
Double-Kasner spacetime: Peculiar velocities and cosmic jets

C. Chicone

Department of Mathematics and Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

B. Mashhoon

Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

K. Rosquist

Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
and International Center for Relativistic Astrophysics Network (ICRANet), Piazza della Repubblica 10, 65122 Pescara, Italy

(Received 26 April 2011; published 20 June 2011)

In dynamic spacetimes in which asymmetric gravitational collapse/expansion is taking place, the

timelike geodesic equation appears to exhibit an interesting property: Relative to the collapsing

configuration, free test particles undergo gravitational ‘‘acceleration’’ and form a double-jet configuration

parallel to the axis of collapse. We illustrate this aspect of peculiar motion in simple spatially homoge-

neous cosmological models such as the Kasner spacetime. To estimate the effect of spatial inhomoge-

neities on cosmic jets, timelike geodesics in the Ricci-flat double-Kasner spacetime are studied in detail.

While spatial inhomogeneities can significantly modify the structure of cosmic jets, we find that under

favorable conditions the double-jet pattern can initially persist over a finite period of time for sufficiently

small inhomogeneities.

DOI: 10.1103/PhysRevD.83.124029 PACS numbers: 04.20.Cv, 98.58.Fd, 98.80.Jk

I. INTRODUCTION

Astrophysical jets are generally associated with cosmic
systems that have undergone some form of gravitational
collapse. In fact, the direction of the double-jet configura-
tion of high-energy outflows is commonly presumed to
coincide with the axis of rotation of the central gravita-
tionally collapsed source. Similar double-jet patterns have
been found in the recent analytic studies of the motion of
free test particles relative to comoving observers in certain
time-dependent solutions of Einstein’s gravitational field
equations [1,2]. In the spatially homogeneous Kasner
spacetime, for instance, gravitational collapse occurs along
one spatial axis, while there is expansion along the other
two spatial axes. It can be shown that free test particles
exhibit peculiar acceleration up and down parallel to the
collapse axis leading to a double-jet configuration. Indeed,
in time, peculiar velocities diminish to zero along expand-
ing directions and approach the velocity of light along the
contracting direction [2]. It is therefore worthwhile to
investigate the robustness of these results in the presence
of spatial inhomogeneities as in the double-Kasner space-
time. We find that for small inhomogeneities the double-jet
feature involving peculiar acceleration indeed persists over
a finite time interval. Furthermore, in view of the current
interest in ‘‘dark flow,’’ this work contributes to the theo-
retical study of bulk flows associated with peculiar motions
in spatially inhomogeneous and anisotropic cosmological
models.

Consider a spacetime in which the proper distance along
one spatial axis decreases to zero asymptotically (i.e., for
t ! 1), while the proper distance along each of the other

two spatial axes tends asymptotically to infinity. Let
us introduce a family of fundamental observers in such

a spacetime with four-velocity vector field U� ¼
ð�gttÞ�1=2��

0 and orthonormal tetrad field ��
ð�Þ with

��
ð0Þ ¼ U�. We consider only positive square roots

throughout. It is natural to express the four-velocity vector
of a free test particle, u� ¼ dx�=d�, with respect to the

fundamental observers via u� ¼ uð�Þ��
ð�Þ. Here � is the

proper time along the test particle’s world line. Studying

uð�Þ as a function of time, we have found that there are
timelike geodesics moving up and down parallel to the axis

of collapse such that uð0Þ, the Lorentz factor of the free test
particle relative to the observer family, tends to infinity as
t ! 1. The remarkable gravitational acceleration to the
speed of light is an observer-independent feature of the
double-jet configuration. This feature was first demon-
strated in a Ricci-flat rotating cylindrically symmetric
spacetime [1].
The timelike geodesic equation in the spacetime of

