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Based on the work of Chen, Lü, and Pope, we derive expressions for the D � 6 dimensional metric for

Kerr-anti-de Sitter black holes with two independent rotation parameters and all others set equal to zero:

a1 � 0, a2 � 0, a3 ¼ a4 ¼ � � � ¼ 0. The Klein-Gordon equation is then explicitly separated on this

background. For D � 6 this separation results in a radial equation coupled to two generalized spheroidal

angular equations. We then develop a full numerical approach that utilizes the asymptotic iteration method

to find radial quasinormal modes of doubly rotating flat Myers-Perry black holes for slow rotations. We

also develop perturbative expansions for the angular quantum numbers in powers of the rotation

parameters up to second order.
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I. INTRODUCTION

After the advent of the brane world scenario [1] and the
AdS/CFT correspondence [2], there has been a growing
interest in the study of higher-dimensional black holes.
Perhaps the strongest driver behind this interest is that
the LHC [3] may produce black holes in the near future
and such black holes, if produced, would have large angu-
lar momentum. Therefore higher-dimensional generaliza-
tions of the Kerr solution are the natural setting for these
studies.

Rotating black holes in higher dimensions were first
discussed in the seminal paper by Myers and Perry [4].
One of the unexpected results to come from this work was
that some families of solutions were shown to have event
horizons for arbitrarily large values of their rotation pa-
rameters. The stability of such black holes is certainly in
question [5,6], but no direct proof of instability has been
provided. Another new feature of the Myers-Perry (MP)
solutions was that they in general have bD�1

2 c spin parame-

ters, making them somewhat more complex than the four
dimensional Kerr solution. The first asymptotically nonflat
five-dimensional MP metric was given in [7]. Subsequent
generalizations to arbitrary dimensions was done in [8],
and finally the most general Kerr-anti-de Sitter-NUT met-
ric was found by Chen, Lü, and Pope [9].

In the literature the focus has been largely directed
toward solutions with only one rotation parameter, the
so-called simply rotating case. The reason for this is that
in the brane world, collider produced black holes would
initially only have one dominant angular momentum

direction. This is due to the particles that produce the black
hole being confined to our 3-brane and therefore the rota-
tion would be largest in the plane of collision on the brane.
However, there is reason to believe this picture may be too
naive. In any realistic situation the brane would be ex-
pected to have a thickness of the inverse Plank scale. At
impact, the colliding particles would in general be offset in
these thick directions and therefore further nonzero angular
momenta would be present in other rotation planes of the
black hole. Even though these angular momenta would be
small compared with the rotation on the brane there is
strong evidence [10] to suggest that such black holes would
evolve into a final state in which all the angular momentum
parameters were of the same order. There are also com-
pelling theoretical reasons why one would want to go
beyond the simply rotating case. In particular, the quasi-
normal modes (QNMs) of these solutions may have appli-
cations in the AdS/CFT correspondence.
The study of the wave equations in higher-dimensional

rotating black-hole spacetimes was initiated in [11] by
analyzing the Klein-Gordon equation in five dimensions.
The analysis relied crucially on the method of the separa-
tion of variables. The problem of separability of these wave
equations in higher dimensions is a difficult one, even for
the Klein-Gordon case; early attempts were only aimed at
special cases [12]. Finally, using the Chen-Lü-Pope metric,
Frolov, Krtous, and Kubiznak [13] were able to separate
the geodesic equation and the Klein-Gordon equation in
the most general setting. This was then realized to be due
to the presence of hidden symmetries, in the form of
Killing tensors [14–16]. A whole tower of Killing tensors
and symmetry operators [17] can be constructed with the
help of the corresponding Killing-Yano and conformal
Killing-Yano tensors. They guarantee the separability of
the geodesic equation, the Klein-Gordon equation and also
the Dirac equation [18]. Unfortunately, the higher spin
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wave equations, especially the gravitational perturbation
equation, have not yet been subjected to such an analysis.

Even for the scalar wave equation, efforts so far have
been focused mostly on the simply rotating case. Notably,
in [19–21], the stability of the scalar perturbation in six and
higher dimensions was considered in the ultrarotating
cases, where no instability was found. Because of the
interest in anti-de Sitter (AdS) spacetimes, the investiga-
tion was extended to Kerr-AdS black holes [22–26]. Here
the expected superradiant instability did indeed show up.
In addition, Hawking radiation in these spacetimes
(Kerr-dS) [27,28] were calculated with possible applica-
tions to the production and decay of LHC black holes [29].

In this article we show how both the D � 6 two rotation
metric and the separation of the scalar wave-equation on
this metric can be achieved quite economically by working
with the general Kerr-NUT-AdS metric described in [9].
That is, we begin with the full set of bD�1

2 c rotation parame-

ters, a�, and bD�2
2 c coordinate variables, yi, and then take

the limit that all but two of the rotations goes to zero. This
then reduces the full metric down to that with only two
nonzero rotation parameters and allows us to present this
metric explicitly in these coordinates, with an expression
valid for any dimension D � 6.1

In this form the separation of the Klein-Gordon equation
proceeds analogously to the case with all rotations present.
For simplicity we will set the NUT charges L� ¼ 0
although in general this is not an obstacle to separation.

The structure of the paper is as follows: In the next
section (Sec. II), we present the general metric of
Kerr-(A)dS black holes with two rotations. The corre-
sponding Klein-Gordon equation is separated into one
radial equation and two angular ones. In Sec. III we
develop a full numerical method using the asymptotic
iteration method (AIM) to solve for the angular eigenval-
ues and the radial QNMs for two rotation parameters.
Conclusions and discussions are then given in Sec. IV. In
Appendix A the small a1, a2 expansion for the angular
quantum numbers for two angular equations analytically
are given up to second order; we call this ‘‘double pertur-
bation theory.’’ This allows us to check the AIM against the
perturbative method.

II. THE METRIC AND THE SEPARATED
EQUATIONS OF THE KLEIN-GORDON
EQUATION WITH TWO ROTATIONS

In this section, we shall first derive the Kerr-(A)dS
metric with two rotations from the general metric obtained

in [9]. To specialize to the case with only two rotations, we
take the limit a3; a4; � � � ! 0, while, without loss of gen-
erality, keep a1 > a2 > a3 > a4 > � � � , where the ai’s are
the rotation parameters. Then we explicitly separate the
Klein-Gordon equation on this metric. The separation in
the general Kerr-(A)dS metric was first performed in [13].
We follow their procedure for the case with only two
rotations, where we find one resulting radial equation and
two angular ones.

A. General metric with two rotations

We start looking at the metric with D ¼ 2n, that is, for
even dimensions. However, the result we obtain at the end
is also valid for odd dimensions. For D ¼ 2n, there are at
most n� 1 rotation directions so we have ai, with i ¼
1; 2; . . . ; n� 1. This metric, satisfying R�� ¼ �3g2g��,

can be expressed as follows [9]:

ds2¼U

X
dr2þ Xn�1

�¼1

U�

X�

dy2��X

U

�
Wd~t�Xn�1

i¼1

�id ~�i

�
2

þ Xn�1

�¼1

X�

U�

�ð1þg2r2ÞW
1�g2y2�

d~t�Xn�1

i¼1

ðr2þa2i Þ�i

a2i �y2�
d ~�i

�
2
;

(2.1)

where

U ¼ Yn�1

�¼1

ðr2 þ y2�Þ;

U� ¼ �ðr2 þ y2�Þ
Yn�1

�¼1;���

ðy2� � y2�Þ;
(2.2)

X ¼ ð1þ g2r2ÞYn�1

k¼1

ðr2 þ a2kÞ � 2Mr;

X� ¼ �ð1� g2y2�Þ
Yn�1

k¼1

ða2k � y2�Þ;
(2.3)

W ¼ Yn�1

�¼1

ð1� g2y2�Þ; �i ¼
Yn�1

�¼1

ða2i � y2�Þ; (2.4)

t ¼ ~t
Yn�1

i¼1

ð1� g2a2i Þ;

�i ¼ aið1� g2a2i Þ ~�i

Yn�1

k¼1;k�i

ða2i � a2kÞ;

(2.5)

1The case with D ¼ 5 is exceptional because even though
there are two rotation parameters there is only one Jacobi
coordinate variable y1. As we shall see, for D � 6, in the limit
of keeping only two rotation parameters a total of two Jacobi
coordinates survive. The D ¼ 5 case will be considered in a
separate work [30].
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with 1 � �, i � n� 1. �i is the azimuthal angle for each
ai.

2 With the direction cosines �i, i ¼ 1; . . . ; n, the metric
for a unit D� 2 sphere is just

d�2 ¼ Xn
i¼1

d�2
i þ

Xn�1

i¼1

�2
i d�

2
i ; (2.6)

subject to the constraint
P

n
i¼1 �

2
i ¼ 1. This constraint can

be solved in terms of the unconstrained latitude variables
y�’s,

�2
i ¼

Q
n�1
�¼1ða2i �y2�Þ

a2i
Q

n�1
k¼1;k�iða2i �a2kÞ

; �2
n¼

Q
n�1
�¼1y

2
�Q

n�1
i¼1 a

2
i

: (2.7)

Expressed in terms of the unconstrained yi coordinates the
metric for the unit sphere becomes diagonal:

d�2 ¼ Xn�1

�¼1

g�dy
2
� þ Xn�1

i¼1

�2
i d�

2
i ; (2.8)

with

g� ¼
Q

n�1
�¼1;���ðy2� � y2�ÞQ

n�1
k¼1ða2k � y2�Þ

: (2.9)

This choice then allows for a more symmetric form of the
general Kerr-(A)dS metrics [9] as we shall see below for
the two rotations case.

