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Three-dimensional gravity in anti-de Sitter space is considered, including torsion. The derivation of the

central charges of the algebra that generates the asymptotic isometry group of the theory is reviewed, and a

special point of the theory, at which one of the central charges vanishes, is compared with the chiral point

of topologically massive gravity. This special point corresponds to a singular point in the Chern-Simons

theory, where one of the two coupling constants of the SLð2;RÞ actions vanishes. A prescription to

approach this point in the space of parameters is discussed, and the canonical structure of the theory is

analyzed.
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I. INTRODUCTION

The model of chiral gravity proposed by Li, Song, and
Strominger in [1,2] represents a very interesting idea to
construct a consistent theory of quantum gravity in three
dimensions. The feasibility of formulating such a model
was extensively discussed in the last three years [3–13] and
is still a matter of technical analysis [14–17]. Here, chiral
gravity is discussed and compared with a special (singular)
limit of Chern-Simons gravity.

We consider the most general Chern-Simons gravita-
tional theory in three-dimensional anti-de Sitter space
(AdS3), including torsion [18,19]. We briefly discuss how
the central charges of the (conjecturally existing [20–22])
dual conformal field theory (CFT) can be calculated. This
can be done by implementing AdS3 asymptotic boundary
conditions, both for the dreibein and for the spin connec-
tion, which amounts to performing the Hamiltonian reduc-
tion of the boundary action, straightforwardly adapting
what is known for the case of three-dimensional Einstein
gravity inAdS3 [23,24]. The result consistently agrees with
the central charges previously obtained in the literature by
different methods [25–29].

It is observed that the theory exhibits a special point in
the space of parameters, at which it becomes chiral by
construction as one of the two coupling constants of the
SLð2;RÞ Chern-Simons actions vanishes. This is a singular
point of the Chern-Simons theory, and this singularity was
recently mentioned in [30] in the context of the analytically

extended theory, where a relation between this singular
point and the chiral point of [1] was already pointed out.
The fact that at this point one of the two SLð2;RÞ Chern-
Simons actions (say the left-handed one) decouples implies
that the degrees of freedom associated to the left-handed
modes are left unspecified. For such degrees of freedom,
that correspond to a particular combination of the dreibein
and the spin connection, one can further impose the tor-
sionless condition consistently, obtaining in this way a
theory with no local degrees of freedom whose asymptotic
isometry group is generated by a single copy of the
Virasoro algebra with central charge cR ¼ 3l=G. This is
reminiscent of what happens in topologically massive
gravity (TMG) at the chiral point. Nevertheless, it is worth-
while to distinguish between the two constructions; we will
comment on this distinction and on the analogies in Sec. V.
We begin in Sec. II by reviewing chiral gravity. In

Sec. III, we review the Mielke-Baekler theory of three-
dimensional gravity, which includes torsion. In Sec. IV, we
review the calculation of the central charges for the theory
with torsion, and we observe that a special point at which
one of the central charges vanishes exists. In Sec. V, we
discuss a prescription to approach the point of the space of
parameters at which the Mielke-Baekler theory exhibits
degeneracy, and we analyze the canonical structure of the
theory. Section VI contains the conclusions.

II. CHIRAL GRAVITY

A. Topologically massive gravity

Let us start by discussing TMG [31,32], which we
review here within the context of [1]. The action of the
theory, written in the first order formalism, reads
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STMG ¼ 1

16�G

Z
�3

"abcR
ab ^ ec þ �
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�
Z
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"abce
a ^ eb ^ ec þ 1

32�G�

�
Z
�3

"abc

�
!ab ^ d!c þ 2

3
!a ^!b ^!c

�

þ 1

32�G�

Z
�3

�aT
a; (2.1)

where the torsion 2-form Ta ¼ 1
2T

a
��dx

� ^ dx� is defined

by

Ta ¼ dea þ!ab ^ eb;

while the Riemannian curvature 2-form Rab ¼
1
2R

ab
��dx

� ^ dx� is defined by

Rab ¼ d!ab þ!a
c ^!cb;

with the dreibein 1-form ea ¼ ea�dx
� and the spin connec-

tion 1-form !ab ¼ !ab
� dx�. The convention adopted here

is the standard one, according to which greek indices
�; �; �; . . . refer to spacetime coordinates while Latin in-
dices a; b; c; . . . refer to coordinates in the tangent bundle;
so we have !a ¼ �ab!b, e

a ¼ �abeb, and the dual quan-
tities like !a ¼ 1

2"
abc!bc, R

a ¼ 1
2"

a
bcR

bc, etc.

The first two terms in the gravitational action (2.1)
correspond to the Einstein-Hilbert and the cosmological
terms, with Newton constant G and cosmological constant
� ¼ �l�2. The third contribution in (2.1) is the so-called
‘‘exotic’’ gravitational Chern-Simons term, which is purely
made of the spin connection !ab

� . Also, there is a fourth

term in the action, which includes the torsion and a
Lagrange multiplier �a. The Lagrange multiplier is ac-
tually a vector-valued 1-form �a ¼ �a

�dx
�, whose inclu-

sion in the action implements the constraint of vanishing
torsion Ta ¼ 0. The theory has a mass scale�, which turns
out to be the mass of the gravitons of the theory [31,32].

The equations of motion coming from the action above
are

"abc

�
Rbc þ 1

l2
eb ^ ec

�
� 1

�
D�a ¼ 0; (2.2)

Rabþ1

2
ð�a^eb�ea^�bÞþ�"abcTc¼0; (2.3)

Ta ¼ 0; (2.4)

where the 2-form D�a ¼ d�a þ!ab ^ �b is the covariant
derivative of the Lagrange multiplier. These equations
correspond to varying action (2.1) with respect to the
dreibein, the spin connection, and the Lagrange multiplier,
respectively. Notice that this is different from what
happens in three-dimensional general relativity, where
the equation of motion Ta ¼ 0 comes from varying the

Einstein-Hilbert action with respect to the spin connection
instead. For a concise review of TMG in the first order
formalism, we refer to the recent papers [33,34].
Using Eq. (2.4) above, one may write the set of field

equations as follows:

"abc

�
Rbc þ 1

l2
eb ^ ec

�
� 1

�
D�a ¼ 0; (2.5)

Rab þ 1

2
ð�a ^ eb � ea ^ �bÞ ¼ 0; (2.6)

and from (2.6), which is an algebraic equation, one solves
for �a

� and replaces it back in (2.2) to obtain the Cotton

tensor made of D�a. This defines TMG in the form we
know it [31,32]. The theory, thus, corresponds to a dynami-
cal theory with equations of motion of third order that
includes general relativity as a particular sector. In fact, it
is well known that all classical solutions to three-
dimensional general relativity solve the equations of
TMG as well; this is basically because the Cotton tensor
vanishes if (and only if) the metric is conformally flat.

