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Understanding possible electromagnetic signatures of merging and collapsing compact objects is

important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced

as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-

down stage of the resulting Kerr-Newman black hole. For the neutron star–neutron star mergers, the

precursor power scales as L � B2
NSGMNSR

8
NS=ðR7

orbcÞ, while for the neutron star–black hole mergers, it is

ðGM=ðc2RNSÞÞ2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free

magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate

the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact

nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning

and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse

of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or

other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become

disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can

produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure

evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field

lines get absorbed by the hole). The ‘‘no-hair theorem,’’ which assumes that the outside medium is a

vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint

forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random

large scale spontaneous reconnection event will lead to magnetic field release, shutting down the

electromagnetic black hole engine forever. Overall, the electromagnetic power in all the above cases is

expected to be relatively small. We also discuss the nature of short gamma-ray bursts and suggest that if

the magnetic field is amplified to �1014 G during the merger or the core collapse, the similarity of the

early afterglow properties of long and short gamma-ray bursts can be related to the fact that in both cases a

spinning black hole can retain a magnetic field for a sufficiently long time to extract a large fraction of its

rotational energy and produce high energy emission via the internal dissipation in the wind.
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I. INTRODUCTION

Estimating a possible electromagnetic signature of
merging and collapsing neutron stars is most desirable
for the gravitation wave searches by LIGO and for identi-
fying possible progenitors of short gamma-ray bursts
(GRBs). Collapse of a neutron star into a black hole may
proceed either through the accretion induced collapse
(AIC) or during binary neutron star mergers. We expect
that, at late stages, both processes proceed along a some-
what similar path: in the case of a merger, the two collaps-
ing neutron stars form a transient supermassive neutron
star which then collapses into a black hole. Both an accret-
ing neutron star (in the case of an AIC) and the transient
supermassive neutron star are expected to be magnetized.
In addition, in the case of merging neutron stars the strong
shearing of matter may increase the magnetic field well
above the initial values.

In the case of a merger of compact stars electromagnetic
power can be generated as a precursor to the merger due to
either effective friction of the neutron star magnetospheres
or a purely general relativistic effect; see Sec. II. Later, and

in the case of the AIC, several types of electromagnetic
emission can be foreseen. First, the electromagnetic power
in vacuum may be generated directly, due to the changing
magnetic moment of the collapsing star [1,2]. Even if the
outside medium is highly conducting, electromagnetic
emission may be generated via an effective (resistive)
disconnection of the external magnetic fields, provided
that the collapse naturally leads to the formation of a
narrow dissipative current structure. Second, a pulsar-
like electromagnetic power can be generated by the rota-
tion of the neutron stars and extracted via the magnetic
field. As we argue below, as long as the black hole can
produce plasma via vacuum breakdown, it can self-
generate electric currents, retain the magnetic fields, and
spin-down electromagnetically for time periods much
longer than the collapse time; see Sec. III.
Conventionally, in estimating the possible electromag-

netic signatures it was first assumed that a fraction RNS=RG

of the initial external magnetic energy (also built up by the
collapse and compression of the magnetic field) is radiated
away on a time scale of the order of the collapse time [3].
References [4,5] considered radiation from accelerated
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changes in the magnetic moment during collapse, produc-

ing energy E� B2
0ðRGRNSÞ3=2 (somewhat smaller than the

energy of the magnetic field before the collapse). Along
similar lines, Ref. [2] employed general relativistic MHD
simulations and followed the collapse of a nonrotating
neutron star into a black hole.

In our view the main limitation of these models is
that the external medium was treated as a vacuum.
Electrodynamically, a vacuum is a highly resistive me-
dium, with an impedance of the order of 4�=c ¼ 477�.
As a result, nothing prevents magnetic fields from becom-
ing disconnected from the star and escaping to infinity. We
expect that the magnetic field dynamics would be drasti-
cally different if the external magnetosphere were treated
as a highly conducting medium. This is a common con-
sequence in relativistic astrophysical sources, since an
ample supply of plasma is available through vacuum
breakdown. For example, investigating the dynamics of
the magnetic field in the simulations in Ref. [2] (see also
[6]) shows that during the collapse the magnetic field
becomes effectively disconnected from the star, at dis-
tances somewhat larger than the Schwarzschild radius. If
the outside medium were treated as highly conducting
plasma, such processes would be prohibited. The impor-
tance of resistive effects in the magnetosphere was stressed
early on in the original paper [1], where it was pointed out
that ‘‘for spherically symmetric collapse there is no energy
released to the outside at all.’’

The magnetic field may still escape to infinity if the
collapse naturally creates conditions favorable for recon-
nection, e.g., by forming narrow current sheets or leading
to the overall breakdown of fluid approximation by creat-
ing regions where the electric field exceeds the magnetic
field (the latter regions are naturally created both in pulsar
magnetospheres [7] and near black holes moving through
the external magnetic field [8]). In this paper we address
the following question: ‘‘Does the collapse of a rotating
magnetized neutron star naturally create a condition for
efficient reconnection of magnetic field lines well before
the footpoints cross the horizon?’’ We argue that this does
not happen.

