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The Solar System bounds on Rn gravity are often ignored in the literature by invoking the chameleon

mechanism. We show that in order for the latter to work, the exponent nmust be ridiculously close to unity

and, therefore, these theories are severely constrained.
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The acceleration of the cosmic expansion discovered
with type Ia supernovae [1] still lacks a satisfactory expla-
nation. The hypothetical dark energy which is supposed to
drive this acceleration is an ad hoc explanation: it cannot
be detected directly in the laboratory and is extremely
exotic due to its negative pressure P. Its equation of state
should be P ’ �� (where � is the comoving energy den-
sity) and phantom energy, which opens the door to much
trouble with its instabilities and thermodynamical behav-
ior, is not at all excluded by the observations. Much
theoretical effort has gone into proposing an abundance
of models for dark energy and to constrain it observatio-
nally (see [2] for a detailed discussion and for references).
An alternative approach consists of dispensing with dark
energy and postulating, instead, that Einstein’s theory of
general relativity (GR) fails at the largest scales and that,
with the cosmic acceleration, we have detected departures
from the expected GR behavior. This proposal [3,4] has
led to a revival of fðRÞ or ‘‘modified’’ gravity, described by
the action

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ SðmÞ; (1)

where g is the determinant of the spacetime metric gab,R is
the Ricci scalar, � ¼ 8�G, G is Newton’s constant, and

SðmÞ is the matter action. This class of theories, which
reduces to GR for a linear function fðRÞ, comes in three
versions: metric, Palatini, and metric-affine formalisms
(see [5,6] for reviews and [7] for introductions). The
more complicated metric-affine formalism [8] is not fully
developed yet and has seen little use in cosmology. Inside
matter the Palatini formalism, in which the metric and the
connection are treated as independent variables, is riddled
with problems unless its field equations get modified by
higher order terms [9] and, therefore, we will discuss here
only the metric formalism, in which the connection is the
metric connection (the distinction between metric and
Palatini formalisms is irrelevant for GR, but the two var-
iations produce inequivalent field equations for nonlinear
fðRÞ functions).

Metric fðRÞ gravity contains a scalar degree of freedom,
identified with � � f0ðRÞ. In fact, metric fðRÞ gravity is a
Brans-Dicke theory [10] with parameter ! ¼ 0 and a
special potential for the Brans-Dicke field � [11].
Starting from the action (1) and introducing a new field
�, the action

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p ½fð�Þ þ f0ð�ÞðR� �Þ� þ SðmÞ (2)

is dynamically equivalent to (1). Variation with respect to
� yields f00ð�ÞðR� �Þ ¼ 0 and � ¼ R if f00ðRÞ � 0,
and the action (1) is reproduced. If we define the field
� � f0ð�Þ and set

Vð�Þ ¼ �ð�Þ�� fð�ð�ÞÞ; (3)

the action becomes [12]

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p ½�R� Vð�Þ� þ SðmÞ; (4)

an ! ¼ 0 Brans-Dicke theory [10].
Many choices for the function fðRÞ have appeared in the

literature, and there are viable ones which satisfy both
theoretical viability criteria (such as correct cosmological
dynamics, smooth transition between different cosmologi-
cal eras, well-posed initial value problem, stability, correct
weak-field limit and dynamics of cosmological perturba-
tions) and experimental constraints [5,6]. There is a large
body of literature ([14,15] and references therein) on the
choice fðRÞ ¼ �Rn (where �> 0 has the dimensions of a
mass squared and n is not restricted to be an integer), on
which we focus. Let us be clear on the terminology here:
often, the literature refers to the theory described by
fðRÞ ¼ Rþ �R2 motivated by quantum corrections to
the Einstein-Hilbert Lagrangian as ‘‘R2-gravity’’ (and,
consequently, to fðRÞ ¼ Rþ �Rn as ‘‘Rn-gravity’’). This
is not what we mean here: the term ‘‘Rn-gravity’’ in this
paper refers strictly to the choice fðRÞ ¼ �Rn and our
considerations apply only to this class of theories (the
prospects appear much better for fðRÞ ¼ Rþ �Rn

theories).
Rn gravity, like any fðRÞ theory, is subject to experi-

mental constraints: while, from the mathematical physics
point of view, it is perfectly acceptable to study this theory
as a toy model in order to obtain analytical or qualitative*vfaraoni@ubishops.ca
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insight on exact solutions, or on the role that the scalar
degree of freedom f0ðRÞ may play in modifying GR, or to
replace the full theory fðRÞ ¼ Rþ �Rn with �Rn (which
is mathematically easier to handle) for n > 0 in the strong
gravity regime, the exponent n is not an entirely free
parameter if the theory is meant to constitute a realistic
alternative to dark energy.

