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In the framework of the power-counting renormalizable theory of gravitation, recently proposed by

Hořava, we study the limit � ! 1, which is arguably the most natural candidate for the ultraviolet fixed

point of the renormalization group flow. In the projectable version with a dynamical critical exponent

z ¼ 3, we analyze the Friedmann-Robertson-Walker background driven by the so-called ‘‘dark matter as

integration constant’’ and perturbations around it. We show that amplitudes of quantum fluctuations for

both scalar and tensor gravitons remain finite in the limit and that the theory is weakly coupled under a

certain condition.
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I. INTRODUCTION

A new theory of gravitation proposed recently by
Hořava [1] has been attracting significant interest. (See
[2,3] for a review.) This theory, often called Hořava-
Lifshitz (HL) gravity, is power-counting renormalizable
thanks to the anisotropic scaling in the UV,

t ! bzt; ~x ! b~x; (1)

with the dynamical critical exponent z � 3.
The scaling (1) treats the time and the space in a

different way. Hence, in order to realize this anisotropic
scaling, the 4-dimensional diffeomorphism invariance can-
not be a fundamental symmetry of the theory at high
energy. Instead, the theory is invariant under the so-called
foliation-preserving diffeomorphism:

t ! t0ðtÞ; ~x ! ~x0ðt; ~xÞ: (2)

Because of this symmetry, the time kinetic Lagrangian for
gravitons is a linear combination of K2 and KijKij, where

Kij is the extrinsic curvature of constant-time hypersurfa-

ces and K ¼ Ki
i . Thus, the corresponding terms in the

gravitational action are

Ig 3 M2
Pl

2

Z
Ndt

ffiffiffi
g

p
d3 ~xðKijKij � �K2Þ; (3)

where � is a constant. In general relativity (GR) the
4-dimensional diffeomorphism invariance fixes the value
of � to 1. On the other hand, in HL gravity, any value of � is
consistent with the foliation-preserving diffeomorphism
invariance.

HL gravity includes not only 2 degrees of freedom of
usual tensor graviton but also 1 extra degree of freedom,
dubbed the scalar graviton. The nature of this scalar
degree depends on the value of the parameter �. For 1=3<
�< 1, the scalar graviton has a wrong-sign time kinetic
term (i.e. it is a ghost) and thus, this region is forbidden.
For � < 1=3 or � > 1, the scalar graviton has a positive
time kinetic term but has a negative sound speed squared,

c2s ¼ �ð�� 1Þ=ð3�� 1Þ< 0 [4–6]. The condition under
which the associated long-distance instability does not
show up is [2]

0<
�� 1

3�� 1
<max

�
a2H2

k2
; j�j

�

for H <
k

a
<min

�
Ms;

1

0:01 mm

�
; (4)

where k is the comoving momentum scale of interest, a is
the scale factor, H is the Hubble expansion rate of the
background cosmology,Ms is the energy scale at which the
anisotropic scaling becomes important for the scalar gravi-
ton, and we have introduced the Newtonian potential� by
M2

Plðk=aÞ2����. Here, � is the energy density of the

background. This condition essentially says that � must be
sufficiently close to 1 in the infrared (IR).
The condition (4) should be considered as a phenome-

nological constraint on properties of the renormalization
group (RG) flow since � is subject to running under the RG
flow and in general, should depend on k, H and �. This
suggests that, in order for the theory to be phenomenolog-
ically viable, � ¼ 1 should be an IR fixed point of the RG
flow and that � should approach 1 from above sufficiently
quickly as the energy scale of the system is lowered. In this
sense, � ¼ 1þ 0 is a candidate for the IR fixed point of the
RG flow. Since the interval 1=3< �< 1 is forbidden, a
natural candidate for the UV fixed point that is consistent
with the arguments for the IR fixed point above, is
� ¼ þ1.
The goal of this paper is to investigate some properties

of the projectable version of the theory without detailed
balance, in the vicinity of the expected UV fixed point,
� ¼ þ1. One might expect a loss of theoretical control in
this limit since the coupling constant diverges. On the
contrary, we show below that the theory is totally well-
behaved and actually simpler in this limit.
The rest of this paper is organized as follows. In

Sec. II, we review the basic equations in HL gravity with
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projectability condition. In Sec. III we discuss the back-
ground evolution of a Friedmann-Robertson-Walker
(FRW) geometry describing our local patch of the universe
populated by a perfect fluid. In Sec. IV we discuss the
dynamics of tensor and scalar perturbations around the
FRW universe. We conclude with Sec. V where we sum-
marize our results and discuss some of the standing issues.
A simple system of a Lifshitz scalar in HL gravity is
investigated in the Appendix .