The plan of the paper is the following. In Sec. II
we discuss possible types of precursor emission in
neutron star–neutron star (NS-NS), neutron star–
black hole (NS-BH), and black hole–black hole (BH-BH)
mergers. In the main section, Sec. III, we find exact solu-
tions for the structure of collapsing magnetospheres. Based
on this solution we argue that, as long as the resulting black
hole can produce plasma and currents by vacuum break-
down, it may produce electromagnetic power much longer
than the collapse time.

II. PRECURSOR EMISSION IN MERGERS

For merging compact objects (NS-NS, BH-NS, BH-BH)
a number of mechanisms can generate precursors or

afterglow emission. In the case of merging neutron stars,
one expects an electromagnetic precursor due to effective
‘‘friction’’ of the neutron stars’ magnetospheres [9–11].
Qualitatively, a neutron star moving through a magnetic
field generates an inductive potential drop, inducing real
charges on the surface, which in turn produce a component
of the electric field along the magnetic field and electric
currents. The estimate of the corresponding power is

LU � B2
NSR

2
NS�

2c ¼ B2
NSGM

R8
NS

R7
orbc

; (1)

where BNS is the surface magnetic field of a neutron star,
RNS is its initial radius, M is its mass, and � ¼ v=c is the
dimensionless velocity of a neutron star. The last equality
in Eq. (1) assumes a Keplerian orbit with radius Rorb. The
estimate (1) can be derived by calculating the potential
drop across the neutron star, �� � �BNSRNS, and assum-
ing the resistance of the resulting electric circuit to be close
to the vacuum inductance �4�=c.
Just before contact, the unipolar power (1) is

LU;max ¼ 6� 1045 ergs�1

�
BNS

1012 G

�
2

(2)

for MNS ¼ 1:4M� and RNS ¼ 10 km.
The total electromagnetic energy produced by the uni-

polar induction mechanism can be found by integrating
power (1) with the radius evolving due to radiation of

gravitational waves, R ¼ RLCð1� ðGMÞ3t=ðc5R4
LCÞÞ1=4,

and a magnetic field scaling as B ¼ BNSðRNS=RÞ3 (the
model becomes applicable when the magnetospheres of
the neutron stars touch at the light cylinder distance RLC;
at earlier times the interaction is through winds and scales
as a sum of the spin-down powers of the neutron stars)
(see [11]),

Etot;U ¼
Z tðRNSÞ

tðRLCÞ
LU;GRdt � B2

NSR
3
NS

�
RNS

RG

�
2

¼ 3� 1043 erg

�
BNS

1012 G

�
2
: (3)

In addition, there is a purely general relativistic effect,
when the motion of the compact object across the magnetic
field in vacuum generates a parallel electric field, which in
turn leads to the generation of plasma and the production of
electromagnetic outflows with power [8],

LU;GR ¼ ðGMÞ2B2
0�

2

c3
¼ ðGMÞ3B2

0

c5Rorb

(4)

(see also [12,13]). This type of interaction is important for
BH-NS and BH-BH mergers, in which case there are no
real induced charges to produce the parallel electric field;
the parallel electric field is a pure vacuum effect, resulting
from the curvature of the space-time. This power is smaller
than for NS-NS coalescence by a factor ðRG=RNSÞ2, where
RG ¼ 2GM=c2 is the Schwarzschild radius.

MAXIM LYUTIKOV PHYSICAL REVIEW D 83, 124035 (2011)

124035-2



Qualitatively, the power (4) can be estimated from the
potential drop across the Schwarzschild horizon. There is
an important difference between NS-NS and BH-NS elec-
tromagnetic interactions, though: in the case of the NS-NS
system, the parallel electric field is produced by real sur-
face charges [14], while in the case of the black holes the
parallel electric field is a pure vacuum effect, resulting
from the curvature of the space-time [8].

For a NS-BH system just before contact, the general
relativistic unipolar power LU;GR is

LU;GR ¼ 3� 1044 ergs�1

�
BNS

1012 G

�
2
: (5)

The total emitted energy is

Etot;U ¼
Z tðRNSÞ

tðRLCÞ
LU;GRdt � B2

0R
3
NS ¼ 1042 erg

�
BNS

1012 G

�
2
:

(6)

[Relations (5) and (6) assume equal masses of the merging
objects; it is straightforward to generalize them to unequal
masses.] Thus, the total energy dissipated via the general
relativistic unipolar induction mechanism is of the order of
the magnetic energy of the neutron star. Note that the
energy is taken from the linear motion of the neutron stars,
and not from the energy of the magnetic field.

In addition, more involved electromagnetic signatures
are expected due to the perturbations that the merging
black holes induce in the possible surrounding gas [15–20].