Ref. [1] has the structure of gravitomagnetic jets; that is,
there are special timelike geodesics for a fixed value of the
cylindrical radial coordinate that propagate along helical
paths up and down parallel to the axis of cylinder, which is
also the axis of rotation for this gravitational field. The
speeds of free test particles that follow the special geo-
desics with respect to the fundamental observers (that are
spatially at rest) tend to the speed of light as t ! 1.
Gravitomagnetic jets are attractors.
We emphasize that in Ref. [1], the physical spacetime

domain in which gravitomagnetic jets occur is free of
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matter and singularities. The boundaries of this domain are
excluded due to the inadmissibility of circular cylindrical
coordinates. It is most likely that without cylindrical sym-
metry, an analytic treatment of gravitomagnetic jets would
not have been possible. Indeed, the main result—namely,
the existence of a gravitational mechanism for the accel-
eration of free test particles to the speed of light—has
nothing to do with the physical limitations of cylindrical
symmetry. This follows from our recent study of cosmic
jets in Kasner spacetimes [2]; that is, we show that similar
results hold for the standard Kasner models of anisotropic
cosmology.

The purely gravitational mechanism for jet formation
that we describe in Ref. [2] works as gravitational collapse
is taking place; once a relatively stationary situation is
established after the collapse, our mechanism ceases to
function. We expect that other, basically electromagnetic,
mechanisms would then take over to maintain the jet that
has just been formed.

More precisely, the various rays of high-energy particles
that our gravitational mechanism originally produces
may get confined and collimated where magnetic fields
are strong. The initial double-jet configuration is then
sustained over time by the various MHD mechanisms
that have been discussed in connection with astrophysical
jets. The end result very much depends on the MHD
aspects of the astrophysical environment. Either our initial
streams of high-energy particles simply disperse via colli-
sions every which way as cosmic rays or are confined,
collimated and sustained by the MHD environment, or a
combination of both. The central ‘‘engine,’’ in this ap-
proach, is whatever mechanism that sustains the jet in a
given environment.

In previous work on tidal dynamics [3–9], the relative
behavior of a congruence of geodesics has been studied.
Moreover, tidal gravitational acceleration of ultrarelativ-
istic particles has been considered in a general context but
via geodesic deviation within the small-deviation approxi-
mation [4–9]. To study tidal acceleration/deceleration,
imagine a congruence of timelike geodesics in a gravita-
tional field; then, choosing one path in the congruence as
representing the world line of our reference observer, we
can express the motion of the other members of the con-
gruence with respect to the local frame of the fiducial
observer. A naturally invariant description of relative mo-
tion can be obtained by establishing a Fermi coordinate
system in the neighborhood of the reference observer. The
equation of motion of a nearby geodesic with arbitrary
relative velocity (less than c) with respect to the fiducial
observer is the generalized Jacobi equation. Indeed, the
generalized Jacobi equation in a Fermi system has been
employed to illustrate the concept of ‘‘critical speed’’ given
by c=

ffiffiffi
s

p
, where s ¼ 2 for linearized gravity in Fermi nor-

mal coordinates—a review of this approach is contained in
Ref. [9]. This circumstance is compared in Ref. [9] with

electrodynamics (s ¼ 1), and, as expected, it is found that
the corresponding critical speed is c. When the relative
speed of the neighboring geodesics exceeds the critical

speed c=
ffiffiffi
2

p � 0:7c, gravitational tidal forces can behave
in amanner that is contrary toNewtonian expectations. This
can lead, in certain circumstances, to the tidal acceleration

of ultrarelativistic (i.e., v > c=
ffiffiffi
2

p
) particles. The resulting

gravitational acceleration mechanism has been extensively
discussed in the stationary exterior field of Kerr black holes
in connection with the speed of astrophysical jets [4–9].
Instead of a single fiducial observer involved in the spatial
neighborhood of free test particles, however, one can con-
sider a whole family of observers associated with the am-
bient medium that perform pointwise measurements along
the path of the free particles. That is, instead of tidal
acceleration, we are interested here in peculiar accelera-
tion, namely, the acceleration of free test particles relative to
the comoving observers of the ambient medium. Hence, we
adopt a completely different approach here; in the present
treatment, we deal with exact pointwise calculations within
the context of certain specific dynamic spacetimes. The
critical speed turns out to be c in this exact treatment, which
proves to be formally similar to electrodynamics.
To see how this comes about, imagine an arbitrary time-

like geodesic world lineW with unit tangent vector u� ¼
dx�=d�, where � is the proper time alongW . We use units
such that c ¼ 1 in what follows; moreover, the signature of
the metric isþ2. Let��

ð�Þ be a smooth orthonormal tetrad

frame field associated with an arbitrary congruence of
fiducial observers. In particular, along W we can write

u� ¼ uð�Þ��
ð�Þ. Clearly, uð�Þ ¼ u���

ð�Þ is coordinate

independent, but it does depend on the background con-
gruence of fiducial observers. In particular, any ‘‘accelera-
tion’’ or ‘‘deceleration’’ that could be deduced from the

study of uð�Þ would depend on the background observers,
since a geodesic particle has indeed a vanishing accelera-
tion vector; that is, A� ¼ Du�=d� ¼ 0. The covariant
derivative of u� along W vanishes; hence,

duð�Þ

d�
��

ð�Þ þ uð�Þ
D��

ð�Þ
d�

¼ 0: (1)

The rate of variation of the tetrad frame along W can be
expressed as

D��
ð�Þ

d�
¼ �ð�Þ

ð�Þ��
ð�Þ; (2)

where �ð�Þð�Þ is antisymmetric due to the orthonormality

of the frame field. It follows from Eqs. (1) and (2) that

duð�Þ

d�
¼ �ð�Þ

ð�Þu
ð�Þ: (3)

This result is formally analogous to the Lorentz force law.
Just as electromagnetic acceleration of charged particles
can be investigated using the Lorentz force law, the
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gravitational acceleration of free test particles relative to
the congruence of reference observers can in principle be
studied using Eq. (3). At any given event along the geode-
sic, the other observer families that one could imagine are
related to the fiducial family by the elements of the Lorentz
group. It is therefore essential in the study of this type of
gravitational acceleration relative to an observer family to
focus on observer-independent features. In fact, the diver-

gence of uð0Þ, the Lorentz factor of the free test particle
relative to the congruence under consideration, along the
trajectory is the observer-independent feature that is the
main focus of our work. That is, the measured speed of
the test particle approaches the speed of light and this is an
invariant property that is independent of any observer as a
consequence of local Lorentz invariance. This divergence
occurs in Ref. [1] and is the central feature of gravitomag-
netic jets.

In conformity with the standard practice in relativistic
cosmology, in this work we consider explicitly the motion
of free test particles relative to the background comoving
observers. Moreover, in the simple examples that we study
in this paper, instead of solving Eq. (3), it is more conve-
nient first to solve the geodesic equation for u� and then
investigate the behavior of

uð�Þ ¼ u���
ð�Þ :¼ �ð1; vÞ; (4)

where v is the peculiar velocity of the free test particle
relative to the family of fundamental observers and � is the
corresponding Lorentz factor.

II. PECULIAR VELOCITIES

To illustrate the behavior of peculiar velocities in spa-
tially homogeneous spacetimes, consider a Bianchi type I
model with a metric of the form

ds2 ¼ �dt2 þ X2dx2 þ Y2dy2 þ Z2dz2; (5)

where X, Y and Z are functions of time t. This spacetime is
spatially homogeneous with three spacelike commuting
Killing vector fields @x, @y and @z [10,11].

The gravitational field equations are

R�� � 1
2g��R ¼ 8	GT��; (6)

where T�� is due to the presence of a perfect fluid with

density 
 and pressure P,

T�� ¼ ð
þ PÞU�U� þ Pg��; (7)

and the cosmological constant is assumed to be zero.
It follows that in comoving coordinates with U� ¼ ��

0,

we have

_X _Y

XY
þ _Y _Z

YZ
þ _Z _X

ZX
¼ 8	G
; (8)

€Y

Y
þ €Z

Z
þ _Y _Z

YZ
¼ �8	GP; (9)

€Z

Z
þ €X

X
þ _Z _X

ZX
¼ �8	GP; (10)

€X

X
þ €Y

Y
þ _X _Y

XY
¼ �8	GP: (11)

