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Recently it was shown that quantum corrections to the Newton potential can explain the rotation curves

in spiral galaxies without introducing the dark matter halo. The unique phenomenological parameter ��

of the theory grows with the mass of the galaxy. In order to better investigate the mass-dependence of ��

one needs to check the upper bound for �� at a smaller scale. Here we perform the corresponding

calculation by analyzing the dynamics of the Laplace-Runge-Lenz vector. The resulting limitation on

quantum corrections is quite severe, suggesting a strong mass-dependence of ��.
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I. INTRODUCTION

It is a common belief nowadays that the general relativity
(GR) is not the ultimate theory of gravity. One reason for
this is that the relevant solutions of GR, such as the spheri-
cally symmetric solution and the homogeneous and iso-
tropic one, both manifest singular behavior in their
extremes. In the first case, the space-time singularity is in
the center of the black hole, and in the second case, it is in
the initial instant of the universe ‘‘big bang.’’ In both cases,
the singularity is surrounded by a very small space-time
region with very high magnitudes of curvature tensor com-
ponents. This makes it perfectly possible that the higher
derivative terms in the gravitational action may change the
geometry in such a way that the singularities should dis-
appear. The importance of higher derivative terms in the
gravitational action is due to the fact that they are requested
for constructing a renormalizable theory of matter (includ-
ing standard model) on curved background (see, e.g., [1]
and further references therein). The effects of higher de-
rivative terms on singularities were discussed in the cos-
mological (see, e.g., [2–4]) and black hole (see, e.g., [5,6])
settings and there are serious reasons to consider the pos-
sibility of erased singularity due to the higher derivative
terms in the classical action and quantum corrections [7].

Despite the fact that the discussion of higher derivative
terms and their possible effect on singularities is interesting,
we are much more curious about possible modifications of
gravity and, especially, about possible quantum effects at
low-energy scale, where the observations are much more
real. At low energies, the effect of higher derivative terms is
usually assumed to be Planck-suppressed and one has to

deal with, e.g., quantum corrections to the Hilbert-Einstein
action. For the higher derivative section of the theory,
direct calculations of the low-energy quantum contributions
were recently performed in [8,9] using the approximation of
linearized metric on flat background. At the same time, it
was demonstrated in [8] that this kind of calculational
technique is useless for deriving quantum corrections for
the cosmological and Hilbert-Einstein terms. Therefore,
although this part is much more interesting from the
physical point of view, here we have achieved much less.
Since the subject looks quite relevant for applications, it is
worthwhile to try some phenomenological approaches in
this case.
In what follows, we will consider the low-energy quan-

tum corrections to the Newton potential using the renor-
malization group technique and the identification of
renormalization scale, which was recently proposed in
[10] on the phenomenological basis and then justified
theoretically in [11]. This identification of scale includes
some uncertainty, which is measured by a dimensionless
phenomenological parameter ��. It was shown in [10] that
values of �� of the order of 10�7 can provide the detailed
and precise explanation for the rotation curves for a small
but quite representative sample of spiral galaxies. It is
remarkable that the mentioned parameter is steadily grow-
ing with the increase of the mass of the galaxy. Therefore,
it is natural to expect a much smaller value for�� for much
smaller astrophysical systems, such as starts. Our purpose
is to set an upper bound on �� for the Solar System by
using a very efficient approach based on the dynamics of
the Laplace-Runge-Lentz (LRL) vector (see, for instance,
[12] and references therein for the introduction; for an
interesting historical review, see [13]).
This paper is organized as follows. In the next section,

we present very general arguments about unique possible
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form of renormalization group running of Newton constant
G in the IR region. In Sec. III, we offer a brief introduction
and necessary information about the Laplace-Runge-Lentz
vector in the almost Keplerian problem. The numerical
estimates and the upper bound for �� from the Mercury
precession are derived in Sec. IV. In Sec. V, we draw our
conclusions.

II. QUANTUM EFFECTS AND
NEWTON POTENTIAL

One of the most powerful techniques for evaluating
quantum corrections is renormalization group. So, let us
check out what is the renormalization group equation in the
low-energy gravitational sector. The unique relevant pa-
rameter at the astrophysical scale is the Newton constant
G, and at the quantum level it becomes a running parame-
ter Gð�Þ, where � defines a scale. The problem of identi-
fying�with some physical quantity will be discussed later
on, and now we concentrate on the dependence Gð�Þ,
which is always governed by the corresponding renormal-
ization group equation �ðdG=d�Þ ¼ �G.

