is described by this CFT1, to
which we will refer to below as the IR CFTof the boundary
theory. It is important to emphasize that the conformal
symmetry of this IR CFT is not related to the microscopic
conformal invariance of the higher dimensional theory (the
UV theory), which is broken by finite charge density. It
apparently emerges as a consequence of collective behav-
ior of a large number of degrees of freedom.
In Sec. III, we will elucidate the role of this IR CFT by

examining the low-frequency limit of two-point functions
of the full theory. Our discussion will not depend on the
specific nature of the IR CFT, but only on its existence. In
Appendix D, we give correlation functions for a charged
scalar and spinor in the IR CFT as calculated from the
standard AdS/CFT procedure in AdS2 [12]. They will play
an important role in our discussion of Sec. III.

8Since the semiclassical gravity expression for the entropy is
valid in the large N limit, one only needs ‘‘ground-state degen-
eracy’’ in the N ! 1 limit.

9For previous work on AdS2=CFT1 correspondence from other
decoupling limits, see, e.g., [10] and its citations.
10The central charge is proportional to the volume of the
d� 1-dimensional transverse space and is thus infinite for (21).
To have a finite central charge, one could replaceRd�1 in (21) by a
large torus.
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III. LOW-FREQUENCY LIMIT OF RETARDED
FUNCTIONS

In this section, we elucidate the role of the IR CFT by
examining the low-frequency limit of correlation functions
in the full theory. We will consider two-point retarded
functions for simplicity leaving the generalization to
multiple-point functions for future work. We will mostly
focus on zero temperature.

Our discussion below should apply to generic fields in
AdS, including scalars, spinors, and tensors. We will use a
charged scalar for illustration. The results for spinors will
be mentioned at the end with calculation details given in
Appendix A. Vector fields and stress tensor will be con-
sidered elsewhere.

Consider a scalar field in AdSdþ1 of charge q and mass
m, which is dual to an operatorO in the boundary CFTd of
charge q and dimension

� ¼ d

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2 þ d2

4

s
: (28)

In the black hole geometry (2), the quadratic action for 

can be written as

S ¼ �
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p ½ðDM
Þ�DM
þm2
�
� (29)

with

DM
 ¼ ð@M � iqAMÞ
: (30)

Note that the action (29) depends on q only through

�q � �q; (31)

which is the effective chemical potential for a field of
charge q. Writing11


ðr; x�Þ ¼
Z ddk

ð2�Þd 
ðr; k�Þeik�x� ; k� ¼ ð�!; ~kÞ;
(32)

the equation of motion for 
ðr; k�Þ is given by (below

k2 � j ~kj2)

� 1ffiffiffiffiffiffiffi�g
p @rð ffiffiffiffiffiffiffi�g

p
grr@r
Þ þ ðgiiðk2 � u2Þ þm2Þ
 ¼ 0;

(33)

where various metric components are given in (2) and

uðrÞ �
ffiffiffiffiffiffiffiffiffiffi
gii
�gtt

s �
!þ�q

�
1� rd�2

0

rd�2

��
: (34)

In (3), we have chosen the gauge so that the scalar
potential is zero at the horizon. As a result, At ! � for

r ! 1 and uðr ! 1Þ ! !þ�q. This implies that !

should correspond to the difference of the boundary theory
frequency from �q. Thus, the low-frequency limit really

means very close to the effective chemical potential �q.

The retarded Green’s function for O in the boundary
theory can be obtained by finding a solution 
, which
satisfies the in-falling boundary condition at the horizon,
expanding it near the boundary as


ðr; k�Þ 	r!1
Aðk�Þr��d þ Bðk�Þr��; (35)

and then [13]

GRðk�Þ ¼ K
Bðk�Þ
Aðk�Þ ; (36)

where K is a positive constant, which depends on the
overall normalization of the action, and is independent
of k�.

A. Low-frequency limit

At T ¼ 0, expanding (36) in small ! is not straightfor-
ward, as the ! ! 0 limit of Eq. (33) is singular. This is
because gtt has a double pole at the horizon. As a result, the
!-dependent terms in Eq. (33) always dominates suffi-
ciently close to the horizon and thus cannot be treated as
small perturbations no matter how small ! is. To deal with
this, we divide the r axis into two regions

Inner: r� r� ¼ !
R2
2

�
for � < � <1 (37)

Outer:
!R2

2

�
< r� r� (38)

and consider the limit

!!0; �¼ finite; �!0;
!R2

2

�
!0: (39)

Using � as the variable for the inner region and r as that for
the outer region, small ! perturbations in each region can
now be treated straightforwardly, with

inner: 
Ið�Þ ¼ 
ð0Þ
I ð�Þ þ!
ð1Þ

I ð�Þ þ � � � (40)

outer: 
OðrÞ ¼ 
ð0Þ
O ðrÞ þ!
ð1Þ

O ðrÞ þ � � � : (41)

We obtain the full solution by matching 
I and 
O in

the overlapping region, which is � ! 0 with r� r� ¼
!R2

2

� ! 0. Note that since the definition of � involves !,

the matching will reshuffle the perturbation series in two
regions.
While the above scaling limit is defined for small!> 0,

all our later manipulations and final results can be analyti-
cally continued to generic complex values of j!j 
 1.

11For simplicity of notation, we will distinguish 
ðr; x�Þ from
its Fourier transform 
ðr; k�Þ by its argument only.
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1. Inner region: scalar fields in AdS2

The scaling limit (37) and (39) is in fact identical to that
introduced in (20) (with! replacing �) in which the metric
reduces to that of AdS2 � Rd�1 with a constant electric
field. It can then be readily checked that in the inner region

at leading order, Eq. (33) (i.e., the equation for 
ð0Þ
I )

reduces to Eq. (D3) in Appendix D for a charged scalar
field in AdS2 with an effective AdS2 mass

m2
k ¼ k2

R2

r2�
þm2; k2 ¼ j ~k2j: (42)

A single scalar field 
 in AdSdþ1 gives rise toa tower of

fields 
~k in AdS2 labeled by the spatial momentum ~k.

From the discussion of Appendix D, the conformal dimen-
sion for the operator O ~k in the IR CFT dual to 
~k is given

by

�k ¼ 1
2 þ �k; �k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kR
2
2 � q2e2d þ 1

4

q
: (43)

Note that momentum conservation in Rd�1 implies that
operators corresponding to different momenta do not mix,
i.e.,

hOy
~k
ðtÞO ~k0 ð0Þi / �ð ~k� ~k0Þt�2�k : (44)

To compute the retarded function (36) for the full theory,

we impose the boundary condition that 
ð0Þ
I should be in-

falling at the horizon. Near the boundary of the inner

region (AdS2 region), i.e., � ¼ !R2
2

r�r�
! 0, 
ð0Þ

I can then be

expanded as [see, (D5)]12


ð0Þ
I ð!; ~k;�Þ¼

�
R2
2

r�r�

�ð1=2Þ��kð1þOð�ÞÞ

þGkð!Þ
�

R2
2

r�r�

�ð1=2Þþ�kð1þOð�ÞÞ: (45)

The coefficient Gkð!Þ of the second term in (A32) is
precisely the retarded Green’s function for operator O ~k in

the IR CFT. (Note that we define the AdS2 function just by
B=A without the 2�k factor first emphasized in [14].) From
(D10) it can be written as

Gkð!Þ ¼ e�i��k
�ð�2�kÞ�ð12 þ �k � iqedÞ
�ð2�kÞ�ð12 � �k � iqedÞ

ð2!Þ2�k (46)

with �k given by (43). Equation (45) will be matched to the
outer solution next.

2. Outer region and matching

The leading order equation in the outer region is ob-
tained by setting ! ¼ 0 in (33). Examining the resulting
equation near r ! r�, one finds that it is identical to the

inner region equation for 
ð0Þ
I in the limit � ! 0. It is thus

convenient to choose the two linearly-independent solu-

tions �ð0Þ
� in the outer region using the two linearly-

independent terms in (46), i.e., �ð0Þ
� are specified by the

boundary condition

�ð0Þ
� ðrÞ 	

�
r� r�
R2
2

��ð1=2Þ��k þ � � � ; r� r� ! 0:

(47)

The matching to the inner region solution (45) then be-

comes trivial and the leading outer region solution
ð0Þ
O can

be written as


ð0Þ
O ¼ �ð0Þ

þ ðrÞ þ Gkð!Þ�ð0Þ� ðrÞ; (48)

with Gkð!Þ given by (46).
One can easily generalize (48) to higher orders in!. The

two linearly-independent solutions to the full outer region
equation can be expanded as

�� ¼ �ð0Þ
� þ!�ð1Þ

� þ!2�ð2Þ
� þ � � � ; (49)

where higher order terms�ðnÞ
� , n � 1 can be obtained using

the standard perturbation theory and are uniquely specified
by requiring that when expanded near r ¼ r�, they do not
contain any terms proportional to the zeroth order solu-
tions. Each of the higher order terms satisfies an inhomog-
enous linear equation. The requirement amounts to
choosing a specific special solution of the homogeneous
equation. Note that it is important that the equations are
linear. Given that higher order terms in (49) are uniquely

determined by �ð0Þ
� , to match the full solution 
O to the

inner region it is enough to match the leading order term,
which we have already done. We thus conclude that per-
turbatively


O ¼ �þ þGkð!Þ��: (50)

3. Small ! expansion of GR

We first look at the retarded function at ! ¼ 0. At
! ¼ 0, the inner region does not exist and the outer region

equation reduces to that satisfied by 
ð0Þ
O . In (48), we have

chosen the normalization so that at! ¼ 0,
ð0Þ
O ¼ �ð0Þ

þ . For

real �k, this follows from the fact that �ð0Þ
þ gives the regular

solution at r ! r�. When �k is purely imaginary (i.e., when
q is sufficiently large) we will define the branch of the
square root by taking m2 ! m2 � i� so that �k ¼ �i�k

with �k positive. Then �ð0Þ
þ is the in-falling solution at the

12For convenience for matching to the outer region, we have
taken a specific choice of normalization for 
ð0Þ

I below. The
calculation of the retarded function (36) does not depend on the
choice of normalization.
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horizon as is required by the prescription for calculating

retarded functions. We expand �ð0Þ
þ ðrÞ near r ! 1 as

�ð0Þ
� ðr; kÞ ¼ að0Þ� ðkÞr��dð1þ � � �Þ þ bð0Þ� ðkÞr��ð1þ � � �Þ:

(51)

(Note that a�, b� have dimensions which follow from (51)
and (47); in our conventions here, in units of �, they are
pure numbers.) Then from (36) we find that

GRð! ¼ 0; kÞ ¼ K
bð0Þþ
að0Þþ

: (52)

We now consider a small nonzero !. Expanding various
functions in (49) (n � 1) near r ! 1 as

�ðnÞ
� ðr; kÞ ¼ aðnÞ� ðkÞr��dð1þ � � �Þ þ bðnÞ� ðkÞr��ð1þ � � �Þ;

(53)

from (50) and (36), we find that for small !

GRð!; kÞ ¼ K
bð0Þþ þ!bð1Þþ þOð!2Þ þ Gkð!Þðbð0Þ� þ!bð1Þ� þOð!2ÞÞ
að0Þþ þ!að1Þþ þOð!2Þ þ Gkð!Þðað0Þ� þ!að1Þ� þOð!2ÞÞ : (54)

Equation (54) is our central technical result. In the next few
sections, we explore its implications for the low-energy
behavior of the finite density boundary system. While its
expression is somewhat formal, depending on various un-
known functions aðnÞ� ðkÞ, bðnÞ� ðkÞ ,which can only be ob-
tained by solving the full outer region equations order by
order (numerically), we will see that a great deal about the
low-energy behavior of the system can be extracted from it
without knowing those functions explicitly.

B. Generalization to fermions

Our discussion above only hinges on the fact that in the
low-frequency limit, the inner region wave equation be-
comes that in AdS2. It applies also to spinors and other
tensor fields, even though the equations involved are more
complicated. In Appendix A, we discuss equations and
matching for a spinor in detail. After diagonalizing the
spinor equations, one finds that eigenvalues of the retarded
spinor Green’s function (which is now a matrix) are also
given exactly by Eq. (54), with now Gkð!Þ given by
Eq. (A34), which we copy here for convenience

Gkð!Þ¼e�i��k
�ð�2�kÞ�ð1þ�k� iqedÞ
�ð2�kÞ�ð1��k� iqedÞ

�ðmþ ikR
r�
ÞR2� iqed��k

ðmþ ikR
r�
ÞR2� iqedþ�k

ð2!Þ2�k (55)

with

�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kR
2
2 � q2e2d

q
; m2

k ¼
k2R2

r2�
þm2: (56)

Note the above scaling exponent can also be expressed as
[using (13)]

�k ¼ gFqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd� 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2R2

g2Fq
2
þ dðd� 1Þ

ðd� 2Þ2
k2

�2
q

� 1

vuut : (57)

The conformal dimension of the operatorO ~k in the IR CFT

is again given by

�k ¼ 1
2 þ �k: (58)

C. Analytic properties of Gk

The analytic properties of Gkð!Þ will play an important
role in our discussion of the next few sections. We collect
some of them here for future reference. Readers should feel
free to skip this subsection for now and refer back to it
later.
We first introduce some notations, writing

Gkð!Þ � cðkÞ!2�k ; cðkÞ � jcðkÞjei
k ; (59)

where cðkÞ denotes the prefactor in (55) for spinor and that
in (46) for scalars.
For real �k, the ratios in (D26) and (D25) of Appendix D

become a pure phase and we find that13


k¼
�
argð�ð�2�kÞðe�2�i�k �e�2�qedÞÞ spinor

argð�ð�2�kÞðe�2�i�k þe�2�qedÞÞ scalar
: (60)

It can be readily checked by drawing e�2�i�k and e�2�qed

on the complex plane that the following are true:
(i) For both scalars and spinors, ei
k [and thus cðkÞ]

always lies in the upper-half complex plane.
(ii) For scalars, ei
kþ2�i�k always lies in the lower-half

complex plane, while for spinors ei
kþ2�i�k always
lies in the upper-half complex plane.

(iii) For �k 2 ð0; 12Þ,
spinor: �� 
k > 2��k

scalar: �� 
k < 2��k:
(61)

13Since Eqs. (D25) and (D26) determine e2i
, they leave an
additive ambiguity of n� in the phase 
 of GR. In fact, this
ambiguity is important for maintaining unitarity (in a small part
of the parameter space); we discuss this phenomenon further in
Appendix D 5. The conclusion of that discussion is that the
quantity appearing in denominator the Green’s function multi-
plying !2� is jh2jei
k with 
k, precisely as given in Eq. (60).
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For pure imaginary �k ¼ �i�k (�k > 0), the ratios in
(D26) and (D25) of Appendix D become real and give

jckj2¼e�2��k �e�2�qed

e2��k �e�2�qed
<e�4��k spinor (62)

and

jckj2¼e�2��k þe�2�qed

e2��k þe�2�qed
>e�4��k scalar: (63)

It is also manifest from the above expressions that
jcðkÞj2 < 1 for both scalars and spinors.

