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Steplike discontinuities in Bose-Einstein condensates and Hawking radiation: Dispersion effects
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In this paper we extend the hydrodynamic results of {A. Fabbri and C. Mayoral, Phys. Rev. D 83,
124016 (2011).} and study, analytically, the propagation of Bogoliubov phonons on top of Bose-Einstein
condensates with steplike discontinuities in the speed of sound by taking into account dispersion effects.
We focus on the Hawking signal in the density-density correlations in the formation of acoustic black-

hole-like configurations.
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I. INTRODUCTION

The study of analog models of gravity in condensed
matter systems [1,2] has motivated the investigation of
quantum effects in gravity, in particular, Hawking radiation
from black holes [3], in the presence of modified dispersion
relations (see [4—6]). Modified dispersion relations at high
frequency have also been considered in many papers in
cosmology (see e.g. [7]), but also in the context of the
Unruh effect [8], which is closely related to the Hawking
emission from a black hole. On a more formal level, issues
related to quantum field renormalization in the presence of
dispersion were investigated in [9]. Among the many sys-
tems proposed to create black-hole-like configurations, e.g.
superfluid liquid helium [10], atomic Bose-Einstein con-
densates (BECs) [11], surface waves in water tanks [12],
degenerate Fermi gases [13], slow light in moving media
[14], traveling refractive index interfaces in nonlinear op-
tical media [15], BECs, characterized by superluminal
dispersion relations, appear to be quite attractive from
the experimental point of view [16]. In this context, re-
cently an alternative measure of the Hawking effect was
proposed in terms of nonlocal density correlations [17] for
the Hawking quanta and their partners situated on opposite
sides with respect to the acoustic horizon. The calculations
were performed using the gravitational analogy, which
corresponds to the hydrodynamic approximation of the
theory. This proposal was validated with numerical simu-
lations within the microscopic theory [18], indicating that
the Hawking signal in the correlations is indeed robust.
Subsequent investigations were performed in [19] (where
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analytical approximations based on steplike discontinuities
were considered) and [20] using stationary configurations.

In this paper we extend the hydrodynamical analysis in
[21] and consider, in particular, the effects of the temporal
formation of acoustic black-hole-like configurations, as in
[17,18], including dispersion effects. Our analytical analy-
sis is based on steplike discontinuities in the speed of sound
and thus extends the stationary results in [19]. We mention
that steplike configurations in BECs were also considered
in [22-26].

The plan of the paper is the following: in Sec. I we
briefly describe the model used and the basic equations,
while in Secs. III and IV we analyze thoroughly the sta-
tionary case (spatial steplike discontinuities) and the ho-
mogeneous one (temporal steplike discontinuities). By
combining the results of these two sections, in Sec. V we
discuss the main Hawking signal in correlations for the
formation of acoustic black-hole-like configurations and in
Sec. VI we end with comparisons with the hydrodynamical
results in [17].

II. THE MODEL AND ITS BASIC EQUATIONS

We start with the basic equations for a Bose gas in the
dilute gas approximation described by a field operator W
[27-29]. The equal-time commutator is

[(, %), U1 (1, 3)] = 8% = #) (1)
and the time-dependent Schrodinger equation is given by
o " o b\

iho, W =——V"+ Vg +g¥'V|Vy, 2)
2m
where m is the mass of the atoms, V,,, the external poten-

tial and g the nonlinear atom-atom interaction constant. By
considering the mean-field expansion
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W~ Wy(1 + ), 3)

with (]3 a small perturbation. The macroscopic condensate
is described by the classical wavefunction W, which
satisfies the Gross-Pitaevski equation

m -
ihat’\lfo = <_ 2—V2 + Vexl + g}’l)\p(), (4)
m

where n = |W,|? is the number density, and the linear
perturbation ¢ satisfies the Bogoliubov-de Gennes equa-
tion

2 . 2
iho,d = —(f’—v2 LV
2m

. )¢+mc2(¢+¢) 5)

where ¢ = \/‘%; is the speed of sound.

To study analytically the solutions to (5), along the lines
of [18], we shall consider condensates of constant density n
and velocity (for simplicity along one dimension, say x).
Nontrivial configurations are still possible, provided one
varies the coupling constant g (and therefore the speed of
sound c) and the external potential but keeps the sum gn +
Vs constant. In this way, the plane-wave function W, =
Jnetkox=imt “where v = % is the condensate velocity, is a
solution of (4) everywhere.

The non-Hermitean operator <ZA> is expanded as

b(t,x) = D[a;p;(t,x) +al gt x)] (6)
J

where a; and a T are the phonon’s annihilation and creation
operators. From (5) and its Hermitean conjugate, we see
that the modes ¢;(z, x) and ¢(z x) satisfy the coupled
differential equations

I:l(é +va,) + é;c §]¢’ = §<P,,
[—i<a,+vax)+%ag—§]¢j =§¢j, Q)

where & = i/(mc) is the so-called healing length of the
condensate. The normalizations are fixed, via integration
of the equal-time commutator obtained from (1), namely

(92, 66 ¥)] = 1 6(x — ), ®)
by

[ it~ oje01= ©)

We shall consider steplike discontinuities in the speed of
sound ¢, which is the only nontrivial parameter in this
formalism, and impose the appropriate boundary condi-
tions for the modes that are solutions to Egs. (7). A similar
analysis was carried out in the hydrodynamic limit & — 0
in the work [21], by using the more appropriate density
phase representation
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¢ = (10)

N|=_>‘
:~e|°i>

III. STEPLIKE SPATIAL DISCONTINUITIES
(STATIONARY CASE)

In this section we study dispersion effects for the case of
spatial steplike discontinuities. We treat subsonic configu-
rations in Sec. III A, thus extending the hydrodynamic
analysis of [21], and subsonic-supersonic ones in
Sec. III B. This case is particularly interesting in view of
our application to study the main Hawking signal in corre-
lations from acoustic black holes, along the lines of [18].

A. Subsonic configurations

We consider a surface (that we put for simplicity at x =
0) separating two semi-infinite homogeneous condensates
with different sound speeds: c(x) = ¢;0(—x) + ¢,0(x).
The velocity of the condensate is taken to be negative
(v <0), so that the flow is from right to left. We assume
that the condensate is everywhere subsonic, that is
lv| < ¢,(), and that v, ¢; and ¢, are time-independent.

To explicitly write down the decomposition of the field
operator d;, we first need to study the propagation of the
modes and construct the “in” and “out’ basis. To under-
stand the details of modes propagation, we need to solve
the Egs. (7) in the left and right homogeneous regions, and
then impose the appropriate boundary conditions. These
simply are the requirement that ¢ and ¢, along with their
first spatial derivatives, are continuous across the disconti-
nuity at x = 0.

We denote the modes solutions in each homogeneous
region and corresponding to the fields ¢ and ¢ as
De Witk and Ee~™!Tik¥ respectively. The boundary
conditions at the discontinuity, as we will see explicitly
later, require us to work at fixed w. Therefore we write the

modes as
d)(u =D(w)e—iwt+ik(w)x, ®, =E(w)e—iwt+ik(w)x, (11)

so that the Egs. (7) simplify to

_ _ Eck? _c _c
[(w v = £ E]D(w) =S Ew)
o _ Eck? _c _c
[ v = k) = £ E]E(w) = £D(w) (12)
while the normalization condition (9) (j = w) gives
2 _ 2 _ 1 ﬁ
D@ ~ |E@)P =5 | 9 (13

The combination of the two Eqgs. (12) gives the nonlinear
dispersion relation

(14)

(w— vk)? = cz(k2 + §2k4),

4
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plotted in Fig. 1. At low momenta (k <K é) we recover the

linear relativistic dispersion, while at large momenta
(k> é) the nonlinear superluminal term becomes

dominant.
Moreover, inserting the relation between D and E from
(12) into (13) we find the mode normalizations

w — vk + %
\/47Tfmc§k2|(a) - vk)(% -1

cER?
2

D(w) =

5)

w — vk —

\/47Thnc§k2|(w — vk) (45|

Elw) = —

where k = k(w) are the roots of the quartic Eq. (14) at
fixed w. Equation (14) admits, in the subsonic case, two
real and two complex solutions. Regarding the real solu-
tions, we will call k, and k, the ones corresponding to
negative and positive group velocity v, = ‘fl—‘;: respectively.
They admit a perturbative expansion in the dimensionless
parameter 7 = 57“’, namely

3.2
ky = — (1 +_CF 4 0(14)),
v—oc 8(v—r¢)} (16)
o o \
k”_v+c( 8(v+c)3+0(z))'

The other two solutions are complex conjugates. We call
ky(k,) the roots with positive(negative) imaginary part,
which represent a decaying(growing) mode on the positive
x >0 axis and a growing(decaying) mode in the negative
(x < 0) one. Such roots are nonperturbative in & as they
diverge in the hydrodynamic limit & = 0, when Eq. (14)
becomes quadratic. However, they admit the expansions

1.0 T T T T T\ T T T T T T T
05F k!
3 o0o0f ) ]
L /// \
L - \
L P \
F // \
-05F . \ 1
r \
. \
7/ \
b / \
~1.0 A S S T S S S S T VS S S S
-2 -1 0 1 2
k

FIG. 1 (color online). Dispersion relation for subsonic con-
figurations. The solid (dashed) line corresponds to the positive

(negative) norm branch: @ — vk = +(—)cy/ K* + ﬁ.
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w|v] (¢ + v?)c*?
ka) = 2 — 2 [1 - 42 — v2)? + 0(Z4)]
2ivc? — v? (¢ + 20v3)c* 72
+ (= 1+ +0(z* ]
O 1 T o)
(17)

In what follows we do not need to specify the normaliza-
tion coefficients for these modes, that we call generically
j;’—;—‘:h and \/G% for the decaying and growing modes,
respectively, of the fields ¢ and ¢.