To obtain a general metric with two rotations we take the
limit a3; a4; . . . ; an�1 ! 0 while assuming that a1 > a2 >
a3 > � � �> an�1. From the definition in Eq. (2.7) we see
that yi is of the same order of magnitude as ai.

Bearing this in mind, in the above limit, we can consider
the different terms in Eq. (2.1):

U

X
dr2 ¼ ðr2 þ y21Þðr2 þ y22Þ

�r

dr2; (2.10)

where

�r ¼ ð1þ g2r2Þðr2 þ a21Þðr2 þ a22Þ �
2M

rD�7
: (2.11)

Note the solutions of �r ¼ 0 lead to the black hole and
cosmological horizons: rþ and rc, respectively, for the
Kerr-dS case (g < 0).
As another example, under this limiting procedure, the

quantities

U3 ! �r2y21y
2
2ð�y23Þn�4;

X3 ! �a21a
2
2ða23 � y23Þð�y23Þn�4;

(2.12)

both seem to vanish in the limiting process, however, the
ratio

U3

X3
dy23 ! r2

�
y21y

2
2

a21a
2
2

�
1

a23 � y23
dy23 ¼ r2

�
y21y

2
2

a21a
2
2

�
g3dy

2
3

(2.13)

is actually finite. Here in defining g3 we have taken into
account only the angular variables associated with
a3; a4; . . . ; an�1. In the same way, part of the sum in the
second term of the metric in Eq. (2.1) then constitutes

Xn�1

�¼3

U�

X�

dy2� ! r2
�
y21y

2
2

a21a
2
2

� Xn�1

�¼3

g�dy
2
�: (2.14)

Similarly, part of the other sum in Eq. (2.1) gives

Xn�1

�¼3

X�

U�

�ð1þ g2r2ÞW
1� g2y2�

d~t� Xn�1

i¼1

ðr2 þ a2i Þ�i

a2i � y2�
d ~�i

�
2

! r2
�
y21y

2
2

a21a
2
2

� Xn�1

i¼3

�2
i d�

2
i : (2.15)

Combining these two we obtain the metric for a D� 6
sphere,

r2
�
y21y

2
2

a21a
2
2

��Xn�1

�¼3

g�dy
2
� þ Xn�1

i¼3

�2
i d�

2
i

�
¼ r2

�
y21y

2
2

a21a
2
2

�
d�2

D�6;

(2.16)

as indicated in Eq. (2.8).
Finally, for dimensions D � 6, the metric with two

rotations can be given by

2Note that the metric for the odd case is slightly different, see
[9]. Chen et al. also define an extra parameter an ¼ 0 in the even
case in order to make some parts of the treatment between even
and odd cases homogeneous. However, for better clarity we have
elected not to do this here, i.e., we assume there are only n� 1
parameters, ai, in the even case.
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ds2 ¼ � �r

ðr2 þ y21Þðr2 þ y22Þ
�ð1� g2y21Þð1� g2y22Þ
ð1� g2a21Þð1� g2a22Þ

dt� ða21 � y21Þða21 � y22Þ
ð1� g2a21Þða21 � a22Þ

d�1

a1
� ða22 � y21Þða22 � y22Þ

ð1� g2a22Þða22 � a21Þ
d�2

a2

�
2

þ �y1

ðr2 þ y21Þðy22 � y21Þ
�ð1þ g2r2Þð1� g2y22Þ
ð1� g2a21Þð1� g2a22Þ

dt� ðr2 þ a21Þða21 � y22Þ
ð1� g2a21Þða21 � a22Þ

d�1

a1
� ðr2 þ a22Þða22 � y22Þ

ð1� g2a22Þða22 � a21Þ
d�2

a2

�
2

þ �y2

ðr2 þ y22Þðy21 � y22Þ
�ð1þ g2r2Þð1� g2y21Þ
ð1� g2a21Þð1� g2a22Þ

dt� ðr2 þ a21Þða21 � y21Þ
ð1� g2a21Þða21 � a22Þ

d�1

a1
� ðr2 þ a22Þða22 � y21Þ

ð1� g2a22Þða22 � a21Þ
d�2

a2

�
2

þ ðr2 þ y21Þðr2 þ y22Þ
�r

dr2 þ ðr2 þ y21Þðy22 � y21Þ
�y1

dy21 þ
ðr2 þ y22Þðy21 � y22Þ

�y2

dy22 þ r2
�
y21y

2
2

a21a
2
2

�
d�2

D�6; (2.17)

and

�r ¼ ð1þ g2r2Þðr2 þ a21Þðr2 þ a22Þ � 2Mr7�D; (2.18)

�y1 ¼ ð1� g2y21Þða21 � y21Þða22 � y21Þ; (2.19)

�y2 ¼ ð1� g2y22Þða21 � y22Þða22 � y22Þ: (2.20)

Here we have kept the variables y1 and y2 instead of writing them in terms of angular variables. This is because the
relationship, as shown in Eq. (2.7), is rather complicated to write out explicitly. If we solve y1 and y2 in terms of�1 and�2,
we have

y21;2 ¼
1

2

�
a21ð1��2

1Þ þ a22ð1��2
2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a21a

2
2ð�2

1 þ�2
2 � 1Þ þ ða21ð1��2

1Þ þ a22ð1��2
2ÞÞ2

q �
: (2.21)

It then follows that y1 and y2 must be constrained by

a2 � y1 � a1; 0 � y2 � a2 (2.22)

in order for Eq. (2.7) to be well defined.
We used a similar procedure as above to show that the

metric in the odd dimensional D ¼ 2nþ 1 case reduces to
the same form as the one shown in Eq. (2.17).

B. Separated equations for the Klein-Gordon equation

The separation of the Klein-Gordon equation in the
general Kerr-(A)dS metric has been achieved in [13].
Here we shall show explicitly how the separation goes
for the case with two rotations. To begin with it is conve-
nient to rewrite the metric in Eq. (2.17) as

ds2 ¼ �Q1½Að0Þ
1 dc 0 þ Að1Þ

1 dc 1 þ Að2Þ
1 dc 2�2

þQ2½Að0Þ
2 dc 0 þ Að1Þ

2 dc 1 þ Að2Þ
2 dc 2�2

þQ3½Að0Þ
3 dc 0 þ Að1Þ

3 dc 1 þ Að2Þ
3 dc 2�2

þ 1

Q1

dr2 þ 1

Q2

dy21 þ
1

Q3

dy22 þ r2
�
y21y

2
2

a21a
2
2

�
d�2

D�6;

(2.23)

where

Q1 ¼ �r

ðr2 þ y21Þðr2 þ y22Þ
;

Q2 ¼
�y1

ðr2 þ y21Þðy22 � y21Þ
;

Q3 ¼
�y2

ðr2 þ y22Þðy21 � y22Þ
;

(2.24)

and c k are related to t, �1 and �2 by

c 0 ¼ t

ð1� g2a21Þð1� g2a22Þ
� a31�1

ð1� g2a21Þða21 � a22Þ

� a32�2

ð1� g2a22Þða22 � a21Þ
(2.25)

c 1 ¼ � g2t

ð1� g2a21Þð1� g2a22Þ
þ a1�1

ð1� g2a21Þða21 � a22Þ
þ a2�2

ð1� g2a22Þða22 � a21Þ
(2.26)

c 2 ¼ g4t

ð1� g2a21Þð1� g2a22Þ
� �1

a1ð1� g2a21Þða21 � a22Þ
� �2

a2ð1� g2a22Þða22 � a21Þ
; (2.27)

or conversely,

t ¼ c 0 þ ða21 þ a22Þc 1 þ a21a
2
2c 2 (2.28)
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�1

a1
¼ g2c 0 þ ð1þ g2a22Þc 1 þ a22c 2 (2.29)

�2

a2
¼ g2c 0 þ ð1þ g2a21Þc 1 þ a21c 2: (2.30)

The matrix AðkÞ
� is given by

AðkÞ
� ¼

1 y21 þ y22 y21y
2
2

1 �r2 þ y22 �r2y22
1 �r2 þ y21 �r2y21

0
B@

1
CA; (2.31)

with the inverse B�
ðkÞ,

B
�
ðkÞ ¼

r4

ðr2þy2
1
Þðr2þy2

2
Þ

�y41
ðr2þy2

1
Þðy2

2
�y2

1
Þ

�y42
ðr2þy2

2
Þðy2

1
�y2

2
Þ

r2

ðr2þy21Þðr2þy22Þ
y2
1

ðr2þy21Þðy22�y21Þ
y2
2

ðr2þy22Þðy21�y22Þ
1

ðr2þy21Þðr2þy22Þ
�1

ðr2þy21Þðy22�y21Þ
�1

ðr2þy22Þðy21�y22Þ

0
BBBB@

1
CCCCA:
(2.32)

In this notation the inverse metric components are

grr ¼ Q1; gy1y1 ¼ Q2; gy2y2 ¼ Q3;

gc ic j ¼ � 1

Q1

B1
ðiÞB

1
ðjÞ þ

1

Q2

B2
ðiÞB

2
ðjÞ þ

1

Q3

B3
ðiÞB

3
ðjÞ;