Also note that for generic �k, Gkð!Þ, and accordingly
GRð!; kÞ in (54) have a logarithmic branch point at! ¼ 0.
We will define the physical sheet to be � 2 ð� �

2 ;
3�
2 Þ, i.e.,

we place the branch cut along the negative imaginary axis.
This choice is not arbitrary. As discussed in Appendix D,
when going to finite temperature, the branch cut resolves
into a line of poles along the negative imaginary axis.

D. Renormalization group interpretation
of the matching

The matching procedure described above has a natural
interpretation in terms of the renormalization group flow of
the boundary theory. The outer region can be interpreted as
corresponding to UV physics, while the inner AdS2 region
describes the IR fixed point. The matching between in the
inner and outer regions can be interpreted as matching of
the IR and UV physics at an intermediate scale. More

explicitly, coefficients aðnÞ� , bðnÞ� from solving the equations
in the outer region thus encode the UV physics, but Gkð!Þ
is controlled by the IR CFT.

In this context, ! can be considered as a control pa-
rameter away from the IR fixed point. Equation (54) then
shows a competition between analytic power corrections
(in !) away from the fixed point and contribution from
operator O ~k. In particular, when �k >

1
2 (i.e., �k > 1), O ~k

becomes irrelevant in the IR CFT and its contribution
becomes subleading compared to analytic corrections.
Nevertheless, the leading nonanalytic contribution is still
given by Gkð!Þ and as we will see below in various
circumstances, Gk does control the leading behavior of
the spectral function and other important physical quanti-
ties, like the width of a quasiparticle.

It is interesting to note the similarity of our matching
discussion to those used in various black hole/brane emis-
sion and absorption calculations (see, e.g., [15]), which
were important precursors to the discovery of AdS/CFT.
The important difference here is that in this
asymptotically-AdS case, we can interpret the whole pro-
cess (including the outer region) in terms of the dual field
theory.

IV. EMERGENT QUANTUM CRITICAL
BEHAVIOR I: SCALING OF SPECTRAL

FUNCTIONS

In this and the next two sections, we explore the impli-
cations of Eq. (54) for the low-energy behavior of the finite
density boundary system. In this section, we look at the
behavior of (54) at a generic momentum for which �k is

real and að0Þþ ðkÞ is nonzero. Imaginary �k will be discussed

in Sec. V and what happens when að0Þþ ðkÞ ¼ 0 will be
discussed in Sec. VI.
When �k is real, the boundary condition (47) is real.

Since the differential equation satisfied by 
ð0Þ
O is also real,

one concludes that both bð0Þþ and að0Þþ are real, which implies
that

ImGRð! ¼ 0; kÞ ¼ 0; for real �k: (64)

Similarly, we can conclude that all coefficients in (53) are
also real. Thus, the only complex quantity in (54) is the

Green’s function of the IR CFT, Gkð!Þ. When að0Þþ ðkÞ is
nonzero, we can expand the denominator of (54) and the
spectral function for O can be written at small ! as

ImGRð!; kÞ ¼ GRðk;! ¼ 0Þd0ImGkð!Þ þ � � � / !2�k ;

(65)

with

d0 ¼ bð0Þ�
bð0Þþ

� að0Þ�
að0Þþ

: (66)

We thus see that the spectral function of the full theory
has a nontrivial scaling behavior at low frequency with the
scaling exponent given by the conformal dimension of
operator O ~k in the IR CFT. Note that the k-dependent

prefactor in (65) depends on að0Þ� , bð0Þ� , and thus the metric
of the outer region. This is consistent with the renormal-
ization group picture we described at the end of last
section; the scaling exponent of the spectral function is
universal, while the amplitude does depend on UV physics
and is nonuniversal. By ‘‘universal’’ here, we mean the
following. We can image modifying the metric in the outer
region without affecting the near-horizon AdS2 region.

Then að0Þ� , bð0Þ� will change, but the exponent �k will remain
the same. The real part ofGR is dominated by a term linear
in ! when �k >

1
2 and is nonuniversal, but the leading

nonanalytic term is again controlled by Gkð!Þ.

V. EMERGENT QUANTUM CRITICAL
BEHAVIOR II: LOG PERIODICITY

In this section, we examine the implication of (54) when
the �k becomes pure imaginary. We recover the
log-oscillatory behavior for spinors first found numerically
in [3].
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A. Log-periodic behavior: complex conformal
dimensions

When the charge q of the field is sufficiently large (orm2

too small)

scalar: m2R2
2 þ 1

4 < q2e2d spinor: m2R2
2 < q2e2d

(67)

there exists a range of momenta

k2 < k2o �
8><
>:

r2�
R2

�
q2e2

d
�1

4

R2
2

�m2

�
scalar

r2�
R2

�
q2e2

d

R2
2

�m2

�
spinor

(68)

for which �k is pure imaginary

�k ¼ �i�k; �k ¼
8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2e2d �m2

kR
2
2 � 1

4

q
scalarffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2e2d �m2
kR

2
2

q
spinor

:

(69)

We have chosen the branch of the square root of �k by
taking m2 ! m2 � i�. The effective dimension of the op-
eratorO ~k in the IR CFT is thus complex. Following [3], we

will call this region of momentum space (68) the oscilla-
tory region.14 For spinors, we always have m2 � 0 and the
existence of the oscillatory region requires q � 0. For
scalars, Eq. (67) can be satisfied for q ¼ 0 for m2 in the
range

� d2

4
<m2R2 <�dðd� 1Þ

4
; (70)

where the lower limit comes from the Breitenlohner-
Freedman bound in AdSdþ1 and the upper limit is the
Breitenlohner-Freedman bound for the near-horizon
AdS2 region.

For a charged field, an imaginary �k reflects the fact that
in the constant electric field (22) of the AdS2 region,
particles with sufficiently large charge can be pair pro-
duced. It can be checked that Eqs. (67) indeed coincide
with the threshold for pair production in AdS2 [16].

With an imaginary �k, the boundary condition (47) for

�ð0Þ
� is now complex. As a result bð0Þþ =að0Þþ is complex and

ImGRð! ¼ 0; kÞ � 0: (71)

Thus, there are gapless excitations (since ! ¼ 0) for a
range of momenta k < ko. This should be contrasted with
discussion around (64).

The leading small ! behavior (54) is now given by

GRð!; kÞ 	 bð0Þþ þ bð0Þ� cðkÞ!�2i�k

að0Þþ þ að0Þ� cðkÞ!�2i�k

þOð!Þ; (72)

where cðkÞ was introduced in (59). Note that here

bð0Þ� ¼ ðbð0Þþ Þ�; að0Þ� ¼ ðað0Þþ Þ� (73)

since �ð0Þ� ¼ ð�ð0Þ
þ Þ� at the horizon and that the differential

equation that the � satisfy is real. Equation (72) is periodic
in log! with a period given by

	k ¼ �

�k

: (74)

In other words, (72) is invariant under a discrete scale
transformation

! ! en	k!; n 2 Z; ! ! 0: (75)

We again stress that while the retarded function (and the
spectral function) depends on UV physics (i.e., solutions of
the outer region), the leading nonanalytic behavior in !
and, in particular, the period (74) only depends on the
(complex) dimension of the operator in the IR CFT.
Here we find that the existence of log-periodic behavior

at small frequency is strongly correlated with (71), i.e., the
existence of gapless excitations. It would be desirable to
have a better understanding of this phenomenon from the
boundary theory side.

B. (In)stabilities and statistics

It is natural to wonder whether the complex exponent
(69) implies some instability. We will show now that it
does for scalars, but not for spinors. The scalar instability
arises because the scalar becomes tachyonic in the AdS2
region due to the electric field or reduced curvature radius.
At zero momentum, this is precisely the superconducting
instability discussed before in [17–20].15 That the log-
oscillatory behavior does not imply an instability for spin-
ors was observed before in [3] by numerically showing
there are no singularities in the upper half !-plane. Below
wewill give a unified treatment of both scalars and spinors,
showing that the difference between them can be solely
attributed to statistics, even though we have been studying
classical equations.
The spectral function following from (72) can be written

as

ImGRð!;kÞ
ImGRð!¼0;kÞ ¼!>0 1�jcðkÞj2

j1þjcðkÞjeiXj2

¼!<0 1�jcðkÞj2e4��k

j1þjcðkÞje2��keiXj2
(76)

where we have introduced

14Note that the oscillatory region appears to be different from
the Fermi ball discussed in [2].

15It was noted before in [19,20] that there could be an insta-
bility even for a neutral scalar in the mass range (70). The
condensation of such a neutral scalar field does not break the
Uð1Þ symmetry, and thus is distinct from the superconducting
instability of a charged field. It would be very interesting to
understand better the boundary theory interpretation of such an
instability.
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X�
k�2��2�k logj!j; að0Þþ ¼ jað0Þþ jei� (77)

and 
k was defined in (59). In the boundary theory retarded
Green’s functions for bosons are defined by commutators,
while those for fermions by anticommutators, which im-
plies that for !> 0

scalar: ImGRð�!;kÞ<0; ImGRð!;kÞ>0 (78)

spinors: ImGRð�!;kÞ>0; ImGRð!;kÞ>0: (79)

Applying (78) and (79) to (76) requires that

scalar: jcðkÞj2 < 1; jcðkÞje2��k > 1 (80)

spinors: jcðkÞj2 < 1; jcðkÞje2��k < 1; (81)

which are indeed satisfied by (63) and (62). It is important
to stress that in the bulk we are dealing with classical
equations of scalars and spinors and have not imposed
any statistics. However, the self-consistency of AdS/CFT
implies that classical equations for bulk scalars and spinors
should encode statistics of the boundary theory.

We now examine the poles of (72) in the complex
!-plane, which is given by

1þ jcðkÞje2�k�eiX ¼ 0; with ! � j!jei�: (82)

Equation (82) implies a series of poles located along a
straight line with angle �c (in the expression below the
integer n should be large enough for our small ! approxi-
mation to be valid)

!n¼eð
k�2��ð2nþ1Þ�Þ=2�kei�c ; n2Z;

�c¼� 1

2�k

logjcðkÞj:
(83)

Equations (80) and (81) then imply that

scalar: �c 2 ð0; �Þ (84)

spinors: �c > �: (85)

Thus, the poles for scalars lie in the upper-half !-plane
[20], while those for spinors are in the lower-half !-plane.
Poles on the upper-half !-plane of a retarded Green’s
function on the one hand implies causality violation. On
the other hand, from Eq. (36) it implies that there exist
normalizable modes, which have a frequency with a posi-
tive imaginary part. This leads to a mode exponentially
growing with time and thus an instability in the charged
black hole geometry; see Fig. 1 for illustration of the
locations of poles for scalars and spinors and their move-
ment as k is varied in the range (68).
The instability for a scalar can also be understood in

terms of classical super-radiance. To see this, let us go back
to Eq. (45), which for �k ¼ �i�k the first term can be
interpreted as an incident wave into the AdS2 region with
the second term the reflected wave. Thus, the reflection
probability is given by

jGkð!Þj2 ¼
� jcðkÞj2 !> 0
jcðkÞj2e4��k ! < 0

: (86)

Equation (80) then implies jGkð!Þj> 1 for !< 0. Recall
that our ! is defined to be the deviation from the effective
chemical �q ¼ q�. Thus, !< 0 agrees with the standard

frequency region for super-radiance. As mentioned earlier,
an imaginary � corresponds to the parameter regime where
charged particles can be pair produced. While both scalars
and spinors are pair produced, the super-radiance of scalars
can enhance the pair production into a classical instability.
The produced scalar particles are trapped by the
AdS gravitational potential well (of the full geometry)
and return to the black hole to induce further particle

2 1 1 2

1

2 1.5 1.0 0.5 0.0

0.1

0.2

0.3

0.4

0.5

1
2

FIG. 1 (color online). The motion of poles of the Green’s functions (72) of spinors (left) and scalars (right) in the complex frequency
plane. For illustration purposes, we have chosen parameters and rescaled j!jð! j!j# with small #Þ to give a better global picture. The
poles are exponentially spaced along a straight line (dotted line) with angle �c given by (83). There are infinitely many poles, only a
few of which are shown. Left plot: The black dashed line crossing the origin corresponds to the value of �c at k ¼ ko [see (68)]: the
boundary of the oscillatory region. As k ! ko, most of the poles approach the branch point ! ¼ 0 except for a finite number of them
which become quasiparticle poles for the Fermi surfaces at larger values of k. The color dashed lines in the right half indicate the
motion of poles on another sheet of the complex frequency plane at smaller values of k [see the end of Sec. III C for the choice of
branch cut in the!-plane]. Right plot: the two dashed lines correspond to k ¼ 0 (upper one) and k ¼ ko (lower one). Again most of the
poles approach the branch point ! ¼ 0 as k ! ko. These plots are only to be trusted near ! ¼ 0.
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production. In contrast, since the reflection probability for
a spinor falling into the black hole is smaller than 1, after a
few bounces back and forth the paired produced spinor
particles should fall back into the black hole.

In our context, the fact that a scalar super-radiates while
a spinor does not [i.e., Eqs. (80) and (81)] can be seen as a
consequence of statistics of the operator in the boundary
theory.

VI. EMERGENT QUANTUM CRITICAL
BEHAVIOR III: FERMI SURFACES

A. Quasiparticle-like poles

We now consider what happens to (54) when að0Þþ ðkÞ in
the expansion of (51) is zero. This can only occur for real
�k at discrete values of k, at which values the wave function

�ð0Þ
þ becomes normalizable. The possible existence of such

k’s can be visualized at a heuristic level by rewriting (33)
with ! ¼ 0 in the form of a Schrödinger equation, and
noticing that for a certain range of momentum the
Schrödinger potential develops a well which may allow
normalizable ‘‘bound states’’; see Appendix B for details
and also the similar story for spinors. For which values of k
such bound states indeed occur can then be determined by
solving (33) (with ! ¼ 0) numerically.

