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José A. de Azcárraga,1 Kiyoshi Kamimura,2 and Jerzy Lukierski3

1Department of Theoretical Physics, University of Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia), Spain
2Department of Physics, Toho University Funabashi, 274-8510, Japan

3Institute of Theoretical Physics, Wroclaw University, plac Maxa Borna 9, 50-204, Wroclaw, Poland
(Received 23 December 2010; revised manuscript received 20 March 2011; published 22 June 2011)

By gauging the Maxwell spacetime algebra, the standard geometric framework of Einstein gravity with

cosmological constant term is extended by adding six four-vector fields Aab
� ðxÞ associated with the six

Abelian tensorial charges in the Maxwell algebra. In the simplest Maxwell extension of Einstein gravity

this leads to a generalized cosmological term that includes a contribution from these vector fields. We also

consider going beyond the basic gravitational model by means of bilinear actions for the new Abelian

gauge fields. Finally, an analogy with the supersymmetric generalization of gravity is indicated. In an

appendix, we propose an equivalent description of the model in terms of a shift of the standard spin

connection by the Aab
� ðxÞ fields.
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I. INTRODUCTION

It is known (see e.g. [1,2]) that dark energy may be
described by adding the cosmological constant term to
the standard Einstein-Hilbert action. In a geometric frame-
work leading to gravity, a cosmological term appears when
the de Sitter spacetime algebra is gauged. This algebra
contains (see e.g. [3]) noncommutative four-momenta
generators Pa, ½Pa; Pb� ¼ 1

R2 Mab, where Mab are the six

Lorentz generators, R is the de Sitter radius and the cos-
mological constant is identified as � ¼ 1

R2 , ½�� ¼ M2.

A similar noncommutative modification of the Poincaré
Abelian four-momenta commutators also appears in the
D ¼ 4 16-dimensional Maxwell algebra [4,5]. This is
given by

½Pa; Pb� ¼ �Zab; (1)

where the six generators Zab (a ¼ 0, 1, 2, 3) commute
among themselves as well as with Pa and behave as an
antisymmetric second-rank Lorentz tensor. The remaining
Maxwell algebra commutators are

½Zab; Zcd� ¼ 0 ¼ ½Pa; Zcd�;
½Mab; Pc� ¼ �ð�caPb � �cbPaÞ ¼ ��c½aPb�;

½Mab; Zcd� ¼ �ð�c½aZb�d � �d½aZb�cÞ;
(2)

plus the standard Lorentz algebra commutators for Mab.
Thus, the Maxwell algebra has the semidirect sum struc-
ture I � soð1; 3Þ, where the ideal I ¼ hPa; Zabi is itself a
central extension of the Abelian translation algebra hPai by
hZabi. The constant � is dimensionful, ½�� ¼ M2, and is
the central charge that characterizes the extension. Clearly,
½Mab� ¼ M0, ½Pa� ¼ M and ½Zab� ¼ M0.

Our aim in this paper is to consider an alternative way of
introducing the cosmological term. This term will appear
in a generalized form, with a dependence on the additional
gauge fields associated with the new generators Zab. In this

paper we shall limit ourselves to providing the new geo-
metric framework; its applications to realistic cosmologi-
cal models will not be addressed here. We shall consider
the local gauging of Maxwell algebra (1) and (2), to look
for possible extensions of standard gravity. Because the
noncommutativity of the four-momenta in de Sitter gravity
leads to the appearance of a cosmological term, it is
interesting to analyze the geometrical consequences of
the noncommutativity expressed by Eq. (1) in a gauged
Maxwell algebra approach to gravity. Further, since this
includes six gauge vector fields Aab

� associated with the

Abelian Zab generators, it is interesting to recall (see e.g.
[6–8]) that inflation can also be driven by suitably coupled
vector fields.
In this paper we introduce the geometric framework

obtained by gauging of the Maxwell group. Besides the
vierbein ea� and the spin connection !ab

� , our scheme

includes six vector fields Aab
� which introduce a new set

of curvatures. Besides the standard torsion Ta correspond-
ing to the translational curvature, we have now two curva-
ture tensors, the standard Lorentz curvature tensor Rab