Consider an arbitrary quantum theory with gravity. It
can be, for instance, some quantum theory of the gravita-
tional field or quantum theory of matter fields. Every kind
of quantum theory can be characterized by the massive
parameters m which define scale. There may be, of course,
more than one such parameter, so let us consider, for the
sake of generality, the whole set fmig. For example, the
elements of the set fmig can be the masses of all particles or
fields which are present in the given quantum theory.

Let us present general arguments about the possible
form of the running Newton constant, Gð�Þ. Using dimen-
sional arguments we can establish the unique possible form
of the renormalization group equation

�
dG�1

d�
¼ X

particles

Aijmimj ¼ 2�M2
P;

G�1ð�0Þ ¼ G�1
0 ¼ M2

P:
(1)

In particular, in the SM-like or GUT-like theory, at the one-
loop level, one has

X
particles

Aijmimj ¼
X

fermions

m2
f

3ð4�Þ2 �
X

scalars

m2
s

ð4�Þ2
�
�s � 1

6

�
;

(2)

where the fermion masses were denoted bymf and �s is the

nonminimal parameter for the scalar with the mass ms.
At the same time, it is important to stress that Eq. (1) is

not just a one-loop equation, but it is valid at any loop order
and in any theory which is capable to produce the renor-
malization group equation for G. In general, beyond the
one-loop level, the coefficients Aij in Eq. (1) depend on

coupling constants which are present in the theory.

One can rewrite Eq. (1) as

�
dðG=G0Þ

d�
¼ �2�ðG=G0Þ2: (3)

Solving this equation we obtain the universal form of the
scale dependence for the Newton constant.

Gð�Þ ¼ G0

1þ � lnð�2=�2
0Þ
: (4)

Here the word universalmeans either that G is not running
(and this means there are no quantum effects in the
low-energy gravity sector) or that such running is given
by Eq. (4). From this perspective, it is not a surprise that
Eqs. (3) and (4) can be met by such qualitatively different
approaches as higher derivative quantum gravity [14–17],
quantum theory of matter fields on curved background
[1,18], and quantum theory of conformal factor [19]. The
same Eq. (4) shows up also in the phenomenological
approach based on the hypothesis of the Appelquist and
Carazzone—like decoupling for the cosmological constant
and conservation law for the quantum-corrected gravita-
tional action [20]. The reason behind these occurrences is
that any other form of Gð�Þ would be in conflict with very
simple (and hence very safe) dimensional considerations
and also with the covariance arguments which play a very
significant role here [7].
The next problem is how to identify �. As usual, this

identification depends on the physical problem under dis-
cussion and there is no universal solution. In the case of the
gravitational field of a pointlike mass, the most natural
choice is �� 1=r, where r is the distance from the mass
position. This choice of the scale identification has been
used in various publications [20–23]. In particular, this
identification enables one to roughly explain the flat rota-
tion curves for the pointlike model of the spiral galaxies
[20–22] by directly using Eq. (4). Moreover, one can
achieve very good and detailed description for the good
sample of rotation curves by using Eq. (4) together with
more sophisticated identification of the scale,

�

�0
¼

�
�Newt

�0

�
�
; (5)

where the value of �0 is irrelevant and �Newt is the
Newtonian potential computed with the boundary condi-
tion of it being zero at infinity. In Eq. (5), � is a phenome-
nological parameter which should be defined from fitting
to the observational data. Let us note that the same depen-
dence (5) can be also obtained from the regular scale-
setting procedure [24], which was applied to the present
case in [11].
It is easy to see from Eqs. (4) and (5) that� always shows

up as a factor in the product ��. It turns out that the fit with
the observational data is perfect (for a sample of nine
galaxies) if we assume that the product �� is about 10�7

and, moreover, this product grows up with the increasing of
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the mass of the galaxy [10]. Indeed, this is a very nice
feature, because then one may hope that the effect of
‘‘corrected’’ Newton law would be very weak at the scale
of the Solar System, which has a mass of many orders of
magnitude smaller than the one of a galaxy. The purpose of
the present paper is to make the last statement quantitative,
that is to set an upper bound on the value of �� inside the
Solar System. The best available data here are about the
precession of the perihelion of Mercury, so it is sufficient to
deal with these data only.

III. LAPLACE-RUNGE-LENZ VECTOR

The method that we will use to calculate the precession
in the orbit of the Mercury, due to quantum effect in the
Newtonian potential, is based on the known Laplace-
Runge-Lenz vector. Therefore we shall discuss it briefly
and we will see if we can use it to calculate the precession
velocity.