In summary, the most general decompositions of ¢ and
¢ in the left and right regions are given by

i()f) — €7iwt[D£,(r)A{,(r)€ik£’(r)x + Dlu(")Ai(”)eik]u(r)x

L 1(r) i)
+ d;gr)Aii(r)ezkg(d)x + Gi}(;’)Ag’)elkd(g)x], (18)

i()r) — €7iw[[EL(r)A{,(r)€ik{’(r)x + Efl(f)Afl(r)eikf,(r)x
L 1(r) - 1(r)

+dy Al e ot + GPAY ] (19)
The coefficients Afd"rvy 4. are the amplitudes of the modes,
not to be confused with the normalization coefficients.
Indeed, the latter are determined uniquely by the commu-
tation relations and the equations of motion, while the
amplitudes depend on the particular choice of basis, as
shown below. The matching conditions at x =0 to be
imposed on Eqgs. (7) are

[¢]=0, [¢']=0, [¢]=0, [¢']=0, (20)

where [ ] indicates the variation across the jump. It is clear
that these conditions require w to be the same in the / and r
regions. Equations (20) can be written in matrix form

A, A
Al A’
wl Jl=w] | 1)
Ag Ag
Ay A
where
D!, D! G, d',
ik,D, ikiD!, ik,G! ikid!,
Wi = 1 ] 1 ] (22)
E. El G, d.,
ikLE!, ikLE, ik,Gl iklLd.,
and

D, D, d, G

ik,D}, ik,D; ikld, ik,G,
Wr _ uu d“¢ A} ) (23)
E, E, d G,
iknE, ikiEn ikhd, kLGP

Multiplying both sides by W, ! we have
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A, Ay
Al AL
= M| " |- (24)
AIG sca Ad
Al AL

The 4 X 4 matrix My, = W, 'W, encodes all nontrivial
scattering effects due to the matching conditions (20). The
form of M, is much more involved than that found in the
hydrodynamic limit in [21].

To construct M., we have used the general decompo-
sitions (18) and (19). Not all modes, however, are physi-
cally meaningful. The validity of the mean-field
approximation (3) implies that only spatially bounded
modes have to be taken into account. This means that the
amplitudes of the growing modes (that diverge exponen-
tially in the [ or r regions) must be set to zero. There are no
constraints, instead, for the amplitudes of the decaying
modes. Indeed, as we will see explicitly in the construction
of the in and out modes basis that follows, by taking into
account the (/ and r) decaying modes we have each time
four amplitudes which are uniquely determined by our four
matching equations. The physical meaning of the decaying
modes is to ‘“‘dress’ the in and out modes basis, and this
affects the calculation of local observables (this discussion
follows that of [30]).

We now proceed to construct the in and out modes basis
for the case v = 0 in a perturbative expansion up to O(z?).
This case can also be treated exactly, as shown in the

out
u
Yo

FIG. 2. in and out modes for spatial steplike discontinuities
between homogeneous subsonic regions. We display the prop-
agating modes (straight lines) and the decaying modes (curved
lines), along with their amplitudes.
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Appendix A. The perturbative construction of the in modes
for the more complicated case v # 0 is given in
Appendix B. To appreciate similarities and differences
with respect to the hydrodynamical case treated in [21],
let us construct perturbatively the in and out modes basis,
displayed schematically in Fig. 2. We consider the modes
of the field ¢. An identical analysis is valid for ¢, up to the
replacement of the D — E.

Mode uz)”ig) ‘

The in v-mode u;); is defined by an initial unit-
amplitude left-moving v-mode coming from the right
(= uy'y, = Dyje™ ™), which is partially transmitted
into a v-mode in the left region (u', = D!tk
with amplitude Al and partially reflected into a right-
moving u-mode (uy, = Dje”""**%) with amplitude
Al,. The construction is not finished yet, as we need to
include as well the decaying modes in the left and right
regions (ui‘fg) = Dgl)eﬂ"”ﬂkj(’g))") along with their ampli-
tudes A, and Ald. In this way we have a total of four
amplitudes which are uniquely determined by solving the
following system of four equations

Al 1
0 = Mgca A . (25)
0 Al
Aé 0

By treating M, perturbatively in the parameter z; = “’C—f’

we find, up to O(z?), the following solutions
Al = 2\/CICr N i\/C_l(Cz B Cr)ZZ[
Yoo te, cf/z(cl +c,)
c/le; — ¢} + chzf
2C:j(cl + Cr)2

=T, (26)

1~ Cr ic/(c;—c,)’z

C%(Cl + Cr)

e — c)(2c; =3cic, +2¢cict+ )z _
4cte;+c,)

A=
C C,

R, (27)

Al = (Cl - Cr)\/z_l o (Cl - C,-)le
4 dl e+ e 24 3
s\ C r »Cr (¢; +¢,)

X[z +i(ci + ¢t —c,c)] =Dy, (28)

_ ci(—c;+¢)\z n ctle; — ¢z}

d(’bcf/z(c, +c,) debcz/z(c, +c,)

X [Cl + i(Cl - 2Cr):| = DR" (29)

Ay

In the limit z; — 0, we recover the results of [21]. As we
can see, the amplitudes of the asymptotic modes AL, and A’,
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develop an imaginary O(z;) contribution plus a real O(le)
one. These combine in such a way that the unitarity relation
|ALI? + |AL)? = |R|?> + |T|*> = 1 is satisfied nontrivially at
0(z3), as

|A[ |2 _ 4clcr wz(cl - Cr)z(clz + C%)f%’ (30)
! (cl + cr)2 2C1C‘2(C1 + cr)2

|A;|2 _ (Cl - Cr>2 . (1)2(C1 - Cr)z(clz + C%)flz (31)
¢ +c, 2¢c,c3(c; + ¢,)?

Finally, note that, although the amplitudes of the decaying
modes do not enter in the unitarity relation, they are part of
the full mode and give contributions, for instance, in the
computation of density-density correlations.

Mode u,'y '

The in u-mode u,'; is composed by an initial unit-
amplitude right-moving u-mode (uz,ld, = Dl e iwttikx
coming from the left, along with the transmitted u-mode
(u!s7) with amplitude A}, and the reflected v-mode (uz;,l ¢)
with amplitude A,. Here too we have decaying modes, with
amplitudes A7, A, All these amplitudes are obtained by
solving

Al 0

1 AT
=M

0 A

Al 0

(32)

and, up to O(z?), we have
Al = CrTCr_ i(c;—c,)*z
V'oete, o ctc,)
(c;—c)ci +2ctc, —3cict +2¢))z7
4ci(e;+c,)

+

=R, (33)

NG .\/C_l(cz — ¢,z
Al = — 1 3
¢t ;' “(¢c; + ¢,)
Al — e 6~ dere, + A
8cz/2(c, +c,)

=T, (34)

P Rt N A G
dqﬁ\/a(cl + Cr) 2d¢\/6_lcr(cl + Cr)
X [=c, +i(2¢c; — ¢,)]22 = Dy, (35)

AT = \/C_l(_cl + Cr)\/z_l + \/E7(Cl B Cr)

d neler+ ) 2dyci(e; + ¢,)

X [c} +i(c} + 2 — cjc,)]z} = Dy (36)

The unitarity condition for the asymptotic modes |AL|> +
|A7]? = |R'|> + |T'|> = 1 is again nontrivially satisfied, as
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AL = (c, — c1)2 ey — ) (e} + c%)z,z’ 37)
v ¢ +oc, 2¢3(c; + ¢,)?
|Art|2 _ 4C1Cr Cl(cl — Cr)z(clz + C%)le (38)
! (c;+¢,)? 2¢3(e; + ¢,)?
v,out
Mode u,, 4

The out v-mode uzogt is made of a linear combination of

initial right-moving (uz;,l ») and left-moving (u;’;) compo-
nents, with amplitudes A, and A?, producing a final left-
moving v-component (ui’,l ) of unit-amplitude. The
amplitudes, together with those of the associated decaying
modes, are given by solving

1 AL

Ay M 0 (39)
= scatt r

0 A7

Al 0

and, at O(z?), one has

A[ _ Cr—C + i(C[ B C,)ZZI
u

c;+c, cc;+c,)
N (c;—c)(ci +2cic, —3cict +2¢3)z7 —R" (40)
4c(c;+c,) '
A — NG n iJei(e; — ¢,)z
Toate 03/2(61 +c,)
_ (Cl B cr)z(c[2 B 4Clcr + C%)Z]2 = T/*, (41)

8¢%(c, + ¢,)

Al = (Cl B Cr)\/z_l _ (Cl B cr)Z[2
¢ d{p\/c_l(cl + Cr) Zdiﬁcr(cl + cr)
X [e, +i(2¢; — ¢,)] = Dj, (42)

v At e el )
-

dyc(c; + c,) 2dff)c§(c, +c,)
X [e? —i(c? + ¢ — c.c))] = D (43)

One can easily check that the unitarity relation is satisfied,
as |[AL]2 + AL = |R]? + T = 1.