Detailed discussions of the solutions of these equations
for dust can be found, for instance, in Sec. 5.4 of Ref. [12]
and Sec. 12.15 of Ref. [13]. The timelike geodesics, each
with four-velocity u� ¼ dx�=d�, are such that the compo-
nents of u� along Killing vector fields are constants; hence,

X2 dx

d�
¼ C1; Y2 dy

d�
¼ C2; Z2 dz

d�
¼ C3; (12)

where C1, C2 and C3 are constants of the motion. Moreover,
since u� is a unit vector, we find,

dt

d�
¼

�
1þ C21

X2
þ C22

Y2
þ C23

Z2

�
1=2

; (13)

where � is assumed to increase with t along the world line.
When C1 ¼ C2 ¼ C3 ¼ 0, we have u� ¼ U�, so that

these timelike geodesics coincide with the fundamental
comoving observers. The orthonormal tetrad frame asso-
ciated with particles of the ambient perfect fluid (‘‘funda-
mental observers’’) is then given by ��

ð0Þ ¼ U� and

��
ð1Þ ¼

�
0;

1

X
; 0; 0

�
; ��

ð2Þ ¼
�
0; 0;

1

Y
; 0

�
;

��
ð3Þ ¼

�
0; 0; 0;

1

Z

�
: (14)

We are interested in the peculiar velocity of a free test
particle with ðC1; C2; C3Þ � 0 relative to the ambient me-
dium. It then follows from Eq. (4) that � ¼ dt=d�, which is
given by Eq. (13), and

�vx ¼ C1
X
; �vy ¼ C2

Y
; �vz ¼ C3

Z
: (15)

Let m> 0 be the mass of a free test particle and P ð�Þ ¼
muð�Þ be its peculiar four-momentum. It is a consequence
of Eq. (15) that in general along the x axis, P ðxÞ / X�1, and

similarly along the y and z axes. As is well known, a
similar relation holds in the Friedmann-Lemaı́tre-
Robertson-Walker (‘‘FLRW’’) models and expresses the
law of decay of peculiar velocities as the universe expands
(see Appendix A). Suppose, however, that along one
axis—say, the x axis—the universe contracts such that
X ! 0; then, P ðxÞ ! 1. It follows that in this case the

peculiar speed of the free test particle approaches the speed
of light. This issue will be treated in this section in a couple
of special cases of interest.
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Let us first consider the behavior of timelike geodesics
in the standard Kasner metric [14]

ds2 ¼ �dt2 þ
�
t

t0

�
2p1

dx2 þ
�
t

t0

�
2p2

dy2 þ
�
t

t0

�
2p3

dz2;

(16)

p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1: (17)

This empty universe model is a solution of Eqs. (8)–(11)
with 
 ¼ P ¼ 0. Here t0 is the cosmic time at the present
epoch. Henceforth, we will measure time in units of t0;
therefore, unless specified otherwise, we will formally
set t0 ¼ 1 in what follows. We assume that p1 <p2 <
p3; that is,

� 1
3 � p1 � 0; 0 � p2 � 2

3;
2
3 � p3 � 1: (18)

In this standard expanding anisotropic cosmological
model [10,15,16], Cartesian coordinates are admissible
for t 2 ð0;1Þ, t ¼ 0 at the cosmological singularity and

ð�gÞ1=2 ¼ t. Integrating d� ¼ dt=� along a timelike geo-
desic in the Kasner spacetime and choosing the integra-
tion constant such that � ¼ 0 at t ¼ 0, we find that in
general as t goes from 0 to 1, � monotonically increases
from 0 to 1 as well. Furthermore, as cosmic time t
increases, the Kasner universe contracts along the x axis
while expanding along the y and z axes. It follows that as
t ! 1, vx ! C1=jC1j, vy ! 0 and vz ! 0. However, for

free test particles with C1 ¼ 0, v ! 0 as t ! 1. Thus in
general—that is, except for a set of measure zero—all
timelike geodesics asymptotically form a double-jet con-
figuration, relative to comoving observers, that is parallel
to the axis of collapse. Moreover for t ! 0, vx ! 0 and
� ! 1. Thus in general peculiar velocities diminish to
zero along expanding directions and increase up to the
speed of light along contracting directions. These results
are all the more remarkable because—except for the sign
of C1—they do not depend significantly on the initial
conditions for geodesic motion. In particular, in expand-
ing directions, the magnitudes of the initial velocities of
the free test particles do not affect the end result [2].