Let us first consider two basic theoretical requirements
associated with stability. First, avoiding the Dolgov-
Kawasaki instability [16] leads to f00ðRÞ � 0 [17,18] which
corresponds to n � 0 or n � 1 for fðRÞ ¼ �Rn. Second,
on time scales shorter than the Hubble time, one models the
present universe as a de Sitter one, and de Sitter space is
usually found to be a late-time attractor in fðRÞ and dark
energy models. Therefore, it is important that de Sitter
space be stable, too, which provides the second criterion.
The massm of the scalar field� ¼ f0ðRÞ in de Sitter space
is given by

m2 ¼ 1

3

�
f00
f000

� R0

�
; (5)

where a zero subscript denotes quantities evaluated in the
de Sitter space with Ricci scalar R0. Equation (5) has been
derived in a variety of ways, including the weak-field
limit [19–21], gauge-invariant perturbation analyses of
de Sitter space [22], and calculations of the propagator
of fðRÞ gravity in a locally flat background [23]. For
fðRÞ ¼ �Rn, it is

m2 ¼ ð2� nÞ
3ðn� 1ÞR0; (6)

and the requirement that the field � be nontachyonic is
equivalent to 1 � n � 2. We take the parameter n in the
intersection of these two intervals 1 � n � 2 (bounded
from below by GR).

In order for fðRÞ ¼ �Rn to provide a realistic alternative
to dark energy, it also needs to satisfy the available experi-
mental constraints. Writing n � 1þ �, light deflection
does not provide bounds [24–26] but the precession of
Mercury’s perihelion yields the stringent limits [24,27–29]

� ¼ ð2:7� 4:5Þ � 10�19: (7)

This constraint is often ignored in studies of Rn gravity
[15], based on the belief that the Solar System limits are
circumvented because in the weak-field limit of general
fðRÞ gravity, the effective degree of freedom � ¼ f0ðRÞ is
endowed with a range which may be very small at Solar
System densities and much larger at cosmological den-
sities. This feature would enable effects on cosmological
scales but would shelter � from the experimental bounds
in the Solar System (the chameleon mechanism at work,
see below). This argument is misleading: let us examine
how it applies to the weak-field limit of fðRÞ gravity in
general, and then discuss the specific Rn theory.

The weak-field limit of fðRÞ gravity has been studied by
various authors [21,30–32]. Based on the equivalence be-
tween metric fðRÞ and ! ¼ 0 Brans-Dicke gravity and on
the Cassini bound j!j> 40 000 [33], early work dismissed
all fðRÞ theories as unviable [30]. However, the fact was
missed that the Cassini limit only applies to a Brans-Dicke
field with range larger than, or comparable to, the size of
Solar System experiments, while the effective mass and
range of the scalar field � ¼ f0ðRÞ depend on the back-
ground curvature R, hence on the energy density of the
environment. This is the chameleon mechanism originally
discovered in quintessence models of dark energy [34], and
later rediscovered in modified gravity [35]. The chameleon
mechanism is not imposed to fine-tune the theory and
evade the experimental limits: it is contained naturally in
fðRÞ gravity and whether it works or not depends on the
specific theory considered.
In the weak-field limit of fðRÞ theories [21,31], one

considers a spherically symmetric, weakly gravitating,
perturbation of mass M of a cosmological space. In an
adiabatic approximation, the background is taken to be a de
Sitter space (with constant curvature, Rab ¼ R0gab=4, and
R0 ¼ 12H2

0), which is a solution of fðRÞ gravity subject to

the conditions [5]

f00R0 ¼ 2f0:H0 ¼
ffiffiffiffiffiffiffiffi
f0
6f00

s
: (8)

The weak-field line element is written as

ds2 ¼ �½1þ 2�ðrÞ �H2
0r

2�dt2
þ ½1þ 2�ðrÞ þH2

0r
2�dr2 þ r2d�2; (9)

where d�2 ¼ d�2 þ sin2�d’2 is the line element on the
unit 2-sphere and �ðrÞ and �ðrÞ are post-Newtonian
potentials. The goal is to compute these potentials by
solving the linearized fourth order field equations and to
obtain the parametrized post-Newtonian parameter 	 ¼
��=�, which is subject to the Cassini bound [33]

j	� 1j< 2:3� 10�5 (10)

(in GR, � ¼ �� is the Newtonian potential ��M=ð8�rÞ
and 	 ¼ 1). A linearized analysis assuming that j�ðrÞj,
j�ðrÞj � 1, H0r � 1, fðRÞ is analytical at R0, and
mr � 1 yields [21,31,32]

�ðrÞ ¼ � �M

6�f00r
; �ðrÞ ¼ �M

12�f00r
; 	¼ 1

2
; (11)

in gross violation of the Cassini bound. This result would
spell the end for fðRÞ gravity if it wasn’t for the fact that the
assumption of a light scalar field, mr � 1, is violated. In
many fðRÞ theories this happens naturally and the mass of
� is large at high (i.e., Solar System) densities and almost
zero at cosmological densities [35]. But does this mecha-
nism work for fðRÞ ¼ �Rn?
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To answer this question, note that for n ¼ 2 (the largest
value of n allowed by theoretical stability) the mass (5) of
the scalar � ¼ f0ðRÞ in a de Sitter background is exactly
zero and this field has infinite range independent of the
density of the environment; therefore, it is certainly subject
to Solar System constraints and R2 gravity is ruled out
experimentally.