Mode uf;f’;t

We finally consider the mode uz)oq‘;t This is defined by
initial right-moving and left-moving components, with
amplitudes Al, and A, resulting now in a final right-
moving u component (uz)"rlﬁ) of unit-amplitude. The system
of equations to be solved (taking into account the decaying
modes) is

124047-5
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0 A7

A M ! (44)
= Mgcatt| ., |

0 Al

Al 0

and its solutions, up to O(z?), are
NG 1\/_(61 -’z
Cate P+

_ '\/c_l(cl - cr) (Cl

2),2
—4cic, + ¢7)z;

=T (45
8¢%(c; + ¢,)
Ar =16 ic(c;—¢,)z
Y Cr + Cr C%(Cl + Cr)
_cle;—¢,)2¢] = 3cje, +2¢ici + )27 _R° (46)
4cte +¢,) ’
Al = Cl(Cz - Cr)Zz (Cz - Cr)le
I =

dl(b\/a(cz +c,) 2débc§/2(cl +c,)

X[=c2 +i(c? + 2 —cie,)]=Dpr,  (47)

A — Cl(_Cz tedu | el =)z
‘ 3/2(01 +c,) 2d;5cz/2(cl +c,)
X [c, +i(2¢, — ¢))] = Dgr, (48)

with unitarity condition [AL]* + |AZ|> = |R]> + |T|> =1
satisfied up to O(z7).

Having constructed explicitly the complete in and out
modes basis, we can now write the two alternative decom-

positions for the field operator gz’;

d) / do [Avm(out) vm(out)(t x) +a Aum(out) um(out)(t )
+ avln(out)f vm(out)*(t )C) + au 1n(0ut)'r u, m(out)*(t )]
(49)
The relations between the in and out modes are

U lIl Tull out + Rul:)o(lblt’ I;LII('; — R/ v, out + T/ Z)O;;t, (50)

and are valid for all components of the modes basis, decay-
ing modes included. This allows us to find

&z)put — Taz),in + Rl&lz},in’ &Z),out — R&z),in + T/&z),in‘ (51)
Density-density correlations
The basic quantity that we want to study in detail later is

the one-time, normalized, symmetric, two-point function
of the density fluctuation

1
G(t;x,x') = 57 lim{in[{A'(z, x), A (¢, x")}in),  (52)
n- -t
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where {, } denotes the anticommutator, and the the operator
Al = n(d + 1) (see Eq. (10)) can be expanded in the two
equivalent in and out representations,

ﬁ —n f da)[ A, 1n(out)( v, 1n(0ut) Ty 1n(out))

+ag" gy + g + Hel  (53)

Thus, the general two-point function in (52) explicitly
reads

(inl{A' (t, x), A’ (¢, x')}in)|
v, 1n(out) v 1n(0ut) v,in(out)*
=n [ da)[(u +u )1, X)(”,,,,qs

+ Mvm(oul)*)(t/ /) + (uum(out) + oy m(out))(t )C)
X (O 4 Ul () + ee], (54)
where

v,in vm
Uy b + uy,

= e‘”‘"[(D{, + Ep)ek (@ 4+ R(D + Ep)etkil@)x
+ T(DL, + EL)e™ @ + (DY,dly + Df,dL)es(«*
¢ ik’ u,
+ (Dpd), + Dydy)e! @Ryt m + ul
= ¢ [(D], + EL)e (@ + R (D{, + El)etvle)

+ T'(D}, + E)e*il@X + (DY dl, + Dfdl)e™:(@)x

+ (DRl + D§dy)ed @], (55)

Let us consider, for instance, one point located in the left
(x<0) region and one in the right (x' >0) one.
Substituting the expressions above into (54), we see that
there are u — u and v — v contributions, while the u — v
term, being proportional to R*T + R'T", vanishes. Finally,
the contribution coming from the decaying modes is sub-
dominant. Therefore, the integral (54) is well approxi-
mated by the hydrodynamic approximation, obtained for
small w, namely

GO(t; x, x)

o h [ !
— 2mmn(e, + o) L(v - ¢)(v — )=

" \2
c—v = )

1
i (U + Cl)(v + Cr)(_ 4 X )2] (56)

X
vtc vtc,

B. Subsonic-supersonic configuration

Unlike the spatial steplike discontinuities studied in [21]
in the hydrodynamical limit, dispersion effects allow us to
study also configurations with supersonic regions. Since
we are interested in modeling black-hole-like systems, we
shall consider the case where there are one subsonic and
one supersonic region separated by a sharp jump in the
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speed of sound. Therefore we write c(x) = ¢;0(—x) +
c¢,0(x), where now ¢; < |v| and ¢, > |v|. The modes in
the subsonic region (x > 0) are the same as in the previous
subsection. In the supersonic (x < 0) part the dispersion
relation (14) changes and it is represented in Fig. 3.

We see that, for w less than a certain value that we call
®max» there are now four real solutions, corresponding to
four propagating modes. Two of them are present also in
the hydrodynamical approximation, and, when expressed

through the variable z; = fé—:" they read (we omit the

subscript /)

® 372
k, = l+——=+0(2 ]
v — c[ 8(v—¢)} @
ky = —2 [ _ 9T L 2)] (57)
“ v+ 8(v + ¢)? @

and, unlike in the subsonic case, they both move to the left,
as ‘[’l—‘;{‘ | ko < 0. The value k, belongs to the positive norm
branch while &, belongs to the negative norm one, as shown
in Fig. 3. The other two values of k, called k3 and k4, exist
because of dispersion, and are not perturbative in . In fact

w|v]
ko =5_, [1

2 2\ 4.2

2\v? = 2 (¢ + 203t
O e

Comparing with the expressions (17), we see that k3 and ky
are the analytic continuation for supersonic flows of the
decaying and growing modes seen in the subsonic regime.
These two modes (which belong, respectively, to the posi-
tive and negative norm branches of Fig. 3) both move to the
right as ‘L’i—‘,‘: | kyy = 0. This means that they are supersonic and
able to propagate upstream, against the direction of the flow.
The value of w,,,, = @ (k) can be calculated explicitly
by imposing 42 |, = 0, where

+

+ 0(14)].

0.2F

0.1F

-0.2k

FIG. 3 (color online). Dispersion relation in the supersonic
case. Positive (negative) norm modes belong to the solid
(dashed) line.
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172 v v271/2
kmax=—g[—2—2+% 8+?] . (58)
One can easily check that w,,, and k,,,, are well inside the
nonperturbative region ( ~ 1/&). When w > w,,y, instead,
we find again two real propagating modes (k real) and two
complex conjugate ones, corresponding to decaying and
growing modes, just like in the subsonic case. Thus, for w >
W nax the analysis is the same as in the subsonic case, and so
we omit it.
Let us now write the general solutions for ¢ and ¢ in the
left (1) and in the right () regions for @ < w,. In the
[-region we have

while in the r-region we find

b, =e DAL + DL AL + d g ATt + Gy AL et
@l =e IET Al R + ET AT kx4 d¢A2eik3x + G¢Ag,eik§x].
The D and E normalization coefficients of the propagating
modes (four in the supersonic region and two in the sub-

sonic region) are given by Egs. (15). As before, the match-
ing conditions (20) can be written in the matrix form

A, Ay
Al A
wil =" .| (59)
A3 Ad
Al A

where W, is the same as Eq. (23), while W, is given by
D, D, Dy D

| #DL D, #Dy D o
Tl E gog g |
v u 3 4
ikLE!, ikLE! ikLE, ikLE!
Multiplying both sides by W; ! we find
Al A7
A M| 61)
= scatt ’ )
Aé scal Ad
A} Ag

where M, = W, 'W, encodes the scattering effects due
to the matching conditions (20). As in the previous sub-
section, we shall proceed to the construction of the in and
out mode basis for this configuration. With these, we will
construct the decompositions of the field ¢ along with the
the density-density correlations.

Construction of the in and out basis

‘We shall now construct the in and out basis, which are
now composed of three modes each, as shown in Fig. 4.

124047-7



MAYORAL, FABBRI, AND RINALDI
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1
out
A Ay
uc2>ut A put
2
Auiln =1
Lout
1
Yo
t
Au(])u =1
Auizn
Aulin
FIG. 4

Below, we find the leading-order amplitudes of the various
amplitudes. In Appendix C, we display the next-to-

leading-order terms for ”il?/; and ui;”(},* in order to show

that unitarity relations are nontrivially recovered.

Mode uzlg

The mode u;;'} is defined by an initial left-moving unit-
amplitude component (uZ;’rd)) coming from the subsonic
region on the right, which generates a reflected right-
moving mode (u,,) with amplitude Aj, together with
the associated decaying mode with amplitude A’;,. In addi-
tion, now there are two transmitted modes, one with posi-
tive norm (”ZI,I¢) and the other with negative norm (uz‘l;),
with amplitudes A), and A/ respectively. These can be
computed by solving the system of equations

Al 1

AL Al
0 - Mscatt A(ri (62)
0 0

The leading-order O(1) solution in a z; expansion is

PHYSICAL REVIEW D 83, 124047 (2011)

ul2
w
A, out
1
out
out
Aq
Auou[
2
A Ay = A
d d
out
qout w2
(O]
t
Agh=1
Aui‘;
in
Ag
d

Aui]n

“in” and “out” basis in the subsonic-supersonic configuration.