�� and

the new Fab
�� associated with the six Abelian gauge fields

Aab
� . These two tensors will be the building blocks for

constructing new gravity actions. Our basic choice of the
action will provide a modification of the standard gravity,
given by the Einstein action plus a generalized cosmologi-
cal term. Our model will depend on three constants: the
new central charge � in Eq. (1), the conventional Einstein
gravitational constant � (½�� ¼ M�2), and the cosmologi-
cal constant � (½�� ¼ M2) accompanying the standard
cosmological term.
Additional gauge fields that describe the non-

Riemannian part of a connection have been considered in
analysis of metric affine gravity models (see [9], Sec. 3.11;
[10]); the earliest example of a connection modified by an
Abelian gauge field is the Weyl connection [11]. From
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these considerations it follows that one can use the
one-forms Aab ¼ Aab

� dx� by formally extending the

Riemannian connection !ab ¼ !ab
� dx� to a non-

Riemannian one with torsion

~!ab ¼ !ab ��Aab: (3)

We shall show further that the dimensionless parameter �
occurring in (3) is, in fact, equal to �

� . The antisymmetry

Aab
� ¼ �Aba

� tells us that we are dealing with an Einstein-

Cartan geometry with nonmetricity tensor equal to zero

because ~!ðabÞ ¼ 0 (a symmetric part of ~!ab would define
the nonmetricity tensor [10]). As a result, the gauging of
the Maxwell group may also be considered as the specific
extension to a non-Riemannian framework determined by
the structure of the Maxwell algebra.

The plan of the paper is the following. In Sec. II we
provide the differential and geometric aspects of the gaug-
ing of Maxwell algebra. In Sec. III we study the Einstein
action supplemented with the new generalized cosmologi-
cal term, which appears naturally in the present framework
as a modification of the standard four-volume form. We
shall consider further the field equations and calculate the
torsion generated by the fields Aab

� as power series in the

parameter � ¼ �2

� . In order to have Aab
� as dynamical fields

we add an additional piece to the action for the new
Abelian gauge fields, as briefly discussed in Sec. IV. To
conclude, we shall outline in Sec. V some link between the
structure of the Maxwell generalization of gravity and
the superextension of gravity; we shall also comment on
the Maxwell extension of supergravity. The dynamics of
Maxwell gravity in terms of vierbein and the shifted spin
connection ~!ab in (3) is given in Appendix A.

II. GAUGING THE MAXWELL ALGEBRA

Let us introduce the set of Maxwell algebra-valued
Maurer-Cartan forms

h ¼ hAXA ¼ eaPa þ 1

2
!abMab þ 1

2
AabZab; (4)

where a, b ¼ 0; 1; 2; 3 are tangent space indices raised and
lowered with the constant Minkowski metric �ab. The
associated gauge fields hA�ðxÞ ¼ ðea�ðxÞ; !ab

� ðxÞ; Aab
� ðxÞÞ

are defined by the D ¼ 4 spacetime one-form fields

ea ¼ ea�dx
�; !ab ¼!ab

� dx�; Aab ¼ Aab
� dx�; (5)

where (ea�, !
ab
� ) are the vierbein and the spin connection

and the Aab
� are the new Abelian gauge fields; ½ea� ¼ M�1,

½!ab� ¼ M0 and, since Zab is dimensionless, ½Aab� ¼ M0.
The generators XA ¼ ðPa;Mab; ZabÞ satisfy the Maxwell

algebra commutation relations, ½XA; XB� ¼ fAB
CXC. The

generic curvature two-forms of the associated gauge fields
are given by

R ¼ dhþ h ^ h ¼ dhþ 1

2
½h; h� � RAXA: (6)

Denoting the components of R by RA ¼ ðTa; Rab; FabÞ,
Eqs. (6), (1), and (2) give

Ta ¼ dea þ!a
c ^ ec � ðDeÞa; (7)

Rab ¼ d!ab þ!a
c ^!cb � ðD!Þab ¼ �Rba; (8)

Fab ¼ dAab þ!½a
c ^ Acjb� þ�ea ^ eb

� ðDAÞab þ�ea ^ eb ¼ �Fba; (9)

where D is the covariant derivative with respect to !ab.
Equations (7) and (8), are the standard torsion and curva-
ture; Eq. (9) gives the curvature ðDAÞab of the Abelian
gauge fields Aab plus the vierbein two-form �ea ^ eb.
Subsequently we obtain