B. Asymptotically AdS solutions

Here, we are concerned with asymptotically AdS3
geometries. Written in a convenient system of coordinates,
(a patch of) AdS3 space reads

ds2AdS ¼ �
�
r2

l2
þ 1

�
dt2 þ

�
r2

l2
þ 1

��1
dr2 þ r2d�2;

where l is the ‘‘radius’’ of AdS3 space. In this system of
coordinates, the asymptotically AdS3 boundary conditions
take the form

gtt ’ � r2

l2
þOð1Þ;

gtr ’ Oð1=r3Þ;
gt� ’ Oð1=r3Þ;

(2.7)

grr ’ l2

r2
þOð1=r4Þ;

gr� ’ Oð1=r3Þ;
g�� ’ r2 þOð1Þ:

(2.8)

This is the set of boundary conditions introduced by Brown
and Henneaux in [35].
The most important member of the set of asymptotically

AdS3 solutions of general relativity is the Bañados-
Teitelboim-Zanelli black hole (BTZ), whose metric is
given by [36,37]
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ds2BTZ ¼ �
�
r2

l2
� 8GM

�
dt2

þ
�
r2

l2
� 8GMþ 16G2J2

r2

��1
dr2

þ r2d�2 þ 8GJd�dt: (2.9)

Indeed, taking a glance at the asymptotic conditions above,
it is evident that this metric is part of the set of solutions
considered in the analysis of [35].

The BTZ black hole (2.9), thought of as a solution to
TMG, has mass and angular momentum given by

M ¼ Mþ 1

�l2
J; J ¼ J þ 1

�
M; (2.10)

respectively. These reduce to the Arnowitt-Deser-Misner
(ADM) values of general relativity when 1=� ¼ 0.

Asymptotic conditions (2.7) and (2.8) are easily ex-
pressed in the first order formalism: The dreibein ea� is,

up to a local Lorentz transformation, defined in terms of
the metric by g�� ¼ ea�e

b
��ab. Then, Brown-Henneaux

boundary conditions (2.7) and (2.8) for the components
ea� read

e0t ’ r

l
þOð1=rÞ; e0r ’ Oð1=r4Þ; e0� ’ Oð1=rÞ;

e1t ’ Oð1=r2Þ; e1r ’ l

r
þOð1=r3Þ; e1� ’ Oð1=r2Þ;

e2t ’ Oð1=rÞ; e2r ’ Oð1=r4Þ; e2� ’ rþOð1=rÞ:

And from the vanishing torsion constraint, Ta ¼
dea þ!a

b ^ eb ¼ 0, one obtains the fall-off conditions

for the components !a
� of the spin connection as well.

C. The chiral gravity conjecture

The algebra of conserved charges associated to the
asymptotic isometry group of TMG in AdS3 is generated
by two copies of the Virasoro algebra, as it happens in the
case of general relativity [35]. The central charges associ-
ated to each of these Virasoro algebras can be computed by
several methods, and turn out to be

cL ¼ 3l

2G

�
1� 1

�l

�
; cR ¼ 3l

2G

�
1þ 1

�l

�
; (2.11)

which reproduce the result of Brown and Henneaux for
general relativity in the case 1=� ¼ 0, namely cL ¼ cR ¼
3l=ð2GÞ.

One of the observations made in [1], and which moti-
vated the whole idea of a chiral theory of gravity in three
dimensions, is that at the special point of the space of
parameters where �l ¼ 1, the left-handed central charge
cL vanishes. Besides, according to (2.10), the mass and the
angular momentum of a generic BTZ black hole at �l ¼ 1
obey the relation Ml ¼ J , no matter the values that the

parametersM and J take. In particular, this implies that all
the BTZ black holes (2.9) are extremal states. It also
implies a plethora of solutions with vanishing conserved
charges, which correspond to those BTZ metrics (2.9) with
parameters Ml ¼ �J. Besides, it is possible to see that in
the limit�l ! 1 the massive graviton of TMG tends to one
of the modes of Einstein gravity, which is pure gauge. All
these suggestive facts were gathered as pieces of evidence,
and led the authors of [1] to conjecture that at the
point �l ¼ 1 TMG about AdS3 space becomes a bulk
theory with no local degrees of freedom that would be
dual to a chiral conformal field theory with cR ¼ 3l=G; see
[3–9,14–16] for discussions.
A rapid way to notice that TMG exhibits special features

at �l ¼ 1 is to consider pp-waves in AdS3 [38,39].
Consider the exact solution

ds2 ¼ � r2

l2
Fðu; rÞdu2 � 2

r2

l2
dudvþ l2

r2
dr2; (2.12)

which corresponds to a nonlinear solution of the equations
of motion (2.5) and (2.6) whose physical interpretation is
that of a pp-wave sailing the AdS3 spacetime. AdS3
spacetime written in Poincaré coordinates corresponds
Fðu; rÞ ¼ 0, and one can identify the coordinates as u ¼
t�� and v ¼ tþ�, so that the front of the wave corre-
sponds to the surfaces u ¼ v ¼ const. The function Fðu; rÞ
gives the profile of the wave, which takes the form
Fðu; rÞ ¼ ðr=lÞ�l�1fðuÞ. This function satisfies the scalar
wave equation on AdS3, namely, ðh�m2

effÞFðu; rÞ ¼ 0,
where h stands for the D’Alembert operator in AdS3, and
the effective mass meff is given by m2

eff ¼ �2ð1�
��2l�2Þ. That is, the profile function Fðu; rÞ behaves as a
scalar mode of the space on which the nonlinear wave
solution is propagating. Then, one immediately notices
that in the limit �l ! 1 such scalar mode becomes mass-
less. One can also verify that nonlinear solutions (2.12)
develop a logarithmic falling-off behavior at the boundary;
namely, solutions like � logðr=lÞ arise at �l ¼ 1.
The consistency of chiral gravity was a matter of intense

discussion recently [3–9,14–16], and complete consensus
has not yet been reached. Nevertheless, the idea is very
promising and, besides, it gave rise to interesting results as
a by-product. The discussion about chiral gravity was
mainly about its spectrum, as it is crucial to establish the
consistency of the whole construction. Consequently, the
field content of the theory was analyzed in extent, both at
the linearized level and at the level of exact solutions. On
the one hand, in regard to linearized solutions, the discus-
sion is summarized in [13], where it was understood that at
�l ¼ 1 two different sets of boundary conditions are ad-
missible: the one proposed by Brown and Henneaux in
[35], and the weakened version proposed by Grumiller and
Johansson in [10–12]; and depending on which of these
asymptotics is chosen, the resulting theory happens to
exhibit different properties. In particular, the boundary
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conditions proposed in [10–12] permit asymptotic
behaviors like

gtt’�r2

l2
þOðlogðrÞÞ; g�t’OðlogðrÞÞ; (2.13)

grr’ l2

r2
þOðr�4Þ; g��’ r2þOðlogðrÞÞ; (2.14)

which are certainly weaker than (2.7) and (2.8). If these
boundary conditions are chosen, the bulk theory has ghosts
[10–12] and the boundary CFT renders nonunitary1