C,V—C v+ec, c, v+t
Ay = o AT Av=q= —
c|v C v C, Cc;C, v

2_ .2

. CI\/ZI\/Cr(U —c7)

AT =
¢ \/Edcﬁ(v — )2 =v?)3(c, +¢))

X [\/c% — v (v+ \/v2 —ch)+ i(v\/v2 —c?+vr =)l

(63)

The amplitudes of the propagating modes satisfy the uni-
tarity condition |AL|> + |AZ]> — |AL]? = 1.

Mode ui)“;

The mode ul‘gs corresponds to a unit amplitude, super-
sonic positive norm right-moving plane wave from the left
(ui;'lqS = Dleiortiks(@)) which is reflected into a positive
norm (ula')’,l ») and a negative norm (uz;,l;) component with
amplitudes AL and AL moving to the left. In addition, there
is a transmitted right-moving mode in the subsonic region
(uy'y) with amplitude AR and the decaying mode with
amplitude A/;. By solving the system

124047-8
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AL 0
A =M A (64)
- scatt .
1 AR
0 0

we find, at leading order in z;,
(V2 = Vv + ¢,

Alx; — 2 _ + _ a2
3/2\/E(c, + ¢, )W — v? (‘/ v l‘/v i
V2¢,(v? — )V + ;)
AR + _ 2
Y =y W2 —v2 + i = ),
(v — 62)3/4(11 +c,)
AL = 2t _ 2
e — e WE — o et v+ ifu? o)
_ 2y\1/4

AR — (” D =i — o), (65)

B 2d4(v? = ¢?)

Note that the amplitudes of the propagating modes diverge
in the z; — 0 limit, and that, at leading order in z;, one has
|AL|2 + |AR|2 — |AL|2 = 0. In order to check the unitarity
condition |AL|?> + |A7|?> — |AL]?> = 1, we need the next-to-
leading-order expansion, which is displayed in Appendix C.

4,inx*
Mode u 0.b

The mode u4 e

(where * means that this is a negative
norm mode) con51sts of an initial unit-amplitude super-
sonic right-moving component from the left (u“* =
Dle~iwrtiki(@lx) " generating a reflected positive left-
moving norm mode (u';‘yld,) and negative norm left-moving
mode (uz;yl(ﬁ) with amplitudes A’ and A’ respectively.
Moreover, in the subsonic region one has a transmitted

right-moving wave (u,,,) with amplitude A7, and a decay-
ing mode with amphtude A’ . By solving
Al 0
AL Al
0 = Mcan A;’ (66)
1 0

we find, at leading order,
= (v2—62)3/4(v+c (\/ —v —l\/v —C )

' \/E(Cl +e e =02 :

A — \/2T(v —C2)3/4(v+c)(‘/2 v2—z\/v —a)

cl\/_l(cr —-cC )\/7

= (vz — CI2)3/4(U i CV) (J - U - JU - C

C P T — e NI )

. (v?— (,‘12)1/4(v2 - Cl2 + vqfv2 — Clz) >

n= (v—iycz—v?).
2d4(c; —v?)(c] —v? +vqfv? —¢})

(67)
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As for uz)“(;, the amplitudes of the propagating modes

diverge when z; — 0 and at this level of approximation
they satisfy |AL|> + |A”|> — |AL|> = 0. The unitarity con-
dition |AL|> + |AZ|> — |AL]> = —1 is checked in the
Appendix C by considering the next-to-leading-order
terms.

The construction of the out modes proceeds similarly.

v,out ur, out ul,out*
These are Up s Uy (of positive norm) and u ) (of

negative norm), Wthh are composed by appropriate com-
binations of initial right-moving and left-moving compo-
nents (plus the associated decaying mode). These

: : : v,l u,r
generate,, respectively, unit amplitudes Up g Uy > and

u l* . More in detail, we have the following cases.

Mode uy %'
In this case, one needs to solve the system
1 Al
0 0
Aé = Mcan A ) (68)
Al 0

which yields, at leading order,

(v? —02)3/4 c2—v — —
2zic 3/2(0 —v)(c, +c,)(\/c v? \/U =
(\/ —cl—i \/C —v?)=iAL,

A=

I (v? —cl)3/4 c2—v?

V22¢! (e, —v)(e, + )

AT — (V2= —v2+oyvi—c?)

By —vNe e e —deE
Mode uy'y"
In this case the system to solve is
0 Al
Al 1
o |~ Mican ar | (70)
Al 0
and the solutions are
Al= V2, (2= v+, )\/ ~ _l\/v —3)=ar,

Jzie(cd =i —v?
;_~N2c,(v? —c2)3/4(v+c)

Ay= \/c

Jzel(ct=chVe?

v ~I—c,=Ar
ur

2 2_ 2\— _ AR
—v —z\/v —cp)=—Aj,

A=

v
v—c,

. 20, =D) (3 o= D)

Y . 71
d ld¢(c,—v)3/2(C%—C12)v Cr(U"'Cr)C[\/E]_ -
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Mode u““’“‘* Because of this, the two decompositions (we restrict our
In this ﬁnal case, the system is analysis to the case w < w,,,, because it is the relevant one
for our subsequent discussion) are given by
0 Al
1 0 (2) = [wmax dw[avm vin 4 &31[1 3in A4mu4ln
Al = M. ar | (72) 0 ¢ ox) w,¢
Al3 ()d + &Zlnfuz)m* +4 31[11' 31n* + 4 A41nJr 41n*] (75)
4

and the solutions read

wmnx
~ v, out A ur,out ~ ul,out
d) [ dw [av out aur out + aul out

u
Al— (V2 =234t —v? \/ — \/ > Al o @¢
3 3/2 U v < ) w Av outt v, outs Aur outt ur out* Auloutt ulout*
2z, (w—c,)(c,—¢;) +a ulyt + a + as 1
Al— (v _62)3/41/0_” \/ o \/ 22y AL (76)
4 3/2 C U IAVA% CZ =Ay,
Tae) (w—c,)e,—cr) o | | |
and they are inequivalent. This can be easily seen by using
Ar = [CrC fv_ Al (74) to find the relation between the two families of 4 and
" Vcv—c, v a' operators
2202 — 2 T2
ci—v) (v —ci—vivr—c . . _
YRS i Cn 2 (73) avom = ALavin + ALadn + ALgHt,

d .
V2d 4 (v—c,)(c;— e N e/ = ez : : i
¢ r r r &Z)r,out — A;&z,m +A5&2)m + A’rl’aimf’

With these re.sults, we are able to write down the relations &Z)I,oun‘ = Alguin + ALg3n 4 AL’ &iinf (77)
between the in and out modes

LU — AL POu | Ar urout | Al ulouts The fact that the righ.t—l.lan.d sideof these relatigns contain
w,p vlo,p ulo,g ulla,g both creation and annihilation operators makes it clear that
udin = ALyvout 4 ARyurout 4 ALy ulouts the two decompositions do not share the same vacuum state

o0 Voo Hog Harg (lin) # |out))
4,in __ Al yvout 4 Ar’ ur, out + Ay ul,out 74 . T .
Uy gy = Solly g ully, ¢ > (714) Density-density correlations

To compute the normalized density-density correlation
We note that, unlike the subsonic case (50), we now have analogous to Eq. (52), we first expand the operator 7' in the
combinations of both positive and negative norm modes.  out decomposition

ﬁl(l‘, X) — l’l/ m“[&v out(uv out ul, out) 4 &urout(um’om + uurout) 4 &ul out(uul out | uul out) +H C] (78)
0

and we use the relation between the in and out operators (77). This gives the following two-point function in the |in) state

w‘P

Gk 1), ¢, i) = 02 [ daoffAL i’ + ) + AL + g
0

1 s
+A[ u out ulout*)](t X) X [Al*( vout* ‘uout*) +Ar*( urout* + uz);:,‘gut*

+Al*(uulout + uulout)](t/ /) + [AL(uvout + uvout) “rAR( urout + szr,lgut)

I, % 4
AL( u oul* u[out*)](t x) X [AL«k( UOUI* Uoutﬁ») _,’_AR*( uroul + ul:l)':,q(;ut*

+AL*( ulout + ulout)](t/ /) _,’_[Al/ vout* + Uout*)+Ar*( urout* + Mﬂ’gm*

Al/*( ulout + uulout)]([ x) X [Al’(uvout + uvout) + A" ( urout + Mz)r(gut
+AZ/ ulout* + uuloutx)](t/ /) + c.c.}, (79)
where, explicitly,
ulo + ubt = e~iOf[(Dl, + EL)e™ @ + AL(Dy + E})e™i (@ + AL(DL + EL)e (@

AL(DY + Efe™ @ + Al(dry + diy)e™ i), (80)
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uur,oul + girout — e—iwt[(Dlrl + E;)eik;(w)x +A{;(DZ + E{J)eik,’,(w)x +Aé(Dé + Eé)eikg(a))x

w, P w,p

+ AL(DY + Ee™ @ + Ar(dr, + d)e™ )], (81)
ut:g{,;)sut* + MZ;l,’q%Ut* — e*iwt[(Dlll + Elll)eikf,(w)x + A{}(Dg + Ez)eik{,(m)x + Aé(Dé + Eé)eikg(w)x
+ ALDY + EL)e™@r + An(dl, + di)e™ i), (82)

The coefficients AL, A7, AL, A} and A/, are given, respec-
tively, in (69), (71), and (73). The analysis of the main
correlation signals has already been performed in [19]. We
are interested in the correlation between u’%” and u'"
because this represents the main signal due to the
Hawking effect (correlation between the Hawking quanta
and their partners). We take x (x) in the left (right) region
and evaluate the following integral

(inl{a' (&, x), 2" (¢, ) Hin) (uty” > uis"™)

wmax ! /
—n? [) deolAL AL ) 4 sl ) (6, )", 4wl ) (1)

+(ALAL + ALAR) (uls" + ulsl)(1,x)

X (s + ) (1) + c.c.]