ðDTÞa :¼ dTa þ!a
c ^ Tc ¼ Rac ^ ec; (10)

ðDRÞab ¼ ðdRþ! ^ R� R ^!Þab ¼ 0; (11)

ðDFÞab ¼ R½ajc ^ Ac
b� þ�T½a ^ eb�: (12)

Under a local gauge transformation with Maxwell algebra-
valued parameter �ðxÞ,

�ðxÞ ¼ �AðxÞXA

¼ �aðxÞPa þ 1

2
�abðxÞMab þ 1

2
	abðxÞZab; (13)

h in Eq. (4) transforms as


�h
A ¼ d�A þ fBC

AhB�C � ðD�ÞA: (14)

Similarly, the curvatures in Eq. (6) transform by


�RA ¼ fBC
ARB�C; (15)

which leads to


�e
a ¼ ðD�Þa þ ec�c

a; 
�!
ab ¼ ðD�Þab; (16)


�A
ab ¼ ðD	Þab þ A½a

c�
cjb� þ�e½a�b�: (17)

and


�T
a ¼ Ra

c�
c þ Tc�c

a; 
�R
ab ¼ R½a

c�
cjb�; (18)


�F
ab ¼ F½a

c�
cjb� þ R½a

c	
cjb� þ�T½a�b�: (19)

Thus, the two-forms Ta, Rab and Fab behave under local
Lorentz transformations �abðxÞ in a tensorial manner.
It follows from the above that dimensionless four-form

Lagrangians invariant under diffeomorphism and the local
Lorentz transformations of the Einstein-Cartan theory may
be constructed as bilinears in Rab and Fab,

L 1 ¼ 1

2
"abcdR

ab ^ Rcd; (20)

L2 ¼ "abcdR
ab ^Fcd; L3 ¼ 1

2
"abcdF

ab ^Fcd: (21)
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Further, we can consider as well

L 4 ¼ 1

2
Rab ^ Rab; (22)

L 5 ¼ Rab ^ Fab; L6 ¼ 1

2
Fab ^ Fab: (23)

The terms (20) and (22) are known in a standard gravity
framework. The topological densityL1 produces a surface
term which, in fact, is proportional to the Euler character-
istic. The term L4 is also topological and corresponds to
the Chern-Pontrjagin class. Our basic model will be con-
structed out of the Lagrangian forms in (21).

III. EINSTEIN ACTION WITH GENERALIZED
COSMOLOGICAL TERM

Let us recall first that the Einstein-Hilbert action is

L E ¼ � 1

2�
"abcdR

ab ^ ec ^ ed; (24)

where � is the Einstein gravitational constant, ½�� ¼ M�2.
Then, it is seen that L2 in (21) is

� 1

2��
L2 ¼ � 1

2��
"abcdR

ab ^ ðDAÞcd þLE: (25)

Now, using the Bianchi identity (11), the first term in the
right-hand side of Eq. (25) is a surface term in the action:

dð"abcdRab ^ AcdÞ ¼ "abcdR
ab ^ ðDAÞcd: (26)

As a result, �1
2��L2 is the Einstein-Hilbert Lagrangian up to

a surface term.

Let us now consider the L3 in (21), which is the
announced Maxwell extension of the cosmological term.
The standard cosmological term is given by the four-form

L cosm ¼ �

4�
"abcde

a ^ eb ^ ec ^ ed: (27)

If we observe that the curvature Fab is given by (9), we see
that L3 in Eq. (21) includes the standard cosmological
term plus two additional pieces depending on Aab,

~Lcosm ¼ �

2��2
L3

¼ �

4��2
"abcdððDAÞab þ�ea ^ ebÞ ^ ððDAÞcd

þ�ec ^ edÞ
¼ Lcosm þ �

4��2
"abcdðDAÞab ^ ðDAÞcd

þ �

2��
"abcdðDAÞab ^ ec ^ ed: (28)

Using Eqs. (21) and� � �
� , we now propose the follow-

ing Lagrangian four-form for Maxwell gravity

L ¼ �

2��
ð�L2 þ�L3Þ

¼ LE þLcosm þ �

2�
"abcdðDAÞab ^ ec ^ ed

þ �2

4��
"abcdðDAÞab ^ ðDAÞcd: (29)