(2.33)

plus the angular part related to the metric gab, and the
inverse gab, for a unit (D� 6)-dimensional sphere SD�6.
The determinant of the metric is then given by

detg�� ¼ �
�
r2

y21y
2
2

a21a
2
2

�
D�6ðr2 þ y21Þ2ðr2 þ y22Þ2

� ðy21 � y22Þ2 detgab: (2.34)

Writing the Klein-Gordon field as

� ¼ RrðrÞRy1ðy1ÞRy2ðy2Þeic 0�0eic 1�1eic 2�2Yð�Þ;
(2.35)

the Klein-Gordon equation @�ð ffiffiffiffiffiffiffi�g
p

g��@��Þ ¼ 0 can be

simplified to

1

ðr2 þ y21Þðr2 þ y22Þ
�

1

Rrr
D�6

@rðrD�6�r@rRrÞ
�
þ 1

ðr2 þ y21Þðy22 � y21Þ
�
1

Ry1

�
a1
y1

�
D�6

� @y1

��
y1
a1

�
D�6ð1� g2y21Þða21 � y21Þða22 � y21Þ@y1Ry1

��
þ 1

ðr2 þ y22Þðy21 � y22Þ
�
1

Ry2

�
a2
y2

�
D�6

� @y2

��
y2
a2

�
D�6ð1� g2y22Þða21 � y22Þða22 � y22Þ@y2Ry2

��
þ ðr2 þ y21Þðr2 þ y22Þ

�r

½B1
ð0Þ�0 þ B1

ð1Þ�1 þ B1
ð2Þ�2�2

� ðr2 þ y21Þðy22 � y21Þ
�y1

½B2
ð0Þ�0 þ B2

ð1Þ�1 þ B2
ð2Þ�2�2 � ðr2 þ y22Þðy21 � y22Þ

�y2

� ½B3
ð0Þ�0 þ B3

ð1Þ�1 þ B3
ð2Þ�2�2 � a21a

2
2

r2y21y
2
2

jðjþD� 7Þ ¼ 0; (2.36)

where�jðjþD� 7Þ is the eigenvalue of the Laplacian on
SD�6. By putting in the values of B

�
ðkÞ and by using the

identities

1

r2y21y
2
2

¼ 1

ðr2 þ y21Þðr2 þ y22Þr2
þ 1

ðr2 þ y21Þðy22 � y21Þy21
þ 1

ðr2 þ y22Þðy21 � y22Þy22
; (2.37)

r2

ðr2 þ y21Þðr2 þ y22Þ
þ y21

ðr2 þ y21Þðy22 � y21Þ

þ y22
ðr2 þ y22Þðy21 � y22Þ

¼ 0; (2.38)

1

ðr2 þ y21Þðr2 þ y22Þ
� 1

ðr2 þ y21Þðy22 � y21Þ
� 1

ðr2 þ y22Þðy21 � y22Þ
¼ 0; (2.39)

we have the following separated equations:

1

Rrr
D�6

@rðrD�6�r@rRrÞ þ 1

�r

ðr4�0 þ r2�1 þ�Þ2

� a21a
2
2jðjþD� 7Þ

r2
¼ b1r

2 þ b2; (2.40)
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1

Ry1

�
a1
y1

�
D�6

@y1

��
y1
a1

�
D�6ð1�g2y21Þða21�y21Þ

�ða22�y21Þ@y1Ry1

�
� 1

�y1

ð�y41�0þy21�1��2Þ2

�a21a
2
2jðjþD�7Þ

y21
¼b1y

2
1�b2;

1

Ry2

�
a2
y2

�
D�6

@y2

��
y2
a2

�
D�6ð1�g2y22Þða21�y22Þ

�ða22�y22Þ@y2Ry2

�
� 1

�y2

ð�y42�0þy22�1��2Þ2

�a21a
2
2jðjþD�7Þ

y22
¼b1y

2
2�b2; (2.41)

where b1 and b2 are constants.
In these equations the constants �i can be obtained by

considering eic 0�0eic 1�1eic 2�2 ¼ e�i!teim1�1eim2�2 .
Using the relationship between t, �1, �2 and c 0, c 1, c 2

in Eqs. (2.28) to (2.30), we have

�0 ¼ �!þ g2ðm1a1 þm2a2Þ; (2.42)

�1 ¼ �!ða21 þ a22Þ þm1a1ð1þ g2a22Þ
þm2a2ð1þ g2a21Þ; (2.43)

�2 ¼ �!a21a
2
2 þm1a1a

2
2 þm2a

2
1a2: (2.44)

More explicitly, the radial equation is

1

rD�6

d

dr

�
rD�6�r

dRr

dr

�
þ
�ðr2þa21Þ2ðr2þa22Þ2!2

�r

�2!ð1þg2r2Þðr2þa21Þ2ðr2þa22Þ2
�r

�
m1a1
r2þa21

þ m2a2
r2þa22

�

þð1þg2r2Þ2ðr2þa21Þ2ðr2þa22Þ2
�r

�
m1a1
r2þa21

þ m2a2
r2þa22

�
2

�a21a
2
2jðjþD�7Þ

r2
�b1r

2�b2

�
Rr¼0; (2.45)

and the angular equations are, for i ¼ 1, 2,

�
ai
yi

�
D�6 d

dyi

��
yi
ai

�
D�6ð1�g2y2i Þða21�y2i Þða22�y2i Þ

dRyi

dyi

�

þ
�
�ða21�y2i Þða22�y2i Þ!2

1�g2y2i
þ2!½m1a1ða22�y2i Þ

þm2a2ða21�y2i Þ��2m1a1m2a2ð1�g2y2i Þ

�m2
1a

2
1ð1�g2y2i Þða22�y2i Þ

a21�y2i
�m2

2a
2
2ð1�g2y2i Þða21�y2i Þ

a22�y2i

�a21a
2
2jðjþD�7Þ

y2i
�b1y

2
i þb2

�
Ryi ¼0: (2.46)

These master equations possess the following symme-
tries:

ðm1; a1Þ $ ðm2; a2Þ; and ðmi; aiÞ $ ð�mi;�aiÞ:
(2.47)

As we shall see, because of these symmetries, we only need
to calculate the QNMs and eigenvalues in the a1 > a2 > 0
octant. The values in the other octants can be deduced from
those with their quantum numbers transformed appropri-
ately under the above symmetries, see Fig. 1.
Assuming that the rotation parameters a1 and a2 are

small, the angular eigenvalues b1 and b2 in the coupled
angular equations above can be found perturbatively (i.e.,
as a power series in � ¼ a2=a1 and a1), see Appendix A.
The results are

b1 ¼ B1 � 2!ðm1a1 þm2a2Þ þ 2g2m1a2m2a2; (2.48)

b2 ¼ a21B2 � 2!ðm1a1a
2
2 þ a21m2a2Þ þ 2m1a1m2a2;

(2.49)

where

B1 ¼ B100 þ B102 þOð�0a41; �2Þ;
B2 ¼ B200 þ ½B220 þ B222 þOð�2a41Þ� þOð�4Þ:

(2.50)

The relevant terms can be obtained from Eqs. (A15), (A19),
(A27), (A31), and (A32).

III. NUMERICAL METHOD

As shown in Appendix A a perturbative method can be
used to determine the low order eigenvalues analytically;
however, we were unable to do so in general for higher
order terms, as exemplified in Eq. (A36). This is unfortu-
nate because if approximate analytic expressions in terms
of ! existed for b1 and b2 then we could have simply
substituted them into the radial equation and performed the

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

a1

a 2

FIG. 1. Because of the symmetries of the master equations we
are able to patch together the QNM solutions obtained in the
a1 > a2 > 0 octant to find the solution in the whole
ða1; a2Þ-parameter space. We are also able to find the angular
eigenvalues b1, b2 in this way.
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QNM analysis without any further reference to the yi
equations (at least for small values of a1, a2). The fact
that the perturbative expansions of b1 and b2 are not
algebraic expressions makes them unusable in the compu-
tation of the QNMs, because the analysis in general
requires solving for the zeros of some polynomial equation
in !.

In addition to this, we can only expect the perturbative
values to hold in the small rotation regime a2 < a1 � 1.
Therefore, it is desirable to have an alternative method of
calculating these values. In this section we will describe a
method that can be used to calculate both the eigenvalues
b1, b2 and the QNM, !, numerically. This will serve as a
consistency check of the results obtained in Appendix A
and will also allow us to go to larger values in the rotation
parameters.