(83)

The values of the above amplitudes are given in (63), (65),
and (67). We also take into account that

[alyo, aih 1= 0= A[A; + AL AL —AL7A, =0, (84)

where we have used the relation between the in and out
operators given in (77). The term AL‘A!, is subleading with
respect to the other two terms, which go as O(1/w), given
that the main contribution to the integral above is valid for
small w. Note also that the products AL*AR (and AL*A”)
are real at leading order. Therefore we have

(inl{a' (&, x), A' (7', XD i) (uty” > ui"™)

~dn f ™ dwfAL AT Re[(u!, + us!)(1, x)

0 o, ¢
X (uyly + uggl,) (@, X))},
and, at equal times, the normalized two-point function is
GO(t; x, x")(uls” — us™)
1 (W — 2P
4an c)(v + ¢))(v — ¢,)(c, — ¢))

sl ~ 745 6

X _x
vtc, vtc

(85)

This result, which coincides with the one given in [19],
gives an estimate of the Hawking signal in correlations
only for stationary configurations. Our aim is to perform a
similar construction, but for acoustic black-hole-like con-
figurations which are formed at some time ¢, along the
lines of the numerical analysis presented in [18].

IV. STEPLIKE DISCONTINUITIES IN ¢
(HOMOGENOUS CASE)

In this section, we study correlation functions in the case
of temporally formed steplike discontinuities between ho-
mogeneous condensates. In Sec. IV A we consider conden-
sates which remain subsonic at all times. In Sec. IVB we
turn to the more relevant case when the final condensate is
supersonic.

A. Subsonic configurations

We consider a steplike discontinuity in ¢ (say, at t = 0),
separating two infinite homogeneous condensates: c¢(r) =
cinf(—1) + cou0(2). In this section we consider |v| <
Cin(our) SO that the condensate is subsonic at all times. The
aim is to determine the mode propagation at all times, and
to define the in and out mode basis. The appropriate
decompositions of our field gf) will be given afterwards.

The general solutions in the in (¢ < 0) and out (# > 0)
regions describing the fields ¢ and ¢ are of the form
De~™Hike and Ee~™'ikx The boundary conditions at
t = 0 require us to work at fixed k. Therefore we write

¢k — D(k)efiw(k)ﬁikx, o= E(k)efiw(k)tﬂkx’ (87)
for which Egs. (7) become

cék? ¢ _
[—(a) — vk + S5 E]D(k) =~ S,
c&k® ¢ __c
I:(a) —oh+ 25 E:|E(/<) = D), (88)
while the normalization condition (9) yields
1
|D(k)|2 - |E(k)|2 = % (89)

The combination of Egs. (88) gives rise to the nonlinear
dispersion relation (14) represented in Fig. 1, and to the
normalization coefficients
_ w — vk + %
Vamhncék|(w — vk)l’
etk
2

D(k)

E(k) — — w — vk —

(90)

Vamhncék|(w — vk)l'

Here, w = w(k) corresponds to the two real solutions to
Eq. (14), which is quadratic in w at fixed k. These read
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2714 £2
w (k) = vk + ﬁczk2 + #
2k4 2
w_ (k) = vk — 1’c2k2 + %,

where w , (k) corresponds to the positive norm branch, and
w _(k) to the negative norm one. Note that there are no
normalizable mode solutions with complex k, because in
the infinite homogeneous in and out regions they would
correspond to modes which decay on one side but grow
without bound on the other. Therefore, at fixed k, the
general decompositions of ¢ and ¢ in the out and in
regions are

oD

. __ . out(in)
S = Dy (D Aqume V"

. out(in)
+ Dout(m)(k)BOUt(m)e lw— (k)t]’ (92)

out(in)

gDout(ln) _ ezkx[ Eout(m) ( k) Aout(m) e i (k)1
__ . out(in)
+ Eout(m) (k)Bout(m) e i (k)t]. (93)

For k>0 (<0) we have a positive norm right-moving
(left-moving) mode (w = w . (k)) and a negative norm left-
moving (right-moving) one (v = w _(k)). According to (7)
, the matching conditions at t = 0 are

[¢1=0, [e]=0, (94)
which can be written in matrix form
W( Ao ) - Wm( An ) (95)
Bout Bin

where

Wout(in) = (

Multiplying both sides by W, we find

Aoul =M Ain (97)
Bout b0 Bin .
Wi Wi, reads
Qm + Qout Qin - Qout
(98)

", (
o8 = 2\/ Qonut - out Qin + Qout

where we define QU0 = |poulin) — k| For v = 0 we
recover the formulas given in [26].
Connecting the in and out basis

The in and out modes basis are easily identified in
in(out) __

out(in (k) Do_u in ( )
t(in) ;( ) _ (96)
out(m) (k) Eout(in) (k)

Explicitly, the Bogoliubov matrix My,, =

terms of positive-frequency in and out modes (U

Dm(out)(k)e*""*(k)’“k" for um(om) the analysis is 1dentlca1

up to the replacement of Dm(om)(k) by Em(out)(k)) which

PHYSICAL REVIEW D 83, 124047 (2011)

are, respectively, left-moving (k <0) and right-moving
(k> 0). To connect them, as depicted in Fig. 5, we use
the Bogoliubov matrix (98).

Positive-frequency in modes have amplitudes A;, = 1,
B;, = 0. The coefficients A, and B, are found by solv-
ing the system

Aout o 1 Qi + Qoue Qin = Qoue 1 (99)
Bout 2 QinQout Qin _Qout Qin +Qout 0 ’

whose solutions are

A — Qin + Qout = o
out - Gk
2\/g)’in()'out
(100)
_ Qin - Qout _
Bow = —=——== ~Bik
2 QinQout
These coefficients satisfy the unitarity condition
|Aout|2 |Bout|2 |akk|2 |Bk—k|2 =1 (101)

where the minus sign means that the B, is associated to
negative norm modes.

Positive-frequency out modes are characterized by
Aot = 1, Byye = 0. The coefficients A;, and By, are found
by solving the system

( 1 ) 1 Qm + Qout ‘Qm Qout ( ) (102)
0 2\/ Qonut Qm Qout ‘Qm + Qoul

which gives

A = Qin + Qout B — — Qin B Qout (103)
" 2V QinQout ’ " 2 QinQOut ‘

From these results, we see that the in and the out modes
are related by the relations

u}j‘ = agu" — Br_uy, (104)

kk

N
AN
AN
AV\NE

FIG. 5.
tinuity.

“in” and “out” basis in the temporal steplike discon-
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and, considering the in and out decompositions of the
field ¢

dA)(t, x)in(oul) — /jooo dk[&ikn(om)”i/:gmt) + ailcn(out””il:f;m)*]’
(105)

we find the relation between the in and out set of operators,
namely

(106)

The fact that both anhilitation and creation operators
enter in the right-hand sideof the above equation means
that the two decompositions (105) are inequivalent and that
lin) # |out).

Density-density correlations

The analysis of the density-density correlation is similar
to the one performed in the hydrodynamic case, see [21].
We first write down the operator 74! in the out decomposition

(o]
Aal(tx)= nf dklag™ (u, + ugs) + azud (" + up"s)],
— 00

(107)

and then use relation (106). For the two-point function of 4!
in the |in) state we have

(inl{n" (,x), A" (¢', x')}in)
o0
=n? [_ dif{larg, (up'y + uy) = Br—r Wy, + u®y )1t x)
X Lo (s + ug™) = B (u®h 4 +u )](#',x") +c.c.}

(108)

This integral is well approximated by its hydrodynamical
limit and the features of the density-density correlations are
discussed in [21,26].

B. Subsonic-supersonic configurations

This case, which is relevant for the calculation of Sec. V,
consists in a configuration made of an in subsonic region
and an out supersonic one (¢, > |vl, ¢oe < |v]). In the in
region the analysis is the same as in the previous subsec-
tion. In the out (supersonic) one the dispersion relation (14)
shows new features with respect to the analysis in the
hydrodynamic limit. From Fig. 6 we see that, for |k| <
|kiax|, the analysis is similar to that of the previous sub-
section, with the important difference that both modes are
dragged by the flow and move to the left, whereas, when
|k| > |kpaxl, the supersonic modes k5 (>0) and k,(<0) (in
the language of Sec. I1I B) become able to propagate to the
right upstream (from now on we find more convenient to
work with positive k, and indicate negative k with —k). The
way in which the in modes propagate in the out region is
shown in Fig. 6. These features become very important for
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k < k max

B o
—k—k
w ar, \
/

\1

8 max
P —kk

N

FIG. 6. Evolution of “in” modes for different values of k in the
case of a supersonic “out” region.

k >k
k
3 k
4
o *
k=k % =Bk«
/

the analysis of the temporal formation of acoustic black
holes of Sec. V.