Let us compute the field equations. The variation of the
Lagrangian (29) with respect to !ab gives


!L ¼ 
!ab ^ ½L�!ab ¼ d

�
� 1

2�
"abcd
!

ab ^ ec ^ ed
�
� 1

�
"abcd
!

ab ^ ðDeÞc ^ ed þ�

�
"abcd
!

a
e ^ Aeb ^ ec ^ ed

þ �2

��
"abcd
!

a
e ^ Aeb ^ ðDAÞcd

¼ 
!ab

�
� 1

�
"abcd ^

�
ðDeÞc ^ ed ��2

�
Ac

e ^
�
ðDAÞed þ �

�
ee ^ ed

���
: (30)

We then obtain

½L�!ab ¼�1

�
"abcd

�
ðDeÞc^ed��2

�
Ac

e^Fed

�
¼0: (31)

The Eq. (31) expressed in terms of the standard torsion
Ta ¼ ðDeÞa is the following

T½a ^ eb� þ�2

�
F½a

c ^ Acjb� ¼ 0: (32)

It will be further used as the algebraic equation determin-
ing the spin connection as a function of the vierbein and the
new gauge fields; !ab

� ðe; AÞ.

The variation of (29) with respect to ea gives


eL ¼ 
ea ^ ½L�ea
¼ � 1

�
"abcdR

ab ^ ec ^ 
ed þ �

�
"abcde

a ^ eb ^ ec

^ 
ed þ�

�
"abcdðDAÞab ^ ec ^ 
ed

¼ � 1

�

ea"abcd ^ ½Rbc ^ ed � �eb ^ ec ^ ed

��ðDAÞbc ^ ed� (33)

so that, using (9),
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½L�ea ¼ � 1

�
"abcd½Rbc ^ ed ��Fbc ^ ed� ¼ 0: (34)

The curvature satisfies the field equation

"abcde
b ^ ðRcd � �ec ^ ed ��ðDAÞcdÞ ¼ 0: (35)

The variation of (29) with respect to Aab gives


AL ¼ 
Aab ^ ½L�Aab

¼ d

�
�

2�
"abcd
A

ab ^ ec ^ ed

þ �2

2��
"abcd
A

ab ^ ðDAÞcd
�

þ�

�
"abcd
A

ab ^ ðDeÞc ^ ed

þ �2

2��
"abcd
A

ab ^ ðDDAÞcd; (36)

from which it follows that

½L�Aab ¼ �

�
"abcd

�
ðDeÞc ^ ed þ�

�
Rc

e ^ Aed

�
¼ 0: (37)

Equation (37) can be written alternatively using the
torsion as

T½a ^ eb� þ�

�
R½a

e ^ Aejb� ¼ 0: (38)

A special solution of Eq. (35) is given by

Rab ¼ �ðDAÞab þ �ea ^ eb ¼ �Fab: (39)

If Eq. (39) holds, after using the Bianchi identities (11) and
(12) one obtains Eq. (38), which can be rewritten as

ðDFÞab ¼ 0: (40)

Further, if we insert Eq. (39) in Eq. (38) we get Eq. (32).
We see therefore that the set of equations of motion (32),
(35), and (38), are satisfied if the Lorentz and gauge con-
nections are related by (39).

Let us now solve Eq. (31)) or Eq. (32) by expressing!ab

in terms of the vierbein and Aab. First we note that

Eqs. (31) are six three-form equations

"abcd

�
ðDeÞc ^ ed ��2

�
Ac

e ^ ððDAÞed þ �

�
ec ^ edÞ

�
¼ 0;

(41)

depending linearly on the 24 unknowns !ab
� . Since the

number of equations and unknowns match, in principle
Eq. (41) can be solved algebraically. We recall that in the
standard gravity (� ¼ 0) the equation

"abcdðDeÞc ^ ed ¼ 0; ! Tc ¼ ðDeÞc ¼ dec

þ!cd ^ ed ¼ 0; (42)

is solved assuming regularity of e�
a as

!ab ¼ !ð0Þ
ab ¼ 1

2
ðWbc;a þWca;b �Wab;cÞec;