[40–43].
On the other hand, in regard to the analysis of the exact

solutions, it was shown in [44] that solutions satisfying the
weakened asymptotics (2.13) and (2.14) without satisfying
(2.7) and (2.8) do exist. The existence of such solutions
situates the discussion of boundary conditions beyond the
linearized analysis. One such a solution is given by

ds2 ¼ � r2

l2
dt2 þ l2

r2
dr2 þ r2d�2

þ k logðr2=r20Þðdt� ld�Þ2; (2.15)

which corresponds to deforming a special case of the BTZ
geometry (2.9) by adding a logarithmic piece, where k is an
integration constant associated to the mass and angular
momentum of the solution; more precisely Ml ¼ J � k
[34,44]. Then, the next question about exact solutions that
one might feel tempted to ask is whether by imposing
strong boundary conditions (2.7) and (2.8), instead of
(2.13) and (2.14), the classical sector of TMG at �l ¼ 1
coincides with that of Einstein gravity or not. If the clas-
sical sectors of both theories were the same, then the theory
would not admit physical local degrees of freedom. This is
equivalent to asking whether Eqs. (2.5) and (2.6) supple-
mented with boundary conditions (2.7) and (2.8) imply that
the Cotton tensor vanishes necessarily. This question was
answered by the negative in [17] where an exact solution to
TMG at �l ¼ 1 obeying the Brown-Henneaux asymptotic
without being an Einstein manifold was found. Such a
solution is given by

ds2 ¼ � r2

l2
dt2 þ l2

r2
dr2 þ r2d�2

þ
�
�t

l2
� �2l2

96r4

�
ðdtþ ld�Þ2; (2.16)

where � is a parameter. This is a time-dependent solution
of the theory at �l ¼ 1, and also corresponds to a defor-
mation of a special case of (2.9). Metric (2.16) solves (2.5)
and (2.6) having a nonvanishing Cotton tensor. Solutions
like (2.16), however, seem to carry vanishing conserved
charges, M ¼ J ¼ 0, so they would not contribute

substantially to the partition function. Then, the next ques-
tion to be asked is whether non-Einstein solutions to TMG
at �l ¼ 1 with the Brown-Henneaux boundary conditions
and finite mass actually exist. To the best of our knowl-
edge, this remains an open question.

III. ADDING TORSION

A. Mielke-Baekler theory of gravity

A different construction of a chiral theory in AdS3 is
possible. This consists of considering a special case of
three-dimensional Chern-Simons gravity including torsion
[18], also known as the Mielke-Baekler (MB) theory [19].
The action of the theory can be written as follows:

SMB ¼ 1

16�G
S1 þ �

16�G
S2 þ 1

16�G�
S3 þ m

16�G
S4;

(3.1)

where the four terms are

S1 ¼ 2
Z
�3

ea ^ Ra; S2 ¼ � 1

3

Z
�3

"abce
a ^ eb ^ ec;

(3.2)

S3 ¼
Z
�3

�
!a ^ d!a þ 1

3
"abc!

a ^!b ^!c

�
;

S4 ¼
Z
�3

ea ^ Ta:

(3.3)

Here, again, we see that in addition to the Einstein-Hilbert
action, S1, and the cosmological constant term, S2, we have
the exotic Chern-Simons gravitational term, S3, together
with the term S4 that involves the torsion explicitly. In fact,
there are actually two stages at which one introduces
torsion here: first, this is done by treating the dreibein,
ea, and the spin connection, !a, as independent fields,
following in this way the standard formulation à la
Einstein-Cartan. In the case of general relativity, the
Palatini formulation teaches us that considering ea and
!a as independent variables does not introduce any sub-
stantial difference for the classical theory, as the Einstein
equations are recovered by varying the Einstein-Hilbert
action with respect to ea, while the vanishing torsion con-
straint follows from varying the action with respect to !a.
However, when the exotic gravitational Chern-Simons
term is present in the action, the fact of treating ea and
!a as disconnected geometrical entities does make an
important difference.
A second stage at which one introduces torsion in the

theory is by adding the term S4 when writing the action.
Such a term includes the torsion explicitly, and, in contrast
to (2.1), it does not involve a Lagrange multiplier that
fixes the torsion to zero, but it couples the torsion to the
dreibein directly. The term S4 is dubbed a ‘‘translational
Chern-Simons term’’ and, as it happens with the exotic

1G. G. thanks M. Kleban and M. Porrati for illuminating
discussions and collaboration on this question.
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Chern-Simons term S3, it can also be associated with a
topological invariant in four dimensions: While S3 is
thought of as the term whose (dimensionally extended)
exterior derivative gives the Pontryagin 4-form density
Rab ^ Rab in four dimensions, the exterior derivative of
the translational term S4 gives the Nieh-Yan 4-form density
Ta ^ Ta � ea ^ eb ^ Rab, [45,46]. In this sense, all the
terms involved in the action (3.1) are of the same sort [47].

The equations of motion coming from (3.1) are

Ra ��

2
"abce

b ^ ec þmTa ¼ 0; (3.4)

Ta þ 1

�
Ra þm

2
"abce

b ^ ec ¼ 0: (3.5)

The first one comes from varying SMB with respect to the
dreibein, while the second one comes from varying it with
respect to the spin connection. One actually sees that in the
casem ¼ 1=� ¼ 0, the theory agrees with Einstein’s grav-
ity, for which Rab � ea ^ eb and Ta ¼ 0. In the special
case, m ¼ � with � ¼ �m2, the two equations of motion
(3.4) and (3.5) coincide and the theory exhibits a degener-
acy. We will analyze this special case in Sec. V. In the
generic case, the theory has four coupling constants, which
provide three dimensionless ratios, and the four character-

istic length scales G,
ffiffiffiffi
�

p
, ��1, and m�1.

The two equations of motion (3.4) and (3.5) are inde-
pendent equations providedm � �; so let us consider such
case first. Arranging these equations, one finds

Ra ¼ �

2

�þm2

��m
"abce

b ^ ec; (3.6)

Ta ¼ 1

2

m�þ�

m��
"abce

b ^ ec: (3.7)

These equations express the fact that the solutions of the
theory have constant curvature and constant torsion. From
(3.6) and (3.7), one immediately identifies two special
cases. When m� ¼ �� (m � �), Eq. (3.7) implies that
torsion vanishes, and thus (3.6) becomes the Einstein equa-
tions. A second special case is m2 ¼ �� (m � �), where
it is the spacetime curvature that vanishes; this is usually
called the ‘‘teleparallel theory.’’