For k > k.., an initial left-moving mode decomposes
into a positive norm left-moving component plus a k&,
negative norm one, with amplitudes A, and A" respec-
tively. These are found by solving

Aot _ 1 Qin + Qout Qin - Qout 1
Agut 24/, Qo Qip = Qoue Qi + Qo /NOS

(109)
which yields the solutions
A _ Qin + Qout = o*
out = & ko
2VQinQoul
(110)
out __ Qin B Qout _
APt = —F——= “Brx
2\/ Qinﬂout
These satisty the unitarity condition
|Aout|2 - |A2m|2 = |a7k*k|2 - |:8k7k|2 =L (111)

An initial right-moving mode splits instead into a positive
norm right-moving k3 mode, with amplitude A" plus a
negative norm left-moving one A,,, which are found by
solving

Aout — 1 Qi + Qoue Qi — Qo \( 0
A(3)ut 24/, Qo Qi = Qout Qi + Qo N1/

(112)
the solutions are
(3"“ _ Qin - Qout _ _ﬁ—kk’
2\/ Qinnout (113)
_ it Qow

Aout -

akk.
2\/ QinQout
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Equations (110) and (113) are the crucial formulas that we
shall need in the next section to consider the temporal
formation of acoustic black-hole-like configurations.

V. DENSITY-DENSITY CORRELATIONS IN THE
FORMATION OF ACOUSTIC BLACK-HOLE-LIKE
CONFIGURATIONS

In this section, with the help of the thorough analysis of
the previous two sections, we will study the main Hawking
signal in the more involved situation where an initial
homogeneous subsonic flow turns supersonic in some re-
gion. We will model this situation with a temporal steplike
discontinuity at t = 0 (temporal formation) followed by a
spatial steplike discontinuity at x = 0 separating a sub-
sonic and a supersonic region. The model we shall consider
is sketched in Fig. 7, where ¢, = ¢;,.

To study the propagation of modes solutions to
Egs. (7) for all x and ¢, we need to impose matching
conditions (94) at + = 0 at fixed k (only those for x <0
are nontrivial), and then (20) at fixed w at x = 0 (and
t > 0). The behavior at x =t = 0 is more delicate be-
cause it depends the way we approach it. A detailed
analysis of what happens for the case of subsonic flows
was carried out in [21] by explicitly constructing the
“in” modes basis. As modes transiting through the
origin only affect transient behaviours in the correlations
patterns, in this section we will rather focus on those
modes solutions which give the leading contribution to
the main Hawking signal. We saw in the stationary
analysis of Sec. III B that this is given by the evolution
of the modes u3;™, up™ for w small and, consequently,
|k| = |kpaxl. In turn, as shown in Fig. 6, such modes are
generated by “in” modes in the homogeneous <0
region with the same value of k crossing the temporal
steplike discontinuity on the x <0 side.

In our analysis we shall need to consider a transition
from the & to the w basis. The relations between modes and
operators in the two basis are

in

0 x=0

m

t=
-

v

FIG. 7. Temporal formation of a spatial steplike discontinuity
temporally formed (¢, = ¢;,).

PHYSICAL REVIEW D 83, 124047 (2011)

_ |dw . |dk,
Up, (o) = E”k(b(co)’ ay = %ak-

To construct the two-point function
(in]a'(z, x)a' (¢, x')|in) we proceed as usual by decompos-
ing 7' in the out w basis

(114)

®ma
ﬁl(l‘, x) _ n/ mux[&la,;out(uz;‘(;lt + I/tz,',%lt
0

Aur,out (., urout ur,out
+ag " g+ ugy

~ul,out(, ul,out Lout
+ gulou (”w,¢> + ulyd™) + Hel,

(115)
and by relating the 4%, a%"" operators to the aw, &ik“T in
the in (# < 0) region. This is done in two steps. First, the
analysis in Sec. III B provides for the relation between out
and in w basis in the 7 > 0 region. In particular we have

A A 1 A3 /A i
azout :Aiaz,m _;’_A%aSwm +A{,ai,'"f, (116)
A Avi A3 ! Adi
ag}r,out = Arauin + Alu?az’um + Al aijnT, (117)
A Avi A3 ! Adi
az)l,outf _ Aflaz,m 4 Aﬁai)m + Aiai}nf‘ (118)

From the values of the amplitudes in the above equation
(given in Sec. IIIB) we see that the terms multiplying
av™ are subleading with respect to those multiplying 43"
and a2int

Next, we need to jump from the in w-basis to the k-basis
needed to address the temporal steplike discontinuity. The

relevant terms in 7' in our analysis are

A1 (tx) = fk [ y,  + 10, ) + ) ]+ uf )]

max

(119)

where k, = —k5. This is to be matched, at r = 0, at the
relevant values of k, with the in decomposition (¢t < 0)

At x)= j;) dk[fzi,,{“(u}(‘?q5 + uik"‘ga) + &il‘k(uifk,(b + uif,w)
+alt i ) + @ W™, a1 (120)
The relations between the k operators before and after the
temporal steplike discontinuity are given by (106) with
k4 = _k3:
ay, = alks)a, — ,3*(_1%)@11(,

at, = —B(=k)a_, + a*(ky)af, (121)

where the Bogoliubov coefficients are given by (110) and
(113)

Q, +Q Qo — Q4
a = in out’ ,8 __ “out in ) (122)
2 Qinﬂout 2V Qinﬂout

Here ) = |w — vk]| is calculated before (€);,) and after
(Q o) the temporal discontinuity.
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Let us now go back to the w basis (the general relation
between modes and operators in the w and k basis is given
in (114)). As shown in Fig. 8, a fixed, positive value of w
corresponds to two values of k, namely k3 and k/;. We thus
write

w,¢

l(l x) f dw[a31n(u31n + u31n

A41n‘r (u4m* + u4ln*) + H.c. ] (123)

Defining k;, = —k; and k), = —k, the following
properties are valid (we do not write explicitly the normal-
izations)

uz}in* — (e—iwt+ik3(w)x)* — eiwt—ik3(w)x — e—i(—(u)t+i(—k3(w))x

= gil-@)tiky(—w)x =} din* (124)
and
uhint = gmiwrtikiwh — p=il-o)til-k(-o)x = 3 3im - (1735)

Therefore the density fluctuation operator 7! turns into:
A1) = ﬁ) Cde[an (i, + ) + a4 i)
+ u3m

—w, <p)]
(126)

+ &4ln1‘(u4m*¢ + u4m* )+ "31n (u3m

Since the w decomposition requires two values of k, the
relation between the w operators and the k ones before the
temporal discontinuity will involve relations (121) with
different values of k, namely k3 = k and k}, = —k':

A 3in dw By dw
ay" = a(k3)1’d—k3ak3 = B (—k3) d—l@ai’@’

dw dw
a_p + o (K(—w)),|——al.
dk, 3 deg k

We compute now the Bogoliubov coefficients appearing
above. Let us start with a(k;) and B(—k3). By using again

(127)

®

FIG. 8. w versus k in the supersonic case.
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the fact that k is conserved in the temporal steplike dis-
continuity (k = k3) and the expression of k3 for small w

2,/v7-22 S . o
(ky = M2 4+ vy which gives the main contribution

g ci—v?
to the density-density correlations, we can write {);, and
Qo as:

2"’1)2 - C% vw
Qout = w = vl: + 2]’

129
cé; cl2 —v (129)
k* &2
Qin = Cin kz + Tm (]30)

Notice that we cannot use the perturbative expressions in
the in region, since here we are beyond the small frequency
regime. Expanding up to w we finally obtain:

_ /2_2 2
v +4v c; t+c,

alks) = NS T
. ci/—v(c? — ) ‘/v —c?+ )
v%/ﬁ(v -+ )t )
vt 4fvr—c? +
B(—k;) = 2\/—1) 7+ cm)l/4

ch/—v c, - ¢ )( v+ ,/v - cl + Cm)flw
8v\[v? — Cl(v - 6‘2 + c2 )5/4
(131)

Let us compute now a(k}) and B(—k%). By using the fact
that k is conserved in the temporal stephke discontinuity

(—k=ky) and the expression of —kj for small
UZ_CZ
w (= Ky(—w) = =T + 22 we have
24fv? = ¢}
Oy =-w+ vl:— Ly sz 2], (132)
¢ ;g — v
ke
Ql = Cip k2 + Tm (133)

By expanding (122) up to w these expressions we finally
obtain, at that perturbative level,

a(ké) = a(k3), 5(_/(3) = ,8(_]%)-

We have now all the ingredients to calculate the main
contribution to the Hawking signal in the density-density
correlation for the temporally formed step. We study again
the correlation between the modes u" and u!4*. As at the
end of Sec. III B, x (x') is a point in the left (right) region.
The two-point function reads

(134)
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Ginl{al (1, x), ' (¢, x)Hin) (e > utl®)

— [0 “ dw[(AL AL | ()2 + ARAL| B(—k;)P)
X (u’;)l’d, + ull (1, )c)(uz)ry';“t + ulrSU)(t, x')
T (ALAR a(k;) P + ALAR| B(~K)2)

l * ; ‘
X (u" outs 4 ul )2, x)(u™ + ul:ur,out*)(t’ X)) + C.C.].

w, P w, ¢ w, @
(135)
The products of the amplitudes are related by
[aly o, alf ] = 0= A[A;, + AL AR — AlA; =0, (136)

where we have used the relation between in and out w
operators. We neglect the subleading term A% A! and take
into account that at leading-order AL*A”" is real. Thus, we
find

(inl{a' (s, x), 2" (¢, X Hin)(uly = uiy™)

= [ dofllat)P + 1G4 + B~k

+1B(=K)I?) X AL AL Rel (!, + uldl ,)(z, x)

X (uly y + ui ), x)]+cc} (137)
By taking in account that
0,1
—~ N
“01 o
-0,1
-0,2 4

Numerical plot |

|* — Analytic approximation

FIG. 9 (color online). Comparison between the plots of
Eq. (139) and of the numerical counterpart along the direction
x = x — 1, where x is in units of the length ¢. We adopted the
following numerical values: v = —1.01, ¢; = —v/4, ¢, =
—5v/3, n = 5.1, m = 20.1. With these choices & =~ 0.03 with
7 = 1. These values have been chosen of the same order of the
ones used in the simulations studied in [18], so that they
qualitatively match the results of [19].
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la(ks)l? + a1 + | B(=ks)I* + | B(=K,)I?