Suppose that að0Þþ has a zero at k ¼ kF. Then from (52),
for k� kF

GRðk;!¼0Þ	 bð0Þþ ðkFÞ
@ka

ð0Þ
þ ðkFÞ

1

k?
; k?�k�kF: (87)

Since �k is real, að0Þþ , bð0Þþ are all real [see, e.g., the dis-
cussion around (64)]. Thus, ImGRð! ¼ 0; kÞ is identically
zero around kF, but the real part ReGRð! ¼ 0; kÞ develops
a pole at k ¼ kF. Now turning on a small ! near kF, we
then have to leading order

GRðk;!Þ 	 bð0Þþ ðkFÞ
@ka

ð0Þ
þ ðkFÞk? þ!að1Þþ ðkFÞ þ að0Þ� ðkFÞGkF ð!Þ

¼ h1

k? � 1
vF
!� h2e

i
kF!2�kF

(88)

where in the second line we have used (59) and introduced

vF � � @ka
ð0Þ
þ ðkFÞ

að1Þþ ðkFÞ
;

h1 � bð0Þþ ðkFÞ
@ka

ð0Þ
þ ðkFÞ

;

h2 � �jcðkFÞj að0Þ� ðkFÞ
@ka

ð0Þ
þ ðkFÞ

:

(89)

The term linear in ! in the downstairs of (88) can be
omitted if �kF <

1
2 . For �kF >

1
2 , we should still keep the

term proportional to !2�kF , since it makes the leading

contribution to the imaginary part. Note that the quantities
in (89) are all real and as we will discuss below, they are all
positive.
The coefficients vF, h1;2 may be expressed in terms of

integrals of the bound state wave function�ð0Þ
þ at k ¼ kF by

perturbing the Schrödinger problem at ! ¼ 0, k ¼ kF in
!, k, similar to the demonstration of the Feynman-
Hellmann theorem. We present the details of this analysis
in Appendix C. In particular, from a combination of ana-
lytic and numerical analysis, we show that (for q > 0):
(1) For �kF >

1
2 , vF > 0 for both scalars and spinors

and, in particular, for a spinor vF < 1.
(2) For all �kF , for scalars

h1; h2 > 0: (90)

The above inequalities are established analytically
in Appendix C 2. For spinors, the story is more
involved, and our conclusions rely on the numerics
(see Fig. 8). As for scalars, h1 > 0 for all �. As
defined in (89), the sign of h2 is indefinite. However,
we find that the sign of h2 is precisely correlated
with the additive ambiguity in phase 
 (60) in such a

way that h2e
i argGR ¼ jh2jei
.

Equation (88) leads to a pole in the complex-! plane16

located at

!cðkÞ�!�ðkÞ� i�ðkÞ

¼
8><
>:
�
k?
h2

�
1=2�kF

e�ið
kF
=2�kF

Þ �kF <
1
2

vFk?�vFh2e
i
kF ðvFk?Þ2�kF �kF >

1
2

(91)

with residue at the pole given by

Z ¼
8<
:� !ch1

2�kF
k?

/ k
ð1�2�kF

Þ=2�kF

? �kF <
1
2

�h1vF �kF >
1
2

: (92)

Notice that both the real and imaginary part of the pole go
to zero as k? ! 0. Thus, (91) leads to a sharp quasiparticle
peak in the spectral function ImGRð!; kÞ in the limit
k? ! 0 with a dispersion relation

!�ðkÞ / kz? with z ¼
8<
:

1
2�kF

�kF <
1
2

1 �kF >
1
2

(93)

and

�ðkÞ / k�? with � ¼
8<
:

1
2�kF

�kF <
1
2

2�kF �kF >
1
2

: (94)

Note that when �kF <
1
2 , the pole follows a straight line

as k? is varied. More explicitly,

16Recall the discussion at the end of Sec. III C for the choice of
branch cut in the !-plane.
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�c ¼ argð!cÞ ¼
8<
:� 
kF

2�kF

k? > 0
��
kF

2�kF

k? < 0
(95)

and the width � is always comparable to the frequency
!�,

17

�ðkÞ
!�ðkÞ

¼ � tan�c ¼ const: (96)

In contrast, for �kF >
1
2 ,

�ðkÞ
!�ðkÞ ! 0 as k? ! 0; see Fig. 3 for

examples of the motion of a spinor pole in the complex
!-plane.

At �kF ¼ 1
2 , a

ð1Þ
þ and Gkð!Þ in Eq. (88) are divergent.

Both of them have a simple pole at �kF ¼ 1
2 . The pole inGk

can be seen explicitly from the factor �ð�2�kÞ in (46) and
(55). The pole in að1Þþ can be seen from the discussion (C8)
and (C9) in Appendix C. The two poles cancel each other
and leave behind a finite ! log! term with a real coeffi-
cient. More explicitly, we have

GR 	 h1
k? þ ~c1! log!þ c1!

; (97)

where ~c1 is real and c1 is complex.
Similar logarithmic terms appear for any �kF ¼ n

2 ,

n 2 Zþ. For example, at �kF ¼ 1, one finds that

GRð!; kÞ 	 h1
k? � 1

vF
!þ ~c2!

2 log!þ c2!
2

(98)

with ~c2 real and c2 complex.

B. A new instability for bosons

The above discussion applies identically to both scalars
and spinors with their respective parameters. We now show
that for spinors, the pole (91) never appears in the upper-
half plane of the physical sheet, while for scalars it always
lies in the upper-half plane for k? < 0. The difference can
again be attributed to the statistics of the corresponding
boundary operators.
First, note that ImGR obtained from (88) should again

satisfy (78) and (79) (which follow from the statistics of the
full boundary theory), leading to [using also (90)]

scalars: sin
kF >0; sinð
kF þ2��kF Þ<0 (99)

spinors: sin
kF >0; sinð
kF þ2��kF Þ>0; (100)

which indeed follow from discussion below (60).
Equations (99) and (100) are also consequences of (for
!> 0)

scalars: ImGkð�!Þ< 0; ImGkð!Þ> 0 (101)

spinors: ImGkð�!Þ> 0; ImGkð!Þ> 0; (102)

which follow from the Bose and Fermi statistics of the IR
CFT. This gives a self-consistency check of the statistics of
the full theory and its IR CFT.
For �kF >

1
2 , applying Eqs. (99) and (100) to the last line

of (91) we find that for spinors, the pole always lies in the
lower-half plane while for scalars the pole is always on the
upper-half complex !-plane for k? < 0. By using in addi-
tion (61), we again reach the conclusion that for spinors the
pole never appears in the upper-half plane of the physical
sheet, while for scalar it always does for k? < 0. In Fig. 2,
we give a geometric picture to illustrate this. In Fig. 3, we
illustrate the motion of poles as k? is varied for spinors.

2

2

2

k 0

k 0
2

2

2

k 0

k 0

FIG. 2 (color online). A geometric illustration that poles of the spinor Green’s function never appear in the upper-half !-plane of the
physical sheet, for two choices of �kF <

1
2 . Depicted here is the !2�kF covering space on which the Green’s function (88), with the

!=vF term neglected, is single valued. The shaded region is the image of the upper-half!-plane of the physical sheet. The pole lies on
the line 2�kF�c ¼ �
kF for k? > 0 and on 2�kF�c ¼ �� 
kF for k? < 0, which are indicated by the purple solid line in the figure.

The triangle formed by dashed arrows and solid lines in the upper left quadrant gives the geometric illustration for the equation
�� 
k ¼ argðe2�i�k � e�2�qed Þ [following from the first equation of (60)], which makes it manifest that for k? < 0 the pole lies
outside the shaded region. In contrast, for a scalar one needs to reverse the direction of the horizontal dashed line and the pole lies
inside the shaded region. Similarly, the triangle in the lower right quadrant gives the illustration for �
k ¼ argð�e2�i�k þ e�2�qed Þ,
which is relevant for k? > 0. We also indicated the angles ��, which will be introduced and discussed in detail around (104).

17Note that the concept of a width is only operationally mean-
ingful when the pole lies in the physical sheet; see the end of
Sec. III C for our choice of the physical sheet.
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The pole in the upper-half plane for scalars when k? < 0
is intriguing. As mentioned earlier, poles in the upper-half
!-plane imply the existence of an exponentially growing
(in time) normalizable mode in AdS and lead to instability.
Again, as in the case of the oscillatory region, the insta-
bility for scalars can be attributed to the Bose statistics of
the boundary theory. This instability is curious, as it occurs
for real �k and is thus distinct from the instability discussed
in the last section, which is associated with an imaginary
�k. In particular, it appears that this instability can exist in a
parameter range where previously considered supercon-
ducting instability does not occur. To understand the physi-
cal interpretation of such an instability, we should examine
the motion of the pole as k is decreased, in particular,
whether it persists to k ¼ 0. If it does, it seems likely the
pole will have a finite real part at k ¼ 0, i.e., the growing
mode also oscillates in time. Such an instability appears to
be novel and we will leave its interpretation and a detailed
study for future work.

C. Fermi surfaces

We now focus on spinors, for which Eqs. (88) and (91)
give analytic expressions for, and generalize to any massm
and charge q, numerical results of [3]. Reference [3] fo-
cused onm ¼ 0 and a few values of charge q. There kF was
found by studying the scaling behavior of quasiparticle
peaks as they become sharper and sharper as kF is ap-
proached. In our current discussion, kF are found from
‘‘bound states’’ of the Dirac equation at ! ¼ 0 (which
needs to be found numerically). We found perfect agree-
ment between two approaches. Plugging explicit values of
kF into (88) and (91) also leads to almost perfect agreement
with numerical plots of the retarded function in [3] includ-
ing the scaling exponents (see Fig. 4).

The sharp quasiparticle peaks in the spectral function for
spinors were interpreted in [3] as strong indications of
underlying Fermi surfaces with Fermi momentum kF.
The scaling behavior near a Fermi surface for the parame-
ter range considered there, which all have �kF <

1
2 , is

different from that of the Landau Fermi liquid, suggesting
an underlying non-Fermi liquid. Our current discussion

allows us to obtain a ‘‘landscape’’ of non-Fermi liquids
by scanning all possible values of m and q. Before doing
that, let us first make some general comments on the
scaling behavior (91)–(96) and the possible underlying
non-Fermi liquids:
(1) The form of retarded Green’s function (88) and

scaling behavior (91) again have a nice interpreta-
tion in terms of the renormalization group picture
described earlier; while the location of the Fermi
momentum kF is governed by the UV physics (just
like in real solids), the scaling exponents (91) near a
Fermi surface are controlled by the dimension of the

corresponding operators O ~k (with j ~kj ¼ kF) in the

IR CFT. Note that while the specific value of �kF

depends on kF as an input parameter, its functional
dependence on kF is fixed by the IR CFT.

(2) For �kF <
1
2 , the corresponding operator in the IR

CFT is relevant.18,19 From (96), the imaginary part
of the pole is always comparable to the real part and
thus the quasiparticle is never stable. Also note, the
ratio (96) depends only on the IR data. Another
important feature of the pole is that its residue
(92) goes to zero as the Fermi surface is approached.
In particular, the smaller �kF , the faster the residue

approaches zero.
(3) When �kF >

1
2 , the corresponding operator in the IR

CFT is irrelevant. The real part of the dispersion
relation (91) is now controlled by the analytic UV
contribution and becomes linear with a ‘‘Fermi ve-
locity’’ given by vF. vF is controlled by UV physics
and will have to be found numerically by solving the
outer region equations (see Fig. 7 and the discussion
in the next subsection). The imaginary part of the
pole is still controlled by the dimension of the
operator in the IR CFT. In this case, the width

k 0

k 0

1.0 0.5 0.5 1.0

0.003

0.002

0.001
k 2

vF k

FIG. 3 (color online). Examples of the motion of the pole for a spinor as k? is varied (arrows indicating the directions of increasing
k?). Left plot: �kF <

1
2 , for which the pole moves in a straight line. The plot shows an example where the pole moves to another sheet

of the Riemann plane for k? > 0 (i.e., �þ > �
2 ); the �� indicated there are introduced in (104). Right plot: �kF >

1
2 for which the

dispersion (real part of the pole) is linear.

18Recall that the dimension in the IR CFT is �kF ¼ 1
2 þ �kF .19The correct notion of ‘‘relevant’’ and ‘‘irrelevant’’ here has

been explained in [21]. The pertinent issue is the dimension of
the product of the operator in the IR CFT and a free fermion
representing the bound state at the Fermi surface.
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becomes negligible compared with the real part as
the Fermi surface is approached k? ! 0, so the
corresponding quasiparticle becomes stable.
Furthermore, the quasiparticle residue is now non-
vanishing (92). Note that the scaling exponent of the
width � is generically different from the
!2-dependence of the Landau Fermi liquid.

(4) When �k ¼ 1
2 , the corresponding operator in the IR

CFT is marginal. Now, the retarded function is given
by (97), in which case the imaginary part of the pole
is still suppressed compared to the real part as the
Fermi surface is approached, but the suppression is
only logarithmic. The quasiparticle residue now
vanishes logarithmically as the Fermi surface is
approached. Remarkably, (97) is precisely of the
form postulated in [8] for the marginal Fermi liquid
to describe the optimally doped cuprates. In [8] the
term ‘‘marginal’’ referred to the logarithmic vanish-
ing of the quasiparticle weight (residue) approach-
ing the Fermi momentum. Here we see that this term
marginal is indeed perfectly appropriate.

(5) At �kF ¼ 1, from (98) the retarded Green’s function

resembles that of a Landau Fermi liquid with the
real part of the quasiparticle pole linear in k? and
the imaginary part quadratic in k?. Equation (98),
however, has a logarithmic term!2 log! with a real
coefficient, which is not present for a Landau Fermi
liquid.20 In particular, this leads to a curious

particle-hole asymmetry with a difference in width
for a hole and a particle given by21

�ð!� < 0Þ � �ð!� > 0Þ ¼ �~c2!
2�: (103)

(6) Notice from (93) that for all values of �kF , z � 1.

This is consistent with an inequality proposed by
Senthil in [7] for a critical Fermi surface.22 In the
notation of [7] our Green’s function (88) also has a
scaling exponent � ¼ 1, with � defined as
GRð�z!; �k?Þ ¼ ���GRð!; k?Þ. Thus, we also
have z � � for all cases, consistent with the other
inequality proposed in [7].