Even though Eq. (3.6) implies that the solutions of the
theory have to be of constant curvature, the space has
torsion, so that the affine connection is not necessarily a
Levi-Civita connection. Then, seeing whether the solutions
of the theory actually correspond to Einstein manifolds or
not requires a little bit more analysis: To actually see this, it
is convenient to write the spin connection!a as the sum of
a torsionless contribution ~!a and the contorsion �!a;
namely

!a ¼ ~!a þ�!a; (3.8)

where ~!a is indeed the Levi-Civita connection. Then, from
(3.7), one obtains

�!a ¼ 1

2

m�þ�

m��
ea; (3.9)

and from (3.6) one finally gets

~R ab ¼ d ~!ab þ ~!a
c ^ ~!cb ¼ � 1

2l2
ea ^ eb; (3.10)

which expresses that solutions are indeed Einstein mani-
folds, where the effective cosmological constant is given
by

l�2 ¼ 1

4

�
m�þ�

m��

�
2 þ��þm2�

m��
: (3.11)

In the case m ¼ 1=� ¼ 0, one finds l�2 ¼ ��.

B. Black holes and torsion

The Mielke-Baekler theory admits asymptotically AdS3
black holes as exact solutions. In fact, it can be seen that
equations of motion (3.4) and (3.5) are satisfied by the BTZ
metric (2.9), provided the space also presents torsion [48];
see also [49,50]. The presence of nonvanishing torsion,
however, does not represent an actual ‘‘hair’’ since the
strength of Ta is fixed by (3.7) and so there is no additional
parameter to characterize the geometry. Then, the only two
parameters of the black hole solutions are stillM and J, and
for the Mielke-Baekler theory, the mass and angular mo-
mentum of the black hole are related to the coupling
constants in the following way:

M ¼ M

�
1þ 1

2

m�þ�

m���2
þ J

Ml2�

�
;

J ¼ J

�
1þ 1

2

m�þ�

m���2
þ M

J�

�
:

(3.12)

The Arnowitt-Deser-Misner values of general relativity are
recovered in the case m ¼ 1=� ¼ 0.
Black hole (BH) thermodynamics is also affected by the

presence of torsion. The entropy of the BTZ black holes in
the Mielke-Baekler theory can be computed, and is given
by

SBH ¼ �rþ
2G

�
1þ 1

2

m�þ�

m���2
� 1

�l

r�
rþ

�
; (3.13)

where rþ and r� are the horizons of the black hole, namely

r2� ¼ 4l2GM

0
B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J2

M2l2

s 1
CA: (3.14)

While the first term in (3.13) reproduces the Bekenstein-
Hawking area law, contributions proportional to 1=� give
deviations from the result of general relativity. It will be

ADDITION OF TORSION TO CHIRAL GRAVITY PHYSICAL REVIEW D 83, 124032 (2011)

124032-5



discussed below how the black hole entropy (3.13) is
recovered from CFT methods through holography.

IV. CENTRAL CHARGES

A. Chern-Simons formulation and Hamiltonian
reduction

In this section, we focus on the computation of the
central charges corresponding to the asymptotic algebra.
Seeing this from the holographic point of view, these
central charges turn out to be those of the dual conformal
field theory. To calculate these central charges, it is conve-
nient to discuss first the Chern-Simons formulation of the
theory (3.1). In fact, the Mielke-Baekler theory admits
being expressed as a sum of two Chern-Simons (CS)
actions [25–29],

SCS ¼ k
Z

tr

�
A ^ dAþ 2

3
A ^ A ^ A

�

� k̂
Z

tr

�
Â ^ dÂþ 2

3
Â ^ Â ^ Â

�
; (4.1)

where, for the case of the theory with negative cosmologi-
cal constant � ¼ �l�2, the corresponding SLð2;RÞ con-
nections are given by

Aa ¼ !a þ �ea; Âa ¼ !a þ �̂ea; (4.2)

with coefficients

� ¼ � 1

2

m�þ�

m��
þ 1

l
; �̂ ¼ � 1

2

m�þ�

m��
� 1

l
;

(4.3)

whereas the coupling constants read

k ¼ l

32�G

�
1þ 1

�l
þ 1

2

m�þ�

m���2

�
;

k̂ ¼ l

32�G

�
1� 1

�l
þ 1

2

m�þ�

m���2

�
:

(4.4)

The index a in (4.2) now is playing the role of the group
index, to be contracted with the 3þ 3 generators of the
slð2Þ � slð2Þ algebra. This is analogous to the standard
Chern-Simons realization of three-dimensional gravity
and, in fact, in the case m ¼ 0 the realization of [51,52]
is recovered. In this formulation, the equations of motion
of the theory read

F ¼ 0; F̂ ¼ 0; (4.5)

where F and F̂ are the field strength corresponding to the

gauge fields A and Â, respectively.
Having the theory written as in (4.1), one can compute

the central charges by following the procedure originally
introduced in [23,24]. This amounts to implementing
AdS3 asymptotic boundary conditions at the level of
the Chern-Simons actions, by reducing them first to
two chiral Wess-Zumino-Witten (WZW) actions, and

then using the asymptotic conditions again to reduce
some degrees of freedom of the latter. This eventually gives
the central charges of the boundary two-dimensional con-
formal field theory through the Hamiltonian reduction of
the WZW theory, as in [23,24]. Nevertheless, despite
that the analysis here is very similar to that of three-
dimensional Einstein gravity, it is worth noticing that, in
contrast to the case where no exotic Chern-Simons term is
included, the full action is not exactly the difference of two

chiral WZWactions with the same level k ¼ k̂. The exotic
term actually unbalances the two chiral contributions. In
turn, Hamiltonian reduction must be performed in each
piece separately.
A consistent set of AdS3 boundary conditions for the

theory with torsion are those proposed in [25–27]

e0t ’ r

l
þOð1=rÞ; e0r ’ Oð1=r4Þ; e0� ’ Oð1=rÞ;

e1t ’ Oð1=r2Þ; e1r ’ l

r
þOð1=r3Þ; e1� ’ Oð1=r2Þ;

e2t ’ Oð1=rÞ; e2r ’ Oð1=r4Þ; e2� ’ rþOð1=rÞ:
(4.6)

From Eq. (3.7), one obtains the asymptotic behavior for the
components of the spin connection; namely

!0
t ’ ar

2l
þOð1Þ; !0

r ’ Oð1=r4Þ;

!0
� ’ � r

l
þOð1Þ; !1

t ’ Oð1=r2Þ;

!1
r ’ al

2r
þOð1=r3Þ; !1

� ’ Oð1=r2Þ;

!2
t ’ � r

l2
þOð1=rÞ; !2

r ’ Oð1=r4Þ;

!2
� ’ ar

2
þOð1=rÞ;

(4.7)

where a ¼ ðm�þ�Þ=ðm��Þ.
Then, following the procedure developed in [23,24], one

verifies that implementing some of the asymptotic condi-
tions (4.6) and (4.7) amounts to define a boundary action,
consisting of two copies of the chiral WZW model (see
[23,24] for details, and see also [53] for a very nice
discussion). The WZW theory has SLð2;RÞk � SLð2;RÞk̂
affine Kac-Moody symmetry, which is generated by the
currents