II. HORı́AVA-LIFSHITZ GRAVITY: REVIEWAND
BASIC EQUATIONS

HL gravity, being a less restricted theory than GR,
requires the temporal and spatial coordinates to be treated
on different grounds. The theory itself is invariant under
the so-called foliation-preserving diffeomorphism, which
is a combination of global time reparametrizations and
spatial diffeomorphisms, characterized by the following
infinitesimal transformations

�t ¼ fðtÞ; �xi ¼ �iðt; ~xÞ: (5)

Because of the different scaling dimensions of time and
space coordinates, the 4-dimensional spacetime metric is
not a fundamental quantity. Instead, fundamental quanti-
ties in the HL gravity are the lapse function NðtÞ, the shift
vector Niðt; ~xÞ and the 3-dimensional spatial metric
gijðt; ~xÞ. It is still useful, at least at low energies, to com-

bine them into a 4-dimensional metric in the fashion of
Arnowitt-Deser-Misner [7],

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ: (6)

Note that the shift vector Ni and spatial metric gij depend

on all four coordinates but that the lapse function N is
assumed to be a function of time only. The latter assump-
tion, dubbed the projectability condition is consistent with
the foliation-preserving diffeomorphism in the sense that a
projectable N is mapped to another projectable N.1

Starting with the time kinetic action (3), the most gen-
eral gravitational action that respects the symmetries of the
theory can be constructed as

Ig¼M2
Pl

2

Z
Ndt

ffiffiffi
g

p
d3 ~xðKijKij��K2�2�þRþLz>1Þ;

(7)

where

Kij � 1

2N
ð _gij �DiNj �DjNiÞ (8)

is the extrinsic curvature and its traceK is obtained with its
contraction with the 3D induced metric. The broken
Lorentz symmetry manifests itself as an arbitrary parame-
ter �, which acquires the value 1 in GR. In the above
action, we fixed the coefficient of the scalar curvature to
unity by a choice of unit so that the Einstein-Hilbert action
is reproduced in the IR limit with � ! 1. Finally, the part
of the action denoted by Lz>1 contains the higher spatial
derivative terms and controls the UV behavior of the
system. For definiteness, we will focus on the case with
z ¼ 3 scaling in the UV in the remainder of this paper. If
the detailed balance is not enforced but if the spatial parity
and time reflection symmetries are imposed, this choice
allows spatial derivative terms up to sixth order as

M2
Pl

2
Lz>1¼ðc1DiRjkD

iRjkþc2DiRD
iRþc3R

j
iR

k
jR

i
k

þc4RR
j
iR

i
jþc5R

3Þþðc6Rj
iR

i
jþc7R

2Þ; (9)

where Di is the covariant derivative with respect to the 3d
metric and ci are constants.
The effect of matter on the dynamics is provided by the

additional action term Im, which is also required to be
invariant under the foliation-preserving diffeomorphism.
By variation with respect to gijðt; xÞ, we obtain the

dynamical equation

Egij þ Emij ¼ 0; (10)

where

Egij � gikgjl
2

N
ffiffiffi
g

p �Ig
�gkl

;

Emij � gikgjl
2

N
ffiffiffi
g

p �Im
�gkl

¼ Tij:

(11)

Note that the matter sector (as well as the gravity sector)
should be invariant under spatial diffeomorphism (as a part
of the foliation-preserving diffeomorphism) and thus it
makes sense to define Tij in general. The explicit expres-

sion for Egij is given by

Egij ¼ M2
Pl

�
� 1

N
ð@t � NkDkÞpij

þ 1

N
ðpikDjN

k þ pjkDiN
kÞ � Kpij

þ 2Kk
i pkj þ 1

2
gijK

klpkl þ 1

2
�gij �Gij

�
þ Ez>1ij;

pij � Kij � �Kgij; (12)

where Ez>1ij is the contribution from Lz>1 and Gij is the

Einstein tensor of gij.

Variation with respect to the shift Niðt; xÞ leads to the
momentum constraint

H gi þH mi ¼ 0; (13)

1There are also attempts to extend this minimal realization of
the theory. For instance, one can assume a generic function of
space and time for the lapse, i.e. N ¼ Nðt; ~xÞ. Then, for con-
sistency, one is required to add several terms to the action
involving @i logN [5]. Another extension has been discussed in
[8] by introducing an additional Uð1Þ gauge symmetry.
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where

H gi � � �Ig
�Ni ¼ �M2

Pl

ffiffiffi
g

p
Djpij; H mi � � �Im

�Ni :

(14)

The only remaining equation is the Hamiltonian constraint,
obtained by variation with respect to the lapse function
NðtÞ,

Hg? þHm? ¼ 0; (15)

where

Hg? � ��Ig
�N

¼
Z

d3 ~xH g?; Hm? � ��Im
�N

; (16)

and

H g? ¼ M2
Pl

2

ffiffiffi
g

p ðKijpij ��� R� Lz>1Þ: (17)

Here, we stress that due to the projectability condition,
which restricts N to be only time dependent, the
Hamiltonian constraint in HL gravity is a global one, in
contrast to the local one in GR.