To achieve this we will use the improved asymptotic
iteration method described in [31]. In the current problem
this method has some advantages over that of the more
commonly used continued fraction method (CFM) [32]. In
particular, the CFM requires lengthy calculations to pre-
pare the recurrence relation coefficients that are subse-
quently used in the algorithm. Such manipulations are
prone to error, and given the complexity of the current
equations it is advantageous to use a method which by-
passes this step. Furthermore, due to the existence of four
regular singular points (RSP) the CFM requires a further
Gaussian elimination step in order to reduce the recurrence
relation down to a three term recurrence relation [33]. As
we shall see the AIM works for an ordinary differential
equation (ODE) with four RSPs in the same way as it
would for a three RSP ODE and is therefore easier to
implement.3

The three Eqs. (2.45) and (2.46) can be made to look
more symmetrical by completing the square in terms of !
and defining

~! r ¼ !� ð1þ g2r2Þ
�
m1a1
r2 þ a21

þ m2a2
r2 þ a22

�
; (3.1)

~!yi ¼ !� ð1� g2y2i Þ
�
m1a1
a21 � y2i

þ m2a2
a22 � y2i

�
; (3.2)

then,

0 ¼ 1

rD�6

d

dr

�
rD�6�r

dRr

dr

�
þ

�ðr2 þ a21Þ2ðr2 þ a22Þ2
�r

~!2
r

� a21a
2
2jðjþD� 7Þ

r2
� b1r

2 � b2

�
Rr; (3.3)

0 ¼
�
ai
yi

�
D�6 d

dyi

��
yi
ai

�
D�6

�yi

dR�i

dyi

�

�
�ða21 � y2i Þ2ða22 � y2i Þ2

�yi

~!2
yi

þ a21a
2
2jðjþD� 7Þ

y2i
þ b1y

2
i � b2

�
R�i ; (3.4)

where i ¼ 1, 2.
In the next section we shall solve the angular Eqs. (3.4)

showing how the AIM can be used to numerically find the
b1 and b2 angular eigenvalues and then we shall study the
radial Eq. (3.3) and use the AIM to calculate the QNM, !.
Before moving on, we shall briefly discuss the relation of
~!r with superradiance and the horizon structure.
Superradiance and the WKB form of the potential
We can understand the form of ~!r when writing the

radial equation in the WKB form by transforming as

RrðrÞ ¼ r�D=2þ3ðr2 þ a21Þ�1=2ðr2 þ a22Þ�1=2PrðrÞ; (3.5)

where we defined the tortoise coordinate by

dr?
dr

¼ ðr2 þ a21Þðr2 þ a22Þ
�r

: (3.6)

The WKB wave equation is

d2Pr

dr2?
þ

�
~!2
r � �r

ðr2 þ a21Þ2ðr2 þ a22Þ2
UðrÞ

�
Pr ¼ 0;

(3.7)

where ~!r is given in Eq. (3.1) and

UðrÞ¼
�
a21a

2
2jðjþD�7Þ

r2
þb1r

2þb2

�

��r

r

�
r2

ðr2þa21Þ2
þ r2

ðr2þa22Þ2
�1

2

�
1

r2þa21

þ 1

r2þa22

��
�ð1þg2r2Þðr2þa21Þðr2þa22Þ

�
�
3�D=2� r

2

�
1

r2þa21
þ 1

r2þa22

��

�
�
D�7

r2
þ 2g2

1þg2r2
þ 2

r2þa21
þ 2

r2þa22

�

��r

�
3�D=2

r
�1

2

�
1

r2þa21
þ 1

r2þa22

��
2
: (3.8)

Given the standard solution of the WKB wave function at
infinity and near the horizon (mapped to minus infinity in
tortoise coordinates), this identifies ~!rðrhÞ< 0 as super-
radiant [34] for certain values of a1, a2 and m1, m2. In the
superradiant case the transmission probability (jAj2) be-
comes negative and for Kerr-AdS we would expect this to
lead to superradiant instabilities, see [22] for an example in
the simply rotating case.

3Nevertheless we found that the AIM required more iterations
as the rotation parameter was increased which made it prohibi-
tive to go beyond about a1 	 1:5. Presumably the CFM would
work more efficiently in this regime, however, in the current
work only the small rotation QNMs were considered.
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It may be worth mentioning that the WKB form of the
radial potential could be used to find the QNMs via the
WKB method of Iyer and Will [35], once the angular
eigenvalues are known [36]. It could also be used to find
Hawking emissions via the WKB method [37].

Horizon structure for g ¼ 0
It is worth noting that even in flat space (g ¼ 0) the

horizon structure is slightly different for D ¼ 6 than it is
for the larger dimensions. The reason for this is related to
the number of angular momentum parameters that have
been set to zero. In D ¼ 6 there are only two possible
parameters, yet in D ¼ 7, 8 there are three and in D ¼ 9,
10 there are four parameters. In fixing the number of
rotations to only two, as we have done in the current
work, D ¼ 6 is the only case in which the full set are
present. Furthermore, only D ¼ 6 and D ¼ 7 will have
naked singularity solutions, see [38] for details.

When obtaining our numerical results it will be neces-
sary to fix a mass scale. Instead of setting M ¼ 1 it is
conventional (and convenient) to set the horizon radius
rh ¼ 1, see for example [20]. However, setting rh ¼ 1
automatically imposes the condition that a horizon exists.
In this case, the solution will either have two horizons or a
degenerate horizon. Using the results in [38], the degener-
ate horizon solution can be found in the even case from the
P2 polynomial. In units with rh ¼ 1 the degenerate solu-
tion occurs when

a22 ¼
3þ a21
a21 � 1

: (3.9)

A plot of this situation is shown in Fig. 2. As can be seen
from this plot the degenerate horizon curve (solid line)
divides the positive quadrant ða1; a2Þ-parameter space into
two regions. One might wonder if the shaded blue region
represents solutions with a naked singularity. However, this
cannot be the case since the horizon was fixed to unity and
therefore only those solutions with a horizon are being
considered. The existence of the two regions is actually
related to the fact that in general there are two horizons, an
inner horizon and an outer horizon. It is the relative posi-
tion of these horizons that is responsible for separating the
parameter space into two. Even though we have set rh ¼ 1
we have not specified which of the two horizons should
take this value! Solutions under the degenerate curve in
Fig. 2 correspond to those with the outer horizon fixed at
unity while those above the curve correspond to solutions
with the inner horizon fixed at unity. The difference be-
tween these two solutions is just a change of units, so the
physical content in both cases is the same; for every point
above the line there is an equivalent solution below the line
except that the normalization of the mass is different in
each case. Therefore, it is only necessary to study those
solutions below the line in order to understand the entire
stability problem.

In a similar way to the above reasoning it is possible to
show that there are no degenerate solutions (for only two
nonzero spins) in higher than six even dimensions.
Furthermore, using the P1 polynomial also defined in
[38] one can again show that there are no degenerate
solutions in odd dimensions.4 Thus, D ¼ 6 is in this sense
a special case. Nevertheless, we will only be investigating
the small rotation region (gray triangular region shown in
Fig. 2), and in this regime the numerical method can be
implemented identically in all dimensions.

A. Higher-dimensional spheroidal harmonics
with two rotation parameters

The two Eqs. (3.4) are in fact the two rotation general-
ization of the higher-dimensional spheroidal harmonics
studied in [39]. In this case, the existence of two rotation
parameters leads to a system of two coupled second order
ODEs.5 We note that, in general, one would expect that the
generalizations of the higher-dimensional spheroidal har-
monics to bD�1

2 c rotation parameters would lead to even

0 1 2 3 4 5
0

1

2

3

4

5

a1

a 2

3 , 3

FIG. 2 (color online). Plot of the D ¼ 6 parameter space. The
solid curve corresponds to solutions (in units of rh ¼ 1) where
the two horizons overlap (degenerate). Below the curve the outer
horizon is fixed to unity. As the angular momenta are increased
in the direction of the curve the two horizons cross (i.e., on the
degenerate curve) and then pass into the blue shaded region
corresponding to solutions with the inside horizon fixed to
rh ¼ 1. Thus every solution below the curve (with normalization
such that the outer horizon is fixed at unity) has a corresponding
equivalent solution above the curve with a different normaliza-
tion of the outside horizon. Because of symmetries we only need
to study the a2 < a1 region shown by the dashed line.
Furthermore, in this work, we will only be investigating the
small rotation a1 � 1 region shown shaded in gray.

4This occurs even though in D ¼ 7 there is a constraint on the
angular momenta. In this case, the position of the degenerate
horizon occurs at rh ¼ 0 (this horizon has zero area and there-
fore should more properly be thought of as a naked singularity)
and is therefore excluded by the assumption rh ¼ 1 since zero
can not be scaled to 1 by an appropriate choice of units.

5For the moment we are considering ! to be an independent
parameter.
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larger systems of equations. While these systems would
also be useful generally in studies of MP black holes, here
we will only focus on the two rotation case.

It can be seen that these equations have regular singular
points at y2i ¼ a21, a

2
2,

1
g2
and 0. We assume that the cosmo-

logical constant is small and, in particular, that a21 � j 1
g2
j.