Wab;c � ea
	eb

�@½	e��c:
(43)

Equation (41) is simpler if we use the shifted connection
~!ab ¼ !ab ��Aab (see Eq. (3))

"abcd

�
~!ae ^

�
ee ^ eb þ�2

�
Aef ^ Afb

�
þ dea ^ eb

þ�2

�
dAae ^ Ae

b

�
¼ 0; (44)

or, equivalently,

1

2
"abcdðdKab þ ~!½ae ^Ke

b�Þ ¼ 0; (45)

where

K ab ¼ ea ^ eb þ�2

�
Aa

f ^ Afb: (46)

We may now find a perturbative solution of Eq. (44) for

!ab. First, we write ~!ab ¼ !ð0Þ
ab þ �!ð1Þ

ab þ �2!ð2Þ
ab þ . . .

or, equivalently,

!ab ¼ �Aab þ!ð0Þ
ab þ �!ð1Þ

ab þ �2!ð2Þ
ab þ . . . ; (47)

where � ¼ �2

� and !ð0Þ
ab is given in Eq. (43). Inserting (47)

in Eq. (41) we find

"abcd½ðdec þ!ce ^ eeÞ ^ ed þ �ðdAce þ!cf ^ Af
eÞ ^ Ae

d ��Ac
e ^ ee ^ ed�

¼ "abcd½ð!ð0Þ ^ eÞc ^ ed þ dec ^ ed� þ �"abcd½ð!ð1Þ ^ eÞc ^ ed þ ðdA ^ AÞcd þ ð!ð0ÞÞce ^ ðA ^ AÞed�

þX1
i¼2

�i"abcd½ð!ðiÞ ^ eÞc ^ ed þ ð!ði�1ÞÞce ^ ðA ^ AÞed� ¼ 0: (48)

Requiring that the terms for different powers of � should vanish separately we can determine recursively!ðnÞ. This defines
the standard torsion as follows

Ta ¼ dea þ!ab ^ eb ¼ ð�Aþ �!ð1Þ þ �2!ð2Þ þ . . .Þab ^ eb: (49)
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The �0 term in Eq. (48) vanishes if we choose!ð0Þ
ab as given

by Eq. (43); the other terms !ðjÞ
ab ðj > 0Þ follow recursively

and depend on the gauge fields Aab
� and their derivatives

(see Appendix B).
By solving Eq. (32), we can eliminate the spin connec-

tion !ab
� and move to a second-order formalism, with

independent variables ea� and Aab
� . At the next step the

differential Eqs. (35) and (38) are solved for ea� and Aab
� . It

is worth noting that Eq. (35) adopts the form of a general-
ized Einstein equation for the shifted curvature

Jab � Rab ��Fab: (50)

After expressing Jab in local coordinates Eq. (35) takes the
form

J �
� � 1

2

�

�J ¼ ðR�
���F �

�Þ� 1

2

�

�ðR��F Þ ¼ 0

(51)

or, equivalently,

G�
� ¼ R�

� � 1

2

�

�R ¼ �T�
� ;

T�
� � F �

� � 1

2

�

�F :
(52)

Here

ea
�eb

�Jab ¼ 1

2
J ��

	�dx
	 ^ dx�;

J �
	 � J ��

	� ; J � J �
� ;

(53)

ea
�eb

�Rab ¼ 1

2
R��

	�dx
	 ^ dx�;

R�
	 � R��

	�; R � R�
�;

(54)

ea
�eb

�Fab ¼ 1

2
F��

	�dx
	 ^ dx�; (55)

F �
	 � F ��

	� ¼ ea
�eb

�ðD½	A��Þab þ 3�
�
	 ; (56)

F � F �
� ¼ ea

�eb
�ðD½�A��Þab þ 12�; (57)

where R��
	�, R

�
	, R are the Riemann, Ricci and scalar

curvatures and D� is the covariant derivative with respect

to !ab
� , which are now given as functions of ea� and Aab

� .

Using Eq. (56), (57), and (52) may be written as the
Einstein equation in de Sitter space with cosmological
constant � ¼ ��,

R�
� � R

2

�

� � 3�
�
� ¼ �ðea�eb�ðD½�A��Þab

� 
�
�ea

	eb
�ðD	A�ÞabÞ (58)

with the source linear in new gauge fields.
We conclude this section by noting that in Appendix A

we show that the action (29) and its equations of motion

may be equivalently described by using shifted spin con-
nection ~!ab and curvature Jab.