(7) For �kF <
1
2 , Eq. (88) (with the linear term in !

omitted) exhibits a particle-hole asymmetry. To
characterize this, it is convenient to define

�þ � ��cðk? > 0Þ ¼ 
kF

2�kF

;

�� � �cðk? < 0Þ � � ¼ �� 
kF

2�kF

� �

(104)

with �c introduced in (95). �þ gives the angular
distance away from the positive real !-axis for the
pole (i.e., particle-type excitations) at k? > 0, while
�� gives the angular distance away from the nega-
tive real !-axis for the pole (i.e., hole-type excita-
tions) at k? < 0. From Fig. 2 and its caption, �� are
always positive. Their values determine how close
the corresponding pole stays to the real axis and
hence indicate the sharpness of the resulting peak in
the spectral function (i.e., the imaginary part ofGR).
In particular, when �� exceeds �

2 , the correspond-

ing pole moves to the other Riemann sheet.23 The
particle-hole asymmetry is then reflected in the
relative magnitudes of ��. From Eq. (60), one finds

that 2�kF�� ¼ argð1� e�2�qed�2�i�kF Þ, which im-

plies �� quickly becomes small when q increases as
can also be visualized from Fig. 2 since the hori-
zontal line of the upper triangle becomes short. In
contrast, with some thought one can conclude from
Fig. 2 that �þ can only be small when �kF is close to
1
2 , where �� is also small. Away from �kF ¼ 1

2 , one

will generically (except for small q) have a particle-
hole symmetry with a sharp peak on the hole side
(i.e., small ��), but a broad bump on the particle
side (not so small �þ). This was indeed what was

1.5 10 6 1. 10 6 5. 10 7 0 5. 10 7 1. 10 6 1.5 10 6

5000

0

5000

10 000

Re G2, Im G2

FIG. 4 (color online). Spinor Green’s function G2 (as defined
in Appendix A) at k ¼ 0:918 as a function of !, computed
numerically. We have chosen parameters r� ¼ R ¼ gF ¼ q ¼ 1,
m ¼ 0, and d ¼ 3 for which the Fermi momentum is kF ¼
0:91853. The real and imaginary parts are shown in blue and
orange dotted curves, respectively. Also shown is (88) (solid
lines) with h1, h2 computed numerically using the method of
Appendix C and �k given by (56).

20It is amusing to note that a Landau Fermi liquid in (2þ 1)-d
has a logarithmic correction of the form!2 log!, but with a pure
imaginary coefficient (see, e.g., [22]).

21The above asymmetry can also be expressed as �ð!�<0Þ
�ð!�>0Þ ¼

e�2�qed .
22Senthil derived the inequality z � 1 by approaching a non-
Fermi liquid at the critical point of a continuous metal-insulator
transition from the Landau Fermi liquid side and requiring the
effective mass should not go to zero as the critical point is
approached.
23An example is given in the left plot of Fig. 3.
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observed in [3] numerically. The above qualitative
features will be confirmed by explicit numerical
calculations represented in Fig. 6.

(8) Non-Fermi liquids have been described previously
by coupling a Fermi surface to a propagating bo-
sonic mode, such as a transverse magnetic excitation
of a gauge field, e.g., [23–30]. The forms of the
fermion Green’s functions thus obtained all fit into
the set of functions we have found in (88). An
important difference, however, is that each of these
analyses required a small parameter24 to control the
perturbation theory, and the range of frequencies (or
temperatures) over which the non-Fermi liquid be-
havior is relevant is parametrically small in the
control parameter. As a result the non-Fermi liquid
behavior will only be visible at extremely low tem-
peratures. In our nonperturbative calculation, this
range is order unity, and so our non-Fermi liquids
may be considered robust versions of these
previously-identified phases.

(9) The expression (88) for the retarded function near a
Fermi surface and the matching procedure from
which (88) was derived suggests the following ef-
fective action of the UV OU and IR OI part of an

operator O (below j ~kFj ¼ kF)

S ¼
Z

d!d ~k �OU�ð!; ~k?ÞOU

þ
Z

d!d ~kFDð!; ~kFÞ �OUð!; ~kFÞyOIð!; ~kFÞ
þ H:c:; (105)

where �ð!; ~k?Þ represents the kinetic term for OU

and Dð!; ~kFÞ denotes the coupling between OI and
OU. Both � and D are controlled by UV physics.
They are assumed to be real and depend analytically
on !. We assume that the dynamics of the IR

operator OIð!; ~kFÞ are controlled by the IR CFT
with a two-point function given by

hOIð!; ~kFÞyOIð!0; ~k0FÞiIR¼GkF ð!Þ�~kF; ~k
0
F
�ð!�!0Þ:

(106)

The action then implies that after summing a geo-
metric series, the full correlation function of OU is
then given by

GRð!; ~k?Þ ¼ 1

�ð!; ~k?Þ þD2ð!; ~kFÞGkF ð!Þ ;

(107)

which has the form of (88). Thus, action (105) gives
a phenomenological model of the small-frequency

matching procedure described in this paper as a
coupling between UV and IR degrees of freedom.
This argument is not dissimilar to that taken in [8] to
obtain the marginal Fermi liquid. It might also be
possible to reinterpret the discussion of [23–30] in
this language.

D. The zoo of non-Fermi liquids from gravity

The discussion of previous subsections was based on
qualitative features of (88), which are controlled by the IR
CFT. To obtain further information regarding properties of
the Fermi surface and its low-energy excitations, we need
to work out (numerically) the data which are controlled by
UV physics. These include: kF (which then determines �kF

and 
kF ), vF, h1, and h2. We will map out how they depend

on the charge q and dimension � (or equivalently mass m)
of an operator, i.e., the ‘‘phase diagram’’25 of holographic
non-Fermi liquids.
In this section, we will often use the notations and

equations developed in Appendix A. Readers are strongly
encouraged to read that part first.
We first solve the Dirac equation (A14) numerically with

! ¼ 0 to find kF, for which að0Þþ defined in Eq. (A38) is
zero. This is equivalent to finding the bound states of the
Dirac equation; see Appendix B for more details. For m 2
½0; 12Þ, we consider at the same time the alternative quanti-

zation of the bulk spinor field, whose boundary Green’s

function ~G1;2ðm; kÞ is given by G1;2ð�m;�kÞ [from (A26)

]. We will thus use negative mass to refer to the alternative
quantization. The results are presented in Fig. 5, where we
plotted kF dependence on charge q for three different
masses m ¼ �0:4; 0; 0:4. Note in this and all subsequent
plots, if not stated explicitly, we use without loss of gen-
erality R ¼ 1, r� ¼ 1, gF ¼ 1, and d ¼ 3, for which the

chemical potential is � ¼ ffiffiffi
3

p
.

We see in Fig. 5 that for a given mass when increasing q,
new branches of Fermi surfaces appear as was observed
before in [3]. This can be understood from the point of
view of the Dirac equation as increasing q allows more
bound states. The lowest bound state has the largest kF,

26

which corresponds to the lowest curves in Fig. 5. We will
refer it as the ‘‘primary Fermi surface.’’ For q, m, and k
large, we can also use the WKB approximation to solve the
Dirac equation to find the bound states, which is discussed
in detail in Appendix B. In particular, Fig. 12 gives the
parameter region where there exist Fermi surfaces for large
kF, m, q for various boundary theory space-time
dimensions.

24E.g., �� 1
137 in [23], 1=N in [24], the parameter x in the

gauge boson dispersion in [25]. . .

25This is an abuse of language because the parameters we are
varying are couplings in the bulk action, and hence change the
boundary system, not its couplings.
26As discussed in Appendix B, the bound state problem for the
Dirac equation can be approximately thought of as a Schrodinger
problem with eigenvalue �k2.
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In Fig. 6, we map the values of �kF , which can be

computed from (56), for the primary Fermi surface in the
q-m plane. As discussed further in Appendix C, using the
wave function for the bound state at kF, we can evaluate vF

and h1, h2. Their values for various masses as a function of
�kF are presented in Figs. 7 and 8.

We now summarize some important properties which
can be read from these plots and the WKB analysis in
Appendix B:

(1) For any m � 0 and q, in the standard quantization,
the existence of Fermi surfaces is always correlated
with the existence of the oscillatory region which
requires that for any dimension d [c.f. (67)]

�<
jqjgFffiffiffi

2
p þ d

2
: (108)

This is clear from both Figs. 5 and 6 for the masses
plotted there. In fact, the allowed region for Fermi
surfaces is more stringent than (108). This can be
seen from Fig. 12 (which follows from the WKB
analysis in Appendix B), which indicates that Fermi
surfaces only exist for (for any d)

m2R2 <
q2g2F
3

; i.e. �<
jqjgFffiffiffi

3
p þ d

2
: (109)

At m ¼ 0, in units of the effective chemical poten-
tial �q, the range for allowed kF is

d� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þp � kF

�q

� 1; (110)

where the lower limit is the boundary of the oscil-
latory region. The upper limit in (110) also applies
to other masses, achieved in the limit m finite,
q ! 1. The lower limits for other masses are

smaller than that in (110) as can be seen from
Fig. 13 (but an analytic expression is not known).
Note that form approaching the allowed limit (109),
kF=�q lies in a small region around

kF
�q

¼ d� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3dðd� 1Þp : (111)

(2) FormR 2 ð� 1
2 ; 0Þ, i.e., for alternative quantization,

there exists a single Fermi surface, which does not
enter the oscillatory region. This is the primary
Fermi surface with the largest kF. In fact, for the
small window

jqjgFffiffiffi
2

p < jmjR; (112)

i.e., in terms of boundary theory dimension � ¼
d
2 � jmjR,

d� 1

2
< �<

d

2
� jqjgFffiffiffi

2
p (113)

there exists a Fermi surface without oscillatory
region.

(3) For a given m, as one reduces q, kF (and �kF )

decreases and eventually loses its Fermi surface
identity by entering into the oscillatory region.
Similarly, for a given q, as one increases m, kF
(and �kF ) decreases and eventually enters the oscil-

latory region.
(4) For a Fermi surface, one can define a topological

number using the Green’s function [31]
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FIG. 5 (color online). The values of kF as a function of q for the Green’s function G2 are shown by solid lines for m ¼ �0:4, 0, 0.4.

In this plot and ones below, we use units where R ¼ 1, r� ¼ 1, gF ¼ 1, and d ¼ 3. The oscillatory region, where �k ¼ 1ffiffi
6

p �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 � q2

2

q
is imaginary, is shaded. From (A20) in Appendix A 3, G1ðkÞ ¼ G2ð�kÞ, so kF for G1 can be read from these plots by

reflection through the vertical k ¼ 0 axis. The m ¼ �0:4 plot corresponds to alternative quantization for m ¼ 0:4 following from Eq.
(A26). For convenience, we have included in each plot the values of kF for the alternative quantization using the dotted lines. Thus, the
first (m ¼ �0:4) and the third plot (m ¼ �0:4) in fact contain identical information; they are related by taking k ! �k and
exchanging the dotted and solid lines. Also, as discussed after (A29), form ¼ 0 the alternative quantization is equivalent to the original
one. This is reflected in the middle plot in the fact that the dotted lines and solid lines are completely symmetric. All plots are
symmetric with respect to q, k ! �q, �k as a result of Eq. (A24).
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n ¼ Tr
I
C

dl

2�i
GRðk?; i!Þ@lG�1

R ðk?; i!Þ; (114)

which measures the winding of its phase. Here, GR

should be considered as a matrix in the spinor space
and C is any closed loop in the ðk?; i!Þ
space around the origin. In our case, form ¼ 0 since
detGR ¼ 1 [see the discussion around (A28)], i.e.,
any pole is always canceled by a zero, any Fermi

surface has a zero winding. For generic m � 0, then
Fermi surfaces here generically have n ¼ �1.

(5) Except for the single primary Fermi surface for the
alternative quantization, as indicated in the last plot
of Fig. 5, the Fermi surfaces for the standard and
alternative quantizations that are paired with the
standard quantization have a larger kF. In the limit
mR ! 1

2 , the paired surfaces for two quantizations

now have the same kF.
(6) From Fig. 7, for a given mass and �kF >

1
2 , vF

decreases with �kF . In particular, as �kF ! 1
2 , vF

approaches zero. From the second line of (92), the
residue also vanishes in this limit given that h1
is regular there (see, Fig. 8). Also note that as
�kF ! 1, vF ! 1.

E. mR ! � 1
2 limit and free fermions

We will now consider the mR ! � 1
2 limit in some

detail (this corresponds to the alternative quantization of
mR ¼ 1

2 ), as in this limit the dimension of the operator

approaches that of a free fermion, i.e., in d-dimension,
� ! d�1

2 . Note at exactly mR ¼ � 1
2 , the bulk wave func-

tion becomes non-normalizable and a boundary operator
corresponding to it does not exist.27 It is natural to ask
whether in the limit mR ! � 1

2 , the behavior near the

Fermi surface approaches that of a Landau Fermi liquid,
as recently argued in [4].
We first note the following features as mR ! � 1

2 :

(1) In this limit one finds numerically that for the pri-
mary Fermi surface, the Fermi momentum ap-
proaches the upper limit of (110), i.e.,

kF ¼ �q: (115)

FIG. 6 (color online). The ‘‘phase diagram’’: Shown here are
contour plots of the exponent �kF evaluated on the primary Fermi

surface (the one with the largest kF), as a function ofm and q, for
each of the two components of the spinor operator. The top and
bottom rows differ only in the function used to shade the region
�kF 2 ½0; 12�. The top row is shaded according to ��, while the

bottom row is shaded according to �þ. The �� were introduced
in (104) and discussed in detail around there. The darker region
corresponds to larger values of the angles. Both angles are zero
at the line of �kF ¼ 1

2 and increase with a decreasing �kF . When

an angle exceeds �
2 , the corresponding pole moves into another

Riemann sheet, the regions for which are indicated in the plots.
As anticipated in the discussion below (104), �� becomes Oð1Þ
only for small q, which �þ becomes small only for �kF close to
1
2 . We also indicated the region where there exists an oscillatory

region for momentum satisfying (68). This region lies above the
dashed lines. It is clear from the plots that for m> 0, the region
which allows a Fermi surface always lies inside the region which
allows the oscillatory region. It is also interesting to note that in
the left plot the dashed line in fact meets with the line for �kF ¼ 1

2

at m ¼ � 1
2 (not shown in figure). This happens for d ¼ 3 only.

For general d dimension, the dashed line intersects withm ¼ � 1
2

at �kF ¼ 1
2ðd�2Þ .

FIG. 7 (color online). The Fermi velocity of the primary Fermi
surface of various components as a function of �kF >

1
2 . Dotted

lines are for G2. Various values of m are indicated.

27In other words, at mR ¼ 1
2 there is only one quantization

giving rise to a boundary operator of dimension � ¼ dþ1
2 .
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(2) With kF constrained as in (115), by varying q, �kF

can take any values greater than 1
2

1ffiffiffiffiffiffiffiffiffiffiffi
dðd�1Þ

p .