It is interesting to consider, in Kasner spacetime, null
geodesics, each with tangent vector k� ¼ dx�=d� , where
� is an affine parameter along the path. Then, as before, we
have that

t2p1
dx

d�
¼ N1; t2p2

dy

d�
¼ N2; t2p3

dz

d�
¼ N3; (19)

where N1, N2 and N3 are constants of the null geodesic
motion. From k�k� ¼ 0, we find

dt

d�
¼ ðN2

1t
�2p1 þ N2

2t
�2p2 þ N2

3t
�2p3Þ1=2; (20)

where t is assumed to increase with � along the world line.
It follows from an explicit comparison of Eqs. (19) and

(20) with the corresponding relations for timelike geode-
sics that timelike geodesics approach null geodesics for
t ! 1 as well as for t ! 0; indeed, these features have
been discussed in detail in Ref. [2] in terms of the notions
of speed-of-light attractor and repellor, respectively.
Let us next turn to an examination of timelike geodesics

in the Einstein-de Sitter model, which is a solution of
Eqs. (8)–(11) for P ¼ 0 and 
 ¼ 1=ð6	Gt2Þ. The metric is

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (21)

where aðtÞ ¼ ðt=t0Þ2=3 and t0 denotes the present cosmic
epoch. The universe in this model expands from a singular
state at t ¼ 0 to t ¼ 1. Similarly, along any timelike geo-
desic the proper time � goes from � ¼ 0 to � ¼ 1, once the
integration constant is so chosen that � ¼ 0 at t ¼ 0. The
peculiar momentum of a free particle, P ðtÞ, pointwise
measured by a comoving observer that the particle passes
at cosmic epoch t, is proportional to 1=aðtÞ. Thus in time the
peculiar velocities monotonically decay, so that the free
particles tend to a state of rest relative to the Hubble flow
for t ! 1, while for t ! 0, a ! 0 and hence � ! 1.
There is a particularly simple way of illustrating peculiar

acceleration in the case of the Einstein-de Sitter universe.
The idea is to display typical particle orbits using the
standard conformal time diagram representation (see,
e.g., Ref. [17]). The conformal time � is defined by the

relation dt ¼ aðtÞd�. Then, � ¼ 3t2=30 t1=3, �0 ¼ 3t0 and

the metric can be expressed in the form

ds2 ¼ a2ð�Þ½�d�2 þ dr2 þ r2ðd2 þ sin2d�2Þ�; (22)

where að�Þ ¼ ð�=�0Þ2. We can focus on radial motion
with respect to a fiducial fundamental observer without
loss of generality because of isotropy and homogeneity. As
follows from the above considerations, there is a constant
of the motion given by

C ¼ a2
dr

d�
; (23)

where C2 ¼ C21 þ C22 þ C23, so that the special value C ¼ 0
corresponds to the fundamental comoving observers.
Expressing Eq. (13) for this case in conformal time and
using Eq. (23) result in the equation for the orbits in the
form

�
d�

dr

�
2 ¼ 1þ b2�4; (24)

where b ¼ C�1��2
0 . This is an elliptic equation which can

be reduced to Weierstrass form by using the auxiliary
variables � ¼ �2 and u ¼ br. Then �ðuÞ ¼ }ðu;h2; h3Þ
is a Weierstrass elliptic function which solves the equation

�0ðuÞ2 ¼ 4�ðuÞ3 � h2�ðuÞ � h3 (25)

with h2 ¼ �4b�2 and h3 ¼ 0. Representative solutions for

�ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�ðbrÞp

are shown in Fig. 1.
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As can be understood from that figure, the fundamental
observer congruence is stable in the future direction and it
is attracting a space-filling family of orbits. It is also
apparent that there is no acceleration in that direction.
In the past direction, the situation is essentially the oppo-
site, the flow is unstable and there is relative acceleration to
the speed of light, v ! 1, as discussed above. In particular,
in this case, the same family of orbits that is attracted in the
future direction is repelled in the past direction.