III. MAGNETOSPHERES OF COLLAPSING
NEUTRON STARS

A. Direct emission of electromagnetic waves
during collapse

As a neutron star experiences a collapse, the frozen-in
magnetic field evolves with time, generating an electric
field and a possible electromagnetic signal. Historically,
the first treatment of the electromagnetic fields of collaps-
ing neutron stars was done in the quasistatic approach [1],
in which case the electric field follows from the slow
evolution of the magnetic field. The quasistatic approach
was later demonstrated to give the incorrect asymptotic
decay of the fields with time [21]. As the neutron star
contracts, the magnetic moment decreases / Rs. The scal-
ing of the decay of the fields on a black hole calculated in
Ref. [21] was confirmed by [2], who performed numerical
simulations of the neutron star collapse into a black hole
and saw a predicted power-law decay of the electromag-
netic fields.

Most of the power in the calculations done in Ref. [2]
was emitted at times of the order of the collapse time, well
before the predicted asymptotic limit. Overall, the simula-
tions are dominated by heavy resistivity effects intrinsic
to the vacuum approximation: the disconnection of the

magnetic field lines from the star typically (except in the
Kerr-Schild coordinates) occurs when the strong compres-
sion of the magnetic field against the horizon and the
corresponding effects of the numerical resistivity become
important.
The assumption of a highly conducting exterior changes

the overall dynamics of the electromagnetic fields. As we
argue below, the high conductivity of the external plasma
would prevent the formation of disconnected magnetic
surfaces, formally prohibiting the processes described in
Ref. [2].

B. Force-free approximation in general relativity

There is a broad range of astrophysical problems where
the magnetic fields play a dominant role, controlling
the dynamics of the plasma [22]. The prime examples
are pulsar and black hole magnetospheres; gamma-ray
bursts and active galactic nuclei jets may also be magneti-
cally dominated at some stage (e.g., [23]). If the magnetic
field energy density dominates over the plasma energy
density, the fluid velocity, enthalpy density, and pressure
become small perturbations to the magnetic forces. The
dynamics then can be described in a force-free approxima-
tion [24]. In the nonrelativistic plasma the notion of force-
free fields is often related to the stationary configuration
attained asymptotically by the system (subject to some
boundary conditions and some constraints, e.g., conserva-
tion of helicity). This equilibrium is attained on time scales
of the order of the Alfvén crossing times. In strongly
magnetized relativistic plasma the Alfvén speed may be-
come of the order of the speed of light c, so that the
crossing times become of the order of the light travel
time. But if plasma is moving relativistically its state is
changing on the same time scale. This leads to a notion of
dynamical force-free fields.
MHD formulation assumes (explicitly) that the second

Poincare electromagnetic invariant ~E � ~B ¼ 0 and (implic-
itly) that the first electromagnetic invariant is positive,
B2 � E2 > 0. This means that the electromagnetic stress
energy tensor can be diagonalized and, equivalently, that
there is a reference framewhere the electric field is equal to
zero, the plasma rest frame. This assumption is important
since we are interested in the limit where the matter con-
tribution to the stress energy tensor goes to zero; the
possibility of diagonalization of the electromagnetic stress
energy tensor distinguishes the force-free plasma and vac-
uum electromagnetic fields, where such diagonalization is
generally not possible.
The equations of the force-free electrodynamics can

be derived from Maxwell equations and a constraint
~E � ~B ¼ 0. This can be done in a general tensorial notation
from the general relativistic MHD formulation in the limit
of negligible inertia [25]. This offers an advantage that the
system of equations may be set in the form of conservation
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laws [26]. A more practically appealing formulation in-
volves the 3þ 1 splitting of the equations of general
relativity [27,28]. The Maxwell equations in the Kerr
metric then take the form

r � ~E ¼ 4��; r � ~B ¼ 0;

r� ð� ~BÞ ¼ 4��~jþDt
~E; r� ð� ~EÞ ¼ �Dt

~B;

(7)

where Dt ¼ @t �L ~� is the total time derivative, including

the Lie derivative along the velocity of the zero angular
momentum observers, r is a covariant derivative with the

radial vector er ¼ �@r, and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
. Taking the

total time derivative of the constraint ~E � ~B ¼ 0 and elim-

inatingDt
~E and Dt

~B using Maxwell equations, one arrives
at the corresponding Ohm’s law in the Kerr metric [8],
generalizing the result of [24]:

~j ¼ ð ~B � r � ð� ~BÞ � ~E � r � ð� ~EÞÞ ~Bþ �ðr � ~EÞ ~E� ~B

4��B2
:

(8)

Note that this expression does not contain the shift

function ~�.
The generic limitation of the force-free formulation of

MHD is that the evolution of the electromagnetic field
leads, under certain conditions, to the formation of regions
with E> B (e.g., [7]), since there is no mathematical
limitation on B2 � E2 changing sign under strict force-
free conditions. In practice, the particles in these regions

are subject to rapid acceleration through ~E� ~B drift, fol-
lowed by a formation of pair plasma via various radiative
effects and reduction of the electric field. Thus, regions
with E> B are necessarily resistive. This breaks the ideal
assumption and leads to the slippage of magnetic field lines
with respect to plasma. In addition, evolution of the mag-
netized plasma often leads to the formation of resistive
current sheets, with a similar effect on the magnetic field. If
such processes were to happen in the magnetospheres of
the collapsing neutron star, this might potentially lead to
disconnection of the magnetic field lines from the star and
a magnetic field-powered signal. Below we argue that in
the case of collapsing neutron stars this does not happen.