JiðzÞ¼X
n

Jinz
�n�1; �JiðzÞ¼X

n

�Jin �z
�n�1; i¼1;2;3;

with the boundary variables z ¼ tþ i�, �z ¼ t� i�. The
modes obey the Kac-Moody current algebra
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½Jþm ; J�n � ¼ �2J3nþm � k

2
n�mþn;0;

½J3m; J�n � ¼ �J�nþm;

½J3m; J3n� ¼ k

2
n�mþn;0;

with J�n ¼ J1n � iJ2n, where k is a central element; analo-

gously for the antiholomorphic counterpart �Jin with k̂.
Then, Sugawara construction gives the Virasoro generators
in terms of the Kac-Moody generators; namely,

Lm ¼ hij
k� 2

X
n

Jim�nJ
j
n; �Lm ¼ hij

k� 2

X
n

�Jim�n
�Jjn;

(4.8)

where hij is the Cartan-Killing bilinear form of SLð2;RÞ
and the �2 in the denominator stands for the Coxeter
number of SLð2;RÞ. Then, we have the stress tensor

TðzÞ ¼ X
n

Lnz
�n�2; �Tð�zÞ ¼ X

n

�Ln �z
�n�2; (4.9)

whose modes realize the Virasoro algebra

½Lm; Ln� ¼ ðm� nÞLmþn þ k

4ðk� 2Þm
2ðm2 � 1Þ�mþn;0;

(4.10)

that gives the central charges c ¼ 3k=ðk� 2Þ, and analo-
gously for the antiholomorphic counterpart replacing Ln

by �Ln and k by k̂, yielding ĉ ¼ 3k̂=ðk̂� 2Þ. These are not
yet the central charges of the boundary CFT as it still
remains to impose some of the boundary conditions (4.6)
and (4.7). It is possible to verify that implementing the
whole set of asymptotic boundary conditions (4.6) and
(4.7) amounts to fixing the constraints JþðzÞ � k and
�Jþð�zÞ � k̂. This condition requires an improvement of
the stress tensor of the sort TðzÞ ! TðzÞ þ @J3ðzÞ, as it
demands the current JþðzÞ to be a dimension zero field.
This is equivalent to shifting Ln ! Ln � ðnþ 1ÞJ3n, and
the same for �Ln, which results in a shifting of the value of
the central charges c and ĉ. The central charges now

become cR ¼ 3k=ðk� 2Þ þ 6k and cL¼3k̂=ðk̂�2Þþ6k̂,

and for large k, k̂ one gets the standard result cR ’ 6k and

cL ’ 6k̂. Then, one finds2

cL ¼ 3l

2G

�
1� 1

�l
þ 1

2

m�þ�

m���2

�
;

cR ¼ 3l

2G

�
1þ 1

�l
þ 1

2

m�þ�

m���2

�
;

(4.11)

together with (3.11). One rapidly verifies that this result
agrees with the ones obtained in the literature [25–29].

It is important to point out that, even in the case m ¼ 0,
where the action of the theory only contains the Einstein-
Hilbert and the cosmological terms, S1 þ S2, and the ex-
otic Chern-Simons gravitational term, S3, these values for
the central charges do not coincide with those of TMG.
This is because, as mentioned earlier, both theories differ
not only because of the inclusion of S4 in the action. In fact,

if m ¼ 0, and taking (3.11) into account, one finds cL ¼
ð3=2G�Þð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�2l2
p � 1Þ, cR¼ð3=2G�Þð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�2l2
p þ1Þ,

which coincides with (2.11) only at first order in 1=�. On
the other hand, if m � 0 and 1=� ¼ 0, the central charges
above simply become cL ¼ cR ¼ 3l=ð2GÞ. This does not
imply that the value of m disappears from the expressions
since (3.11) depends on m and, thus, when 1=� ¼ 0 the
effective cosmological constant is given by �l�2 ¼ �þ
m2. This can simply be seen by taking a glance at the
equations of motion and noticing that replacing 1=� ¼ 0
in (3.4) and (3.5) makes the curvature disappear from (3.5),
while inducing at the same time a redefinition of the
cosmological constant in (3.4).

B. Quantization conditions

So, we have central charges (4.11). These are the central
elements of the asymptotic AdS3 isometry algebra, and
from the AdS/CFT conjecture point of view these are the
charges of the dual CFT. Modular invariance of such CFT
demands ðcL � cRÞ=24 ¼ ð8G�Þ�1 2 Z, giving a quanti-
zation condition for the parameters in the action. Besides,
even before resorting to the dual CFT description, one may
argue that the central charges have to be quantized. Indeed,
quantization of the SLð2;RÞ Chern-Simons coefficient

imposes conditions on cR ¼ 6k and cL ¼ 6k̂ as well. For
instance, already in the case 1=� ¼ 0, one finds

ð16G ffiffiffiffiffiffiffiffiffi��
p Þ�1 2 Z. This follows from topology argu-

ments; see the nice discussion in [54].
As Witten pointed out also in [54], the quantization of

the central charge (and not only of the difference cL � cR)
is also natural from the point of view of the dual conformal
field theory. This is because of the Zamolodchikov
c-theorem [55], which states the impossibility of having
a family of CFTs with a SLð2;RÞ � SLð2;RÞ invariant
vacuum parametrized by a continuous value of the central
charge. In turn, consistency of the theory, provided one
assumes the AdS/CFT conjecture, demands the dimension-
less ratios constructed by the different coupling constants
of the theory to take special values for the bulk theory to be
well defined.
Furthermore, one could also ask whether there is a way

to understand these quantization conditions from the point
of view of the microscopic theory. To analyze this, one
could think of embedding the three-dimensional gravity
action, including the exotic Chern-Simons term, in a bigger
consistent theory, like string theory. Even though a com-
plete description of it has not yet been accomplished (see

2A. G. and G.G. thank Matı́as Leoni for discussions about this
calculation in the case including torsion.
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[56] for a recent attempt), one can consider a toy example
to see how it would work. For instance, let us play around
with the OðR4Þ M-theory terms, which are those that
supplement the 11-dimensional supergravity action.
Among such higher-curvature terms, one finds couplings
between the 3-form A ¼ A��	dx

� ^ dx� ^ dx	 with the

curvature tensor Rab
�� ¼ ea
e

b
�R


�
��.

One such term is of the form
R
�11

A ^ trðR ^ RÞ ^
trðR ^ RÞ, together with other terms (the trace is taken
over the indices in the tangent bundle a; b; . . . ). Then,
one can think of a compactification of the form3 �11 ¼
�3 �M4 � X4, with F ¼ dA having flux on M4, and
asking X4 to have nontrivial signature (nonvanishing
Pontryagin invariant). Integrating by parts, the higher-
order term written above, one finds a contribution of
the form �R

�3
ð!a ^ d!a þ "abc

3 !a ^!b ^!cÞ R
M4

FR
X4
Rab ^ Rab, so that the exotic gravitational term appears

here, being the effective three-dimensional coupling
ð8�G�Þ�1 � �ðX4ÞNðM4Þ, where �ðX4Þ is the signature of

X4 and NðM4Þ is the charge under F. This sketches how a

(yet to be found) microscopic realization could yield the
quantization condition for cR � cL.