We note in the examples above that the proper time can be
chosen to be zero, say, at t ¼ 0, so that the free particle
encounters a curvature singularity when the peculiar accel-
eration to the speed of light occurs at a finite proper time
along the geodesic. This circumstance appears necessary,
since otherwise the geodesic could have been extended. The
phenomenon of peculiar acceleration to the speed of light
may possibly be used as a way of characterizing certain
spacetime singularities. In short, if it occurs at a finite proper
time of the relevant geodesic, it implies that the geodesic
cannot be continued to that limit and beyond. This therefore
indicates that the spacetime is timelike geodesically incom-
plete in the terminology of Ref. [12]. It is clear that the
singularity is nontrivial in the sense that it cannot be re-
moved by extending the spacetime in some way. The more
detailed nature of such a singularity is an interesting ques-
tion that is beyond the scope of the present investigation.

We have thus far considered peculiar velocities in simple
spatially homogeneous cosmological models. In the rest of
this paper, we study peculiar velocities in a simple spatially
inhomogeneous Kasner-like spacetime. It would be
interesting to make a general study of peculiar velocities

in spatially inhomogeneous cosmological models, as cos-
mological inhomogeneities tend to mimic dark energy—
see [18] and the references cited therein.

III. DOUBLE-KASNER SPACETIME

To investigate the occurrence of cosmic double-jet con-
figurations in the process of gravitational collapse, it is
necessary to consider a realistic scenario involving a col-
lapsing system. However, the actual physical situation
involving a collapsing configuration of matter is extremely
complicated to model properly; therefore, it is useful to
consider exact solutions of Einstein’s field equations that
exhibit this property. Imagine, for simplicity, the Kasner
metric (16) such that the metric coefficients also involve
functions of spatial coordinates ðx; y; zÞ. While in this case,
at every point in space, simultaneous collapse and expan-
sion do occur along the spatial axes, they do so in a
spatially inhomogeneous manner. This has the conse-
quence that along a timelike geodesic in such a spacetime,
as t varies monotonically with proper time � by assump-
tion, the peculiar motion involves metric functions that
contain xð�Þ, yð�Þ and zð�Þ as well. The influence of spatial
inhomogeneities may then totally dominate the collapse/
expansion scenario. We show that this is indeed the case in
certain situations via a detailed examination of the geo-
desics of double-Kasner spacetime.
Consider, for simplicity, the diagonal spacetime metric

ds2 ¼ �e2q0xdt2 þ g21dx
2 þ g22dy

2 þ g23dz
2; (26)

where q0 is a constant parameter and for i ¼ 1, 2, 3, we
define

0 2 4 6 8 10
0

2

4

6

8

10

r

0 2 4 6 8 10
0

2

4

6

8

10

r

FIG. 1 (color online). Conformal time diagrams of the Einstein-de Sitter model showing free particle orbits. Lightlike geodesics
would be at 45 degrees. Vertical lines are worldlines of fundamental observers. The curved lines are examples of noncomoving free
orbits. The behavior as t ! 0 (corresponding to � ! 0) shows the (negative time) acceleration towards the speed of light relative to
the fundamental observers (or equivalently the homogeneous hypersurfaces). Left panel: Orbits corresponding to one value of the
parameter b are shown. Right panel: The family of orbits which is attracted to the fiducial observer at r ¼ 0 in the limit t ! 0 is shown.
These orbits have different values of b corresponding to different initial distances from the fiducial observer.
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gi :¼ eqixtpi ; (27)

so that spatial inhomogeneity is introduced here via ex-
ponential dependence of the metric coefficients upon the
x coordinate. Here pi are constants satisfying Eq. (17) as
before and qi are given by

q0 þ q2 þ q3 ¼ q1; (28)

q20 þ q22 þ q23 ¼ q21; (29)

q0ðp2 þ p3Þ ¼ q2ðp2 � p1Þ þ q3ðp3 � p1Þ: (30)