IV. THE RESTRICTED WAVE
GRAD-SHAFRANOV EQUATIONS

Let us derive a dynamic equation that describes the
temporal evolution of the force-free fields in special
relativity under the assumption that the fields remain
axially symmetric. Previously, the equations governing
general time-dependent force-free motion have been writ-
ten in [29,30].

In relativistic plasma the force-free condition is given
by Ohm’s law (8), where in this section we set � ¼ 1.
Generally, any function can be represented as a sum
of a gradient and a curl of a vector function. Under the

assumption of axial symmetry and zero divergence for
the magnetic field, we can express electric and magnetic
fields as

B ¼ rP� ê�
r sin�

� 2I

r sin�
ê�;

E ¼ �r�þrK � ê�
r sin�

� 2L

r sin�
ê�;

(9)

where P is the magnetic flux function P ¼ A�$,

$ ¼ r sin�, A� is the electric potential, K and L are

some arbitrary functions to be determined, and I is the
poloidal current through a flux cross section divided by 2�.
The Maxwell equation @tB ¼ �r� E gives

L ¼ @tP=2; (10)

@tI ¼ 1

2

�
@2rK þ 1

r2
sin�@�

@�K

sin�

�
¼ 1

2
��K;

�� ¼ r2sin2�r
� r
r2sin2�

�
:

(11)

The ideal condition ~E � ~B ¼ 0 implies

2I@tP ¼ �ðrK þ r sin�r�� e�Þ � rP: (12)

Equations (10)–(12) highlight two separate types of non-
stationarity: type (i) is due to the variations of the current
IðtÞ for a given shape of the flux function [Eq. (11)], and
type (ii) is due to the variations of the shape of the flux
function for a given current I [Eq. (12)].

A. Constant shape of flux functions, @tP ¼ 0,
variable current

Let us first consider the case when @tP ¼ 0. Then
Eq. (12) implies that rK0 þ r sin�r�� e� is orthogonal

to rP (and is thus along the poloidal magnetic field).
Above, K0 denotes a particular case when P is constant
in time. Thus

rK0 ¼ �r sin�r�� e� þ r sin��rP� e�; (13)

~E ¼ ��rP ¼ �v�e� � ~B;

@tI ¼ � r sin�

2
rP�r� � e� ¼ $2

2
ð ~B � r�Þ;

(14)

where � is an arbitrary function, which can be identified
with the angular velocity of the rotation.
The � component of the induction equation then be-

comes the time-dependent Grad-Shafranov equations for
the restricted case when the shape of the flux surfaces
remains constant, but the angular velocity � and, thus,
the poloidal current are time and space dependent:

$2r
�
1�$2�2

$2
rP

�
þ 4IðrP � rIÞ

ðrPÞ2 þ$2�ðrP � r�Þ
¼ 0: (15)

MAXIM LYUTIKOV PHYSICAL REVIEW D 83, 124035 (2011)

124035-4



This is a Grad-Shafranov equation for axisymmetric force-
free structures that rotate with arbitrarily varying angular
velocity, but keep the shape of the flux functions constant.

The poloidal components of the induction equation give

@t� ¼ � 2rP�rI � e�
$ðrPÞ2 ¼ 2

ðrPÞ2 ð
~B � rIÞ: (16)

Note that Eqs. (14) and (16) involve only a poloidal mag-
netic field, which, under the assumption @tP ¼ 0, remains
constant in time.

Equations (14) and (16) can be combined to determine
the evolution of �:

@2t� ¼ $2

ðrPÞ2 ð
~B � rð ~B � r�ÞÞ ¼ ~B � rð ~B � r�Þ

B2
p

; (17)

where Bp is the poloidal magnetic field. Equation (17) is

the generalization of Ferraro’s law of isorotation to time-
dependent angular velocity.

Equations (14)–(16) constitute a closed system of
equations for variables P, I, � under the assumptions of
time-dependent I and � and stationary P. Generally, it is
not guaranteed that there is a physically meaningful solu-
tion of this system: recall that this system describes a
restricted motion of force-free plasma, when the shape of
the flux function remains constant. Naturally, in the con-
stant � limit, Eq. (15) reduces to the conventional Grad-
Shafranov equation, while Eqs. (16) and (17) then imply
that the gradients of the electric current and the angular
velocity are orthogonal to magnetic flux surfaces.

B. Variable shape of flux functions

By virtue of (12) and (14) variable shapes of the flux
functions can be described by adding to rK0 a term
proportional to rP, K ¼ K0 þ FðPÞ.