C. Black hole entropy

Now, before concluding the discussion on the central
charges, let us consider a quick application of the result
(4.11). The values of the central charges derived above
provide us with a tool to compute the black hole entropy
microscopically. This was discussed in [57–59] for the case
of the theory with torsion, and it follows from the well-
known procedure originally proposed by Strominger in
[60]. This amounts to considering the Cardy formula [61]
of the dual CFT. In a two-dimensional CFT, Cardy’s for-
mula gives an asymptotic expression for the growing of
density of states. It follows from modular invariance and
some general hypothesis about the spectrum of the theory.
The formula for the microcanonical entropy, representing
the logarithm of the number of degrees of freedom for
given values of M and J , reads

SCFT ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL
12

ðMl� J Þ
r

þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cR
12

ðMlþ J Þ
r

; (4.12)

where the conserved charges associated to Killing vectors
@t and @�, namely, the mass and the angular momentum,

are identified with the Virasoro generators L0 þ �L0 and
L0 � �L0, respectively. Resorting to Eqs. (3.12), (3.14), and
(4.11), one actually verifies that (4.12) exactly reproduces
the black hole entropy (3.13); see [28,29,57–59] and also
[62].

V. A SINGULAR LIMIT

A. Degeneracy in Mielke-Baekler theory

Now, let us consider the special case � ¼ m ¼ ffiffiffiffiffiffiffiffiffi��
p

.
As said before, in this case the equations of motion (3.4)
and (3.5) coincide and the Mielke-Baekler theory develops
a kind of degeneracy as the equations of motion only give

Ra þ�Ta þ�2

2
"abce

b ^ ec ¼ 0: (5.1)

Certainly, this equation is not sufficiently restrictive unless
one specifies additional information, e.g., about the tor-
sion. On the other hand, if � ¼ m, Eqs. (3.4) and (3.5) can
not be generically written in the form (3.6) and (3.7). In

fact,� ¼ m ¼ ffiffiffiffiffiffiffiffiffi��
p

is a singular point of the theory. This
is why in order to analyze this point it is necessary to take
the limit carefully proposing a consistent prescription. A
particular consistent way this limit can be taken is to
actually consider the form (3.6) and (3.7) for the equations
of motion, namely,

Ra ¼ �

2

�þm2

��m
"abce

b ^ ec;

Ta ¼ 1

2

m�þ�

m��
"abce

b ^ ec;

(5.2)

define 1�m=� ¼ ", and then take the limit " going to
zero in such a way that Eqs. (5.2) remain well defined.
For this to be consistent, one has to consider the limit
1�m=� ¼ " ! 0 together with the limit �þm2 ¼
"=l2 ! 0. Then, if the torsion is set to zero, (5.1) would
require�1=l2 to coincide with the constant� appearing in
the Lagrangian, and so one finds that mþ�=� identically
vanishes. In turn, the limit 1�m=� ! 0 is consistent with
(5.2) and one eventually obtains

Ra ¼ �

2
"abce

b ^ ec; Ta ¼ 0; (5.3)

that is, the Einstein equations. In this limit, one also finds
the central charges

cL ¼ 0; cR ¼ 3l

G
; (5.4)

with l�2 ¼ ��. Finally, to take the analogy with the
model of [1] one step further, one may notice that at this
special point all the black hole solutions of the theory fulfill
the extremal relation

lM ¼ J : (5.5)

On the other hand, it seems clear that we could have also
taken the � ! m limit in such a way that it is the torsion
quantity that does not vanish at the critical point, obtaining,
instead of (5.3), the following

Ta ¼ 1
2�"

a
bce

b ^ ec; (5.6)
3G. G. thanks B. S. Acharya for suggesting the possibility of

this type of construction.
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with arbitrary value �. In this case, the effective
cosmological constant would have been given by �l�2 ¼
�ð1þ �Þ, and then we would have ended up having a
nonvanishing torsion at the critical point. That is, the point

� ¼ m ¼ ffiffiffiffiffiffiffiffiffi��
p

is a degenerate point of the Mielke-
Baekler theory and such degeneracy gets realized by the
ambiguity in the choice of �, which is fixed only after a
particular prescription for the limit is adopted. The choice
� ¼ 0 gives a theory similar to that pursued in [1].
Besides, it is clear from (5.1) that at the degenerate point
the theory neither gives information about the curvature
nor about the torsion, but about the combination Ra þ
�Ta. Then, the only equation of motion written in the
Chern-Simons form turns out to be F ¼ 0, which is a field
equation for Aa ¼ !a þ�ea. Here, it is worth emphasiz-

ing that, at m ¼ � ¼ ffiffiffiffiffiffiffiffiffi��
p

, the theory defined by (5.1)
and that defined by (5.2) are not equivalent. This is the case
even when the systems of Eqs. (3.4), (3.5), (3.6), and (3.7)
are equivalent if m � �. In fact, while Eqs. (5.2) in the

limit m ! � ! ffiffiffiffiffiffiffiffiffi��
p

still define a theory with constant
curvature and constant torsion, Eq. (5.1) only gives infor-
mation about the quantity Ra þ�Ta. It is (5.1), and not
(5.2), that is the model that corresponds to a single Chern-
Simons field theory.

The singular point, as we will shortly analyze in the next
subsection within the canonical formalism, gives a particu-
lar combination of the coupling constants for which some
of the would be degrees of freedom simply decouple (the
situation here is a bit more cumbersome since these
theories have no local degrees of freedom on their own).
If the microscopic Lagrangian of the theory is fine-tuned to
those values that would lead to the critical point, one
should simply make a field redefinition from scratch and
the theory becomes a Chern-Simons theory for a single
SLð2;RÞ, whose geometrical meaning is unclear. However,
whatever approach to this problem is chosen, it seems more
natural to embed the Mielke-Baekler Lagrangian into a
bigger picture, so that the singular point is eventually
approached from the generic nondegenerate situation. As
such, it is natural to give a prescription for the singular
point that smoothly interpolates with the generic case,
where both the curvature and the torsion are constant.
Still, there is some freedom within this prescription, which
is reflected in the parameter� in (5.6). The choice� ¼ 0 is
special in that it makes the theory closely reminiscent to
chiral gravity [1].