At a first sight, it looks surprising that the mass m

vanishes while the potential (3) turns out to be Vð�Þ ¼
�2

4� for this theory. The solution to this apparent contra-

diction is that it is not Vð�Þ, but rather the combination
� dV

d� � 2Vð�Þ that enters the equation of motion for the

Brans-Dicke scalar [10]

h� ¼ 1

2!þ 3

�
8�TðmÞ þ�

dV

d�
� 2V

�
; (12)

where TðmÞ is the trace of the matter stress-energy tensor

TðmÞ
ab (which, in the weak-field, slow-motion limit, reduces

to��) and� dV
d� � 2Vð�Þ vanishes identically for a purely

quadratic potential [36].
Incidentally, the theory fðRÞ ¼ �R2 with �> 0 (in D

spacetime dimensions, fðRÞ ¼ �RD=2 [38]) has other pe-
culiarities or theoretical problems [39,40]: it does not have
the correct Newtonian limit [41] and Eq. (8) is satisfied for
all, not for special, values of the Ricci curvature R, which
leads to unpleasant consequences [42]. That something
goes wrong in the weak-field limit can be seen in the
post-Newtonian potentials (11) which, using R0 ¼ 12H2

0 ,

reduce to

� ¼ �2� ¼ ��MH�1
0

864��

1

H0r
¼ � 1

216

RscH
�1
0

�

cH�1
0

r
;

(13)

(restoring G and c) where Rs ¼ 2GM=c2 is the
Schwarzschild radius of the mass M. � and � are no
longer guaranteed to be small in absolute value because
cH�1

0 =r � 1 and it is not clear how to choose the parame-

ter �. A more refined analysis including terms of order
H0r yields post-Newtonian potentials with Yukawa terms
[25,35,43]

� ¼ �GM

r

�
1� �e�ar

a2r

�
; (14)

� ¼ GM

r

�
1þ �ð1þ arÞe�ar

a2r

�
: (15)

In the limit n ! 2� in which a ! 0 and the range of the
scalar becomes infinite, the Yukawa terms dominate the
Newtonian ones and diverge. The range of � must be kept
small in order to recover even the Newtonian limit [44].

At the opposite range of values for nwe have GR, which
is viable and in agreement with all available Solar System
experiments. Between the values n ¼ 1 and n ¼ 2, the

range of the scalar field varies continuously but rapidly
between zero and infinity. This range is given by the
function

sðnÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

2� n

s
cH�1

0 (16)

in the interval [1, 2]. This function varies continuously
between sð1Þ ¼ 0 and its limit lims!2�sðnÞ ¼ þ1, always

increasing. The derivative s0ðnÞ ¼ cH�1
0

2ðn�1Þ1=2ð2�nÞ3=2 is always
positive and the tangent to the graph of sðnÞ starts vertically
at n ¼ 1 and ends vertically as n ! 2�, which means that
the range of � increases quickly as the Rn-theory departs
very slightly from GR (see Fig. 1). Clearly, as long as the
exponent n is very close to unity, the theory behaves as GR
and passes the experimental tests while, approaching val-
ues of n closer to 2, the experimental bounds begin being
violated, and disaster happens in the limit n ! 2�. In
conclusion, only for very small values of n it is possible
to invoke the chameleon mechanism in the weak-field
analysis. By imposing the range of the scalar to be less
than 1 AU (1:496� 1013 cm) and using the value
H0 ¼ 70 km 	 s�1 	Mpc�1 for the Hubble parameter, one
would obtain the requirement

0 � � � n� 1 � 5� 10�30: (17)

Of course, realistic Solar System experiments do not have
this level of precision, and the limit (7) applies instead.
This renders Rn gravity a poor candidate for a realistic
alternative to dark energy.