(3) From (C15), one finds that various coefficients in
(88) behave as

h1; h2 / ðmRþ 1
2Þ ! 0; vF ! 1: (116)

This is due to the fact that at mR ¼ � 1
2 , the bound

state wave function becomes non-normalizable with
a logarithmic divergence. In the limit mR ! � 1

2 ,

both J1 and Jt defined in (C11) and (C7) are pro-
portional to 1

mRþ1
2

.

With h2 ! 0 and vF ! 1, the Green’s function (88)
approaches that of a free relativistic fermion, despite the
fact that the nonanalytic part can still have a nontrivial
exponent �kF . Note that Eq. (115) has a simple interpreta-

tion: it is simply the Fermi momentum for a free relativistic
fermion with Fermi energy �q.

With h1 ! 0, the whole Green’s function vanishes, sug-
gesting that at the same time the fermion disappears in the
limit. Note that nowhere along the limit does a Landau
Fermi liquid emerge. This picture is consistent with gen-
eral expectations: in the mR ! � 1

2 limit the mode be-

comes a singleton mode (free fermion) living at the

boundary and decoupling from everything else. There are
no bulk degrees of freedom associated with it anymore.
The fact that we do not see a Landau Fermi liquid emerging
in the limit is also consistent with our current understand-
ing of holography; we do not expect a weakly interacting
boundary theory to have a bulk description in terms of low-
energy gravity.
Let us also mention that, at any given mass mR close to

� 1
2 , h1 and h2 are small but nonzero. Thus, except at

parametrically small frequencies (i.e., very close to the
Fermi surface), the linear analytic term in (88) will domi-
nate over the nonanalytic term. As a result, the nontrivial
exponent and the fact that the quasiparticle has a finite
width will not be easily visible. Turning on a temperature
will generate a new width for the quasiparticle and could
dominate over the zero-temperature width except at very
low temperatures.
In [4], indications were found that there exists a Fermi

surface, which behaves like a Landau Fermi liquid for mR
close to � 1

2 at a Fermi energy smaller than ! ¼ 0. This

result is surprising, from the following points of view:
(i) the Fermi energy is different from (in fact smaller
than) the value of the effective chemical potential; (ii)
it implies the existence of some kind of fermionic hair
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FIG. 8 (color online). h1 and h2=jcðkFÞj coefficients in (88) for the primary Fermi surface of various components as a function of
�kF . Various values of m are indicated. In the h2 plot for G2 at m ¼ �0:4: there is a zero of cðkFÞ at � ¼ mR2 	 :16, at which h2
changes sign. We explain the (lack of) significance of this phenomenon in Appendix D 5. For convenience, we also plot jcðkFÞj
separately in Fig. 9 below.
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outside the black hole at ! � 0; (iii) from the general
philosophy of holography mentioned earlier it is surprising
to see a gravity description of a weakly coupled theory. It
would be nice to have a better understanding of it. (Note
that the small !-analysis performed in this paper does not
apply to any possible Fermi surfaces at a Fermi energy
different from ! ¼ 0.)

Finally, we mention in passing that there is another limit
in which free fermions emerge from the WKB analysis. In
the limit q ! 1, with mR=q fixed, again one finds that
h2 ! 0. In this case, depending on the valuemR=q, vF can
take a range of values; see Fig. 14.

F. Double trace deformation and its effect
on Fermi surfaces

As discussed in Appendix A1, for mR 2 ½0; 12Þ we can

turn on a double trace deformation OyO in the unstable
CFT (from the alternative quantization) to flow to the
stable CFT [32]. We note that the IR CFT of both CFTs
appear to be the same. It is interesting to examine what
happens to Fermi surfaces of O under this flow. As an
example, let us consider m ¼ 0:4. By examining the third
plot of Fig. 5, we observe that in flowing to the stable CFT,
the primary Fermi surface (which has the biggest radius) of
the unstable one disappears. As a result, for generic q, the
number of Fermi surfaces in the stable CFT is one smaller
than that in the unstable one. For example, at q ¼ 2, one
starts in the unstable theory with two Fermi surfaces with
radii given by k1 
 k2. In the stable CFT, one finds a
single Fermi surface at a radius k3, which is greater than
but comparable to k2, and much smaller than k1. It would
be desirable to do a systematic study of more examples.

VII. DISCUSSION

In this paper, we studied the low-frequency expansion of
retarded two-point functions of generic charged scalar and
spinor operators in a CFTd at finite charge density using its
gravity dual, following the earlier numerical study of [3].
We showed that the spectral functions exhibit various
emergent critical behavior controlled by an infrared CFT
described by the AdS2 region of the black hole geometry.

Despite its classical nature, the bulk calculation we
performed turned out to have an intimate knowledge of
the quantum statistics of the excitations in the boundary
theory. In particular, the consistency with the boundary
theory statistics dictates that a charged scalar field in the
bulk could have various instabilities including super-
radiance, which are absent for a spinor field. We regard
this as a nice indication of the robustness of the AdS/CFT
correspondence. We also found a potentially new type of
scalar instability, which appears to be distinct from the
standard tachyon instabilities (including those induced by
an electric field).

Our results suggest a nice description for the low-energy
effective theory near a Fermi surface of a non-Fermi liquid.

We find at each point on the Fermi surface, there lives a
CFT,28,29 parametrized by the angle on the Fermi surface.
This is reminiscent of the Fermi liquid picture, except that
one replaces the free-fermion CFT by a nontrivial one. We
found a direct relation between the dimension of an operator
in the IR CFT and the scaling exponent of its spectral
function; a relevant operator gives rise to unstable quasi-
particle excitations at the Fermi surface with a zero quasi-
particle weight, while an irrelevant operator gives rise to
stable quasiparticles at the Fermi surface with a nonzero
quasiparticleweight.We expect this description to be rather
general, not restricted to theorieswith a gravity dual, since it
involves nothing more than general concepts of a fixed
point. For example, the fact that for a marginal operator
our expression (97) coincides with that of the marginal
Fermi liquid description [8] of the optimally doped cuprates
may not be an accident andmay suggest that the ‘‘electron’’
operator is marginal at the possible quantum critical point
describing a optimally doped cuprates.
Note that while in this paper we were restricted to a

charged black hole in AdS (which corresponds to CFT at a
finite charged density), our results should apply to any
extremal solution with an AdS2 region, e.g., dual to a
nonconformal theory at a finite density. One can also put
the boundary theory at a finite chemical potential for some
components of angular momenta, whose gravity dual is
then given by an extremal Kerr-AdS black hole, which has
an AdS2 region.
It is worth comparing the form of our Green’s functions

with the well-understood example of a non-Fermi liquid,
namely, Luttinger liquids in 1þ 1 dimensions. This is in
some sense a realization of the picture described above, in
that to construct a Luttinger liquid one replaces the free
fermion CFTof each Fermi point with a free boson of some
radius other than the free-fermion radius. It differs from
our case in two important ways: First, we do not know how
to obtain the behavior found here as a deformation of the
Landau theory. Second, the Green’s function we find has
a nonanalyticity at! ¼ 0 for arbitrary k (unlikeGluttinger �

1
ðk?�!Þ� ); however, only at k ¼ kF does this nonanalyticity

represent a peak in the spectral density.
We now discuss two caveats of our study. The first

regards the stability of this extremal black hole geometry.
While the black hole is by itself thermodynamically and
perturbatively stable, as discussed earlier, holographic su-
perconductor instabilities30 can occur if the gravity
theory in which it is embedded contains charged scalars

28As mentioned earlier, the precise nature of the IR CFT is not
yet understood. It might be conformal quantum mechanics or a
chiral sector of a (1þ 1)-dimensional CFT.
29In fact, the geometry we are studying displays such a CFT
even for values of k away from the Fermi surface.
30As mentioned in footnote 15, a neutral scalar with a suffi-
ciently negative mass square can also condense, whose boundary
theory interpretation is not yet known.
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of sufficiently large charge or sufficiently small mass
[17–20]. This may be considered a positive feature since
various physical systems to which we might try to apply
the mechanism described here, including the normal state
of high TC cuprates, also exhibit a superconducting insta-
bility. Nevertheless, the criteria for a string vacuum which
exhibits the Fermi surfaces described here but not the
superconducting instability are reminiscent of those re-
quired of a string vacuum which describes our Universe:
one does not want light scalar fields31 In the latter context,
a large machinery [33] has been developed to meet the
stated goal, and one can imagine that similar techniques
would be useful here. It would also be very interesting to
understand how the condensate affects the Fermi surfaces
studied here.

As discussed around Eq. (17), the black hole solution
has a finite entropy at zero temperature. Since the semi-
classical gravity expression for the entropy is valid in the
large N limit, this ground-state degeneracy may be a con-
sequence of theN ! 1 limit. Given that the solution is not
supersymmetric away from N ¼ 1 (i.e., beyond the grav-
ity approximation), these states are energetically closely
spaced rather than exactly degenerate. It may be useful to
compare this situation to that of systems with frustration.
While in our geometry this nonvanishing ground-state
entropy comes together with the existence of the AdS2
region, which gives rise to the IR CFT description, they
in principle reflect different aspects of a system and may
not correlate with each other. For example, suppose the
CFT1 dual to AdS2 can be considered as the right-moving
sector (with TR ¼ 0) of a 1þ 1-dimensional CFT. Then
the nonzero ground-state entropy should come from the
left-moving sector of this 1þ 1-dimensional CFT with a
nonzero left temperature. One can certainly imagine a
situation where the left-moving sector is absent, for which
case one will then have an IR CFT without a zero-
temperature entropy. We should caution that it might be
hard for such a situation to arise as the near-horizon limit of
a classical gravity solution.

Our results can be generalized in a variety of ways. The
most immediate is finite temperature, which should shed
further light on the structure of CFT1. It will be interesting
to follow the instability for scalars to the critical tempera-
ture [20]. It is also instructive to examine the two-point
functions of the charge current and density fluctuations.
They correspond to fluctuations of the bulk gauge field AM

in the transverse and longitudinal channel, respectively.
Here, we expect even at zero temperature that there exist
hydrodynamic modes like diffusion and sound modes, as
this is a non-neutral plasma and dissipates even at zero
temperature (e.g., it has a finite entropy). We expect
that our master formula (54) still applies after having
diagonalized the perturbations. In particular the diffusion

and sound modes will depend on the small k expansion of

að0Þþ , i.e., it should have a zero at k ¼ 0.
The matching behavior between the inner region and

outer region is very reminiscent of that for the D3-D7
system at small densities in [34]. There the geometry is
more complicated and does not directly give a hint to what
would be the IR theory. Nevertheless, it appears likely that
in the IR theory there is a nonrelativistic CFT at finite
density.
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APPENDIX A: SPINOR CALCULATION

1. Remarks on dictionary

A bulk Dirac spinor field c with charge q is mapped to a
fermionic operator O in CFT of the same charge. O is a
Dirac spinor for d odd, and a chiral spinor for d even
[35,36]. In both cases the dimension of the boundary spinor

O is half of that of c . Since c has 2½ðdþ1Þ=2� complex
components, where [x] denotes the integer part of x, the
boundary retarded Green’s function GR for O is a

0.0 0.5 1.0 1.5 2.0
2

1

0

1

2

c
k F

FIG. 9 (color online). Real and imaginary part of cðkFÞ as a
function of �kF for G1 at m ¼ 0. The plot for G2 is very similar.

Note that due to the Gamma function prefactor in (55), the real
part diverges at half integers.

31We thank Eva Silverstein for this analogy.
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2½ðd�1Þ=2� � 2½ðd�1Þ=2� matrix. The conformal dimension �
of O is given in terms of the mass m of c by32

� ¼ d

2
�mR; (A1)

where R is the AdS curvature radius. In (A1), one should
use the þ sign for mR � 1

2 . For mR 2 ½0; 12Þ, there are two
ways to quantize c by imposing different boundary con-
ditions at the boundary, which corresponds to two different
CFTs. We will call the CFT in which O has dimension
� ¼ d

2 þmR the ‘‘stable’’ CFTand the one with dimension
~� ¼ d

2 �mR 2 ðd�1
2 ; d2� the ‘‘unstable’’ CFT. In the un-

stable CFT, the double trace operator OyO produces a
relevant deformation under which the theory flows to the
stable CFT [37].

The retarded Green’s function of O at finite charge
density can be extracted by solving the Dirac equation
for c in the charged AdS black hole geometry.

2. Dirac equation

We consider a spinor field in the black hole geometry (2)
with a quadratic action

S ¼
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p
ið �c�MDMc �m �c c Þ; (A2)

where �c ¼ c y�t and

DM ¼ @M þ 1
4!abM�

ab � iqAM (A3)

with !abM the spin connection. Our notations are as fol-
lows. Wewill useM and a, b to denote abstract bulk space-
time and tangent space indices, respectively, and �; � � � �
to denote indices along the boundary directions, i.e.,
M ¼ ðr;�Þ. Underlined indices on Gamma matrices al-
ways refer to tangent space ones.

Writing

c ¼ ð�ggrrÞ�ð1=4Þe�i!tþikix
i
�; (A4)

the corresponding Dirac equation for c can be written asffiffiffiffiffiffiffi
gii
grr

s
ð�r@r �m

ffiffiffiffiffiffiffi
grr

p Þ�þ iK��
�� ¼ 0; (A5)

with

K�ðrÞ ¼ ð�uðrÞ; kiÞ; (A6)

and uðrÞ is given by

u ¼
ffiffiffiffiffiffiffiffiffiffi
gii
�gtt

s �
!þ�q

�
1� rd�2

0

rd�2

��
: (A7)

As in the case of a charged boson, Eq. (A5) depends on q
and � only through the combination

�q � �q; (A8)

which is the effective chemical potential for a field of
charge q. Similarly, ! should be identified with frequency
measured away from the effective chemical potential (A8).
Because of rotational symmetry in the spatial directions,
we do not lose generality by setting

k1 ¼ k; ki ¼ 0; i � 1: (A9)

Notice that Eq. (A5) then only depends on three Gamma
matrices �r, �t, �1. As a result, 33 projectors

�� � 1
2ð1� ð�1Þ��r�t�1Þ;

� ¼ 1; 2;

�1 þ�2 ¼ 1

(A11)

commute with the Dirac operator of (A5) and

�� ¼ ���; � ¼ 1; 2 (A12)

decouple from each other. It is then convenient to write

� ¼ �1

�2

� �
and choose the following basis of Gamma

matrices:

�r ¼ ��31 0

0 ��31

 !
; �t ¼ i�11 0

0 i�11

 !
;

�1 ¼ ��21 0

0 �21

 !
; � � � (A13)

under which the Dirac Eq. (A5) becomes

ð@r þm
ffiffiffiffiffiffiffi
grr

p
�3Þ�� ¼

ffiffiffiffiffiffiffi
grr
gii

s
ði�2uþ ð�1Þ�k�1Þ��:

(A14)

In Eq. (A13), 1 is an identity matrix of size 2ðd�3Þ=2 for d
odd (or size 2ðd�4Þ=2 for d even); since the resulting Green’s
functions will also be proportional to such an identity
matrix, we will suppress them below. Note that (A13) is
chosen so that Eq. (A14) is real for real !, k.32Without loss of generality in this paper, we will take m � 0.