Consider first the motion of a particle of mass m for the
nonperturbed Kepler’s problem, when there is a single
Newtonian force acting on the particle,

F Newt ¼ � k

r2
r̂; (6)

where k ¼ G0Mm. The Laplace-Runge-Lenz vector is
defined as

A ¼ p� ‘�mkr̂; (7)

where ‘ ¼ r� p is the angular momentum vector. One can
show that in the case of the nonperturbed Kepler’s prob-
lem, LRL is a constant of motion, namely,

dA

dt
¼ dp

dt
� ‘þ p� d‘

dt
�mk

dr̂

dt
¼ 0: (8)

Furthermore, LRL has some important relationships with
other constants of motion. For example, ‘ �A ¼ 0, hence
LRL always remains in the plane of the orbit. Another
important relation concerns the total energy of the particle
E and its angular momentum

A 2 ¼ ðp� ‘�mkr̂Þ � ðp� ‘�mkr̂Þ

¼ m2k2
�
1þ 2E‘2

mk2

�
: (9)

Remembering that for the Kepler problem the eccentricity
of the orbit is related to the energy and angular momentum
as

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E‘2

mk2

s
; (10)

we can write the modulo of the LRL vector as

jAj ¼ mk": (11)

One can see that the magnitude of the LRL vector mea-
sures the eccentricity of the orbit. Moreover, one can arrive

at the equation of the orbit by taking scalar product of the
LRL with the position vector, namely

rjAj cosð’� ’0Þ ¼ r � ðp� ‘�mkr̂Þ ¼ ‘2 �mkr; (12)

where ’0 is the angle between A and polar axis. After
some simple manipulations we get

r ¼ ‘2=mk

1þ jAj
mk cosð’� ’0Þ

: (13)

One can see thatA is pointing to the direction of symmetry
of the orbit, which can be limited or unlimited. Then it is
convenient to choose the polar axis in the direction of the
LRL vector A, e.g., by choosing ’0 ¼ 0. Then A ¼ mk"x̂
and

r ¼ ‘2=mk

1þ " cos’
¼ að1� "2Þ

1þ " cos’
: (14)

where a is the major semiaxis of the ellipse.
Once we know the properties and the interpretation of

the LRL vector, we are able to deal with the Kepler’s
problem when a small perturbation is introduced. In this
case the new orbit will be very similar to the old one,
however there will be a precession. In other words, the
particle has an approximately elliptical orbit, but in such a
way that the major semiaxis slowly rotates. The velocity of
this rotation is called precession velocity. A comparison
between theoretical predictions and available experimental
(observational) data may give valuable information such
as, for instance, upper bounds on relevant parameters
which are present in the perturbing force. In our case, we
shall follow this line by using the well-known data for the
Mercury precession.
Consider a particle of mass m which moves under the

action of a total force

F ¼ � k

r2
r̂þ f: (15)

Here f is a small perturbation force (jfj � k=r2), which
can be noncentral, in principle. Some formulas below are
general, but in fact we are mainly interested in the central
perturbed force f ¼ �graduðrÞ, where the perturbing term
for the potential energy can be derived from the Eqs. (4)
and (5) to be [10,20]

� ¼ �Newt þ uðrÞ; uðrÞ ¼ mc2

2

�G

G0

; (16)

where �G ¼ Gð�Þ �G0.
Let us present, for the sake of completeness, the short

review of the derivation of Eq. (16). One can start from the
expression for the action with variable G

Sgrav ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p R

Gð�Þ ; (17)

where � is supposed to depend on some energy features of
the gravitational field. We assume that G has a very weak
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deviation from the constant value G0 ¼ 1=M2
Pl, namely

G ¼ G0ð1þ �Þ. In what follows we will consider � to be
a very small quantity and hence keep only first-order terms
in this parameter. Our purpose is to link the action (17)
with the usual one of GR, with G0 instead of Gð�Þ. For
this end we perform the conformal transformation [20]
according to

�g �� ¼ G0

G
g�� ¼ ð1� �Þg��: (18)

The derivatives of � emerge in the transformed action, but
only in the second power, hence they may be neglected.
Then, in the linear order in �, the metric �g�� satisfies

Einstein equations with constantG0, and the nonrelativistic
limit of the two metrics �g�� and g�� is related as

g00 ¼ �1� 2�

c2
; hence �g00 ¼ �1� 2�Newt

c2
: (19)

Here �Newt is the usual Newton potential and � is an
apparent potential corresponding to the nonrelativistic so-
lution of the modified gravitational theory (17). Because
of (19), we arrive at [10,20]

� ¼ �Newt þ c2

2
� ¼ �Newt þ c2�G

2G0

; (20)

which is nothing else but (16). Now we can come back to
the analysis of this formula. For the Solar System case, we
can use the relation �Newt ¼ �k=r. Hence, the identifica-
tion (5) effectively coincides with the �� 1=r one of the
Refs. [20–23].