22 02
¢ — ¢, —2v

= (138)

/2_2 2
U4V c; + i,

we can finally write down the leading-order contribution to
G?, namely

GO(t;x, x')
1 (v* — c12)3/2(c12 -2 —2217)

4mn 2ve)(v + ¢)(v = ¢,)(e; — ¢, )yfvP — ] + ¢}

. !
SIH[wmax (vic, - v%c,)]
/! ’

(139)

X _x
vtc, vte;

which modifies the stationary correlation (86) by the factor
(138) that comes from the effect of the temporal formation.
In Fig. (9) we display the plots of Eq. (139), and of the
numerical counterpart along the direction x = x’ — 1. The
picture shows a good agreement, which confirms that the
analytic approximation adopted in this paper is good
enough to capture the essential features of the correlations.
Good agreement exists also for different cuts; for com-
pleteness a 3D contour plot is given in Fig. 10.

Finally, in Fig. (11) we confront the signal between the
eternal step and the temporally formed one. As one can see
already from the analytic approximation, the temporal
formation of the step yields an amplification of the signal.

FIG. 10. Comparison between the plot of Eq. (139) and of the
numerical counterpart, obtained by numerically solving the
integrals without truncating the expressions for the momenta
as in appendix C. The variable y corresponds to x’. The values
are as in Fig. (9).
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0,2 +

0,1

-0,1

-0,2 -

-0,3

,0’4 -

-0,5

|— — Eternal step —— Temporally formed step |

FIG. 11 (color online). Comparison between the (numerical)
plots of the two-point function for the eternal step (86) and for
the temporally formed step (139) along the line x = x' — 1
where x is in units of the length &£. The choice of the parameters
is the same as in Fig. (9).

VI. FINAL COMMENTS

In this paper we have studied in detail the formation
of acoustic black-hole-like configurations in BECs using
steplike discontinuities. The Hawking signal in the sta-
tionary case (86) and in the case of temporal formation
(139) have stationary peaks (at Y = _x ) of order

v+te, v+te
O(wpmax) ~ O(1/€), which lie well inside the nonpertur-
bative regime in ¢. The results in the hydrodynamical
limit of [17] showed instead a peak of order x?, where
K= %IFO is the surface gravity of the horizon. It is
clear that in the approximation of spatial steplike dis-
continuities we are working with the surface gravity is
formally infinite and therefore our expression (139)
(and also (86)) regularizes the result of [17] in the
k — oo limit, in agreement with the numerical results
of [18].

In [21], it was noted that a simple recipe to take into
account a smooth transition region in c(x) around x = 0
of width o, and surface gravity « ~ o% is to introduce a

cutoff of order « in the w integral of (137) by multiplying
the integrand by the function e~/ The interplay be-
tween w,,, and « is such that the final peak is of order
k(1 — e~®m/%) which has the correct Kk >> @, limit,
i.e. W, However, it is not able to make contact with the
results of the hydrodymamic limit since, when w,,,, > «,
we have a behavior in « which is linear and not quadratic.
Thus, it would be interesting to find an analytical formula
capable to interpolate successfully between these two
limits.
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APPENDIX A

In this appendix we construct the exact in and out basis
for the spatial steplike discontinuities at x = 0 with v = 0
(perturbative results in z; = £w/c are given in the main
text), which have a special interest for the validity of the
unitarity relations. The scattering matrix determined by the
junction conditions is given by

Mgeoy = Wz_lwr: (A1)
where W; and W, are given by (22) and (23) respectively.
We recall that the structure of these matrices is determined
uniquely by the matching conditions and by the solutions
to the dispersion relation (14) on the two sides. For v = 0,
this equation reduces to

o = afwp + 0]

2 k" 4
w? = c?[(k”)2 + _f,(4 ) ] (A2)
where c,; are the speed of sound on the right-hand side and
on the left-hand side of the step, respectively. The solutions
are, on the left-hand side

2 2¢2
K, = i\é——\l—l T 1)

(A3)
I 012
i\/§ w2§2
Ky, =+—= HW/H L (A4)
e & e
Similarly, on the right-hand side, we have
2 2¢2
K, = i\é{—_\l—l + 41 + “’Cfr, (A5)
i/2 22
K, = i%\(lﬂfu‘”cf’. (A6)

As we have k, = —k, and k; = —k,, and hence D, = D,,
(see Eq. (15)). Therefore, the matrices W, and W,
simplify to

124047-17



MAYORAL, FABBRI, AND RINALDI

D!, D!, G, d.,
ik.D!,  —ik.D! —ik\,G!, ikld'
w=| " o F A V'Y)
El E! G, d.,
ikLE, —ikLE, —ikiG!, ikid,
and
D’ D! d, Gy
ikiD},  —ik,Dl, ikhd, —ik,G",
W, = E’ E’ drd) (;r . (A8)
u u [ ¢
ikyEl,  —ikyEl, ikhd, —ik,G,

Let us now construct explicitly the “in” and “out” modes

(see details in Sec. III A).

Mode uz)';
Matching conditions at the step dictates that
Al 0
: = Mcan A ) (A9)
0 Al
Al 0

and R’ = Al and T’ = A!, are the reflection and transmis-
sion coefficients, respectively. By solving the system we
find

I r)2
PGy A0
7 = 4 (KL, )2_(kl)2][(kl)2 (kr)Z][(kr)2+ 20 (k! )2
I AR (CAR CAN (CARES 2[1«' AL
)2
Egiiz (A11)
1

Note that both R’ and T’ do not depend on the normal-
izations d;r( - To simplify the above expressions, we first
use the definitions of D, and D’ displayed in (15) to find

7P = A(kn)[(KL)? — (KLP(KL)? — (k)] | dk,
[(kp)? — (ki) I[(ky)? — (kL) A[KL, + k1 | dks,
(A12)

By calculating explicitly dk./dk!, and by using the iden-

tities
kl 2
W&+ = c,<§’(z”) + 1),

ry\2
,/aﬂf% +cf = Cr<§r(]2<v) + 1)’ (AL3)
we find
1 211 r)2
dkv _ §[ kv[(grkv) + 2] (A14)

i, EKL[(€kL)? + 2]
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By noting further that

4
(ky)? = (k) = Tg%‘/m

Al5
(ky)* — (kp)* = rfgvaﬂf% +1, o
we can write |7”|? as
TP — 4(ky,)’[(k},)* = (kp)*] (A16)
ky[(kp)? = (k) ]k, + k1>
Finally, with the relations
(52 = —(C‘;L;)z (k2 = —%, (A17)

which can be easily proved with Egs. (A2) and either (A3)
or (A5), we find that

4k" k.,

]
T = e

(A18)

Thus, |72 + |R'|? = 1.

v, 11’1
Mode u o.b

The scattering matrix is still given by (A1), but now the
system to solve is

Al 1

0 A

0 = Mscatt Ag ’ (A19)
Al 0

with R = A, and T = Al. Despite the fact that the system
is different, we find the same results as in the previous case,
namely

I _ 1r)2
IR|> = %, (A20)
T = A[ (k)2 — (k" (k) — (k PI(kL)? + g,z,l 2(kr )2
[k Y2 = (e T0kE 2 = (k)T ) + 22 PTk + ey P
% ’ (A21)

thus even in this case unitarity holds. It is easy to see that
these expressions can be obtained by the ones in the case
us™™ by swapping r < [, so that the proof that |R|*> +

|T|> = 1 follows immediately. The construction of uz;f’(zt

and uz;f’;)“ is now straightforward.
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Mode uy’! where R™ = Al and T"* = A’, and get
For u; %" we solve
kl — k" 2
0 AL |[R™|? = (;’—;’)2 (A26)
A | (k + k)
=M, , A22
0 st |y (A22)
Al 0 D)2 — (kL) T[(KL)? — (k2T (kD)% + 22 P (kL )2
d = A (k) = (kg)* I (ky))? = (k) ML (kp)? + 22 F (k)
: : ¥ AT % Al =
where we identify R* = A} and 7° = A5 and find [(k?)% — (KL)ZI[(ks )2 — (k5)2IL(KL )2 + Zw 2[k1 +KP
(kl _ kr)2 )
IR*|? = F——, (A23) 1 (A27)
(ky + k7) (D1)?
r\2 _ (1,r\2 ry2 __ Z 2 1\2 2_w 2(1,r\2
|72 = AR = (k" ) = (k)" K ) £ (ky) In both cases unitarity relations are satisfied.
[(k3)* = (k)1 (k,)* — (K )2][(16’)2 + 22 Pk, + kP
D’ 2
51)7;2 (A24) APPENDIX B
u In this appendix we give the perturbative results for the
Mode u?°™ construction of the in modes for spatial steplike disconti-
w.¢ ” B : . :
For 1" we solve nuities at x = 0 for v # 0 (in the subsonic-subsonic case).
«¢ The details of how to construct them are given in Sec. IIT A
1 A with the help of Fig. 1. For simplicity, we will only give
Al 0 explicitly the amplitudes of the propagating u, v modes.
0 =S A | (A25) Mode uzlg
d By solving the system (25) we find, for the propagating
!
Ay 0 modes, at O(z7) (where z; = &w/c))
24 /c,c 3/2(C1 c,)e, (\/512 —v - VC% - Uz)Zl