Recall that y1 and y2 are defined on the domains shown in
constraint (2.22). We would therefore expect the solutions
to be well behaved except possibly at the boundaries of
these domains where singularities are present. In order to
determine the regular solutions we need to define an ap-
propriate norm on the space of solutions. First we change
to the variable y2i ¼ 	i. The angular equations can then be
written in the Sturm-Liouville form (assuming momen-
tarily that ! and b2 are real)


wð	iÞR�ið	iÞ ¼ � d

d	i

�
pð	iÞ d

d	i

R�ið	iÞ
�

þ qð	iÞR�ið	iÞ (3.10)

with the weight function w1ð	iÞ ¼ 1
4	

ðD�5Þ=2
i , the eigen-

value 
 ¼ �b1, and

pð	iÞ ¼ 	ðD�5Þ=2
i �	i ; (3.11)

qð	iÞ ¼ 1

4
	ðD�7Þ=2
i

�ða21 � 	iÞ2ða22 � 	iÞ2
�	i

~!2
	i

þ a21a
2
2jðjþD� 7Þ

	i

� b2

�
; (3.12)

where�	i
and ~!	i

are defined in the obvious way under the

change of coordinates. Since wð	Þ> 0 we can define the
two norm’s:

N1ðR�1Þ /
Z a2

1

a2
2

	ðD�5Þ=2
1 jR�1 j2d	1; (3.13)

N2ðR�2Þ /
Z a2

2

0
	ðD�5Þ=2
2 jR�2 j2d	2: (3.14)

The rationale for this choice can be explained as follows.
We can rewrite the Sturm-Liouville equation as an eigen-
value equation LR ¼ 
R where

L ¼ 1

wð	Þ
�
� d

d	

�
pð	Þ d

d	

�
þ qð	Þ

�
: (3.15)

In analogy to the criterion discussed in [22] we note that for
real ! and real b2, 
 (or b1) must be real. Therefore the
inner product must be chosen so that L is self-adjoint when
! and b2 are real. From the Sturm-Liouville form it is easy
to show6 that if the inner product is defined as

hf; gi ¼
Z

f
ð	Þgð	Þwð	Þd	; (3.16)

then L is self-adjoint i.e., hf; Lgi ¼ hLf; gi. This inner
product naturally induces the norms chosen above.
However, one readily sees that the choice of norm is not

unique. We could, for example, repeat the argument made
above using 
 ¼ b2 and in this case the weight function is

found to be w2ð	iÞ ¼ 1
4	

ðD�7Þ=2
i . The main point, however,

is that even though the norms will give a different number
(when acting on a given solution), they will agree on which
solutions are regular (finite norm).7

Under either choice of weight the regular solutions are
found to be

R1 	 ð	1 � a22Þjm2j=2ða21 � 	1Þjm1j=2�1; 	1 2 ða22; a21Þ;
(3.17)

R2 	 	j=2
2 ða22 � 	2Þjm2j=2�2; 	2 2 ð0; a22Þ: (3.18)

Now for a given value of ! we can determine b1 and b2
simply by performing the improved AIM [31] on both of
the angular equations separately. This will result in two
equations in the two unknowns b1, b2 which we can then
solve using a numerical routine such as the built-in
MATHEMATICA functions NSolve or FindRoot. More spe-

cifically we rewrite Eqs. (3.4) using (3.17) and (3.18) and
transform them into the AIM form:

d2�1

d	2
1

¼ 
01

d�1

d	1

þ s01�1; (3.19)

d2�2

d	2
2

¼ 
02

d�2

d	2

þ s02�2: (3.20)

The AIM requires that a special point be taken about which
the 
0i and s0i coefficients are expanded. As was shown in
[40] different choices of this point can worsen or improve
the speed of the convergence. In the absence of a clear
selection criterion we simply choose this point conven-
iently in the middle of the domains:

	01 ¼ a21 þ a22
2

; 	02 ¼ a22
2
: (3.21)

Eigenvalue results and comparison with double pertur-
bation theory
The numerical b1 and b2 eigenvalues for various pa-

rameters were computed and shown to be in good agree-
ment with the perturbative values, Appendix A, for small �
and !. This serves as a consistency check between these
two methods. Some results are plotted in Figs. 3 and 4.

6With appropriate boundary conditions.

7In Appendix A this ambiguity is somewhat more relevant. We
find that in order to be able to simplify the expressions using the
Jacobi orthonormality relations, one must choose the w1 to
normalize the R�1 solutions and w2 to normalize the R�2 solu-
tions, respectively.
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However, some issues arose and we found that both meth-
ods had their limitations, which we now briefly outline.

We found that for � � 1 there was no appreciable
difference between the numerical eigenvalues found after
16 or 32 iterations. In other words the convergence was
quite fast. As � ! 1 however we found that the conver-
gence was much slower. For example, at a1 ¼ 3=2, a2 ¼
149=100 (i.e., � ¼ 0:99 _3) we needed about 80 iterations to
get to the same level of accuracy that we required for
smaller epsilon. See Fig. 5. In this case (for small values
of !) the perturbative method outperformed the AIM.

However, we also found that the perturbative eigenval-
ues were very poor as ! became large. As an example, we
choose the point a1 ¼ 1, a2 ¼ 1=2. Since � ¼ 1=2 was
relatively small we again found only 16 AIM iterations
were required to get numerical convergence. However,
with !> 5 the perturbative values were clearly breaking
down, see Fig. 6.
The reason for this is that essentially the perturbation is

expanded in the parameter !a1 where ! is assumed to be
order unity. However, if ! is large then the error in this
expansion becomes worse.

0.2 0.4 0.6 0.8 1.0
a1

7.5
8.0
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0.010.1
0.51
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1

FIG. 3 (color online). D ¼ 6, g ¼ 0, ðj; m1; m2; n1; n2Þ ¼ ð0; 1; 1; 0; 0Þ. A plot of the eigenvalues for various choices of � � a2=a1.
Note that the dependence on a1 has been scaled into the other quantities.
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a1 0.5
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FIG. 4 (color online). D ¼ 6, � � a2=a1 ¼ 1=2, ðj; m1; m2; n1; n2Þ ¼ ð0; 1; 1; 0; 0Þ. A plot of the eigenvalues for ga1 ¼ 0:5i, 0, 0.5,
corresponding to de Sitter, flat, and anti-de Sitter spacetimes, respectively. Note that the dependence on a1 has been scaled into the
other quantities.
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nmax
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FIG. 5 (color online). D ¼ 6, a1 ¼ 3=2, a2 ¼ 149=100,
ðj; m1; m2; n1; n2Þ ¼ ð0; 1; 1; 0; 0Þ and g ¼ 0. The dots are the
numerical b1 eigenvalues for an increasing number of AIM
iterations, while the straight line is the value obtained from the
perturbative method to Oð�6; a61Þ.
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FIG. 6 (color online). D ¼ 6, a1 ¼ 1, a2 ¼ 1=2,
ðj; m1; m2; n1; n2Þ ¼ ð0; 1; 1; 0; 0Þ and g ¼ 0. The dotted blue
line is the perturbation to order Oð�2; a21Þ, while the dashed

red line is the perturbation to order Oð�6; a61Þ. The solid green

line is the converged numerical b1 eigenvalue.
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The fact that the convergence of the numerical method is
not sensitive to!makes it more robust when calculating the
QNMs, especially since we were only able to obtain the
eigenvalues in the general case toOð�2; a21Þ. Of course,what
we have learned is that if we hold the number of AIM
iterations at 16 then we would expect any values we calcu-
late to have larger errors as � increases. In the next section
we will calculate the QNMs completely numerically.

B. Radial quasinormal modes

Having successfully determined two independent meth-
ods for calculating the eigenvalues and having showed that
they agree well with each other we can now proceed to
calculate the QNMs with control over their range of valid-
ity. We start with the radial master Eq. (3.3). Thus far, when
calculating the eigenvalues, we have been able to work in
full generality, i.e., including the cosmological constant.
However, due to the presence of new horizons and different
boundary conditions, the flat, de Sitter and anti-de Sitter
QNMs will need to be calculated separately. In this work
we will focus only on the flat case, and from here on we set
g ¼ 0.

Recall that QNMs are solutions to the radial master
equation which satisfy the boundary condition that there
are only waves ingoing at the black-hole horizon and out-
going at asymptotic infinity. However, we found the
AIM seems to work best on a compact domain.
Therefore it is better to define the variable x ¼ 1=r, so
that infinity is mapped to zero and the outer horizon stays at
xh ¼ 1=rh ¼ 1. The domain of x, therefore, will be [0, 1].
Thus the QNM boundary condition is translated into the
statement that the waves move leftward at x ¼ 0 and right-
ward at x ¼ 1. We again choose the AIM point in the
middle of the domain, i.e., at x ¼ 1=2.