One can easily prove the following statement: For
the case of a central perturbation force f ¼ �graduðrÞ,
the magnitude of the LRL vector varies according to the
relation

dA2 ¼ �2m‘2duðrÞ ¼ �2m‘2u0ðrÞdr: (21)

The last relation shows that the magnitude of the vector
A varies as the distance r varies, but in such a way that it
takes equal values for equal values of r. If we restrict the
discussion by quasi-elliptic orbits, which are restricted in
space, we have r1 � r � r2, where r1 and r2 are the
corresponding turning points, then the modulus of the
Laplace-Runge-Lenz vector A will assume the same value
whenever the distance r is the same. Hence, the dynamics
of A are perfectly useful for evaluating the precession of
the orbit in the quasi-Newtonian case. The variation of the
magnitude jAj is of the first order of magnitude in the small
perturbation uðrÞ. Therefore, we can completely neglect
this variation when evaluating the precession of the LRL
vector, because this precession is also of the first order in
uðrÞ. In what follows we will assume, for the sake of
simplicity, that jAj is constant even when the small pertur-
bations are present.

The time variation rate of the LRL vector is given by

dA

dt
¼ f� ‘þ p� ðr� fÞ: (22)

As we have seen above, the LRL always points towards the
symmetry axis of the orbit. In the Kepler problem, for
elliptical case, this symmetry axis is the major semiaxis
of the orbit. Therefore, we can calculate the velocity of
precession of the orbit by simply computing the velocity of
precession of the LRL vector. In the present work we are
concerned with the quantum correction to the Newton
gravitational potential. Such correction is expected to be
a very small quantity, hence it is completely fair to employ
a perturbative approach. With this consideration in mind,
we compute the time average of the velocity of precession
of the LRL vector for one period of the unperturbed orbit.
One can recall that both ‘ and A are constants of motion
for the unperturbed orbit. Therefore, for the sake of our
calculation we can simply use ‘ and A, instead of h‘i and
hAi. Taking, then, the time average of the time derivative of
the LRL vector over the period of the unperturbed orbit, we
obtain

hdA
dt

i ¼ hf� ‘i þ hp� ðr� fÞi ¼ ��A; (23)

whereA is the LRL vector in the unperturbed case, and we
denote by � the time average value of the velocity of
precession of the LRL vector. Let us note that, in the
left-hand side of the Eq. (23), there is a quantity which is
of the first order in the perturbing force. That is why the
sign of averaging can not be omitted here.
In Eq. (23) the time-averaging of a function F means

hFi ¼ 1

	

Z 	

0
F½rðtÞ; ’ðtÞ�dt; (24)

where 	 is the period of the nonperturbed motion (for the
closed orbit case. However, since we are mainly interested
in the trajectory, rð’Þ, it is convenient to perform a change
of variables and trade the time integration for the angular
integration, namely,

hFi ¼ m

‘	

Z 2�

0
r2ð’ÞF½rð’Þ; ’�d’: (25)

We note that for a central perturbative force f, the
angular momentum ‘ is constant and the second term in
the right-hand sideof Eq. (22) vanishes. Then one can
write, in the Cartesian basis,�
dA

dt

�
¼ hf� ‘i ¼ hfðrÞ cos’ix̂� ‘þ hfðrÞ sin’iŷ � ‘:

(26)

Since f depends only on the distance r and the non-
perturbed orbit is symmetric with respect to the major
semiaxis, the second term in theright-hand sideof (26)
vanishes and we obtain
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�
dA

dt

�
¼ ��A; where � ¼ �hfðrÞ cos’i

mk"
‘; (27)

describing the average precession of the orbit.