Let us first considerK ¼ FðPÞ separately, neglecting the
cross terms in the electric field. The ~E � ~B ¼ 0 gives

rF � rP ¼ 2I@tP (18)

or, since F ¼ FðPÞ,
F0ðrPÞ2 ¼ 2I@tP: (19)

The Maxwell equation @tB ¼ �r� E gives

@tI ¼ 1
2�

�F ¼ 1
2ðF0��Pþ ðrPÞ2F00Þ: (20)

The � component of the induction equation then gives the
Grad-Shafranov equation

��P� @2t Pþ 4IðrP � rIÞ
ðrPÞ2 � 2@t

�
I2@tP

ðrPÞ2
�
¼ 0: (21)

This is a wave (hyperbolic) Grad-Shafranov equation
for nonrotating axisymmetric force-free structures that
evolve with time. The current I here is determined from
Eqs. (19) and (20).

The wave Grad-Shafranov equation can be written in a
general case, when both the current and the flux function
evolve with time (Appendix ), but its overly complicated
form makes it useless for practical purposes.

C. Michel’s time-dependent split-monopole solution
in flat space

Both in the case of accretion induced collapse and for
neutron star-neutron star mergers, right before the final
plunge the neutron star is expected to rotate with a spin
close to the breakup limit of �1 msec. As a result, the
light cylinder is located close to the neutron star surface.
The theory of pulsar magnetospheres predicts that outside
the light cylinder the magnetic field structure resembles the
split-monopole structure [31]. This is confirmed by direct
numerical simulations [32]. In addition, if the inertia of the
‘‘wind particles’’ is taken into account, there is another
monopole-type solution wherein the particles rigidly rotate
up to the light cylinder and then turn into electromagnetic
waves [33].
In Sec. IV we derived a hyperbolic wave Grad-

Shafranov equation, describing time-dependent force-free
electromagnetic fields. It may be verified directly that
Michel’s monopole solution for a rotating force-free mag-
netosphere [31] is valid for the time-dependent angular
velocity �, surface magnetic field Bs, and neutron star
radius Rs. For a monopole field, Eq. (17) gives a radially
propagating nonlinear shear Alfvén wave [34],

@2t� ¼ @2r�; � ¼ �ðr� tÞ: (22)

The flux conservation requires BsR
2
s ¼ const ¼ BNSR

2
NS.

Then the Grad-Shafranov equation (15) has a slit-
monopole-type solution for electromagnetic fields of the
collapsing neutron star:

Br ¼
�
Rs

r

�
2
Bs;

B� ¼ �R2
s�sin�

r
Bs;

E� ¼ B�jr ¼ �2

�
Rs

r

�
2
cos��Bs;

P ¼ ð1� cos�ÞBsR
2
s ;

� ¼ �P�;

I ¼ �PðP� 2BsR
2
sÞ�

2BsR
2
s

¼ 1

2
BsR

2
s�sin2�;

(23)

where P is the flux function,� is the electric potential, and
� ¼ �ðr� tÞ. It may be verified directly that Eq. (14) is
satisfied.
Thus, we found exact solutions for time-dependent non-

linear relativistic force-free configurations. Though the
configuration is nonstationary (there is a time-dependent
propagating wave), the form of the flux surfaces remains
constant.
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V. ELECTRODYNAMICS OF NEUTRON
STAR COLLAPSE

A. Force-free collapse in the Schwarzschild metric:
an exception to the no-hair theorem

In the previous section we showed that during arbitrary
evolution of the rotational angular velocity of a split-
monopole-type magnetosphere, the structure of the mag-
netosphere remains the same. In this section we apply the
solutions obtained in the previous section to the electro-
dynamics of neutron star collapse, taking into account
general relativistic effects.

The split-monopole solution may be a good approxima-
tion for several reasons. First, the collapse is likely to
induce strong shear of the surface footpoints. As a result,
a strong electric current will be launched in the magneto-
sphere, strongly distorting it. Highly twisted magnetic field
lines will tend to open up to infinity, so that the magneto-
sphere will resemble a monopolar solution at each moment
corresponding to the changing angular velocity of the
surface footpoints. For a general case of strongly sheared
footpoints, a time-dependent angular velocity will break a
force balance. Still, we expect that the overall dynamical
behavior will be similar to Michel’s time-dependent
solution.

Second, as we argue below, the open field lines cannot
slip off the horizon, while the closed field lines will quickly
be absorbed by the black hole. Thus, the magnetosphere
of the black hole will naturally evolve towards the split-
monopole solution, Fig. 1. Finally, in a more restricted
sense, the fully analytically solvable dynamics of the mo-
nopolar magnetosphere collapse can be used to estimate
the physical effects occurring on the open field lines.