IV. DYNAMICAL TERMS FOR NEW
GAUGE FIELDS

The remaining Eq. (37), obtained by varying the action
(29) with respect to the fields Aab

� , does not depend explic-

itly on the derivatives of Aab
� . In order to have dynamical

gauge fields Aab
� , terms bilinear in their derivatives are

needed. In the collection of diffeomorphism invariant geo-
metrical actions (20)–(23) only the term L6 could be a
candidate, but due to formula (9) its nontopological part is
only linear in Aab

� . Thus, to get the free action for the new

gauge fields a Maxwell-like term ~L6 ¼ � �
2 F ^ �F would

have to be added; however it is less geometric since the
Hodge star operator involves the metric g�� ¼ �abe�

ae�
b.

It takes the form

~L 6 ¼ ��

ffiffiffiffiffiffiffi�g
p
4

g��g	�Fab
�	F��abd

4x; (59)

where g ¼ detðg��Þ.
The field equations following from the addition of (29)

and (59) look as follows


!ab: � 1

�
"abcd

�
ðDeÞc ^ ed ��2

�
Ac

e ^ Fed

�

� �Ac½a ^ ð�FÞb�c ¼ 0; (60)


ea: � 1

�
"abcd½Rbc ^ ed ��Fbc ^ ed�

� 2��ð�FÞab ^ eb � �TFa
b � eb ¼ 0; (61)


Aab:
�

�
"abcd½ðDeÞc^edþ�

�
Rc

e^Aed���ðD�FÞab¼0;

(62)

where TFa
b is

TFa
b ¼ e�ae�

b

�
g��

4
ðF	�F	�Þ � 1

2
Fð�	F�Þ

	

�
: (63)

Equation (60) modifies the torsion relation (Eq. (32))
and changes the expression for the spin connection !ab

� in

terms of ea� and Aab
� (see Appendix B for the � ¼ 0 case).

Equation (61) modifies the energy-momentum tensor in
Eq. (52). Finally, Eq. (62) produces a dynamical equation
for Aab

� . If we use Bianchi identity, (11) and (12) and

Eq. (40) is replaced by the following one

ðDFÞab ¼ ����

2�
"abcdðD � FÞcd: (64)
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V. FINAL REMARKS

It is often thought that the cosmological constant prob-
lem may require an alternative approach to gravity. Here
we have presented a new geometric framework, based on
the D ¼ 4 Maxwell algebra [12], which involves six new
gauge fields associated with their Abelian tensorial gener-
ators, and described its simplest application: a general-
ization of the cosmological term.

There are some possible extensions of this work, as
(a) Using the analogy between the semidirect sum struc-

ture of the Maxwell and supersymmetry algebras,

hPa; Zabi � soð1; 3Þ; hQ�;P�i � soð1; 3Þ;

we can obtain the bosonic Maxwell counterpart of
the superspace formulation of supergravity by en-
larging spacetime with the Maxwell group variables
associated with the Zab generators.

(b) Recently, the simplest Maxwell superalgebra was
introduced in [14]. This algebra could be gauged
following the approach presented in this paper to
provide an extension of the standard D ¼ 4 super-
gravity framework. Besides the fields Aab

� ðxÞ, such
an approach would include two gravitino fields: the
standard gravitino and an additional one, required
by the second Weyl supercharge in the Maxwell
superalgebra [14].

(c) An important step in extending the model presented
here would consist in adding covariantly coupled
matter fields as sources, which would appear as local
currents on the right-hand side of the equations for the
Maxwell gravity gauge fields. As it is known, the
equation for the spacetime curvature has the energy-
momentum tensor as its source, and the torsion is
coupled to the local spin density. In order to introduce
the new local currents describing the sources of the
additional gauge fields Aab

� , we should couple these

gauge fields to matter invariant under the Maxwell
symmetry. The new local currents would define the
local densities providing, after space integration, the
conserved tensorial central charges Zab.
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APPENDIX A:MAXWELLGRAVITY IN TERMSOF
SHIFTED RIEMANNIAN CONNECTION ~!ab