C1+C’ ( —v)(v—c)(c,-i—c)\/v — e, (v? =)

2.5/2¢. _ 2
+ - Gger (e C;/)Z [—v*(v = ¢,)* (v + ¢,)? + vPe)(v — ¢, (v + ¢,)?
8(v—c)w+c)*(wv—rc)c(v+c,) e, +c,)

+ (v = vie, +3vc2 + ) + vl (=P + ¢ (v2 + ¢ (v + 3c,))

+ 320 + 6,20 + ¢, (v + ¢,)(=5v2 + 2ve, + 2 — 402 — D)2 — )

+ver 2V + ¢ (—2v* + ¢, (v + ¢,)(=3v? = 2ve, + 32 — 4\/(1}2 — )W =) (B1)
e —c, cile,=c)e, (v =+ \/(012 —v3)(c; — v?)zy cile; — ¢zt
Ar:c-i—c_l 4(v? = c)?c(c; + ¢,)(vr = ¢2)?
e c? = vHc, + ) (v — 2)? el

X [2cic¢ = v2(v? — 2P + ¢} (—v* + ) + 7200 — viel — 207t + ¢f)

+2cicd (=30 + 2 — 2\/(v — cH)(W? — c2) + 2v%¢ici(—c2 + 2(v% + \/(v —cH@? = Al (B2)
The important check is the unitarity relation |AL|? + |A;|> = 1, which is satisfied quite nontrivially at O(z7), as

4eje, (e, — ¢,)?
(c;+c,)? 2w —c)Pw+c)w—c)e,(v+c) e+
+vctv =)W +2) = 3w —c,) W + 2) + e, — v)20 + (=20 + (v + ) v —c)?)] (B3

ALI? =

o) [V(v = ¢, (v +¢,) = velv—c) (v +c)

124047-19



MAYORAL, FABBRI, AND RINALDI

PHYSICAL REVIEW D 83, 124047 (2011)

5y _Cl— ¢ CZZ(CI —c)e (v —ef + \/(U2 - Clz)(vz — )z c?(cl - cr)z%
Al = ¢ te 4(v? = e lc; + ¢,) (W = ¢2)?
LT Er v2 = e; + ) = ¢2)? 1€ e T Cr r
X [2¢ic} — v (v = 2 + o} (—v* + ) + cH2v0 — vie? — 207t + )
F263e(-307 + ¢ — 24— DR — D) + 20— 4202 + R — D - )] B
Modes uz)if‘d,
The construction proceeds from Eq. (32), which gives, at 0(z,2)
ATl C[ (1= c)§e] = v* =Aei — vz N cile; — ¢zt
oo+, (c? — V22, + e WE — 02 4(c? = v*)3c(c; + ¢,)(v? — ¢2)?
X [—v*(v? = 2)? + v*c?(3v? — ¢2) + 2cic,(c2 — v?) + S + F) + cH(—3v* — 2072 + ¢f)
+2cie (2 = v?)(e2 = 202 + (02 — D@ — D)), (BS)
. 2. /cic, _ 013\/6(01 - Cr)(’\/C[Z - v - \/C% - U2)21
Coate @t o)t e)e + eele — v)ed — v7)
S/Z(Cl —c)’q 3 2 3 2 2 3
+ 3/2 [v’(v — ¢,)*(v +¢,) + vic,(v—c,)*(v+c,)
8(v —c)*(v+ ¢ (v —c.) e (v + ¢, (e, +¢))
+ 3 + ¢,(v? + 3ve, — 2) + vt (VP + ¢ (v? = ve, + 3¢2))
+ —vc?(2v° + ¢, 2v* = (v — ¢,)c,(3v* = 2ue, — 3¢ + 4\/(112 — A w? = c2)))
+ =207 + ¢, 2v* + (v — ¢,)c, (5v* + 2ve, — ¢ + 4\/(v =@ =) (B6)

The unitarity relation |AL|?> + |A7|> =1 is again nontri-
vially satisfied at O(z?), being
i, —¢,)?

|Al P = ( c,)z
¢ +c 2(0% = )3 (e + ¢,)* (v — ¢2)?
X [v*(v? = ¢2)? + vic3(c? — 3v?) — H(v? + )

+ cf(3v* + 2v%¢2 — )] (B7)

P =g
X dede—c)

2w —c)?(w+c)(w—rc,)c,(v+e,)(c,+c,)?
X[v3(v—rc,)?(v+c,) +vic,(v—rc,)+c,)
+vctv+te) v+ 2+ (v+c,) (v +c?)
+ (e +v)(—2v° + o (=20 = (v —¢,)c, (v +¢,)?)]

(B8)

APPENDIX C

In this appendix we extend the leading-order results of
the calculations of the amplitudes of the propagating

modes ui;"(; and ui;”q‘f, in the case of the subsonic-

supersonic spatial steplike discontinuity. With these, we
are able to check the unitarity relations.

4in*
Modes u o

The amplitudes depicted in Fig. 4 are:
I e (Ve R (Y en )(‘/

AZ 2 _ —
c1zi(ct = et — v? Y l‘/v )
+ (A + iB) /3, 1)
v Pt
! 6‘3/2\/2?(C1 + ¢, )Wz — v?
X (e — v — iyl = D)+ (C+iD)E, (€D
Al — (V2 — )4 +c,)

22z (e; — e WE = o7
X (e = v2 = iyJv? — D) + (E + iF)JE

where

(C3)
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(=8v°% + 2uc}(—2v + ¢,) + 2v%¢, (v} + 4vPc, — 2¢})) + 7 (Tv* — ¢, (4v? — 2v%¢, + &)))e /2
2\2v(v? — 24w — ¢,)2 (v + ¢,)(c} — )
(807 + 6%, + H—v + e)enol 7 T D

B=— , C
2300 — ) — et — ) «

A= , (€4

1
8v° + 2v%ct + 2uce,c2(v? — 2) + 2ued (—v? + ¢
4\/_v(v —01)3/4(v—c)2(v+c)(cl+c)[ ! 1€ ) i )
+ A (=Tv* 4+ 2v%¢, + 2v%c? = 2ued + ) + 202, (=P + o (=4 + o (v + )z, (C6)

b (8v® + 6vc, + ci(—v + ¢,) oz (C7)

42v(v? — eV + e (v + c%)

1

= 8v0 + v2c2(—T7v2 + 2¢,(v + ¢)) + 2v3(—v? + 2 c,
30— P — e Ples — o)+ ) i s e)) = 2w L

= 20(4v3 + ¢;(v* — vep + )+ 2v(v? = el + (v + 2ue; + 3t ez (CB)
P 8V + 6v2c, + i (—v + ¢,)faz; (9)
42v(W? — )4 e, — e N (=v + 2
Their squared modulus read
/ e (V2 — 2B 2(y +
|A£ |2 — C,.(U C[) (‘U Cr) + G, (Clo)

Gl — A — )

, 2 2)3/2(y + _
lAl] = (v f[) (v +c.)c, —¢) Y H (C11)
262 Zl(cl + cr)(cr - ‘U)

(W2 — 22w+ ¢,)(c; + ¢,)
AYO=02 = : - St C12
= @ = e - o) (12

where
_24+422+ 2_32+ 2
G c,(—2v v c,2 c,z( 12; Cr)), (C13)
v(v —c,)*(—cf + ;)
o (c; — c,)v* — 2v%c, (v + ¢,) + clz(vz + 2ve, — ¢2) + 2ue)(—v? + C%))’ (C14)
4ve,(v — ¢,)*(c; + ¢,)
(c, + ¢,)2v* = 2v%c, (v + ¢,) + 2vc; (v — ) + 3 (v? + 2ve, — 02)) (C15)
dve,(v — ¢,)*(c; — ¢,)
The above amplitudes satisfy the unitarity condition |AL|? + |ALJ? — |AL]> = —1 at this perturbative level.
Modes ui)”},
The amplitudes sketched in Fig. 4 turn out to be
e (v? — 234y +
A{S C(U C) (U C)(J 2+1Jv _cl)_(A lB)\/Z_[, (C16)
c/zile; = epNe; — v
v? — c2 34(v + c,
AL — ( ) ) (\/2 v+ i — )~ (C - DVE (C17)

/2\/2—z—(cl+c)\/c — v?
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where

Again, one sees that |[AR|> + |AL|?> — |AL|? = 1 is satisfied.
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2¢,(v> — )2 (v + ¢,)
AR 2 — r l r) G, C19
il cizc; — ) —¢,) (C19)
AL = (v? _3‘712)3/2(11 +ec)e,—¢) H, (©20)

2¢jzi(e; + c.)(e, — v)
ALJ2 = W2 = )W +c)e, +¢,) I )

2C?Zl(cl - cr)(v - cr)
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