For negative m, the discussion is exactly parallel, with m
replaced by jmj. For odd d the Dirac equation for �m is
completely equivalent to m as one can change the sign of
mass by taking c ! �c , where � is the dþ 1-dimensional
chirality matrix. For d even, different signs of m corresponds to
different chirality of O.

33For general ki, the projector can be written as

�k̂� � 1
2ð1� �r�tk̂i�

iÞ; (A10)

where k̂i is the unit vector k̂ � ~k=j ~kj.
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Near the boundary, (A14) has two linearly-independent
solutions given by (with 1=r subleading terms for each
solution suppressed)

�� 	r!1
a�r

mR 0
1

� �
þb�r

�mR 1
0

� �
�¼1;2: (A15)

To compute the retarded functions, one should impose the
in-falling boundary condition for � at the horizon. Then
the boundary spinor Green’s functions have two sets of
eigenvalues given by34

G�ð!; kÞ ¼ b�
a�

; � ¼ 1; 2: (A17)

To see (A17), consider spinors 
� ¼ 1
2 ð1� �rÞ� with

definite eigenvalues of �r. Then

with �� � y�
z�

� �
; 
þ ¼ z1

z2

� �
; 
� ¼ y1

y2

� �
;

(A18)

where we have suppressed zero entries in 
�. Equation
(A17) then follows using the prescription of [36] (see, e.g.,
Sec. III B).35

The dictionary (A17) is for the conventional quantiza-
tion, which applies to any m � 0. For mR 2 ½0; 12Þ, there is
also an alternative quantization, as discussed at the begin-
ning of this section. A similar argument then leads to

~G� ¼ �a�
b�

¼ � 1

G�

: (A19)

3. Some properties of the spinor correlators

In (A14), the equation for �2 is related to that of �1 by
k ! �k, so we immediately conclude that

G2ð!; kÞ ¼ G1ð!;�kÞ: (A20)

As a result, the trace and determinant of GR are invariant
under k ! �k as should be the case. Given (A20), from
now on we will focus solely on G1ð!; kÞ. For notational
simplicity, we will also drop the subscript � ¼ 1 below.
Unless written explicitly, all relevant quantities should be
interpreted as having a subscript � ¼ 1.

More properties ofG can be derived from (A14). For this
purpose, it is convenient to write (A17) as36

G ¼ lim
�!0

��2mR�jr¼1=�; with � � y

z
: (A21)

From (A14), as in [38], one can then derive a flow equation
for �,ffiffiffiffiffiffiffi

gii
grr

s
@r� ¼ �2m

ffiffiffiffiffiffi
gii

p
�þ ðu� kÞ þ ðuþ kÞ�2 (A22)

with in-falling boundary condition at the horizon given by
(for ! � 0)

�jr¼r0 ¼ i: (A23)

Properties ofG can now be read from those of (A22). By
taking q ! �q, ! ! �!, k ! �k, and � ! ��, we find
that the equation for � goes back to itself, implying

Gð!; k; qÞ ¼ �G�ð�!;�k;�qÞ; (A24)

where the complex conjugation is due to that with
! ! �! the in-falling horizon boundary condition that
turns into the outgoing one, which can then be changed
back by a complex conjugation.
By dividing both sides of Eq. (A22) by �2, we obtain an

identical equation for � 1
� if we also take m ! �m,

k ! �k. This implies that

Gð!; k;�mÞ ¼ � 1

Gð!;�k;mÞ : (A25)

Given Eq. (A19), we conclude that for alternative quanti-

zation ~G can be written as

~Gð!; k;mÞ ¼ Gð!;�k;�mÞ: (A26)

That is, alternative quantization can be included by extend-
ing the mass range for Gð!; k;mÞ from m � 0 to mR>

� 1
2 . Below, and in the main text, when we speak of

negative mass it should be understood that it refers to the
alternative quantization.
For m ¼ 0, from (A25) and (A20), we find that

G2ð!; kÞ ¼ � 1

G1ð!; kÞ ; m ¼ 0; (A27)

which implies that

detGRð!; kÞ ¼ 1; m ¼ 0: (A28)

Note that since a basis change and a Lorentz rotation do not
change the determinant of GR, Eq. (A28) applies to any
basis of Gamma matrices and any momentum. Combining
(A20) and (A27), we also conclude that at k ¼ 0,

G1ð!;k¼0Þ¼G2ð!;k¼0Þ¼ i; m¼0: (A29)

34That is, when diagonalized, the boundary retarded functions
have the form

GRð!; kÞ ¼ G1ð!; kÞ1 0
0 G2ð!; kÞ1

� �
: (A16)

35A note on notation: compared to the notation of [3],

�1 � iy�
zþ

� �
; �2 � �iz�

yþ

� �
:

36In (A21), one should extract the finite terms in the limit.
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Also note that Eq. (A27) implies that for m ¼ 0 the alter-
native quantization is equivalent to original one [36].

4. Small-frequency expansion

In this subsection, we present the low-frequency expan-
sion analysis of Sec. III adapted to the case of a spinor field.
Now the equation is given by (A14), with � ¼ 1, which we
copy here for convenience

ð@r þm
ffiffiffiffiffiffiffi
grr

p
�3Þ� ¼

ffiffiffiffiffiffiffi
grr
gii

s
ði�2u� k�1Þ�: (A30)

We will again divide the r-axis into two regions as (37) and
(38) and consider the low-frequency limit (39). The story is
very much parallel, so we will be brief.

In the inner region, to leading order in !-expansion
Eq. (A30) reduces to Eq. (D16) of a spinor field in AdS2
with ~m ¼ �ð�1Þ� kR

r�
. All the discussion in Sec. D 2 can

now be carried over with the replacement � ! �k

�k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kR
2
2 � e2dq

2 � i�
q

; m2
k � m2 þ k2R2

r2�
:

(A31)

For example, near the boundary of the inner region, i.e.,
!R2

2

r�r�
! 0, the leading order inner solution can be expanded

as

�ð0Þ
I ð!; ~k; �Þ ¼ v�

�
R2
2

r� r�

���k þGkð!Þvþ
�

R2
2

r� r�

�
�k
;

(A32)

where v� andGk can be obtained, respectively, from (D21)
and (D22). More explicitly,

v� ¼ mR2 � �k
kR
r�
R2 þ qed

 !
; (A33)

and

G kð!Þ ¼ e�i��k
�ð�2�kÞ�ð1þ �k � iqedÞ
�ð2�kÞ�ð1� �k � iqedÞ

� ðm� ikR
r�
ÞR2 � iqed � �k

ðm� ikR
r�
ÞR2 � iqed þ �k

!2�k : (A34)

As discussed around (D21), Gk depends on the normal-
izations of v� in (A33). But it can be checked explicitly
that the final correlation function (54) is independent of the
normalizations.

In the outer region, we can then choose the two linearly-
independent solutions for the zeroth order equation [i.e.,
(A14) with ! ¼ 0] by the boundary conditions

�ð0Þ
� ¼ v�

�
r� r�
R2
2

���k þ � � � ; r� r� ! 0: (A35)

The matching, the generalization to higher orders in!, and
the low-frequency expansion of GR now work completely
in parallel as those for scalar fields. More explicitly, per-
turbatively in! the full outer solution�O can be written as

�O ¼ �þ þ Gkð!Þ�� (A36)

with

�� ¼ �ð0Þ
� þ!�ð1Þ

� þ!2�ð2Þ
� þ � � � : (A37)

�ðnÞ
� , n � 1 are obtained from solving (A30) perturbatively

in the outer region and are uniquely specified by requiring
that when expanded near r ¼ r� they do not contain any
terms proportional to the zeroth order solutions (A35).

Now expanding various �ðnÞ
� , n � 0 near r ! 1 as in

(A15)

�ðnÞ
� 	r!1

aðnÞ� rmR 0
1

� �
þ bðnÞ� r�mR 1

0

� �
(A38)

then the retarded function G is again given by the master
formula (54).

APPENDIX B: BOUND STATES AT
! ¼ 0 AND WKB

1. Scalar bound states

Setting ! ¼ 0 in (33) defines the outer region differen-
tial equation for the scalar field. We are then interested in
examining normalizable solutions to this equation, since
this tells us about the spectrum of excitations of the bound-
ary theory. This is equivalent to studying solutions to this

differential equation with boundary conditions (47) for�ð0Þ
þ

and að0Þþ ¼ 0 in (53). The alternative quantization window

can be achieved by studying bð0Þþ ¼ 0. As we will see,
bound states will exist for a discrete set of momenta, so
(at least for the fermion problem) these excitations will
define a Fermi surface.
We will study the spinor problem in the next subsection.

For now, the scalar problem will suffice since this problem
will probably be more intuitive.
By scaling the wave function and redefining the radial

coordinate, 
ðrÞ ¼ Zc ðsÞ, the wave equation (33) can be
put in the form,

� @2sc þ VðsÞc ¼ ð�k2Þc (B1)

where the ‘‘tortoise’’ coordinate and the rescaling are,

ds

dr
¼

ffiffiffiffiffiffiffi
grr
gii

s
; Z ¼

�
grrgii
�g

�
1=4

: (B2)

In doing this, we have defined a unique Schrödinger po-
tential for this problem:

V ¼ ð�u2 þm2giiÞ þ ðð@s lnZÞ2 � @2s lnZÞ: (B3)

The problem is to find bound states in this potential with
negative ‘‘energy’’ E ¼ �k2. Pictures of this potential are

EMERGENT QUANTUM CRITICALITY, FERMI . . . PHYSICAL REVIEW D 83, 125002 (2011)

125002-23



shown in Fig. 10 for fixed m2 and various values of q.
Examining the r ! r� limit, which corresponds to
s ! �1, we find that the potential goes to a constant

VðsÞ ! r2�
R2R2

2

ð�ðqedÞ2 þm2R2
2 þ 1=4Þ:

Hence there exists a continuum near the horizon for mo-

mentum satisfying �k2 > r2�
R2R2

2

ð�ðqedÞ2 þm2R2
2 þ 1=4Þ.

This is the criterion for the oscillatory region. That is, we
have identified the oscillatory behavior as arising from the
existence of a continuum.

Bound states then exist if the potential well in Fig. 10
close to s ¼ 0 is deep enough. The ‘‘sprouting’’ of bound
states out of the oscillatory region in the q� k plot of
Fig. 5 has a nice interpretation in terms of developing new
bound states as the potential well varies.

2. Spinor bound states

The bound state problem is now the first order Dirac
equation,

ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

@r� ¼ �ðm=RÞr �kþ u
�k� u ðm=RÞr

� �
� (B4)

subject to normalizability conditions for �ð0Þ
þ in (A35) and

að0Þþ ¼ 0 in (A38).
It is harder to have an intuitive grasp over this equation,

as in the second order problem. We can of course square
this operator to obtain a Schrödinger problem, but there
seems to be no way to define a unique potential, such as the
one for the scalar. We proceed with an arbitrary choice, in
order to give a qualitative understanding of the existence of
bound states.
Taking � ¼ ðy; zÞT , we can write (B4) asffiffiffiffiffiffiffiffiffiffiffiffi

giig
rr

p
Q�1@rðQyÞ ¼ ðu� kÞz (B5)

ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

Q@rðQ�1zÞ ¼ �ðkþ uÞy; (B6)

whereQ ¼ expðmR
dr

ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

p
mr=RÞ. Then we can write a

second order differential equation for c ¼ z=Q. Defining
a new tortoise coordinate,

dsF
dr

¼
ffiffiffiffiffiffiffi
grr
gii

s
1þ u=k

Q2
(B7)

we find a zero-energy Schrödinger equation,

�@2sFc þVFc ¼0; ðVFÞ=k2¼1�u=k

1þu=k
Q4: (B8)
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FIG. 10 (color online). The potential for the scalar field defined by (B3) for m2 ¼ �3=2, �2, �9=4. In terms of the tortoise
coordinate s the horizon is located at s ¼ �1 and the boundary at s ¼ 0. The oscillatory region is associated with the continuum for
s ! �1 and ‘‘Fermi’’ surfaces are bound states in the potential well to the right of this continuum. Note the behavior of the potential
close to the boundary is VðsÞ � ð2þm2Þ=s2.
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FIG. 11 (color online). A zero-energy Schrödinger potential which is equivalent to the spinor bound state problem (B4). The three
plots are for m ¼ �1=4, 0, þ1=4, respectively, for varying values of the parameter k=�q. For m ¼ �1=4 we have rescaled sF !
sF=js�j, VF ! VFs

2� so that for all values of �q=k the potential can be drawn on the same interval �1< sF < 0.
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Pictures of this potential are shown in Fig. 11 for 3 differ-
ent fixed values of m and various values of �q=k. Note in

Fig. 11, k has been scaled out of the potential, so one
should imagine scaling the potential by dialing k to find
when a bound states energy eigenvalue crosses zero; this
will define the Fermi momentum kF. In particular, for a
given value of �q=k there are possibly an infinite set of

bound states energies which cross zero as k is increased.
Examining the behavior close to the horizon, the tortoise

coordinate behaves as sF ! �1 for m � 0 and sF ! s�
for m< 0. The potential is of the form c=s2F for m> 0 and
c=ðsF � s�Þ2 for m< 0 where

c ¼ ðk2R2R2
2=r

2� � ðqedÞ2Þ
4m2R2

2

; (B9)

so that the condition for being in the oscillatory region is
the usual condition for a singular c=s2 potential in quantum
mechanics, c <�1=4.

3. WKB analysis

We can analyze both the scalar field and spinor under
various limits using WKB analysis. We will focus here on
the limit q, k, m ! 1 with ratios k=q and k=m fixed and
consider the scalar and spinor problems in parallel. A
useful reference for the application of WKB to the Dirac
equation is [39].