In terms of x the radial Eq. (3.3) becomes

0 ¼ �xD�4 d

dx

�
�x8�D�x

dR

dx

�

þ
�ðx�2 þ a21Þ2ðx�2 þ a22Þ2

�x

~!2
x � a21a

2
2j

� ðjþD� 7Þx2 � b1
x2

� b2

�
R; (3.22)

where �xðxÞ � �rðr ¼ 1=xÞ and !xðxÞ � !rðr ¼ 1=xÞ.
After performing some asymptotic analysis, keeping in

mind the definition (2.35), we find that for the solutions to
satisfy the QNM boundary conditions we must have

R	 ð1� xÞi ~!h�hxðD�2Þ=2ei!x=xyðxÞ; (3.23)

where

~!h � !xðx ¼ 1Þ; (3.24)

�h � ð1þ a21Þð1þ a22Þ
�0

xðx ¼ 1Þ : (3.25)

We then substitute this ansatz into Eq. (3.22) and rewrite
into the AIM form:

y00 ¼ 
0y
0 þ s0y: (3.26)

This final step was performed in MATHEMATICA and then
the resulting expressions for 
0 and s0 were fed into the
AIM routine.
The method we use to find the QNMs proceeds in a

fashion similar to that used in [39,41]. However, as already
mentioned we use the AIM instead of the CFM.
First we set the number of AIM iterations in both the

eigenvalue and QNM calculations to 16.8 We start with the
Schwarzschild values ðb1; b2; !Þ, i.e., at the point
ða1; a2Þ 	 09 and then increment a1 and a2 by some small
value.10 We take the initial eigenvalues ðb1; b2Þ, insert
them into the radial Eq. (3.23) then use the AIM to find
the new QNM that is closest to ! using the MATHEMATICA

routine FindRoot.
We then take this new value of omega, !0, insert it into

the two angular equations (at the same value of a1 and a2)
then solve using the AIM and searching closest to the
previous b1 and b2 values. Thereby obtaining the new
eigenvalues b01, b02. We then repeat this process with the
new ð!0; b01; b

0
2Þ as the starting point until the results con-

verge and we have achieved four decimal places of accu-
racy.11 When this occurs we increment a1 and a2 again and
repeat the process. In this way, we are able to find the
QNMs and eigenvalues along lines passing approximately
through the origin (i.e., starting from the near
Schwarzschild values) in the ða1; a2Þ parameter space.
We choose 6 straight lines with gradients of (� ¼ 0, 0.2,
0.4, 0.6, 0.8, 1)12 and then use an interpolating function to
interpolate the values in between these points. This then
covers the a1 > a2 > 0 octant.

8Ideally this should be made as large as possible, however, we
found that there was little difference in the computed QNMs
when using 16 or 32 iterations for a1 � 1. This choice also gave
good agreement in the small rotation regime with the perturbed
eigenvalues calculated in appendix A. However, to go into the
large rotation limit we found that much larger iterations were
required to achieve convergence and this significantly slowed
down the code. Thus the AIM method we have described here
does not seem robust enough to explore the large rotation limits.

9Note we could not take the point (0, 0) exactly as this would
leave the y1 and y2 domains empty. To be precise we chose the
point ða1; a2Þ ¼ ð1=50; 1=100Þ.
10In our results we incremented a1 by 1

50 at each step. The
increment in a2 was then set by the gradient of the straight line
taken in the ða1; a2Þ- parameter space
11We found that no more than 15 repetitions were required to
achieve convergence.
12Note that if these lines went exactly through the origin, � ¼ 0
would mean a2 ¼ 0 and � ¼ 1 would mean a2 ¼ a1 both of
these situations would be pathological to the numerical method
since the yi domains would disappear. With the starting value at
ð1=50; 1=100Þ, we come very close to the single rotation and
a1 ¼ a2 cases for � ¼ 0 and � ¼ 1 respectively while remaining
in a valid domain of the numerical procedure.
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Some preliminary results are shown for D ¼ 6, in
Figs. 7 and 8. We see that as we increase the gradient the
imaginary part of the curves appear to be bounded between
the a2 ¼ 0 to a1 ¼ a2 curves. Indeed, if this behavior is a
general phenomenon, then the most important regime for
locating instabilities (i.e., when the imaginary part crosses

the Imð!Þ ¼ 0 axis) would appear to be the a1 ¼ a2 limit.
Some general features of these plots are worth mentioning.
For the case of vanishing angular modes m1;2 ¼ 0, the
solution is symmetric under horizontal and vertical reflec-
tions in the a1 and a2 axes in Fig. 7. Furthermore, with m1

nonzero this reflection symmetry is broken in the real part
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FIG. 7 (color online). D ¼ 6. Plots of the fundamental ðj; m1; m2; n1; n2Þ ¼ ð0; 0; 0; 0; 0Þ QNM. On top are plots of the imaginary
part and below are plots of the Real part. Left: a surface plot over the ða1; a2Þ-parameter space. Middle: a contour plot. Right: a plot of
the QNM along the straight lines passing through the origin with gradient � shown in the graph.
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FIG. 8 (color online). D ¼ 6. Plots of the fundamental ðj; m1; m2; n1; n2Þ ¼ ð0; 1; 0; 0; 0Þ QNM. On top are plots of the imaginary
part and below are plots of the Real part. Left: a surface plot over the ða1; a2Þ-parameter space. Middle: a contour plot. Right: a plot of
the QNM along the straight lines passing through the origin with gradient � shown in the graph.
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of the QNM curves shown on the bottom right of Fig. 8,
where they are skewed to the left. We have also confirmed
this the case for m2 � 0.

For higher dimensions such as D ¼ 7, see Fig. 9, we
observe similar behavior to theD ¼ 6 case where again we
see the skewing of the real part for nonzero m1, for ex-
ample. The general dimensional dependence is shown in
Fig. 10, where as is typical of singly rotating cases, larger
dimensions lead to greater negative Imð!Þ implying
larger damping. These results also seem to indicate that
larger values of D are more stable with increasing a1.

IV. CONCLUDING REMARKS

The intention of this work was to initiate the study of
higher-dimensional Kerr-(A)dS black holes with more than

one rotation parameter for D> 5. In the present work we
have considered those solutions with all rotation parame-
ters set to zero except for two. As a first step in this
direction, we have presented the general metric for such
a spacetime. We have also separated the Klein-Gordon
equation, writing out the corresponding radial and angular
equations explicitly. In the general case with all rotations,
e.g., see [8,9,42], the separation must be performed for
each D separately. However, we found that in the doubly
rotating case (a1 � 0, a2 � 0, a3 ¼ a4 ¼ � � � ¼ 0) a gen-
eral D-dimensional expression could be obtained analo-
gous to the one commonly used in the simply rotating case.
It is worth stressing that in five dimensions there is

only one spheroidal equation, while in six and higher
dimensions there are two angular equations, therefore
in this work we only focussed on the D � 6 case (the
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FIG. 9 (color online). D ¼ 7. Plots of the fundamental ðj; m1; m2; n1; n2Þ ¼ ð0; 1; 0; 0; 0Þ QNM. On top are plots of the imaginary
part and below are plots of the Real part. Left: a surface plot over the ða1; a2Þ-parameter space. Middle: is a contour plot. Right: is a
plot of the QNM along the straight lines passing through the origin with gradient � shown in the graph.
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FIG. 10 (color online). Dimensional dependence of fundamental ðj; m1; m2; n1; n2Þ ¼ ð0; 1; 0; 0; 0Þ QNM for a2 ¼ 0:4a1 for 0<
a1 < 1.
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five-dimensional case will be considered elsewhere
[30,43]). We evaluated the QNM frequencies of the low-
lying modes using a numerical AIM approach for both the
angular and radial equations. In Appendix A, to get some
quantitative understanding of the angular equations, we
also developed perturbative expansions in powers of the
rotation parameters � ¼ a2=a1 and a1 for the angular
eigenvalues.

Our preliminary results for the QNMs suggest that
slowly rotating black holes with two rotations are stable
although our numerical code became slow for values of a1,
a2 � 1, which unfortunately is also the region of most
concern. More work in this direction, particularly for larger
rotations and g > 0 (Kerr-AdS), would also be worthy of
investigation.

On the other hand, to discuss the stability of the ultra-
spinning simply rotating black holes the angular eigen-
value in the large, imaginary, rotation limit [39], is
typically relevant. For our case there are two rotation
parameters. With one rotation parameter small and the
other large, the situation will be very much like the simply
rotating case [19,20] and no instability is expected.
Therefore it would more interesting to consider the other
case with both rotation parameters large. This work will be
pursued subsequently.

In terms of other future work, with these separated
equations we could also start to ask questions about the
spectra of Hawking radiation (for five dimensions see [10])
and investigate the phenomenon of superradiance in more
detail.
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APPENDIX A: DOUBLE PERTURBATION THEORY

In this appendix we develop expansions in powers of the
parameters � ¼ a2=a1 and a1 for the angular separation
constants b1 and b2 defined in the Eqs. (2.46). Since
without loss of generality we have taken a1 > a2, � < 1,
furthermore, we assume a1 < 1.
For brevity we shall outline the main steps and refer the

reader to Ref. [30] for a more detailed account of the five-
dimensional case.13 Since the latitude coordinates are re-
stricted to a2 � y1 � a1 and 0 � y2 � a2, it is convenient
to change variables to x1 and x2 with

y21 ¼ 1
2ða21 þ a22Þ � 1

2ða21 � a22Þx1; y22 ¼ 1
2a

2
2ð1� x2Þ;

(A1)

where �1 � x1, x2 � 1.
By making the convenient choice

B1 � b1 þ 2!ðm1a1 þm2a2Þ � 2g2m1a1m2a2; (A2)

B2 � 1

a21
½b2 þ 2!ðm1a1a

2
2 þ a21m2a2Þ � 2m1a1m2a2�

(A3)

in Eq. (2.46) the perturbative expansion then only develops
even powers of � and a1. In this case the operator equations
are

O1 ¼ � 1þ x1
2

½ð1� x1Þ þ �2ð1þ x1Þ�f2� g2a21½ð1� x1Þ þ �2ð1þ x1Þ�g d
2

dx21

þ
��
1

2
ððD� 5Þ þ ðD� 1Þx1Þ � 1

4
g2a21ð1� x1ÞððD� 3Þ þ ðDþ 1Þx1Þ

�
� �2

2

�
1þ x1
1� x1

�
½ððD� 5Þ � ðD� 1Þx1Þ

þ ðDþ 1Þg2a21x1ð1� x1Þ� þ �4g2a21ð1þ x1Þ2
4ð1� x1Þ ½ðD� 3Þ � ðDþ 1Þx1�

�
d

dx1
þ

�
a21!