Michel’s stationary solution has been generalized to the
Schwarzschild metric [35] (BZ below). Extending the
time-dependent solution (23) to the general relativistic
case by the principle of minimal coupling (or the conven-
tion ‘‘comma becomes a semicolon’’), Michel’s solution
(23) remains valid for arbitrary �ðrfast � tÞ in general
relativity. The argument of � should be evaluated at the
position of a radially propagating fast mode in the
Schwarzschild metric with drfast=dt ¼ �2,

� 	 �ðr� tþ rð1� �2Þ lnðr�2ÞÞ: (24)

The Michel solution in general relativity has the same flux
function as in flat space [see Eq. (23)]; the poloidal mag-
netic field is derived from � using a covariant derivative,
while the toroidal magnetic field and poloidal electric field
change according to B� ! B�=� and E� ! E�=�. Thus,

the exact nonlinear general relativistic time-dependent
force-free fields corresponding to the arbitrary solid-body
rotation are

Br ¼
�
Rs

r

�
2
Bs;

B� ¼ �R2
s�sin�

�r
Bs;

E� ¼ B�jr ¼ �2

�
Rs

r

�
2 cos��Bs

�

(25)

with � given by Eq. (24). In addition to the bulk current
(25) there is a current sheet at � ¼ � containing the radial
current separating the two split-monopole hemispheres.
It may be verified by direct calculations that fields (25)
satisfy the Maxwell equations (7) with Ohm’s law (8).
As the surface of the neutron star approaches the black

hole horizon, Rs ! RG, Bs ! ðRNS=RGÞ2BNS, while its
angular velocity approaches a finite limit which we esti-
mate next. Let, initially, the neutron star rotate with angular
velocity �NS. The moment of inertia of a neutron star can
be written

INS ¼ ð2=5Þ�MNSR
2
NS; (26)

where �� 0:1–0:5 is an equation-of-state–dependent vari-
able that describes how centrally condensed the star is [36].
The spin angular momentum is thus

S ¼ ð2=5Þ�MNSR
2
NS�NS; (27)

where PNS is the initial spin period. The dimensionless
Kerr parameter is then

a ¼ ð2=5Þ�ðc=GÞR
2
NS�NS

MNS

¼ 0:04��1P
�1
NS;�3; (28)

where PNS;�3 ¼ PNS=1 msec. For merging neutron stars

the Kerr parameter is expected to be much higher.
For a collapsing star, the time dilation near the horizon

and the frame dragging of the horizon lead to the ‘‘horizon
locking’’ condition: objects are dragged into corotation

FIG. 1 (color online). Cartoon of the structure of magnetic fields around a collapsing rotating neutron star. Initially (left panel), the
magnetic field is that of an isolated pulsar, with a set of field lines closing within the light cylinder (dashed vertical lines). Immediately
after the collapse (central panel), the structure is similar. The closed field lines are absorbed by the black hole, while the open field lines
remain attached to the black hole; the system relaxes to the monopole structure (right panel).
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with the hole’s event horizon, which has a frequency
associated with it of

�H ¼ a
c3

2GrH
� �

5

c4R2
NS

ðGMNSÞ2
�NS

¼ 2:9� 103 rads�1��1P
�1
NS;�3; (29)

where rH ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ÞGM=c2 � RG is the coordinate

radius of the horizon of the Kerr black hole. (Note that for
the chosen parameters the final spin is smaller than the
initial spin,�H=�NS ¼ 0:46��1, due to the assumption of
highly centrally concentrated initial mass distribution,
� 
 1.)

The electromagnetic power produced by Michel’s rota-
tor is then

L ¼ 2

3

ðBsR
2
sÞ2�2

H

c
¼ 2

75
�2 c

7B2
NSR

8
NS�

2
H

ðGMNSÞ4
¼ 2� 1044 ergs�1�2

�1B
�2
NS;12P

�2
NS;�3: (30)

It will lead to the black hole spin-down on a time scale

� ¼ 6
G2M3

NS

c3B2
NSR

4
NS

¼ 2� 107 secB�2
NS;12 (31)

(Michel’s solution corresponds to the spin-down index of
n ¼ 1, so that the spin evolution is described by a decaying
exponential.) It is unlikely, though, that the assumptions
of the model will be applicable for such a long time
(see below).

In addition, the neutron star with a dipolar magnetic field
has a net charge Q ¼ ð1=3ÞBNSr

3
NS�NS=c. As long as the

assumptions of the model are satisfied (that the black hole
produces a wind; see below), this charge is not canceled by
the electrostatic attraction of charges from the surrounding
medium. Thus, the black hole settles to the Kerr-Newman
solution. The corresponding Newman parameter is small,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2G=c4

p
RH

¼ Q

2
ffiffiffiffi
G

p
MNS

¼ BNSR
3
NS�NS

6cMNS

¼ 4� 10�8BNS;12P
�1
NS;�3: (32)

As we argued above, the closed magnetic field lines will be
quickly absorbed by the black hole, so that the magneto-
sphere will settle to the monopolar magnetic field structure
with no electric charge; see Fig. 1.