As we will see, both problems are governed by the
‘‘WKB momentum’’

p2 ¼ k2 þ ðm2=R2Þr2 � u2: (B10)

For the scalar field, this is simply the usual potential-
minus-energy term V � ð�k2Þ from (B3), where terms
which depend on Z are small so should be dropped. For
the spinor, it is the negative of the determinant of the matrix
on the right-hand side of (B4). The sign of p2 will tell us if
we are in the classically allowed (p2 < 0) or disallowed
(p2 > 0) region. Note that p2 �Oðk2Þ is large in the WKB
approximation. In the parameter space shown in Fig. 12,
there are two turning points, r1, r2, with a classically
allowed region in between the two. The WKB approxima-
tion to the wave function in the three regions is

(i) r < r1 and r > r2 (we use a compact notation to
write both these regions together, with 1, 2 correlated
with � in a self explanatory way)

c ðrÞ¼CB
1;2ffiffiffiffi
p

p exp

�
�
Z r

r1;2

dr0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
pðr0Þ

�
(B11)

�ðrÞ ¼ CF
1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðkþ uÞp mr=R� p
kþ u

� �

� exp

�
�
Z r

r1;2

dr0ð
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
pðr0Þ þ �ðr0ÞÞ

�
;

(B12)

where � is an Oð1Þ function given by,

�ðr0Þ ¼ kþ uðr0Þ
2pðr0Þ @r0

�
mr0=R

kþ uðr0Þ
�
: (B13)

(ii) r1 < r < r2

c ðrÞ ¼ DBffiffiffiffi
�

p Refei�Bðr1;rÞþi�g (B14)

�ðrÞ ¼ DFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðkþ uÞp Re

�
mr=R� i�

kþ u

� �
ei�Fðr1;rÞþi�

�
;

(B15)

where �2 ¼ �p2 and,

�Bðr1; rÞ ¼
Z r

r1

dr0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
�ðr0Þ (B16)

�Fðr1; rÞ ¼ �Bðr1; rÞ

�
Z r

r1

dr0
kþ uðr0Þ
2�ðr0Þ @r0

�
mr0

kþ uðr0Þ
�
:

(B17)

We can formulate a quantization condition by matching
the integration constants (in particular � ¼ ��=4) across
the turning points using Airy functions. The quantization
conditions for the scalar and spinor problem turn out to be

�ðnþ 1=2Þ ¼ �Bðr1; r2Þ (B18)
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qgF
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1.0
kF q
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Q3

FIG. 12 (color online). The parameter region where there exist
Fermi surfaces for large kF, m, q in the WKB approximation, for
different field theory space-time dimensions d ¼ 3, 4, 6, 50. For
a given dimension the upper and lower boundary lines are
defined by the Fermi surface moving into the oscillatory region
(lower) and the nonexistence of classical orbits (upper.) See
Fig. 13 for an alternative way to state this in terms of the radii
of the two turning points. The extreme point to the right of the

allowed region is Pd ¼ ð1= ffiffiffi
3

p
; ðd� 2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3dðd� 1Þp Þ and the

point at the lower left corner is Qd ¼ ð0; ðd� 2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þp Þ.
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�ðnþ 1=2Þ ¼ �Fðr1; r2Þ; (B19)

respectively. Note that the quantization condition for the
spinor only works for m> 0, and no information on the
alternative quantization region for either spinor or scalar
can be found with this analysis.

Using (B19) in Fig. 13, we plot contours of fixed � and q
in the WKB parameter region for n ¼ 0. We note that the
validity of the WKB approximation is for n large, however
it seems to work remarkably well for n ¼ 0 the ground
state. One might also imagine that it might be exact for
n ¼ 0 when the quantization condition forces us into the
limit kF, q, m ! 1. Such a situation does occur at to the
upper boundary of Fig. 13 when r1 ! r2. Actually, more
care is required in this limit: for the scalar field we can
formulate a scaling limit in which the potential becomes
that of a simple harmonic oscillator (SHO) located at the

radius where r1 ! r2. In this case, the WKB quantization
condition should be exact since it is exact for the SHO.
Unfortunately, it seems hard to find the equivalent scaling
limit for the spinor; see Sec. C 3 for more discussion of
this.

APPENDIX C: FORMULAS FOR vF, h1, h2

1. Spinors

In this section, we will derive general formulas for
various coefficients appearing in Eq. (88). These coeffi-
cients are of great importance in characterizing physical
properties of the Fermi surface as they determine the Fermi
velocity, the locations of quasiparticle poles, and the res-
idues at the poles. The following discussion will be very
similar to the derivation of the Feynman-Hellmann theo-
rem, which (not coincidentally) is commonly used to de-
termine dispersion relations in, e.g., photonic crystals [40].
We will focus on the spinor case, and comment on the
corresponding result for the charged scalar at the end.
Consider the Dirac equation from (A2)

ð�MDM �mÞc ¼ 0 (C1)

in Fourier space where the Dirac operatorD depends on!
and k, which we will collectively denote as �. Now, sup-
pose that (C1) has a solution c 0 for � ¼ �0, i.e.,

ð�MDMj�0
�mÞc 0 ¼ 0: (C2)

Consider varying �0 ! �0 þ �� with the corresponding
solution to (C1) given by c 0 þ ��c 1. c 1 then satisfies

ð�MDMj�0
�mÞc 1 þ �M @DM

@�

���������0

c 0 ¼ 0: (C3)

Multiplying (C3) on the left by
R1
r� dr

ffiffiffiffiffiffiffi�g
p �c 0, integrating

by parts, and using (C2), we find that

Wð1Þ �Wðr�Þ þ
Z 1

r�
dr

ffiffiffiffiffiffiffi�g
p �c 0�

M @DM

@�
c 0 ¼ 0;

(C4)

where

W ¼ ffiffiffiffiffiffiffi�g
p �c 0�

rc 1: (C5)

We will now be more specific, taking � ¼ �0 corre-
sponding to ! ¼ 0, k ¼ kF, and c 0 to be that correspond-

ing to �ð0Þ
þ defined in (A35), i.e., from (A4)

c 0 ¼ ð�ggrrÞ�ð1=4Þ�ð0Þ
þ . Recall that at k ¼ kF, �

ð0Þ
þ is nor-

malizable with að0Þþ ¼ 0. We will now consider small! and
k variations separately:

(1) Take � ¼ ! in (C4). Then we have c 1 ¼
ð�ggrrÞ�ð1=4Þ�ð1Þ

þ , where �ð1Þ
þ was introduced in

(A37), and W ¼ ��ð0Þ
þ �r�ð1Þ

þ . Equation (C4) then
becomes
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FIG. 13 (color online). The WKB allowed region for d ¼ 3
showing contours of fixed � and m (above) and fixed q (below)
based on the WKB quantization condition (B19) for n ¼ 0.
Upper plot: The lowest horizontal contour is � ¼ 0, increasing
towards � ! 1 at the upper boundary. The vertical contours are
for fixedm with m ¼ 0 lying on the kF=�q axis. The contours in

this plot demonstrate that the point P3 controls the asymptotic
slope of the fixed � contours in Fig. 6. Lower plot: The contours
of fixed q move towards the upper boundary with increasing q.
Note that these contours end on the lower boundary (the oscil-
latory region). In particular, if we fix q and increase m, following
along the contours in this plot, we see that kF decreases until
eventually the bound state enters the oscillatory region.
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ibð0Þþ að1Þþ � ð ��ð0Þ
þ �r�ð1Þ

þ Þjr� � iJtjc 0
¼ 0 (C6)

with

Jtjc 0
¼
Z 1

r�
dr

ffiffiffiffiffiffiffi�g
p �c 0�

tc 0

¼ �
Z 1

r�
drð�grrg

ttÞ1=2ð�ð0Þ
þ Þy�ð0Þ

þ ; (C7)

where in obtaining (C6) we have used (A38) and

(A13). Note that near r ! r�,�
ð0Þ
þ � ðr� r�Þ�k , thus

Jt / 1

2�k � 1
; �k ! 1

2
(C8)

and becomes divergent from integration near r�
when �k � 1

2 . Since the first term in (C6) is a finite

constant, the divergence has to be canceled by the
second term in (C6). As can be checked explicitly,
the second term in (C6) is indeed divergent37 for
�k � 1

2 and precisely cancels that of Jt. For �k <
1
2 ,

the boundary contribution from the horizon van-
ishes. Thus, we find that

að1Þþ ¼ Jt

bð0Þþ
; (C9)

where for �k � 1
2 , J

t should be regularized as dis-

cussed above.

(2) Take � ¼ k? in (C4). Then we have c 1 ¼
ð�ggrrÞ�ð1=4Þ@k�

ð0Þ
þ ðkFÞ, and W ¼ ��ð0Þ

þ �r@k�
ð0Þ
þ . In

this case, the horizon contribution in (C4) vanishes
and we find

ibð0Þþ @ka
ð0Þ
þ þ iJ1jc 0

¼ 0 (C10)

with

J1jc 0
¼
Z 1

r�
dr

ffiffiffiffiffiffiffi�g
p �c 0�

1c 0

¼ ð�1Þ�
Z 1

r�
drðgrrgiiÞ1=2ð�ð0Þ

þ Þy�3�ð0Þ
þ :

(C11)

It can be checked explicitly that J1 is always well-
defined and finite. We then conclude that

@ka
ð0Þ
þ ¼ � J1

bð0Þþ
: (C12)

(3) Denoting c�
0 ¼ ð�ggrrÞ�ð1=4Þ�ð0Þ� and multiplyingR1

r� dr
ffiffiffiffiffiffiffi�g

p �c�
0 on Eq. (C2), we find that

ð ffiffiffiffiffiffiffi�g
p �c�

0 �
rc 0Þjr� ¼ ð ffiffiffiffiffiffiffi�g

p �c�
0 �

rc 0Þj1; (C13)

which leads to

að0Þ� ¼ V

bð0Þþ
; V ¼ �ivy

þ�2v�; (C14)

where v� are given by (A33).
Using (C9), (C12), and (C14), we thus find that the

various quantities introduced in (89) can be written as
(all expressions below are evaluated at k ¼ kF, ! ¼ 0)

vF ¼ J1

Jt
; h1 ¼ �ðbð0Þþ Þ2

J1
; h2 ¼ jcðkFÞjV

J1
:

(C15)

It can be readily checked that the above expressions do not
depend the normalizations of v� [even though cðkFÞ does,
as discussed after (A34)].
For �k >

1
2 , writing

�ð0Þ
þ � y

z

� �
;

from (C7) and (C11) we can express vF more explicitly as

vF ¼
R1
r� dr

ffiffiffiffiffiffiffiffiffiffiffiffi
grrg

ii
p ðjzj2 � jyj2ÞR1

r� dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrð�gttÞp ðjyj2 þ jzj2Þ : (C16)

Since gii

�gtt ¼ fðrÞ � 1, the integrands of the numerator and

denominator pointwise have a ratio less than one, from
which it follows that vF � 1. This is borne out by the
numerical results displayed in Fig. 7. Note that the diverg-
ing factor of 1

2�k�1 in Eq. (C8) causes the Fermi velocity to

vanish as �k ! 1
2 .

2. Scalars

Completely parallel analysis can be applied to a scalar.
One finds that

Jt ¼ q
Z 1

r�
dr

ffiffiffiffiffiffiffi�g
p ð�gttÞAtð�ð0Þ

þ Þ2 (C17)

Ji ¼ kF
Z 1

r�
dr

ffiffiffiffiffiffiffi�g
p

giið�ð0Þ
þ Þ2 (C18)

and

h1 ¼ ð�� d=2Þ
Rdþ1

ðbð0Þþ Þ2
Ji

(C19)

h2 ¼ jcðkFÞj
�
r�
R

�ðd�1Þ �kF

Ji
(C20)

and for �k >
1
2

vF ¼ Ji

Jt
¼ kF

q

R1
r� dr

ffiffiffi
g

p
giið�ð0Þ

þ Þ2R1
r� dr

ffiffiffi
g

p ð�gttÞAtð�ð0Þ
þ Þ2 : (C21)

37Near r ! r�, �
ð1Þ
þ � ðr� r�Þ�k�1.
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Note that the above equations make it manifest that (for
q > 0)

h1; h2; vF > 0: (C22)

But the value of vF is not obviously bounded. The possi-
bility that this ‘‘velocity’’ may exceed the speed of light is
not problematic, since the scalar pole represents an insta-
bility rather than a propagating mode.

3. vF, h1, h2 in the WKB approximation

Here we work in the large q, k, m limit. In particular, we
will take n fixed (and large) such that in this limit the
two turning points come together at some radius
ðr1 ! r2Þ � rk. We see this by examining the quantization
condition (B19) assuming the two turning points come
close together. In this case, we may approximate �2 	
l2ðr� r1Þðr2 � rÞ with l� kF from which (B19) becomes

ðr2 � r1Þ2 � n=kF (C23)

so indeed for fixed n and large kF, the two radii come
together. Note that in Fig. 13 this limit corresponds to the
upper boundary where the radius rk is determined by the
ratio mR=qgF. The radius rk moves from the boundary to

the horizon as one varies mR=qgF from 0 to 1=
ffiffiffi
3

p
.

The wave function will then be localized at this radius
and expressions for vF, h1, h2 can easily be derived. We
will use (C15) to compute these quantities. In the expec-
tation values J1 and Jt, we may drop the contribution from
the disallowed regions since it is exponentially small. In
the allowed region, we may replace all oscillating func-
tions with their averages, since for large n they are highly
oscillatory: sin2ð�F � �=4Þ, cos2ð�F � �=4Þ ! 1=2, etc.
In particular, using (B15), we make the replacement

jyj2 � jzj2 ! D2
Fðu� kF � ðuþ kFÞÞ

�
: (C24)

Finally, the integrals we are left with are over a small
interval so we may evaluate all smooth functions (such as
u; grr; gii . . . ) at r ¼ rk. The result is

J1 ¼ �D2
F½2

ffiffiffiffiffiffiffiffiffiffiffiffi
grrg

ii
q

kF�rk
Z r2

r1

dr

�
(C25)

Jt ¼ �D2
F½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�grrg
tt

p
u�rk

Z r2

r1

dr

�
: (C26)

The integral in the above equations evaluates to �=l.
Taking the ratio, we find an expression for the Fermi
velocity:

vF ¼ k

qAtðrkÞ c
2
lightðrkÞ; (C27)

where clightðrkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrkÞ

p
is the local speed of light at

radius rk. If we interpret AtðrkÞ as the local chemical
potential, then this formula is consistent with that of a

free fermion with a relativistic dispersion relation (with
the speed of light replaced by the local speed of light).
Plots of vF are shown in Fig. 14.
To find h1 and h2, we need to match the various normal-

izations in (B13) and (B15) to the specified normalization
at the horizon (A35) with vþ given in (A33). We will only
be interested in their exponential behavior:

DF � CF
2 � bþð0Þ expð�2Þ (C28)

DF � CF
1 � expð�1Þ; (C29)

so that

h1 � expð�2�2Þ; h2 � ðkFÞ�2� expð�2�1 � 2�cÞ;
(C30)

where the tunneling rates are given by

�2 ¼ lim
r�!1

Z r�

r2

dr
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
��mR logðr�Þ (C31)

�1 ¼ lim
r�!0

Z r1

r�

dr
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
�þ � logðr�Þ (C32)

and for h2 we have included the exponential behavior of
jcðkFÞj � k�2�

F e�2�c . Together the factors in (C32) should
be interpreted as a tunneling amplitude from the bound
state to the inner region. In the limit considered here, � is
large, so eventually the k�2�

F term will dominate in h2,
which will always be asymptotically small. On the other
hand, �2 in (C31), once regulated, actually turns out to be
always negative. Hence h1 will be asymptotically large in
this limit.
Unfortunately, as it stands, it is not clear if these results

apply to the ground state n ¼ 0 with asymptotically large
k, q, m. However, for the scalar field, a scaling limit exists
(similar to the limits considered in the next section) where

0.1 0.2 0.3 0.4 0.5

mR

qgF

0.2

0.4

0.6

0.8

1.0
vF

FIG. 14 (color online). The Fermi velocity in the limit q, kF,m
large for d ¼ 3. The limiting velocity is determined by the radius
rk (which is in turn determined by mR=qgF) using formula
(C27). For mR=qgF ¼ 0 the wave function goes towards the
boundary (rk ! 1) and vF ! 1. This is consistent with the
asymptotic behavior of vF in Fig. 7, since these plots are for
fixed m and increasing q.
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the potential as r1 ! r2 can be approximated by that of a
simple harmonic oscillator. By matching the SHO wave
function onto the WKB wave function in the disallowed
region, we can show that the answers (C27) and (C30), also
apply to any n for the boson. A similar result may be
derivable for the spinor, but we have not been able to
formulate it yet.