Just for comparison, in a Lorentz invariant theory, the
energy-momentum tensor is defined as

TðLIÞ
�� ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffi

�ð4Þg
q �IðLIÞm

�g�� ; (18)

and thus the matter terms in the constraints are expressed
as

Hm? ¼
Z

d3 ~x
ffiffiffi
g

p
TðLIÞ
�� n�n�; H mi ¼ 1ffiffiffi

g
p TðLIÞ

i� n�;

(19)

where we defined the 4-vector n� to be the unit vector
normal to the constant-time hypersurfaces, with

n�@� � 1

N
ð@t � Ni@iÞ: (20)

III. FRW BACKGROUND

A FRW metric,

ds2 ¼ �dt2 þ aðtÞ2d~x2; (21)

is supposed to describe the large-scale, overall behavior of
the geometry in our local patch of the universe. Since the
universe far outside the present horizon may be very differ-
ent from the local universe inside the horizon, we should
not expect the same FRW geometry to describe the whole
spacetime including the region far outside our local patch.2

Nonetheless, in general relativity, since the Hamiltonian
constraint is a local equation satisfied at each spatial
point, it leads to a Friedmann equation applicable to our
local patch of the universe. On the other hand, in HL
gravity with the projectability condition, the Hamiltonian
constraint is a global equation integrated over the whole
space. For this reason, the Hamiltonian constraint in HL
gravity does not tell anything useful about the ‘‘local’’
FRW geometry [10].
Therefore, in HL gravity with the projectability condi-

tion, we do not have a Friedmann equation applicable to
our local FRW universe. Instead, we have the dynamical
equation (10) in the form

� 3�� 1

2
ð2 _H þ 3H2Þ ¼ P

M2
Pl

; (22)

where, in accord with the local homogeneity and isotropy
of the local FRW geometry, we have assumed that the
stress tensor of matter is ‘‘locally’’ homogeneous and
isotropic as

Tij ¼ PðtÞgij; H mi ¼ 0: (23)

For the same reason that we do not have a Friedmann
equation applicable to a local FRW universe, we do not
have a conservation equation for the locally homogeneous
and isotropic matter. Therefore, we define a quantity QðtÞ
by3

_�þ 3Hð�þ PÞ ¼ �Q; (24)

whereH � _a=a. Note thatQ is generically nonzero at high
energies. From Eqs. (22) and (24), one can find a general-
ized Friedmann equation [2]

3M2
PlH

2 ¼ �dm þ 2

3�� 1
�; (25)

where

�dm � 1

a3

�
C0 þ 2

3�� 1

Z t

t0

Qðt0Þa3ðt0Þdt0
�
; (26)

with C0 as an integration constant. The quantity �dm is the
‘‘dark matter as integration constant’’, associated with the
lack of a local Hamiltonian constraint in HL gravity. See
Ref. [10] for more general cases.

2This is in accord with the so-called gradient expansion
approach to superhorizon nonlinear cosmological perturbations
[9].

3In HL gravity the projectability condition implies that we do
not have to define a local energy density �. Nonetheless, just for
our convenience we can still define � by pretending that N were
a function of time and spatial coordinates. With � defined in this
way, the quantity Q measures the amount of deviation from what
we would expect in theories with 4-dimensional spacetime
diffeomorphism.
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The equation of motion of matter leads to the conserva-
tion equation at least at low energy, provided that the local
Lorentz invariance is restored in the matter sector as re-
quired by many experimental and observational data. In
this case, we have Q ! 0 as a ! 1, and the integral part
of Eq. (26) converges to a constant. Thus at low energy, the
�dm component redshifts like nonrelativistic matter, or
pressureless dust.

Let us now consider the limit � ! þ1. The dynamical
equation (22) is reduced to

2 _H þ 3H2 ¼ 0; (27)

and the generalized Friedmann equation (25) is greatly
simplified as

3M2
PlH

2 ¼ �dm; �dm � C0

a3
: (28)

This shows that the matter sector decouples from the
gravity sector and that the evolution of the local FRW
universe is dominated by the dark matter as integration
constant in the limit � ! 1.

However, from the cosmological viewpoint, we need to
specify what exactly we mean by the limit � ! 1.
Supposing that � ¼ þ1 is a UV fixed point of the RG
flow, the second term in the right-hand side of (25) is
indeed suppressed by 1=� in the early universe. A similar
suppression of coupling to the matter sector can be ob-
served for the integral term in (26). However, the increase
in � going earlier in time does not necessarily imply that
the matter sector is decoupled from gravity since � (andQ)
also becomes large in the early universe. In order to obtain
the decoupled equation (28), what we really have to ensure
is that

��dm

�
’ �C0

�a3
� 1: (29)

Assuming logarithmic running of the coupling ��
logðH=MÞ for H � M, if the fluid energy redshifts faster
than a�3, the fluid generically dominates the expansion in
the asymptotic past. On the other hand, even if the fluid
dominates the expansion early on, the ‘‘dark matter’’ en-
ergy can in principle catch up later and become the domi-
nant source while the theory is still in the UV regime. In
this case, even though the earlier evolution exhibits a
coupled behavior, the modes that are deep inside the hori-
zon at the time of transition will not carry any memory of
this early behavior. Wewill focus on scales for which at the
time of (sound) horizon crossing the UV behavior � � 1 is
still valid and the fluid contribution to the expansion is
suppressed relative to the dark matter as in (29). Any
lengths beyond this scale are assumed to be well beyond
the current observable universe.