We thank Salvatore Capozziello for a discussion and the
Natural Sciences and Engineering Research Council of
Canada (NSERC) for financial support.
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FIG. 1 (color online). The range sðnÞ of the effective scalar
degree of freedom � ¼ f0ðRÞ (in units cH�1

0 ) for the theory

fðRÞ ¼ �Rn. The parameter n is in the range 1 � n � 2 allowed
by stability. The function sðnÞ starts out with vertical tangent
at n ¼ 1.
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[25] M. Lubini, C. Tortora, J. Näf, P. Jetzer, and S. Capozziello,

arXiv:1104.2851.
[26] C. P. L. Berry and J. R. Gair, Phys. Rev. D 83, 104022

(2011).
[27] T. Clifton and J. D. Barrow, Classical Quantum Gravity

23, 2951 (2006).
[28] J. D. Barrow and T. Clifton, Classical Quantum Gravity

23, L1 (2006).
[29] A. F. Zakharov, A. A. Nucita, F. De Paolis, and G.

Ingrosso, Phys. Rev. D 74, 107101 (2006).
[30] T. Chiba, Phys. Lett. B 575, 1 (2003).
[31] G. J. Olmo, Phys. Rev. D 75, 023511 (2007).
[32] V. Faraoni and N. Lanahan-Tremblay, Phys. Rev. D 77,

108501 (2008).

[33] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,
374 (2003).

[34] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104
(2004); Phys. Rev. D 69, 044026 (2004).

[35] T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, Phys.
Rev. D 76, 063505 (2007).

[36] Because of this fact, the coefficient of �2 in a quadratic
potential should not be regarded as the mass of � [37].

[37] V. Faraoni, Classical Quantum Gravity 26, 145014 (2009).
[38] D. N. Vollick, Phys. Rev. D 76, 124001 (2007).
[39] M. Ferraris, M. Francaviglia, and G. Magnano, Classical

Quantum Gravity 5, L95 (1988).
[40] T. P. Sotiriou, Classical Quantum Gravity 23, 5117

(2006).
[41] E. Pechlaner and R. Sexl, Commun. Math. Phys. 2, 165

(1966).
[42] A.M. Nzioki, S. Carloni, R. Goswami, and P.K. S.

Dunsby, Phys. Rev. D 81, 084028 (2010).
[43] S. Capozziello and A. Stabile, Mod. Phys. Lett. A 24, 659

(2009); V. F. Cardone and S. Capozziello,
arXiv:1102.0916 [Mon. Not. R. Astron. Soc. (to be pub-
lished)].

[44] I. Navarro and K. Van Acoleyen, J. Cosmol. Astropart.
Phys. 03 (2006) 008.

Rn GRAVITY AND THE CHAMELEON PHYSICAL REVIEW D 83, 124044 (2011)

124044-5

http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1103/PhysRevD.75.124014
http://dx.doi.org/10.1103/PhysRevD.75.124014
http://dx.doi.org/10.1103/PhysRevD.72.124005
http://dx.doi.org/10.1103/PhysRevD.72.124005
http://dx.doi.org/10.1103/PhysRevD.70.044037
http://dx.doi.org/10.1103/PhysRevD.72.061501
http://arXiv.org/abs/hep-th/0403159
http://dx.doi.org/10.1103/PhysRevD.72.103005
http://dx.doi.org/10.1103/PhysRevD.72.103005
http://arXiv.org/abs/1104.2851
http://dx.doi.org/10.1103/PhysRevD.83.104022
http://dx.doi.org/10.1103/PhysRevD.83.104022
http://dx.doi.org/10.1088/0264-9381/23/9/011
http://dx.doi.org/10.1088/0264-9381/23/9/011
http://dx.doi.org/10.1088/0264-9381/23/1/L01
http://dx.doi.org/10.1088/0264-9381/23/1/L01
http://dx.doi.org/10.1103/PhysRevD.74.107101
http://dx.doi.org/10.1016/j.physletb.2003.09.033
http://dx.doi.org/10.1103/PhysRevD.75.023511
http://dx.doi.org/10.1103/PhysRevD.77.108501
http://dx.doi.org/10.1103/PhysRevD.77.108501
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1088/0264-9381/26/14/145014
http://dx.doi.org/10.1103/PhysRevD.76.124001
http://dx.doi.org/10.1088/0264-9381/5/6/002
http://dx.doi.org/10.1088/0264-9381/5/6/002
http://dx.doi.org/10.1088/0264-9381/23/17/003
http://dx.doi.org/10.1088/0264-9381/23/17/003
http://dx.doi.org/10.1007/BF01773351
http://dx.doi.org/10.1007/BF01773351
http://dx.doi.org/10.1103/PhysRevD.81.084028
http://dx.doi.org/10.1142/S0217732309030382
http://dx.doi.org/10.1142/S0217732309030382
http://arXiv.org/abs/1102.0916
http://dx.doi.org/10.1088/1475-7516/2006/03/008
http://dx.doi.org/10.1088/1475-7516/2006/03/008