B. How a neutron star collapse proceeds

To summarize the above discussion, first, the space-time
of the collapsing neutron star temporarily passes through
the Kerr-Newman solution with parameters given by (28)
and (32); the electric charge is quickly lost due to the
absorption of the closed field lines. (We stress that the
loss of the electric charge is driven by the internal electro-
dynamics and not by the attraction of charges from the
surrounding medium.) Second, and most importantly, we
have demonstrated that the collapsing neutron star does not

produce any narrow current structures or other dissipative/
resistive structure that could become dissipative and
‘‘release’’ the overlaying magnetic field to infinity: the
field always remains connected to the surface of the star.
The fate of the magnetic field lines connected to the

surface of the star then depends on whether it is a closed
magnetic field line or the one open to infinity. For closed
loops, both footpoints are dragged toward the horizon and
eventually absorbed by the black hole. On the other hand,
the open magnetic field lines remain open and connected to
the hole, without ‘‘sliding off the black hole,’’ as long as
the assumptions of the model remain satisfied. Thus, for a
black hole surrounded by highly conducting plasma the
open magnetic field lines never become disconnected from
the black hole. As a result, the electromagnetic power
emitted by the black hole may continue for times much
longer than the immediate collapse time.
The key difference here from the conventional BZ

mechanism is that in the latter case the magnetic field is
assumed to be produced by the currents in an externally
supplied accretion disk, while here the magnetic field is
produced by the currents generated by the black hole itself.
Also note that this result does not violate the no-hair
theorem (e.g., [37]), which assumes that the outside is a
vacuum. In our case the outside medium is assumed to be a
highly conducting plasma all the way down to the black
hole horizon. Under this assumption the magnetic field
lines cannot be disconnected from the black hole.
There is a natural limit of applicability of the present

model. The electric currents that support the magnetic field
on the black hole are assumed to be self-produced by the
black hole via the vacuum breakdown, and not supplied by
the external current, like in the BZ case. The vacuum
breakdown requires a sufficiently high electric potential.
As the black hole spins down, the potential available for
particle acceleration decreases. After some time, the black
hole will not be able to break the vacuum. It will cross a
death line (using pulsar terminology) after which no par-
ticles are produced anymore, the outside will become a
vacuum, and by the no-hair theorem, the black hole will
lose its magnetic field. Also, starting from this moment the
black hole will be able to attract charges of opposite sign,
canceling the internal charge.
In fact, a somewhat different scenario is likely to play

out. Our experience with pulsars indicates that the plasma
production in the magnetosphere is a highly nonstationary
process. If there is an interruption in the plasma production
for a sufficiently long time, the magnetic field will be able
to slide off the black hole, shutting down the electromag-
netic power forever.

VI. ON THE NATURE OF SHORT
GAMMA-RAY BURSTS

The above results further highlight possible difficulties
with the progenitors of short GRBs being the merging

ELECTROMAGNETIC POWER OF MERGING AND . . . PHYSICAL REVIEW D 83, 124035 (2011)

124035-7



neutron stars [38]. On the one hand, numerical simulations
indicate that the active stage of NS-NS coalescence typi-
cally takes 10–100 msec. Only a small amount, � 0:1M�,
of material may be ejected during the merger, and it
accretes on time scales of 1–10 secs, depending on the
assumed � parameter of the resulting disk (e.g., [39–41]).
Thus, there is not enough baryonic matter left outside the
black hole to power a short GRB. Any energetically domi-
nant activity on much longer time scales contradicts the
NS-NS coalescence paradigm for short GRBs. This seem
to contradict observations that some short GRBs have
long-extended x-ray tails observed over time scales of
tens to hundreds of seconds. The tail fluence can dominate
over the primary burst (by a factor of 30 as in GRB080503
[42]). In addition, powerful flares appear late in the after-
glows of both short and long GRBs (e.g., in the case of
GRB050724, there is a powerful flare at 105 sec). In the
standard forward shock model of afterglows this requires
that at the end of the activity, lasting 10–100 msec, the
source releases more energy than during the prompt emis-
sion in a form of low � shells, which collides with the
forward shock after �106 dynamical times, a highly fine-
tuned scenario.

On the other hand, the expected electromagnetic powers
estimated in the present paper are fairly low for all the
discussed processes. Since the above results are based on
the analytical Michel-type structure of the black hole
magnetospheres, which for a given surface magnetic field
and spin has the largest amount of open magnetic field
lines and the largest electromagnetic power, the numerical
estimates above can be considered as upper limits.