As an alternative case, we can also consider a situation
in which the fluid is pressureless. In this case, the ratio
��dm=� grows logarithmically in the UV direction, and the

matter indeed decouples from geometry in the asymptotic
past.4

IV. PERTURBATION

In this section, motivated by the decoupling between
gravity and matter in the limit � ! 1 observed in the
previous section, we study a pure gravity system and
analyze the evolution of perturbations around the FRW
background driven by the dark matter as integration con-
stant. (In the Appendix, in order to justify this treatment we
consider a scalar field in HL gravity and show that gravity
and matter are decoupled in the limit � ! 1 for linear
perturbations.) We investigate the UV regime with the
dynamical critical exponent z ¼ 3 and show that the am-
plitude of quantum fluctuations remains finite and that the
system is well-behaved in the � ! 1 limit.
One of the most important properties of HL gravity is the

anisotropic scaling (1) with z � 3 since the power-
counting renormalizability stems from it. Intriguingly,
with the minimal value z ¼ 3, this scaling can lead to a
mechanism to generate scale-invariant cosmological per-
turbations even without inflation [12]. Let us briefly review
this mechanism before going into the detailed analysis of
perturbations.
With z ¼ 3, we would like to know the condition for

generation of superhorizon cosmological perturbations.
Generation of superhorizon cosmological perturbation is
nothing but oscillation followed by freeze-out. Each mode
oscillates for!2 � H2 and freezes out for!2 � H2, where
! is the frequency of a mode of interest andH ¼ _a=a is the
Hubble expansion rate. Thus, the condition for generation of
cosmological perturbations is @tðH2=!2Þ> 0. With the dis-

persion relation!2 ’ ð ~k2=a2Þ3=M4 expected from the z ¼ 3

scaling, where ~k is the comoving momentum and M is a
characteristic mass scale, this condition is reduced to
@2t ða3Þ> 0 for an expanding universe. This condition can
be satisfied by, for example, a power-law expansion a / tp

with p > 1=3, and does not require accelerated expansion
(p > 1), i.e. inflation.
For concreteness, let us consider a scalar field � with a

canonical time kinetic term. The anisotropic scaling (1)
implies that � should scale as

� ! b�s�; s ¼ 3� z

2
: (30)

4For time scales in which the logarithmic running of � is not
appreciable, there is no distinction between this pressureless
fluid and the dark matter as integration constant at the back-
ground level, since both have the same equation of state. On the
other hand, at the level of perturbations, they are distinct even
without taking into account the running of � since the rest frame
of the dark matter (but not that of the fluid) is synchronized with
the spacetime foliation and dispersion relations for all physical
degrees of freedom associated with this foliation [11].
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From this, it is expected that the amplitude of quantum
fluctuations in a FRW background should be

���M�
�
H

M

�ð3�zÞ=2z
; (31)

where M is a characteristic mass scale in the action for �,
e.g. the scale suppressing higher spatial derivative terms.
This reproduces the well-known result ���H for

Lorentz invariant theories (z ¼ 1) and ��� ðM3HÞ1=4
for ghost inflation [13] (z ¼ 2). For HL gravity with
z ¼ 3, we have a Hubble-independent result, ���M.
Thus the amplitude of quantum fluctuations is expected
to be scale-invariant in HL gravity with z ¼ 3. This also
applies to both tensor graviton and scalar graviton.

While ���M is generically expected for the HL grav-
ity with z ¼ 3, a numerical coefficient in front of M in the
right-hand side may depend on �. It is not a priori clear
whether this numerical coefficient remains finite or di-
verges when the � ! 1 limit is taken. In the following,
we shall explicitly show that the amplitudes for tensor and
scalar gravitons indeed remain finite in this limit.

We shall also investigate nonlinear interactions among
tensor and scalar gravitons and show that the system re-
mains weakly coupled in the UV with � ! 1, provided
that

� c1 � M�2
Pl ; �ð3c1 þ 8c2Þ � M�2

Pl : (32)

Since c1, c2 and M2
Pl are subject to running under the RG

flow, this should be considered as a nontrivial condition on
properties of the RG flow in the UV.

A. Tensor modes

We now consider a pure gravity system and analyze
tensor perturbations around the FRW background driven
by the dark matter as integration constant. Let us consider
metric perturbations of the form

�N ¼ 0; �Ni ¼ 0; �gij ¼ a2hij; (33)

where hij is a transverse and traceless 3d tensor. The part of

the gravitational action (10) containing the terms quadratic
in tensor degrees can be obtained as

Ig 3 M2
Pl

8

Z
dtd3 ~xa3�ik�jl½ _hij _hkl þ hijOthkl�: (34)

In the above action, the spatial derivatives are contained in
the operator

Ot � 1

a2
4� �t

a4M2
t

42 þ 1

a6M4
t

43; (35)

where 4 � �ij@i@j and Mt is some characteristic energy

scale defined through

1

M4
t

� �2
c1
M2

Pl

;
�t

M2
t

� �2
c6
M2

Pl

: (36)