2ð1þ x1Þð1� �2Þ2
4½2� g2a21ðð1� x1Þ þ �2ð1þ x1ÞÞ�

þ ½m2
1ð1� x1Þ2 þm2

2�
2ð1þ x1Þ2�½2� g2a21ðð1� x1Þ þ �2ð1þ x1ÞÞ�

4ð1� x1Þ2ð1þ x1Þ
� �2jðjþD� 7Þ

ð1� x1Þ½ð1� x1Þ þ �2ð1þ x1Þ�
� B1�

2ð1þ x1Þ
4ð1� x1Þ þ B2

2ð1� x1Þ
�
; (A4)

and

13For D ¼ 5 there are two rotation parameters, but there is only one angular equation. This makes the perturbative analysis easier.
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O2 ¼ � 1

4
ð1� x22Þ½2� �2ð1� x2Þ�½2� g2a21�

2ð1� x2Þ� d
2

dx22
þ

�
1

2
½ðD� 7Þ þ ðD� 3Þx2� � �2

4
ð1þ g2a21Þð1� x2Þ

� ½ðD� 5Þ þ ðD� 1Þx2� þ �4

8
g2a21ð1� x2Þ2½ðD� 3Þ þ ðDþ 1Þx2�

�
d

dx2

�
a21!

2�2ð1þ x2Þ½2� �2ð1� x2Þ�
8½2� g2a21�

2ð1� x2Þ�

þ ½2� g2a21�
2ð1� x2Þ�½m2

1�
2ð1þ x2Þ2 þm2

2ð2� �2ð1� x2ÞÞ2�
8ð1þ x2Þ½2� �2ð1� x2Þ�

þ jðjþD� 7Þ
2ð1� x2Þ þ B1�

2ð1� x2Þ
8

�
; (A5)

where

OiRi ¼ Bi

4
Ri: (A6)

We first expand the operators with respect to �. For each
equation i ¼ 1, 2 we have

ðOi0 þOi2 þOi4 þOi6 þ � � �ÞðRi0 þ Ri2 þ Ri4

þ Ri6 þ � � �Þ
¼ 1

4
ðBi0 þ Bi2 þ Bi4 þ Bi6 þ � � �ÞðRi0 þ Ri2 þ Ri4

þ Ri6 þ � � �Þ; (A7)

where the next subscript after the i refers to the power of
� ¼ a2=a1 contained by those terms. Before going on we
shall also need to look at the implications of the normal-
ization condition to higher order terms. We first recall that
the normalization conditions14 are given by

1

4

Z 1

�1
ð1� x1ÞðD�5Þ=2R2

1 ¼ 1; (A8)

1

4

Z 1

�1
ð1� x2ÞðD�7Þ=2R2

2 ¼ 1: (A9)

For convenience we define ~Ri ¼ ffiffiffiffiffiffi
wi

p
Ri=2. Then schemati-

cally we haveZ 1

�1
dxið ~Ri0 þ ~Ri2 þ ~Ri4 þ ~Ri6 þ � � �Þð ~Ri0 þ ~Ri2 þ ~Ri4

þ ~Ri6 þ � � �Þ ¼ 1;)
Z 1

�1
dxi ~R

2
i0 ¼ 1;

Z 1

�1
dxi ~Ri0

~Ri2 ¼ 0;

Z 1

�1
dx1 ~Ri0

~Ri4 ¼ � 1

2

Z 1

�1
dx1 ~R

2
i2;Z 1

�1
dxi ~Ri0

~Ri6 ¼ �
Z 1

�1
dxi ~Ri2

~Ri4: (A10)

1. Zeroth order in epsilon Oð�0Þ
To the zeroth order in �, the eigenvalue equations are

O i0Ri0 ¼ Bi0

4
Ri0; (A11)

where,

O10¼�ð1�x21Þ
2

½2�g2a21ð1�x1Þ� d
2

dx21

þ
�
1

2
ððD�5ÞþðD�1Þx1Þ�1

4
g2a21ð1�x1Þ

�ððD�3ÞþðDþ1Þx1Þ
�

d

dx1
þ
�

a21!
2ð1þx1Þ

4½2�g2a21ð1�x1Þ�

þm2
1½2�g2a21ð1�x1Þ�

4ð1þx1Þ þ B20

2ð1�x1Þ
�
; (A12)

O20¼�ð1�x22Þ
d2

dx22
þ1

2
ðD�7þðD�3Þx2Þ

� d

dx2
þ m2

2

2ð1þx2Þþ
jðjþD�7Þ
2ð1�x2Þ �O200: (A13)

We first consider theO20 equation. We note that theO20

operator does not involve powers of a1 at Oð�0Þ order,
therefore we can write O20 ¼ O200 þO202 þ . . . ¼ O200

where the third subscript refers to the power of a1 in those
terms. To fix notation we also redefine the solution R20 ¼
R200 and the eigenvalue B20 ¼ B200.
One then observes that the corresponding eigenvalue

equation

O200R200 ¼ B200

4
R200; (A14)

is exactly solvable in terms of Jacobi polynomials. The
solution is given by

R200ðn2Þ¼c2n2m2jð1�x2Þj=2ð1þx2Þjm2j=2

�PðjþðD�7Þ=2;jm2jÞ
n2 ðx2Þ;

B200ðn2Þ¼ð2n2þjm2jþjÞð2n2þjm2jþjþD�5Þ; (A15)

where n2 ¼ 0; 1; 2; . . . . The normalization condition

1

4

Z 1

�1
dx2ð1� x2ÞðD�7Þ=2R100ðn1ÞR100ðn01Þ ¼ �n1n

0
1
;

(A16)

is satisfied if15

14See Sec. III A.

15This can be found using the orthonormality of the Jacobi
polynomials.
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c2n2m2j ¼
8<
:ð2jþ 2jm2j þ 4n2 þD� 5Þ�ðn2 þ 1Þ�ðjþ jm2j þ n2 þ D�5

2 Þ
21=2ð2jþ2jm2jþD�7Þ�ðjm2j þ n2 þ 1Þ�ðjþ n2 þ D�5

2 Þ

9=
;

1=2

: (A17)

For the properties of Jacobi polynomials see [44].
Next we work on the O10 equation. Following the same

method we have used for � we expand the eigenvalue
equation in powers of a1. The operator at zeroth order is

O100 ¼ �ð1� x21Þ
d2

dx21
þ 1

2
ðD� 5þ ðD� 1Þx1Þ d

dx1

þ B200

2ð1� x1Þ þ
m2

1

2ð1þ x1Þ ; (A18)

where, unlike O200, the O100 operator is coupled to O200

through B200.
The zeroth order eigenvalue equation O100R100 ¼

1
4B100R100 can again be solved and the solutions and ei-

genvalues are found to be

R100ðn1Þ ¼ c1n1m1
ð1� x1Þð2�þ5�DÞ=4ð1þ x1Þjm1j=2

� Pð�;jm1jÞ
n1 ðx1Þ;

B100ðn1Þ ¼ ð2ðn1 þ n2Þ þ jm1j þ jm2j þ jÞð2ðn1 þ n2Þ
þ jm1j þ jm2j þ jþD� 3Þ; (A19)

where n1 ¼ 0; 1; 2; . . . , and for clarity we have defined

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B200 þ

�
D� 5

2

�
2

s
¼ 2n2 þ jm2j þ jþ 1

2
ðD� 5Þ:

(A20)

The orthonormality condition

1

4

Z 1

�1
dx1ð1� x1ÞðD�5Þ=2R100ðn1ÞR100ðn01Þ ¼ �n1n

0
1
;

(A21)

is satisfied with the normalization

c1n1m1

¼
�ð2n1þ�þjm1jþ1Þ�ðn1þ1Þ�ðn1þ�þjm1jþ1Þ

2�þjm1j�1�ðn1þ�þ1Þ�ðn1þjm1jþ1Þ
�
1=2

:

(A22)

We now describe how given both the zeroth order ei-
genvalues and eigenfunctions we can go to higher order in
the perturbative series.

Second order in a21, Oð�0; a21Þ
At next order in the perturbative expansion for O1 we

find

O102R100 þO100R102 ¼ 1

4
ðB102R100 þ B100R102Þ: (A23)

Where the O102 operator is found to be

O102 ¼ 1

2
a21g

2ð1� x1Þð1� x21Þ
d2

dx21
� 1

4
a21g

2ð1� x1Þ

� ðD� 3þ ðDþ 1Þx1Þ d

dx1
þ 1

8
a21!