The only exception to the above could be that an effi-
cient magnetic dynamo mechanism operates either during
neutron star merger (for short GRBs) or during a core
collapse of a massive star (for long GRBs), resulting in
the formation of a millisecond magnetar-type object with a
magnetic field reaching 1014 G [43,44]. Since, as we argue,
the black hole can retain its magnetic field for a long period
of time, the spindown time scale (31) may become suffi-
ciently short, hundreds to thousands of seconds, so that the
magnetic field can electromagnetically extract a large
fraction of the total rotational energy of the black hole,

Etot ¼ 1
2INS�

2
NS ¼ 2� 1051 erg��1P

�2
NS;�3: (33)

The fact that the electromagnetic extraction of the rota-
tional energy of the black hole can operate both in long and
short GRBs may explain a surprising observation that early
afterglows of long and short GRBs look surprisingly simi-
lar, forming a continuous sequence, e.g., in the relative
intensity of x-ray afterglows as a function of prompt energy
[45]. This is surprising in a forward shock model: the
properties of the forward shock do depend on the external
density, while the prompt emission is independent of it.
The difference between circumburst media densities in
long GRBs (happening in star forming regions) and short

GRBs (happening in low density galactic or even extra-
galactic medium) is many orders of magnitude. In defense
of the forward shock model, one might argue that afterglow
dynamics depends on Eejecta=n, both of which are orders of

magnitude smaller for short GRBs than long GRBs. Yet,
afterglows are very similar and, most importantly, form a
continuous sequence.
We suggest that the similarity of the early afterglow

properties of long and short GRBs, at times � 105 sec,
can be related to the fact that in both cases a spinning black
hole can retain a magnetic field for a sufficiently long time
to power the prompt and early afterglow emission via
internal dissipation in the wind [38].

VII. DISCUSSION

In this paper we discuss possible electromagnetic
signatures of the merging and collapsing compact
objects. At the inspiraling stage, in the case of a NS-NS
system, the peak Poynting power is LU;max ¼ 6�
1045 ergs�1ðBNS=10

12 GÞ2, while for the black hole–
neutron star systems it is an order of magnitude smaller.
Both the peak power and the total energy of the precursor
emission are fairly small (see Sec. II). Only for magnetar-
type magnetic fields can the corresponding emission be
observed at cosmological distances (see [11]).
We found a Michel-type solution for the structure of

time-dependent force-free magnetospheres in general rela-
tivity. Based on this solution, we argued that, contrary to
the previous estimates, the direct emission of the electro-
magnetic field, powered by the magnetic energy stored
outside of the neutron star, does not produce a considerable
electromagnetic signal: such a process is prohibited by the
high conductivity of the surrounding plasma.
Most importantly, as long as the black hole is able to

produce a highly conducting plasma via the vacuum break-
down, the magnetic field cannot ‘‘slide off’’ the black hole.
As a result, a black hole can retain a magnetic field for a
much longer time which is predicted by the no-hair theo-
rem, producing an electromagnetic power for a long time
after the collapse, without the need for an externally sup-
plied magnetic field. The no-hair theorem does not apply
here due to the assumed high conductivity of the plasma
surrounding the black hole. (Pulsars produce plasma and
currents all by themselves, without an external accretion
disk.) In other words, under an ideal approximation
the magnetic flux through a given surface remains fixed.
Thus, as long as the ideal approximation remains valid,
the total magnetic flux through the neutron star surface,
which quickly approaches the horizon, remains constant.
Therefore, as long as the assumptions of the model are
satisfied (that the black hole produces a surrounding
plasma), the black hole retains the magnetic field.
Since in the force-free limit the structures in the

current sheet are flying away with the speed of light (cf.,
the corrugated current sheet solution in Ref. [46]), any
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magnetic field reconnection occurring beyond the light

cylinder does not affect the global solution. On the other

hand, the moment the black hole fails to produce the

plasma (e.g., due to spontaneous reconnection within

the light cylinder), it will quickly lose its magnetic field

and stop producing any electromagnetic power. (It takes

one malfunction to break the black hole electromagnetic

engine.) It will likely be a random process, with no typical

time scale, that will terminate the electromagnetic emis-
sion well before the black hole spins down.
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APPENDIX: HYPERBOLIC GRAD-SHAFRANOV EQUATION

Generally, we can write

rK ¼�r sin�r�� e� þ r sin��rP� e� þrFðPÞ;
~E¼��rP� @tP

$
e� þ ~Bp;

F0 ~E � ~B¼ 0! F0 ¼ 2I@tP

ðrPÞ2 :
(A1)

The � component of the induction equation gives (the poloidal components are satisfied identically)

@tI ¼ 1
2ð��Fþ$ðr��rPÞÞ ¼ 1

2ð��Fþ$2ð ~B � r�ÞÞ: (A2)

The � component of Ampere’s law gives the hyperbolic wave Grad-Shafranov equation

$2r
�
1�$2�2

$2
rP

�
� @2t Pþ f�4ð��PÞI2 � 2IF00@tPðrPÞ2 þ IF0@tðrPÞ24ðrP � rIÞI

þ 4��P$2I2�2 � 2$I�2ðrP�rð@tP=�ÞÞ � e� � 2ð��PÞIF0@tPþ ððrPÞ2 þ 8I2Þ$2�ðrP � r�Þ
þ 8$I2�2ðrP � rðr sin�ÞÞg 1

ðrPÞ2 þ 4I2
¼ 0: (A3)
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