We remind the reader that in Eq. (35), the coefficient for
the linear4=a2 term has already been fixed by a choice of
unit (see discussion after (7)). Furthermore, we constrain
the sign of the43 term so that the evolution of the mode is
stable in the UVat the asymptotic past and a vacuum state
can be unambiguously defined. Finally, we do not restrict
the sign of �t, but assume it is of order 1 in the following
just for simplicity.
We now proceed with the quantization of the tensor

mode by first expanding the tensor degrees in Fourier space
as

hijðt; ~xÞ ¼ 1

ð2	Þ3=2
X


¼1;2

Z
d3kei

~k	 ~x�
ijð ~kÞĥ
ðt; ~kÞ; (37)

where �
ij are the transverse-traceless polarization tensors

and 
 can take values 1 or 2. It is convenient to introduce a
new time parametrization as

dy � !tdt; (38)

where !t is the frequency of the form

!2
t � k2

a2
þ �tk

4

a4M2
t

þ k6

a6M4
t

: (39)

This brings the kinetic part of the action (34) to

Ig 3 M2
Pl

8

X



Z
dyd3ka3!tĥ

y0

 ĥ

0

; (40)

where prime denotes differentiation with respect to the new

time y. Expanding the operator ĥ in a creation/annihilation
operator basis as

ĥ
ð ~kÞ � h
ðkÞâ
ð ~kÞ þ h

ðkÞây
ð� ~kÞ; (41)

we introduce the mode functions that give rise to a canoni-
cally normalized kinetic action

�h 
 � MPla
3=2 ffiffiffiffiffiffi

!t
p

2
h
; (42)

obeying the equation of motion

�h 00

 þ

�
1þ 1

!2
t

�
3 _!t

4!2
t

� €!t

2!t

��
�h
 ¼ 0: (43)

Noting that the frequency decreases as a�3 in the UV and
the pure gravity background satisfies (27), the above equa-
tion becomes simply

�h 00

 þ �h
 ¼ 0: (44)

Fixing their amplitude from the kinetic part of the action
and requiring that the corresponding state should minimize
the quadratic Hamiltonian of the system [12], the mode
functions of the tensor field can be written as
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h
 ¼
ffiffiffi
2

p
ffiffiffiffiffiffi
!t

p
MPla

3=2
e�iy ’

ffiffiffi
2

p
Mt

k3=2MPl

e�iy: (45)

Through the two-point function, we define the tensor
power spectrum Pt asX




hĥ
ðt; ~kÞĥy
ðt; ~k0Þi � 2	2

k3
�ð3Þð ~k� ~k0ÞPt: (46)

The power spectrum of the modes both sub and super-
horizon in the UVepoch turns out to be both scale invariant
and time independent

Pt ¼ k3

2	2

X



jh
j2 ¼ 2

	2

�
Mt

MPl

�
2
: (47)

B. Scalar modes

In this subsection, we discuss the evolution of scalar
perturbations. The metric tensor has three local (i.e. space-
dependent) and one global (i.e. space-independent) scalar
degrees of freedom

�N ¼ A; �Ni ¼ @iB;

�gij ¼ a2½2�ij� þ @i@jhL�; (48)

where A ¼ AðtÞ depends only on time in accordance with
the projectability condition discussed in Sec. II. We fix
the two scalar gauge degrees of freedom by setting A ¼
hL ¼ 0. In this convenient gauge, the momentum con-
straint (13) reads5

B ¼ 3�� 1

�� 1

_�

a�24 ; (49)

while the equation of motion (10) leads to

€� þ 3H _� �Os� ¼ 0; (50)

where we defined the operator

Os � �� 1

3�� 1

�
� 1

a2
4� �s

a4M2
s

42 þ 1

a6M4
s

43

�
; (51)

with

1

M4
s

� �2
3c1 þ 8c2

M2
Pl

;
�s

M2
s

� �2
3c6 þ 8c7

M2
Pl

: (52)

Proceeding as in the previous subsection, we expand the
scalar degrees in Fourier space, for which Eq. (50) be-
comes

€̂� þ 3H _̂� þ!2
s �̂ ¼ 0; (53)

and the frequency of the scalar graviton perturbation is
defined as

!2
s � �� 1

3�� 1

�
� k2

a2
þ �sk

4

a4M2
s

þ k6

a6M4
s

�
: (54)

The form of the scalar mode frequency implies that at early
times, !2

s is dominated by the (positive) term proportional
to k6 and modes are in an oscillatory regime, much like the
tensor modes discussed in the previous subsection. On the
other hand, the frequency at late times may become domi-
nated by the (negative) k2 term, creating a ground for a
linear instability. However, this happens after the Hubble
friction takes over, so the time scale of this instability is not
short enough to have an effect on the evolution. See Eq. (4)
for the more general condition under which the long-
distance instability does not show up.
We now proceed with the quantization of the scalar

graviton degree. Under time parametrization dy � !sdt,
the kinetic part of the scalar action reduces to

Ig 3 M2
Pl

�
3�� 1

�� 1

�Z
dyd3ka3!s�̂

y0�̂ 0: (55)