APPENDIX D: TWO-POINT FUNCTIONS FOR
CHARGED FIELDS IN AdS2

Here we discuss retarded Green’s functions for operators
in a CFT dual to a charged scalar and a spinor field inAdS2.
We will give the main results here, leaving derivations and
more extended discussion elsewhere [12].

1. Scalars

We consider the following quadratic scalar action

S ¼ �
Z

d2x
ffiffiffiffiffiffiffi�g

p ½ðD�
Þ�D�
þm2
�
� (D1)

with D� ¼ @� � iqA� and the background metric and
gauge field given by

ds2 ¼ R2
2

�2
ð�d	2 þ d�2Þ; A	 ¼ ed

�
: (D2)

Writing 
ð	; �Þ ¼ e�i!	
ð!; �Þ, the wave equation for 

can be written as

� @2�
þ Vð�Þ
 ¼ 0 (D3)

with

Vð�Þ ¼ m2R2
2

�2
�
�
!þ qed

�

�
2
: (D4)

To find the conformal dimension of the operator O dual to

, we solve (D3) near the boundary � ! 0 and find that


¼A� ð1=2Þ��ð1þOð�ÞÞþB� ð1=2Þþ�ð1þOð�ÞÞ; �!0

(D5)

with

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2

2 � q2e2d þ 1
4 � i�

q
: (D6)

Since ! in (D3) and (D4) can be scaled away from

redefining � , we conclude that in (D5), A�!ð1=2Þ�� and

B�!ð1=2Þþ� and thus (after imposing in-falling boundary
condition on 
 at the horizon)

GRð!Þ / B

A
�!2�; (D7)

which implies a coordinate space correlation function

GRð	Þ � 1

	2�
(D8)

with the conformal dimension � of O given by38

� ¼ 1
2 þ �: (D9)

Notice that dimension � also depends on charge q. In
particular, it is possible for � to become imaginary when
q is sufficiently large. Physically, this reflects the fact that
in the constant electric field (D2) particles with a suffi-
ciently large charge q can be pair produced.39 When � is
imaginary, there is an ambiguity in specifying GR since
one can in principle choose either term in (D5) as the
source term. We will follow the prescription as determined
by the �i� term in (D6), as this will be the choice one
needs to use when patching the AdS2 region to the outer
region of the full black hole geometry.
Equation (D3) can in fact be solved exactly, and one

finds that the full retarded Green’s function is given by [12]

GRð!Þ¼e�i��
�ð�2�Þ�ð12þ�� iqedÞ
�ð2�Þ�ð12��� iqedÞ

ð2!Þ2�: (D10)

Equation (D10) has the form of the retarded two-point
function of a scalar operator in a (1þ 1)-dimensional
CFT with left/right-moving dimensions and momenta

�L ¼ �R ¼ 1
2 þ �; pL ¼ q; pR ¼ ! (D11)

in a (1þ 1)-dimensional CFT with left/right temperatures
given by

TL ¼ 1

4�ed
; TR ¼ 0: (D12)

Thus, it is tempting to interpret the CFT1 dual to AdS2 as
the right-moving sector of a (1þ 1)-dimensional CFT.40

Also note that the advanced function is given by

G Að!Þ ¼ ei��
�ð�2�Þ�ð12 þ �þ iqedÞ
�ð2�Þ�ð12 � �þ iqedÞ

ð2!Þ2�: (D13)

2. Spinors

We consider the following quadratic action for a spinor
field c in the geometry (D2)

S ¼
Z

d2x
ffiffiffiffiffiffiffi�g

p
ið �c��D�c �m �c c þ i ~m �c �c Þ;

(D14)

38One can also reach the same conclusion by assuming a
boundary coupling

R
d	
0O and considering a conformal scal-

ing in the boundary theory.
39As we discuss in the main text, when embedded in the full
theory this causes an instability for scalars, but not for spinors.
40We should caution, however, that many other aspects of this
theory should be studied before one can really draw a
conclusion.
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where we have included a time-reversal violating mass
term proportional to ~m, which in our application will be
related to momentum in Rd�1.

It is convenient to choose the following Gamma matri-
ces:41

�� ¼ �3; �	 ¼ i�1; � ¼ ��2; (D15)

where the underlined indices again denote those in the
target frame and�i are standard sigma matrices. The equa-
tions of motion for c can be written in Fourier space as

0 ¼ @��þ i�2

�
!þ qed

�

�
�� R2

�
ðm�3 þ ~m�1Þ�

(D16)

with � ¼ ð�gg�� Þ�ð1=4Þc . Near the boundary � ! 0,
Eq. (D16) becomes

�@�� ¼ U�; U ¼ mR2 ~mR2 � qed
~mR2 þ qed �mR2

� �
:

(D17)

Thus as � ! 0, � can be written as

� ¼ Av����ð1þOð�ÞÞ þ Bvþ��ð1þOð�ÞÞ; (D18)

where v� are real eigenvectors of U with eigenvalues ��,
respectively, and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ ~m2ÞR2

2 � q2e2d � i�
q

: (D19)

Imposing the in-falling boundary condition for � at the
horizon, the retarded Green’s function for the boundary
operator in the CFT1 dual to c can then be written as42

GRð!Þ ¼ B

A
�!2�; (D20)

again suggesting the operator dimension to be given by
� ¼ 1

2 þ �. There is, however, an ambiguity in (D20) as the

ratio depends on the relative normalization of v�; if we
take v� ! ��v�, then GR ! ��

�þ
GR. This ambiguity43

will not be relevant for the present paper as we will see
later the ambiguity cancels in the matching procedure and

the correlation function for the full geometry will not
depend on the normalization.
As in the scalar case, differential Eq. (D16) can be

solved exactly and with the choice of v� by44

v� ¼ mR2 � �
~mR2 þ qed

� �
; (D21)

and we find that GR can be written as [12]

G Rð!Þ ¼ e�i�� �ð�2�Þ�ð1þ �� iqedÞ
�ð2�Þ�ð1� �� iqedÞ

� ðm� i ~mÞR2 � iqed � �

ðm� i ~mÞR2 � iqed þ �
ð2!Þ2�: (D22)

The advanced function is given by

G Að!Þ ¼ ei��
�ð�2�Þ�ð1þ �þ iqedÞ
�ð2�Þ�ð1� �þ iqedÞ

� ðmþ i ~mÞR2 þ iqed � �

ðmþ i ~mÞR2 þ iqed þ �
ð2!Þ2�: (D23)

Equation (D22) is again suggestive of the spin- 12 operator

with left/right-moving dimensions and momenta

�L¼1þ�; �R¼ 1
2þ�; pL¼q; pR¼! (D24)

in a (1þ 1)-dimensional CFT with temperatures given by
(D12).
Finally, note as with the scalar case, (D19) can become

imaginary when q is sufficiently large, in which case the
prescription for determining GR is again determined by the
�i� term.

3. A useful formula

Here we give a nice formula for GR, which can be used
to derive Eqs. (60)–(62) in the main text. For scalar, using
(D10) and (D13) we find that

GRð!Þ
GAð!Þ ¼ e�2�i� cos�ð�þ iqedÞ

cos�ð�� iqedÞ ¼
e�2�i� þ e�2�qed

e2�i� þ e�2�qed
:

(D25)

For spinor from (D22) and (D23), we find

GRð!Þ
GAð!Þ ¼ �e�2�i� sin�ð�þ iqedÞ

sin�ð�� iqedÞ ¼
e�2�i� � e�2�qed

e2�i� � e�2�qed
:

(D26)

Writing GR ¼ c!2�, then for real � Eqs. (D25) and (D26)
give the phase of c and for imaginary � they give the
modulus of c.41They are chosen to be compatible with the choice made in

Appendix A, with (D2) arising as the near-horizon limit. Note
the reversal of the gamma matrix for the radial coordinate which
reflects the change in orientation between r and � .
42As discussed earlier, for a bulk spinor field the number of
components of the boundary operator is always half of that of the
bulk field.
43It will be discussed in more detail in [12].

44Note that the subscripts on v� are chosen to indicate the sign
of the eigenvector of U; this leads to the unfortunate but
innocuous notation clash in Eq. (A35) since v� appears in the
outgoing solution ��.
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4. Finite temperature generalization

One can in fact generalize the above discussion to finite temperature, i.e., to theAdS2 part of the metric (24). Details will
be given in [12]; we mention the result here because it gives useful information about the analytic structure of the Green’s
functions in ! at zero temperature. One finds, respectively, for a scalar and a spinor

G Rð!Þ¼ ð4�TÞ2��ð�2�Þ�ð12þ�� i!
2�Tþ iqedÞ�ð12þ�� iqedÞ

�ð2�Þ�ð12��� i!
2�Tþ iqedÞ�ð12��� iqedÞ

(D27)

G Rð!Þ ¼ ð4�TÞ2� �ð�2�Þ
�ð2�Þ

�ð12 þ �� i!
2�T þ iqedÞ�ð1þ �� iqedÞ

�ð12 � �� i!
2�T þ iqedÞ�ð1� �� iqedÞ

� ðm� i ~mÞR2 � iqed � �

ðm� i ~mÞR2 � iqed þ �
: (D28)

Note that the branch point at ! ¼ 0 of zero temperature
now disappears and the branch cut is replaced at finite
temperature by a line of poles parallel to the negative
imaginary axis. In the zero-temperature limit, the pole
line becomes a branch cut. Similar phenomena have been
observed previously [41].

5. The spinor pole is in the lower-half plane

We remarked below Eq. (60) that our expression for the
phase of the IR CFT Green’s function suffers from a
possible additive ambiguity by an integer multiple of �.
Here we provide evidence that the additive �-ambiguity in
the phase ofGR and the sign variation of the UV coefficient
að0Þ�
@ka

ð0Þ
þ
precisely cancel each other to leave behind a smooth

behavior of the coefficient of !2� in the spinor Green’s
function GR. Further, the phase of this coefficient is such
that the quasiparticle pole is always in the lower-half
complex plane. Recall that we argued that this conclusion
followed from the expression (60) for the phase of GR

combined with h1, h2 > 0. In fact, h2 can be negative;
when this happens, the phase of GR differs from the
expression in (60) by �, canceling the issue in the full
Green’s function GR.

Note that for the case m ¼ 0:4, q ¼ 1, � ¼ 2, h2
changes sign as � varies past � ¼ mR2 	 0:16. As shown
in Fig. 15(a), the phase of cðkFÞ also jumps at this value of
�. Indeed, cðkFÞ has a zero, as a complex function, at this
value of � [recall that argðxÞ jumps by � as x varies from
0� to 0þ]. Note that the additive ambiguity in 
k is
‘‘topological,’’ in the sense that only at zeros or singular-
ities of cðkÞ can the choice of branch change, and the phase
varies smoothly otherwise. In Fig. 15(b), we show that the
quantity jh2j (which is what enters the full Green’s func-
tion) is smooth near this value of �. This phenomenon
therefore is an artifact of the matching procedure; although

the IR quantity cðkFÞ and the UV quantity að0Þ�
@ka

ð0Þ
þ
are each

singular at this point, these singularities have no physical

consequence, since these quantities enter the Green’s func-
tion only in the combination jh2jei
k .
The origin of the zero of the IR CFT Green’s function is

simple to understand. It is the prefactor

ðm� i ~mÞR2 � iqed � �

ðm� i ~mÞR2 � iqed þ �
(D29)

which is vanishing. This happens when both real and
imaginary parts of the numerator vanish. This requires
mR2 ¼ � and ~mR2 ¼ qed; the second equality follows
from the first by the definition of �. When the second
equality is true, the matrix U in Eq. (D17) becomes diago-
nal. In this limit, the choice of normalization of the eigen-
vectors v� given in Eq. (D21) ceases to be useful. As
we remarked below Eq. (D20), rescaling the choice of

A
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FIG. 15 (color online). A: The phase and amplitude of cðkFÞ as
a function of � on the primary Fermi surface of G2 for m ¼ 0:4.
Note that the phase jumps by � when cðkFÞ has a zero. B: As
defined in Eq. (88), the sign of h2 (for m ¼ 0:4, � ¼ 2) jumps at
� ¼ mR2 	 0:16. In spite of the singularity in h2=jcðkFÞj visible
in the lower right panel of Fig. 8, jh2j as a function of � is
completely smooth.

EMERGENT QUANTUM CRITICALITY, FERMI . . . PHYSICAL REVIEW D 83, 125002 (2011)

125002-31



eigenvectors rescales the answer for the IR CFT Green’s
function; if we rescale v� to keep finite eigenvectors as
� ! mR2, the IR CFT Green’s function GR will also stay
finite. This makes it clear that the singularity under dis-
cussion here can have no physical effect.

In retrospect, it would have been preferable to define h2
to be the magnitude of the coefficient of !2� in Eq. (88):

hbetter2 ei
k � � að0Þ�
@ka

ð0Þ
þ

cðkFÞ; (D30)

with 
k given as in (60), hbetter2 is positive. Rather than
changing our definition, we felt that it would be more
useful to highlight this issue.
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