We may add to the Lagrangian (29) the topological
density in Eq. (20) as follows

L ¼ 1

2��
ðL1 ��L2 þ�2L3Þ: (A1)

Since L1 is a surface term, only the last two terms con-
tribute to the field equations. Therefore, the L in Eq. (A1)
may be expressed as a quadratic expression in the Rð!Þ
curvature shifted by bilinear terms in the vierbein [3,13,15]
and by the new gauge fields Aab,

L ¼ 1

4��
"abcdJ

ab ^ Jcd; (A2)

where Jab is given in Eq. (50). Denoting ðA2Þab ¼
Aa

c ^ Acb, we get

Jab ¼ Rabð!Þ ��Fab ¼ Rabð ~!Þ � �ea ^ eb ��2ðA2Þab
� ~Rab � �ea ^ eb; (A3)

where ~!ab is given in Eq. (3) and

Rabð ~!Þ � d ~!ab þ ~!a
c ^ ~!cb;

~Rab � Rabð ~!Þ ��2ðA2Þab:
(A4)

Note that it is ~Rab rather than Rabð ~!Þ that is the ‘‘true’’
curvature of the shifted connection ~!ab, since ~Rab does not
contain (because the Zab are Abelian) the �2ðA2Þab piece
that is present in Rabð ~!Þ.
The Lagrangian L in (A2) may then be written in the

following two equivalent forms

L ¼ "abcd

�
1

4��
~Rab ^ ~Rcd � 1

2�
~Rab ^ ec ^ ed

þ �

4�
ea ^ eb ^ ec ^ ed

�
(A5)

and

L ¼ 1

4��
"abcdR

abð ~!Þ ^ Rcdð ~!Þ

� 1

2�
"abcde

a ^ eb ^ Rð ~!Þcd

þ �

4�
"abcde

a ^ eb ^ ec ^ ed

þ �4

4��
"abcdðA2Þab ^ ðA2Þcd

� �2

2��
"abcdðRabð ~!Þ � �ea ^ ebÞðA2Þcd: (A6)

The first term in (A6) is an exact form and will be ignored.
The second piece ofL is the Einstein-Hilbert action for the
shifted connection ~! and the third one is the standard
cosmological term. The fourth term of L vanishes due to
the identity

"abc½dðA2Þab ^ Ac
e� ¼ 0 (A7)

that holds for any antisymmetric one-form Aab. Finally,
the last term is the remaining addition to the standard
cosmological term. Thus, we can write
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L ¼ LEHð ~!Þ þLcosm þLA; (A8)

LA ¼ � �2

2��
"abcdðRabð ~!Þ � �ea ^ ebÞ ^ ðA2Þcd: (A9)

Let us now consider the field equations, obtained by
varying I ¼ R

L with respect to ~!ab, ea and Aab.


 ~!cd: "abcd

�
ð ~DeÞa ^ eb þ�2

�
ð ~DAÞae ^Ae

b

�
¼ 0; (A10)


ea: "abcde
b ^ ðRcdð ~!Þ � �ec ^ ed ��2ðA2ÞcdÞ ¼ 0;

(A11)


Ade: "abc½dðRabð ~!Þ � �ea ^ ebÞ ^ Ac
e� ¼ 0: (A12)

Because of identity (A7), Eq. (A12) can be replaced by

"abc½dðRabð ~!Þ � �ea ^ eb ��2ðA2ÞabÞ ^ Ac
e� ¼ 0:

(A13)

The Bianchi identity for Rð ~!Þab, ð ~DRð ~!ÞÞab ¼ 0, shows

ð ~DJÞab ¼ ��ð ~DeÞ½a ^ eb� ��2ð ~DAÞ½ac ^ Acjb�: (A14)

Using it in Eq. (A10) the set of equations of motion
becomes


 ~!ab: ð ~DJÞab ¼ dJab þ ~!½ajcJcb� ¼ 0; (A15)


ea: "abcde
bJcd ¼ 0; (A16)


Ade: "abc½dJabAc
e� ¼ 0: (A17)

They coincide with the equations of motion (32), (35), and
(38), respectively.