The mode function for the canonical field can then be
defined through

�� � ffiffiffiffiffiffiffiffiffi
2!s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�� 1

�� 1

s
a3=2MPl�; (56)

with the equation of motion

�� 00 þ
�
1þ 1

!2
s

�
3 _!s

4!2
s

� €!s

2!s

��
�� ¼ 0: (57)

The time dependence of the frequency !2
s is qualitatively

the same as that of the tensor modes. In the UV regime,
where one can approximate _!s ’ �3H!s, one obtains a
simple equation for the mode functions

�� 00 þ �� ¼ 0: (58)

The canonical scalar modes evolve qualitatively the same
as the tensor modes in (44). By going from the canonical
mode to the physical one, the solution for the scalar mode
function can be written as

� ¼ 1

2MPla
3=2 ffiffiffiffiffiffi

!s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

3�� 1

s
e�iy ’ 1

2� 31=4k3=2
Ms

MPl

e�iy;

(59)

resulting in a scale-invariant scalar spectrum

5Although up to this point, we did not make any assumption on
the details of the background evolution or the value of the
constant �, the linear equations in this section do not cover the
case � ¼ 1 due to infinities arising in some of the relations, e.g.
Eq. (49). However, the existence of such issues does not
necessarily imply that the theory is not continuously connected
to � ¼ 1 limit, but it is merely a manifestation that the pertur-
bative expansion breaks down. The concrete study of the con-
tinuity requires a nonlinear analysis and is beyond the scope of
the present paper. See the discussion in Sec. V for further
comments on this issue.
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Ps ¼ k3

2	2
j�j2 ¼ 1

4
ffiffiffi
3

p
	2

�
Ms

MPl

�
2
: (60)

The tensor-to-scalar ratio for the primordial perturba-
tions thus depends on the ratio of the two energy scalesMt

and Ms through,

Pt

Ps
¼ 8

ffiffiffi
3

p �
Mt

Ms

�
2
: (61)

C. Cubic terms

In this subsection we consider nonlinear perturbations
around the FRW background driven by the dark matter as
integration constant. We adopt the following metric ansatz.

N¼1; Ni¼@iBþni; gij¼a2e2� ðehÞij; (62)

where ni is transverse and hij is transverse-traceless:

@ini ¼ 0, @ihij ¼ 0 and hii ¼ 0. Throughout this subsec-

tion, indices are raised and lowered by �ij and �ij. We

consider � , B, ni and hij as Oð�Þ and perform perturbative

expansion with respect to �.
In order to calculate the action up to cubic order, it

suffices to solve the momentum constraint up to the first
order. The momentum constraint at the first order is

@i½ð3�� 1Þa2 _� � ð�� 1Þ@2B� þ 1

2
@2ni ¼ 0; (63)

leading to

B ¼ 3�� 1

�� 1

_�

a�2@2
; ni ¼ 0; (64)

where @2 ¼ @i@i.
It is somewhat cumbersome but straightforward to cal-

culate the kinetic action up to the third order. The result is

Ikin ¼ M2
Pl

2

Z
Ndt

ffiffiffi
g

p
d3 ~xðKijKij � �K2Þ

¼ M2
Pl

Z
dtd3 ~xa3

�
� 3

2
ð3�� 1ÞH2

þ 3

2
ð3�� 1Þð2 _H þ 3H2Þ�

�
1þ 3

2
� þ 3

2
�2
�

þ ð1þ 3�Þ
�
a�2 _�@2Bþ 1

8
_hij _hij

�

þ 1

2
a�4�@ið@iB@2Bþ 3@jB@i@jBÞ

þ 1

2
ða�2@khij@kB� 3 _hij�Þa�2@i@jB

� 1

4
a�2 _hij@khij@

kB

�
þOð�4Þ: (65)

The first term does not depend on the perturbation and the
second term, which is proportional to 2 _H þ 3H2, vanishes
because of the background equation of motion (27). Thus

what we are interested in are the quadratic part Ið2Þkin and the

cubic part Ið3Þkin, where

Ið2Þkin ¼ M2
Pl

Z
dtd3 ~xa3

�
a�2 _�@2Bþ 1

8
_hij _hij

�
;

Ið3Þkin ¼ M2
Pl

Z
dtd3 ~xa3

�
3�

�
a�2 _�@2Bþ 1

8
_hij _hij

�

þ 1

2
a�4�@ið@iB@2Bþ 3@jB@i@jBÞ

þ 1

2
ða�2@khij@kB� 3 _hij�Þa�2@i@jB

� 1

4
a�2 _hij@khij@

kB

�
: (66)

When B is eliminated by using (64), one can easily see that

each term in Ið3Þkin is marginal, i.e. has vanishing scaling

dimension under the scaling (1), and that each coefficient
remains of Oð1Þ (multiplied by the overall factor M2

Pl) in

the limit � ! 1.
As we have already calculated power spectra in the

previous subsections, we know that the amplitudes of
quantum fluctuations are

hhijhkli �
�
Mt

MPl

�
2
; h��i �

�
Ms

MPl

�
2
: (67)

Thus, Ið3Þkin is smaller than Ið2Þkin and the perturbative expan-

sion makes perfect sense if

M2
t � M2

Pl; M2
s � M2

Pl (68)

in the UV with � ! 1. The same conclusion holds for all
other terms in the action (7) since all terms which are not
included in Ikin are independent of � and are either mar-
ginal or relevant. The condition (68) is equivalent to (32)
and should be considered as a nontrivial condition on
properties of the RG flow in the vicinity of � ¼ þ1 in
the UV.