2ð1þ x1Þ

� 1

4
a21g

2m2
1

1� x1
1þ x1

:

We also need to look at the effect of the normalization
condition (A21) to higher order terms. We again find a
series of conditions analogous to (A10), i.e.,

Z 1

�1
dx1 ~R

2
100¼1;

Z 1

�1
dx1 ~R100

~R102¼0��� : (A24)

Using these relations and the Hermiticity of the operators
we are able to find B102 by contracting Eq. (A23) with R100

B102 ¼
Z 1

�1
dx1ð1� x1ÞðD�5Þ=2R100ðn1ÞO102R100ðn01Þ:

(A25)

Using the equation O100R100 ¼ 1
4B100R100 to remove the

second derivative we obtain

O102R100 ¼
�
� 1

2
a21g

2ð1� x21Þ
d

dx1

þ 1

4
a21g

2B200 þ 1

8
a21!

2ð1þ x1Þ

� 1

8
B100a

2
1g

2ð1� x1Þ
�
R100: (A26)

After applying various identities for Jacobi polynomials
[44] to remove the derivative and x1 dependence in
Eq. (A18) we obtain

B102¼a21
2
ð!2þg2B100þ4g2n1þg2ð2�þ5�DÞ

þ2g2jm1jÞ
� ðm2

1��2Þ
ð2n1þjm1jþ�Þð2n1þjm1jþ�þ2Þ

�

þa21
2
ð!2þ2g2B200�g2B100þg2ð2�þ5�DÞ

�2g2jm1jÞ�2a21g
2n1

ð��jm1jÞ
2n1þjm1jþ�

: (A27)

Note that in the single rotation limit (a2 ! 0) with
g ¼ 0 we find agreement with the result obtained in [39]
using inverted continued fractions. The result does not,
however, agree with that for g � 0 using inverted fractions
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in powers of c1 ¼ a1! and �1 ¼ a21g
2 [40] because we

used an expansion in different parameters: � ¼ a2=a1 and
a1.

16

In theory we could continue to go to higher order in a21,
however, we stop at this order, to point out an issue that
arises in the general case for the second order in � terms.

2. Second order in epsilon Oð�2Þ
We now consider the next order in �, firstly for O2 we

have the operator equation,

O22R20 þO20R22 ¼ 1
4ðB20R22 þ B22R20Þ: (A28)

After using the orthonormality of the doubly perturbed
eigenfunctions up to second order in a21, the Hermiticity
of the operators and also the fact that many of the terms are
simply zero in the O2 case, we find again that

B22i ¼
Z 1

�1
dx2ð1� x2ÞðD�7Þ=2R200O22iR200; (A29)

where i ¼ 0, 2.
The �2 operator takes the following form:

O22 ¼ �2

2
ð1þ x2Þð1� x2Þ2ð1þ a21g

2Þ d
2

dx22

� �2

4
ð1� x2Þð1þ a21g

2ÞðD� 5þ ðD� 1Þx2Þ

� d

dx2
þ �2

8
ð1þ x2Þða21!2 þm2

1Þ

þ �2

8
B10ð1� x2Þ � �2ð1þ a21g

2Þm
2
2ð1� x2Þ
4ð1þ x2Þ :

Thus, working up to second order in a21, we have

O220R200 ¼
�
� �2

2
ð1� x22Þ

d

dx2
þ �2

8
m2

1ð1þ x2Þ

þ �2

8
B100ð1� x2Þ þ �2

4
jðjþD� 7Þ

� �2

8
B200ð1� x2Þ

�
R200O222R200

¼
�
� 1

2
ð1� x22Þ�2a21g2

d

dx2
þ �2a21

8
!2ð1þ x2Þ

þ �2

8
B102ð1� x2Þ þ 1

4
�2a21g

2jðjþD� 7Þ

� 1

8
�2a21g

2B200ð1� x2Þ
�
R200; (A30)

where in the above steps we used O200R200, cf.
Equation (A13), to remove second derivatives. Again using

the functional properties of the Jacobi polynomials [44] we
find

B220 ¼ �2

2
ðm2

1 � B100 þ B200 þ 4n2 þ 2jþ 2jm2jÞ

� ðm2
2 � �2Þ

ð2n2 þ jm2j þ �Þð2n2 þ jm2j þ �þ 2Þ
þ �2

2
ðm2

1 � B200 þ B100Þ þ �2jðDþ j� 7Þ

� 2�2n2
ð�� jm2jÞ

2n2 þ jm2j þ �
þ �2ðj� jm2jÞ; (A31)

B222¼�2

2
ða21!2�B102þa21g

2B200þ4a21g
2n2þ2a21g

2j

þ2a21g
2jm2jÞ ðm2

2��2Þ
ð2n2þjm2jþ�Þð2n2þjm2jþ�þ2Þ

þ�2

2
ða21!2þB102�a21g

2B200Þþ�2a21g
2jðDþj�7Þ

�2�2a21g
2n2

ð��jm2jÞ
2n2þjm2jþ�

þ�2a21g
2ðj�jm2jÞ;

(A32)

where we defined � ¼ jþ ðD� 7Þ=2.
Second order in O1

It is in the Oð�2Þ order of the O1 operator that our
method runs into some difficulty in the general case. For
the O1 operator at Oð�2; a01Þ order we find

O120R100 þO100R120 ¼ 1
4ðB100R120 þ B120R100Þ; (A33)

where after performing manipulations similar to those in
the previous sections we find

B120 ¼
Z 1

�1
dx1ð1� x1ÞðD�5Þ=2R100O120R100: (A34)

As such, an expansion of O12 in powers of a21 leads to

O120¼��2ð1þx1Þ2 d2

dx21
�1

2
�2ðD�5�ðD�1Þx1Þ

�1þx1
1�x1

d

dx1
þ�2m2

2

2

ð1þx1Þ
ð1�x1Þ2

��2
jðjþD�7Þ
ð1�x1Þ2

þ B220

2ð1�x1Þ��2
1þx1
1�x1

B100

4
: (A35)

Now we can use O100R100, see Eq. (A18), to remove
second derivative terms, and we obtain

16We have verified that perturbation theory (using orthogonal
polynomials) for small c1, c2 and �1, �2 does indeed give the
correct second order answer when c2, �2 ! 0 for D ¼ 5 [30,43]
(cf. [40] using inverted continued fractions).
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B120 ¼
Z 1

�1
dx1ð1� x1ÞðD�5Þ=2R100

�
��2ðD� 5Þ ð1þ x1Þ

ð1� x1Þ
� d

dx1
þ �2

ðm2
2 � B200Þð1þ x1Þ � 2jðjþD� 7Þ

2ð1� x1Þ2

þ B220 � �2m2
1

2ð1� x1Þ
�
R100: (A36)

Unfortunately, the terms with factors of (1� x) in the
denominator do not appear to allow any simplification via
standard Jacobi identities [44]. Thus, in the general case it
does not seem possible to find the solution to B120 in closed
algebraic form. In principle one could still numerically
integrate these expressions, however, as explained in
Sec. III, when calculating the QNM’s it is more advanta-
geous to perform a full numerical calculation than to take
this route.

Nevertheless, we have found that the offending
terms vanish for the special choice of parameters D ¼ 6,
j ¼ 0, m1 ¼ m2 ¼ 1 and n1 ¼ n2 ¼ 0, and in this case,
B120 ¼ 0.

3. Sixth order in the special case: D ¼ 6, j ¼ 0,
m1 ¼ m2 ¼ 1 and n1 ¼ n2 ¼ 0

We also found that this special case allowed us to go
to higher orders without encountering the above mentioned
issue. To go to higher orders equation’s like (A34)
often can not be written simply in terms of the zeroth
order eigenfunctions. In such cases we had to decompose
the higher order functions in terms of linear superpositions
of zeroth order ones. We will give a more detailed
explanation of this method in [30]. Here we just list the
result:

B1 ¼ ½10þ 2
9ð2!2� 17g2Þa21� 20

8019ð!4� 53g2!2þ 196g4Þa41þ 20
8 444 007ð2!6� 645g2!4þ 28959g4!2� 105644g6Þa61�

þ �2½29ð2!2� 17g2Þa21þ 32
8019ð!4� 53g2!2þ 196g4Þa41� 32

2 814 669ð!6� 147g2!4þ 5178g4!2� 18424g6Þa61�
þ �4½� 20

8019ð!4� 53g2!2þ 196g4Þa41� 32
2 814 669ð!6� 147g2!4þ 5178g4!2� 18424g6Þa61�

þ �6½ 20
8 444 007ð2!6� 645g2!4þ 28959g4!2� 105644g6Þa61�þ �� � ; (A37)

B2 ¼ 2þ �2½2þ 2
9ð4!2 � 7g2Þa21 � 4

8019ð!4 � 53g2!2 þ 196g4Þa41 þ 4
8 444 007ð2!6 � 645g2!4 þ 28 959g4!2

� 105 644g6Þa61� þ �4½� 4
8019ð!4 � 53g2!2 þ 196g4Þa41 � 32

8 444 007ð4!2 � 25g2Þð!4 � 53g2!2 þ 196g4Þa61�
þ �6½ 4

8 444 007ð2!6 � 645g2!4 þ 28 959g4!2 � 105 644g6Þa61� þ � � � : (A38)

These results are compared to the AIM in Figs. 5 and 6. In Fig. 5 we see that	80 iterations are required to be as good as
the perturbative value, where a similar plot was found for b2. In Fig. 6 we see that the perturbative eigenvalues break down
for ! larger than 	5.
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