To understand the ambiguity in the parameter �, it is
worth studying the map between different geometries and
how it behaves at the degenerate point: In the Mielke-
Baekler theory, there is a natural way to establish a map
between geometries, which are solutions of the theory (3.1)
for different values of the coupling constants [63]. That is,
one can perform a linear transformation of the fields like

!a ! !a þ �ea; ea ! ea; (5.7)

and find that this transformation induces a transformation
of the four coupling constants that appear in the action.
Notice that (5.7) is a symmetry transformation that can be
implemented at the level of the action and, in particular,
can be used to set some of the coefficients to zero; see [63]
for a discussion. To give an example of how it works, it is
sufficient to consider the Lagrangian of the theory in the
particular case in which its coupling constants satisfy the
relation�m ¼ ��. In this case, a transformation like (5.7)
generates the following transformation of the coupling
constants:

G ! ~G ¼ G�

�þ �
; (5.8)

� ! ~� ¼ �þ �; (5.9)

m ! ~m ¼ m�þ 2��þ �2

�þ �
; (5.10)

� ! ~� ¼ ��� 3m��� 3��2 � �3

�þ �
: (5.11)

The case we started with already satisfies the special
condition�m¼��, and provided it also satisfies� ¼ m,
one finds that the transformed coupling constants obey

~� ~m ¼ �~� and ~� ¼ ~m as well. That is, the special con-
dition m2 ¼ �2 ¼ �� appears to be a fixed point of the
�-transformation (5.7); in fact, after the transformation

one finds ~�2 ¼ ~m2 ¼ �~� ¼ ð�þ�Þ2. And we see that
this transformation generates (constant) torsion Ta �
�"abce

b ^ ec from a configuration with vanishing torsion.

The combination that remains invariant is, precisely, Ra þ
�Ta þ �2

2 "abce
b ^ ec ! Ra þ ~�Ta þ ~�2

2 "abce
b ^ ec, as

in (5.3). This explains the degenerate point appearing as
a fixed point of (5.7).

B. Analogy with chiral gravity

Equations (5.3), (5.4), and (5.5) are actually evocative of

what happens in chiral gravity. The point � ¼ m ¼ ffiffiffiffiffiffiffiffiffi��
p

corresponds to the point of the space of parameters where
the Chern-Simons coupling q̂ vanishes. In turn, the theory
consists of a single Chern-Simons action (see [30] for a
brief comment about the relation between the singular
point q̂ ¼ 0 and the chiral point of [1]; cf. [29]). When
q̂ ¼ 0, the left-handed degrees of freedom are left unspe-
cified; however, we have just argued that one could con-
sistently demand the torsionless condition Ta ¼ 0 when
approaching the singularity.
We have just identified a special (singular) point of the

Mielke-Baekler theory at which the theory behaves pretty
much like chiral gravity of [1]. That is, it gives a model
of three-dimensional gravity that fulfills the following
properties:
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(a) Once suitable asymptotically AdS3 boundary con-
ditions are imposed, the asymptotic isometry group
turns out to be generated by one (right-handed)
Virasoro algebra with central charge cR ¼ 3l=G,
while the central charge of the left-handed part cL
vanishes.

(b) The theory can be written as a single SLð2;RÞ
Chern-Simons term, as the other copy of the
bulk action decouples in the limit, being propor-
tional to cL.

(c) The BTZ black holes have mass M and angular
momentum J that obey the relation lM ¼ J , no
matter the values that the parametersM and J of the
solution take.

(d) The theory has no local degrees of freedom, as it
corresponds to a special case of the Mielke-Baekler
theory.

(e) If the limit � ! m ! ffiffiffiffiffiffiffiffiffi��
p

is taken in such a way
that Eqs. (5.2) are obeyed, all the solutions of the
theory at the special point have vanishing torsion,
for � ¼ 0, and are Einstein manifolds, i.e., spaces
locally AdS3.

Nevertheless, besides the resemblance between the chi-
ral model obtained from the degenerate case of the Mielke-
Baekler theory and the chiral gravity of [1], it is worth
emphasizing that both constructions are radically different,
for instance in regards to the property (e) listed above [17].

In the next section, we will analyze the canonical struc-
ture of the theory and how it changes at the degenerate
point.

C. Canonical analysis

In the previous section, we discussed a degenerate point
of the Mielke-Baekler theory of gravity in AdS3 space and
we proposed a prescription to approach this point in the
space of parameters. Now, let us briefly discuss the canoni-
cal structure of the theory. Our discussion will follow the
approach and notation of Refs. [64,65], but paying special
attention to the analysis of the constrained system in order
not to miss the difference between the critical and the
noncritical cases.

The Hamiltonian analysis of the theory starts by slicing
the three-dimensional spacetime manifold, separating the
temporal components from the spatial ones, and defining a
configuration space. The coordinates of this configuration
space (henceforth denoted by q) are the components e

�
a

and !
�
a . Explicitly, we can write the canonical momenta

associated to these as follows

�0
a¼0; �0

a¼0;

�i
a¼�"ijð!ajþmeajÞ; �i

a¼"ijð!ajþ�eajÞ;
(5.12)

which correspond to e0a, !0
a, eia, and !i

a, respectively,
where the notation is such that i, j ¼ 1, 2 refer to
the spatial part of the spacetime indices. The canonical

momenta are indeed defined with respect to the action (3.1)
times 16�G�. These relations define the primary con-
straints of the theory; namely,

�0
a � �0

a;

�0
a � �0

a;

�i
a � �i

a ��"ijð!aj þmeajÞ;
�i

a � �i
a � "ijð!aj þ�eajÞ:

(5.13)

Then, the primary Hamiltonian density is

H T ¼ ea0H a þ!a
0Ka þ _ea0�

0
a þ _!a

0�
0
a

þ _eai �
i
a þ _!a

i�
i
a; (5.14)

where the dot stands for time derivatives and, following the
notation used in [64],

H a ¼ ��ðmTa
ij þ Ra

ij ��"abce
b
i e

c
jÞ"ij; (5.15)

Ka ¼ �ð�Ta
ij þ Ra

ij þm�"abce
b
i e

c
jÞ"ij: (5.16)

The dynamics of the theory is generated byH T , while the
time derivatives of the coordinates that accompany the
constraints play the role of Lagrange multipliers that fix
them to zero. The structure of the Hamiltonian is, in

general, given by H T ¼ ~H þ _qI�I. That is, the actual
Hamiltonian is given by the sum of the canonical
Hamiltonian and the contributions coming from the con-
straints. The Poisson structure arises from imposing ca-
nonical constraints on coordinates and momenta through
the Lie bracket f; g. The constraints �I ¼ 0 reduce the
original phase space to the physical one, and consistency
of the theory demands the constraints to be preserved
through the dynamical evolution of the system in the

reduced phase space. This requires _�J to weakly vanish,

_� J¼fH T;�Jg¼ f ~H ;�Jgþ _qIf�I;�Jg�0: (5.17)

In our case, we have

_�0
a ¼ �H a;

_�0
a ¼ �Ka;

_�i
a ¼ 2�m
ji

�
@jea0 � 
ab

c

�
!b

j �
�

m
ebj

�
ec0

�
þ 2�
jið@j!a0 � 
ab

cð!b
j þmebj Þ!c0Þ

þ 2�
jiðm _eaj þ _!ajÞ;
_�i
a ¼ 2�
jið@jea0 � 
ab

cð!b
j þmebj Þec0Þ

þ 2
jið@j!a0 � 
ab
cð!b

j þ�ebj Þ!c0Þ
þ 2
jið� _eaj þ _!ajÞ:

The first line above expresses the fact thatH a andKa are
secondary constraints, while the second and third lines give
equations that allow one to find the values of _eaj and _!aj
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that set these expressions to zero. Solving these equations
is always possible, except when the determinant of the
system is zero, which precisely occurs when m ¼ �.
Leaving the critical case aside for a moment, one can
continue the analysis and verify that the secondary con-
straints are actually consistent: the nontrivial Poisson
brackets for m � � are

f�i
a;�

j
bg ¼ �2m�"ij�ab;

f�i
a;�

j
bg ¼ �2�"ij�ab;

f�i
a;�

j
bg ¼ �2"ij�ab;

(5.18)

with

f�i
a;

�H bg ¼ "ab
c

�
�þm�

m��
�i

c þ�
�þm2

��m
�i

c

�
;

(5.19)

f�i
a;

�Kbg ¼ f�i
a;

�H bg ¼ �"ab
c�i

c;

f�i
a;

�Kbg ¼ �"ab
c�i

c;
(5.20)

and

f �H a;
�H bg ¼ "ab

c

�
�þm�

m��
�H c þ�

�þm2

��m
�Kc

�
;

(5.21)

f �H a;
�Kbg ¼ �"ab

c �H c; f �Ka;
�Kbg ¼ �"ab

c �Kc:

(5.22)

There is of course a �2ð ~x� ~yÞ implicit in all of these
formulas. After substituting the expression for the multi-
pliers back into the total Hamiltonian, one can integrate by
parts to rearrange the factors that accompany the canonical
variables, that instead of H and K are now,

�H a ¼ H a � ð@i�i
a � 
ab

c!b
i �

i
cÞ

� 
ab
cebi

�
�þm�

m��
�i

c þ�
�þm2

��m
�i

c

�
;

�Ka ¼ Ka � ð@i�i
a � 
ab

c!b
i�

i
cÞ þ 
ab

cebi�
i
c:

In contrast, at the critical point, the theory exhibits a
dynamical pathology. The reason is that, when m ¼ �, a
new symmetry appears, and this must be properly taken
into account when analyzing the constraints. What happens
when going from the generic case to the critical case
m ¼ � is that two of the momenta become proportional
to each other, namely, �i

a ¼ ��i
a, and consequently the

respective constraints happen to carry the same informa-
tion. This is basically because at such point of the space of
parameters, the coordinates ea and !a play symmetric
roles in the action. As mentioned before, at the singular
point one of the Chern-Simons actions drops out and one is
left with a single action describing the dynamics of the

field Aa ¼ !a þ�ea. In order to take this symmetry
(between the role played by ea and !a) into account,
one can replace the constraint �i

a by the new one c i
a �

�i
a ���i

a, in such a way that the constraints turn out to be
given by

_� 0
a¼�J a; _�0

a¼�J a; _c i
a¼0; (5.23)

_� i
a ¼ 2
ijð@jAa0 � 
ab

cAb
jAc0Þ þ 2
jið� _eaj þ _!ajÞ;

(5.24)

where the last equation can always be solved. J a ¼
H a=� ¼ Ka ¼ �
ijFa

ij at the critical point, where � ¼
m ¼ ffiffiffiffiffiffiffiffiffi��

p
. The nonzero Poisson brackets in the critical

case are

f�i
a;�

j
bg ¼ �2"ij�ab;

f�i
a; �J bg ¼ �"ab

c�i
c;

f �J a; �J bg ¼ �"ab
c �J c;

(5.25)

where

�J a ¼ J a � ð@i�i
a � 
cabA

b
i�

i
cÞ: (5.26)

The difference between the critical point m ¼ � and the
generic case can be summarized easily by counting the
amount of constraints of first class (FC) and those of
second class (SC) that appear in each case. Namely,

Primary Secondary

FC �0
a, �

0
a

�H a,
�Ka

SC �i
a, �

i
a -

Primary Secondary

FC �0
a, �

0
a, c

i
a

�J a

SC �i
a -

We see that at the critical point, one primary constraint
of second class is promoted to the first class4, and the two
secondary constraints of the first class,H andK, collapse
to one, denoted by J . This indicates that a new symmetry
appears at the critical point; namely,

��e
a
i ¼ �a

i ; ��!
a
i ¼ ���a

i ; (5.27)

which certainly leaves Aa
i invariant.

It is worth noticing that the prescription for going from
the general case to the critical point defined through the
limiting procedure 1�m=� ¼ ", ��m2 ¼ "=l2, and
mþ�=� ¼ 0 can be applied to the set of commutators
(5.18), (5.19), (5.20), and (5.21), along with the change
�i

a ! c i
a ¼ �i

a ���i
a and J a ¼ H a=� ¼ Ka to ob-

tain the set of commutation relations of the critical case.

4Notice that the number of degrees of freedom in each case
remains zero.
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This can also be done for an arbitrary value of the parame-
ter �, introduced earlier, without distinction.

VI. CONCLUSIONS

We have considered the Mielke-Baekler theory of grav-
ity in asymptotically AdS3 spacetimes with torsion. We
have reviewed the computation of central charges of the
asymptotic algebra, which turn out to be the central
charges of the dual CFT2. The result we obtained agrees
with the central charges obtained in the literature by em-
ploying different methods [25–29]. It was observed that a
special point of the space of parameters exists, at which
one of the central charges vanishes. This point was com-
pared with the chiral point of topologically massive grav-
ity, and the analogies between both models were pointed
out. This point is a singular point for the Mielke-Baekler
theory, where the theory exhibits degeneracy. We analyzed
this at the level of the Chern-Simons theory and in the
canonical approach. In the Chern-Simons formulation this
critical point appears as the point of the space of parame-
ters at which one of the two SLð2;RÞ actions drops
out. This point was recently mentioned in [30] within the
context of the analytically extended theory, where the
connection with the chiral gravity of [1] was already
mentioned. It was one of our motivations to make this
relation with chiral gravity more explicit.

One of the aspects one observes here is that several
features of the dual conformal field theory do not seem
to depend on the precise prescription adopted to reach the
singular point of the Mielke-Baekler theory. This raises the
question as to whether the relevant physical information is

independent of the way one approaches m ¼ � ¼ ffiffiffiffiffiffiffiffiffi��
p

.
Despite quantities in the geometric realization do actually
depend on how the limit is taken, this possibly reflecting
the fact that the theory becomes in essence nongeometri-
cal, it seems plausible that all of these geometries are

different realizations of the same theory, and, likely, the
way of making sense out of the Mielke-Baekler theory at
the point it exhibits degeneracy is, in fact, resorting to the
dual description in terms of a chiral CFT.
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[34] O. Mišković and R. Olea, J. High Energy Phys. 12 (2009)
046.

[35] J. D. Brown and M. Henneaux, Commun. Math. Phys. 104,
207 (1986).
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