IV. SOLAR SYSTEM TESTS FOR
LOGARITHMIC TERM

Let us now apply the method developed in the previous
section to the case where the disturbing force is due to
quantum effects. As we have already seen in Sec. II, the
corresponding additional term for the gravitational poten-
tial is given by

uðrÞ ¼ mc2

2

�G

G0

; (28)

where, according to Eqs. (4) and (5), we meet logarithmic
dependence

Gð�NewtÞ ¼ G0

1þ �� lnð�Newt=�0Þ2
: (29)

From the previous equation, the perturbing force acting on
the particle is given by

f¼�mc2

2G0

gradGð�NewtÞ ¼� mc2��r̂

r½1þ�� lnðr20=r2Þ�2
: (30)

From Eqs. (27) and (30), we obtain the following average
precession rate,

� ¼ ��c2‘

k"

�
cos’

r

�
1þ �� log

�
r20
r2

���2
�

¼ ��mc2

	k"

‘

‘

Z 2�

0

rð’Þ cos’
½1þ 2�� lnðr0=rÞ�2

d’: (31)

One can remember that already at the typical galaxy
scale �� / 10�7 and that the expected bound for the Solar
System should be essentially smaller. Therefore it is justi-
fied to use an approximation �� � 1 and keep only first-
order terms in this parameter. Then, after some simple
calculations, we arrive at the following expression for the
absolute value of the precession velocity:

� ’ ��mc2

	k"

Z 2�

0
rð’Þ cos’

�
1� 2�� ln

�
r20
r2

��
d’

’ ��mc2

	k"

Z 2�

0
rð’Þ cos’d’

¼ ��mc2að1� "2Þ
	k"

Z 2�

0

cos’

1þ " cos’
d’: (32)

The integral in the above expression can be easily solved
and as a result we find

� ¼ 2�ac2��½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
� ð1� "2Þ�

G0M	"2
: (33)

One can use Eq. (32) for deriving an upper bound for the
parameter �� in the Solar System. For the case of the

precession of Mercury, the uncertainty in the measurement
of the velocity of precession can be found, for instance, in
Weinberg’s book [25] and is given by 0:4100 per century.
After some simple calculations we arrive at the upper
bound,

�� < 10�17; (34)

where we have used the following values:

G ¼ 6:67� 10�11Nm2kg�2; M ¼ 1:98� 1030kg;

c ¼ 3� 108ms�2; a ¼ 6:97� 1010m;

	 ¼ 0:241 years and " ¼ 0:2056:

(35)

Here 	, a, " are the period of rotation ofMercury, the major
semiaxis and eccentricity of its orbit.

V. CONCLUSIONS

Wehave considered the running of the Newton constantG
in the framework of a general renormalization group ap-
proach. The covariance and dimensional arguments lead to
a unique possible form of such running, which can take place
in all loop orders. The beta-function for G has one arbitrary
parameter �, which depends on the details of the given
theory. Vanishing � means there is no running at all, this
means there are no relevant quantum corrections in the low-
energy sector (Hilbert-Einstein) of the gravitational action.
Assuming that � is nonzero, one can try to derive upper

bound for � from different gravitational observations. In the
recent paper [10] it was shown that the identification of the
renormalization group scale �� ð�NewtÞ� provides an ex-
cellent fit for the rotation curves of the galaxies, with the
product �� being about 10�7 and moreover steadily grow-
ing with the increase of the mass of the galaxy under
consideration. No dark matter is required for this fit. In
the present work, we have derived an upper bound for ��
in the Solar System using the method based on the dynamics
of the Laplace-Runge-Lenz vector. Using experimental data
for the precession of Mercury, the maximal possible value
we have obtained for �� is 10�17, which implies qualita-
tively the same form of a running that was predicted in [11]
on theoretical basis. It is worth mentioning that, had we
used the available experimental data for the precession of
other planets of the Solar System, our upper bound for ��
would not be improved. In fact, as pointed out by Weinberg
[25], ‘‘accuracy available from the major planets degrades
rapidly as we move away from the sun’’, so that the best
constraint for the maximal value of �� is indeed obtained
from the precession of Mercury, as discussed in the text.
Indeed, both values�� / 10�7 and 10�17 have to be seen

as maximal ones, representing upper bounds. In case of
rotation curves one can admit certain amount of a dark
matter (with �0

DM smaller than usual), which should be
helpful to explain other observations (large scale structure,
cosmic microwave background radiation, baryon acoustic
oscillations, etc.) Let us note that the first paper exploring
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the possibility of an alternative concordance model with
taking into account quantum corrections is in preparation
[26]. In the case of a quasi-Newtonian potential in the Solar
System we can also see the value 10�17 as an upper bound,
such that the real value of�� can bemuch smaller than that.
However, it is definitely remarkable that the two different
observations produced results which are consistent with
each other and also with the theoretical prediction of [11].
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