V. SUMMARYAND DISCUSSION

In this paper, we have studied the dynamics of the
projectable Hořava-Lifshitz (HL) gravity with the z ¼ 3
scaling in the ultraviolet (UV), focusing on the limit
� ! 1. This limit for the parameter � is a natural candi-
date for the UV fixed point of the renormalization group
(RG) flow, if one forbids a ghost degree of freedom (ap-
pearing in the regime 1=3< �< 1) and hopes that general
relativity (GR) (having � ¼ 1) be recovered at low energy.
Contrary to naive expectations, the system is well-behaved
in the limit � ! 1. Indeed, the dynamics can be even
simpler due to the 1=� suppression of the coupling be-
tween the gravity and matter sectors. We have analyzed
tensor and scalar gravitons in the FRW universe driven by
dark matter as integration constant, and shown that the
amplitudes of quantum fluctuations remain finite. The
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theory in the UV with � ! 1 is weakly coupled, provided
that the condition (32) is satisfied.

Although we have studied the high energy behavior of
the theory with the projectability condition, the situation in
the nonprojectable theory remains to be understood. The
fact that this extension [5] does not remove the ghost
degrees in the range 1=3< �< 1, suggests that the UV
limit should be taken as � ! 1 as well. However, due to
the terms involving nonzero spatial derivatives of the lapse,
there are additional coupling constants and their UV be-
havior need to be taken into account for a detailed study of
the theory. This requires further investigation and is be-
yond the scope of the present paper.

Our results further indicate that M2
Pl=M

2
s and M2

Pl=M
2
t

should run towards 1 in the UV under the RG flow (see
Sec. IVC). This would imply that both deviation of � from
1 and coefficients of higher spatial curvature terms should
become larger and larger as the system enters the UV
regime such as a vicinity of (would-be) singularity.
Incidentally, as argued in [11], this is exactly what is
required for caustic avoidance. It would be interesting to
see if and how the anisotropic (would-be) singularity found
in [14] can be resolved by taking the RG flow into account.

While we have argued that the theory behaves well in the
UV with the � ! 1 limit, cosmological implication of the
result has not been explored yet. This is because of the lack
of our understanding of the low energy dynamics with the
� ! 1þ 0 limit. This limit is the candidate for an infrared
fixed point of the RG flow since GR has the value � ¼ 1.

It is known that in the limit � ! 1þ 0, the scalar
graviton gets strongly coupled. Strong coupling itself
does not imply loss of predictability since all coefficients
of an infinite number of terms in the perturbative expansion
can be written in terms of a finite number of parameters in
the action if the theory is renormalizable. However, the
strong coupling implies breakdown of the perturbative
expansion in the scalar graviton sector and, thus, we need
nonperturbative analysis. For spherically-symmetric,
static, vacuum configurations, it was shown by nonpertur-
bative analysis that the limit � ! 1þ 0 is indeed continu-
ous and recovers GR [2]. This result may be considered as
an analogue of the Vainshtein effect and suggests the
possibility that the scalar graviton may safely be decoupled
from the rest of the world, i.e. the tensor graviton and the
matter sector, in the limit � ! 1þ 0. A similar approach
was taken in [9], for superhorizon nonlinear cosmological
perturbations in universes driven by dark matter as inte-
gration constant. Nonetheless, it is fair to say that our
understanding of the fate of the scalar graviton in the limit
� ! 1þ 0 is far from complete.

For this reason, we have not conducted a full analysis of
cosmological implication (e.g. on the cosmic microwave
background spectrum) of the result of this paper.

Fortunately, the simple scenario in [12] does not suffer
from the lack of our understanding of the � ! 1þ 0 limit.

For example, one can reliably calculate non-Gaussianities
in cosmological perturbations [15]. A scalar field respon-
sible for (almost) scale-invariant cosmological perturba-
tions acts as a curvaton: it is subdominant at the time of
sound horizon exit, later becomes dominant and finally
reheats the universe. The only property of HL gravity
needed for this mechanism is the anisotropic scaling with
z ¼ 3. (Thus, this mechanism should work also in other
versions of HL gravity [5,8].) When energy density of this
scalar field is subdominant in the early epoch, it is expected
that the only important effect of gravity to the dynamics of
the scalar field is to provide an expanding background.
Therefore, if � runs towards 1 and GR is recovered during
the epoch when the scalar field is subdominant, then the
prediction of this scenario does not depend on details of the
behavior of the scalar graviton in the limit � ! 1þ 0.
An open issue regarding the scenario in [12] is to find a

mechanism for Lorentz invariance restoration in the matter
sector at low energies. Actually, this issue is shared by
HL gravity itself: even if one omits Lorentz violating terms
in the matter sector, these terms will be generated by
radiative corrections from graviton loops. These terms
may be under control provided that M � MPl, where M
is the scale at which the anisotropic scaling becomes
important [16]. Another approach to this problem is to
enforce a universal Lorentz breaking at all sectors at
high energies, while supersymmetrizing the standard
model ensures the restoration of the Lorentz symmetry at
low energies [17,18].
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APPENDIX: AN EXAMPLE WITH
SCALAR FIELD