Writing the forms in local coordinates (see also Eq. (54))

ea
�eb

�Jab ¼ 1

2
J ��

	�dx
	 ^ dx�;

ea
�eb

�Aab ¼ 1

2
A��

	dx
	:

(A18)

After assuming the invertibility for the vierbein, we obtain

J ��
	�¼R��

	�ð ~!Þ��
�
½	


�
�� ��2A��

½	A�
�
��; (A19)

J �
	 � J ��

	�

¼ R�
	ð ~!Þ � 3�
�

	 þ�2ðA��
	A

�
�� � A��

�A
�
�	Þ;

(A20)

J ¼ J �
�

¼ Rð ~!Þ � 12�þ�2ðA��
�A

�
�� � A��

�A
�
��Þ; (A21)

where R��
	�ð ~!Þ, R�

	ð ~!Þ, Rð ~!Þ are the Riemann, Ricci,

and scalar tensors for the shifted spin connection ~!. By
following the derivation of Einstein equation from the

Einstein-Hilbert Lagrangian (24), we obtain the general-
ized Einstein equation Eq. (51), withJ �

� andJ expressed
by the formulae in (A20) and (A21).
An obvious solution of Eqs. (A15)–(A17) is Jab ¼ 0

(see also Eq. (39)), which in the formalism with the
shifted spin connection, specifies the curvature through
Eq. (A3) as

Rð ~!Þcd ¼ �ec ^ ed þ�2ðA2Þcd: (A22)

In such a case the new gauge fields are arbitrary, not
restricted by Eq. (A17). If, however, Jab � 0, the explicit
solutions of the generalized Einstein Eq. (51) will then
provide a restriction on the Abelian gauge fields Aab

� since

Eq. (A17) will no longer be trivial.
We mention that to the Lagrangian (A1) one can add

new terms by using the Lagrangian densities (22) and (23)
as follows

L 0 ¼ a

2��
ðL4 ��L5 þ�2L6Þ; (A23)

where a is a dimensionless constant. The total Lagrangian
becomes

L þL0 ¼ 1

4��
ð
abcdJab ^ Jcd þ aJab ^ JabÞ; (A24)

which leads to Eqs. (A15)–(A17) but written now with the
tensor ~Jab ¼ Jab � a

4 "
ab

cdJ
cd. As mentioned in the main

text, the Lagrangian (A24) does not contain a ‘‘free’’ term
for the Aab fields; this may be achieved by adding a
(F ^ �F)-type term, as in Sect. IV, which is not among
the densities considered in Eqs. (20), (22), and (23).

APPENDIX B: EXPRESSION FOR
THE HIGHER !ðjÞab

The explicit expression for the higher-order terms are
determined recursively as follows. We write Eq. (48), for
j ¼ 0; 1; 2; . . . , as

"abcd!
ðjÞce ^ ee ^ ed þ KðjÞ

ab ¼ 0; (B1)

where

Kð0Þ
ab ¼ "abcdde

c^ ed;

Kð1Þ
ab ¼ "abcdðdAceþ!ð0Þ½cf ^Af

e�Þ ^Ae
d;

KðiÞ
ab ¼ "abcd!

ði�1Þce^ðA^AÞed; ði¼ 2;3; . . .Þ: (B2)

If we express the three-form KðjÞ
ab in terms of the three-

forms �ec as
KðjÞ

ab ¼ KðjÞ
ab;cð�ecÞ; ea ^ eb ^ ec � "abcdð�edÞ; (B3)

we find that !ðjÞ
ab is given by
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!ðjÞ
ab ¼

1

2
ððKðjÞ

bc;a þ KðjÞ
ca;b � KðjÞ

ab;cÞec þ KðjÞ;e
½ae eb�Þ ¼ �!ðjÞ

ba:

(B4)

For j ¼ 0 this recovers (43). For j > 0, the !ðjÞ
ab are found

using

Kð1Þ;h
ab ¼ "abcd"

��	�ðDð0Þ
� A�ÞceAed

	 e�1e�
h; (B5)

KðiÞ;h
ab ¼"abcd"

��	�!ði�1Þcf
� A�feA

ed
	 e�1e�

h; ði¼ 2;3; . . .Þ
(B6)

where e ¼ detðe�aÞ and Dð0Þ is the covariant derivative

with respect to the connection !ð0Þ
ab .
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