In Sec. III we have seen that coupling between gravity
and matter sectors is suppressed by 1=� and that these
sectors decouple in the limit � ! 1. Motivated by this, in
Sec. IV we have studied a pure gravity system and ana-
lyzed the evolution of perturbations around the FRW back-
ground driven by the dark matter as integration constant. In
this appendix, in order to justify this treatment, we consider
a simple system of a scalar field in HL gravity and show
that gravity and matter are indeed decoupled in the limit
� ! 1 for linear perturbations.
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We consider a single Lifshitz scalar field with the dy-
namical critical exponent z ¼ 3, in accordance with the
gravity sector. The dynamics of the field is described by the
action

Im ¼ 1

2

Z
dtd3xN

ffiffiffi
g

p �
1

N2
ð@t’� Ni@i’Þ2

þ ’O�’� 2V

�
; (A1)

where the operator containing the gradients is defined as

O� � 1

M4
�

ðDiD
iÞ3 � ��

M2
�

ðDiD
iÞ2 þ c2�DiD

i: (A2)

After decomposing the field into zero mode and perturba-
tions as ’ ¼ �þ ��, we vary the background action with
respect to the scale factor and the field, to obtain the
equations of motion

� 3�� 1

2
ð2 _H þ 3H2Þ ¼ 1

M2
Pl

� _�2

2
� V

�
;

€�þ 3H _�þ V 0 ¼ 0;

(A3)

where the second (Klein-Gordon) equation is a special
case of the energy-nonconservation equation (24), with
QðtÞ ¼ 0. This extra information comes from specifying
a field source for the perfect fluid description.

For perturbations, we calculate the quadratic action and
expand modes in Fourier space, through

�ðt; ~xÞ ¼ 1

ð2	Þ3=2
Z

d3kei
~k	 ~x�̂ðt; ~kÞ; (A4)

where � represents any scalar degree. The momentum
constraint gives a relation for the nondynamical degree
of freedom B,

B̂ ¼ �a2

k2

�
3�� 1

�� 1
_̂� þ

_�

ð�� 1ÞM2
Pl

��̂

�
: (A5)

After eliminating B by using this relation, the resulting
action turns out to be a coupled system involving �� and � .
In order to analyze the system, we perform the following
field redefinition

c � a3=2
��ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð3��1Þ
��1

q
MPl�

 !
; (A6)

to obtain the canonically normalized action

I ¼ 1

2

Z
dtd3kð _̂c y _̂c þ _̂c

y
Xĉ � ĉ yX _̂c � ĉ y�2 ĉ Þ;

(A7)

where X ¼ �XT and �2 ¼ ð�2ÞT are both real matrices,
with elements

X11 ¼ X22 ¼ 0; X12 ¼ �
_�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð3�� 1Þð�� 1Þp
MPl

;

(A8)

ð�2Þ11 ¼ k6

M4
�a

6
þ ��k

4

M2
�a

4
þ c2�k

2

a2
� 3V

2M2
Plð3�� 1Þ

� ð9�� 1Þ
4M2

Plð�� 1Þð3�� 1Þ
_�2 þ V 00;

ð�2Þ22 ¼ �� 1

3�� 1

�
k6

M4
sa

6
þ �sk

4

M2
sa

4
� k2

a2

�

þ 3

2M2
Plð3�� 1Þ

� _�2

2
� V

�
;

ð�2Þ12 ¼ � V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3�� 1Þð�� 1Þp

MPl

: (A9)

(For a general formalism to quantize coupled bosons, see
e.g. [19].) For the action (A7), the couplings between the 2
degrees of freedom are suppressed by 1=�, and an initial
adiabatic vacuum state can be defined unambiguously at
early times

c 1 ¼
M�a

3=2ffiffiffi
2

p
k3=2

e�iðk3=M2
�
Þ
R
ðdt=a3Þ;

c 2 ¼ 31=4Msffiffiffi
2

p
k3=2

e�iðk3= ffiffi
3

p
M2

s Þ
R
ðdt=a3Þ:

(A10)

In other words, at leading order in 1=� expansion, the
gravity sector (�) is once again, decoupled from the matter
sector (��). In the UV regime with � ! 1, the solutions
for both physical mode functions have constant amplitudes

�� ¼ M�ffiffiffi
2

p
k3=2

e�iðk3=M2
�
Þ
R
ðdt=a3Þ;

� ¼ Ms

2� 31=4k3=2MPl

e�iðk3= ffiffi
3

p
M2

s Þ
R
ðdt=a3Þ:

(A11)
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