The coordinates ðt; x; y; zÞ in this double-Kasner spacetime
satisfy Lichnerowicz admissibility conditions once t 2
ð0;1Þ and each spatial coordinate takes values in the
open interval (�1,1). There is a cosmological curvature

singularity at t ¼ 0 as in Kasner spacetime and ð�gÞ1=2 ¼
t expð2q1xÞ; moreover, the spacetime contains two space-
like commuting Killing vector fields @y and @z. The

connection coefficients for metric (26) are given in
Appendix B.

It is possible to show that this spacetime is Ricci-flat.
Following the work of Kasner [14], it is natural to look
for solutions of Einstein’s field equations such that the
metric tensor depends only on two coordinates, such as,
for instance, t and z. Assuming separability, such two-
variable Kasner-type Ricci-flat solutions were found and
discussed in Ref. [19]. In our case, the metric tensor
depends on separable functions of t and x and is thus
related to solutions of Ref. [19]; in fact, it belongs to
Case B of the Harris-Zund solutions [19]. Moreover,
Harris and Zund showed that for normal parameters
such solutions are algebraically general (Petrov type I),
just as in the Kasner case [19]. The present Harris-Zund
solution, essentially in the form of Eqs. (26)–(30), was
later given explicitly in Appendix 1 of Ref. [20]. Further
discussion of such multivariable solutions is contained in
Sec. 17.3 of Ref. [10].

It is a simple consequence of the algebraic relations (28)
–(30) that if q0 ¼ 0, then the spacetime is either flat or
Kasner. Moreover, if q1 ¼ 0, then metric (26) simply
reduces to the standard Kasner metric. Thus we assume
in what follows that q0 � 0 and q1 � 0. Now let q̂0 ¼
q0=q1, q̂2 ¼ q2=q1 and q̂3 ¼ q3=q1; then, it follows from
Eqs. (28) and (29) that the constants q̂ :¼ ðq̂0; q̂2; q̂3Þ
satisfy the same algebraic relations given in Eq. (17) for
p :¼ ðp1; p2; p3Þ and can be parameterized in the same
way. The relationship between p and q̂, as discussed in
detail in Appendix C, is marked by reciprocity. Once p is
chosen, then Eqs. (28)–(30) determine q̂, thus leaving the
metric still dependent upon one free parameter q1, which
could be positive or negative. Now under the parity trans-
formation x ! �x, the metric remains invariant if the q’s
are replaced by �q’s, which leaves q̂ invariant; to remove
the ambiguity in the sign of q1 with no loss in generality,
we assume henceforth that q1 > 0. Moreover, we note that
metric (26) is invariant under the exchange of y with z if

simultaneously we exchange p2 with p3 and q2 with q3.
This exchange invariance will be used in what follows.
It is useful to introduce a dimensionless radial coordi-

nate � defined by

eq1x ¼ �; (31)

so that as x 2 ð�1;1Þ, we have � 2 ð0;1Þ. Under such a
transformation, metric (26) takes the form

ds2 ¼ ��2q̂0dt2 þ 1

q21
t2p1d�2 þ �2q̂2t2p2dy2

þ �2q̂3 t2p3dz2: (32)

We recall that the Kasner metric (16) is the standard time-
like form of the Kasner solution, while its spacelike form
may be written as [17]

ds2 ¼ �x2p1dt2 þ dx2 þ x2p2dy2 þ x2p3dz2: (33)

Here, Cartesian coordinates are admissible for x 2 ð0;1Þ,
x ¼ 0 is a curvature singularity and ð�gÞ1=2 ¼ x. It follows
that the double-Kasner metric (32) is indeed a nonlinear
superposition of the timelike and spacelike forms of the
Kasner metric. In the form (32), the double-Kasner metric
belongs to Case A of the Harris-Zund classification [19].
We note that certain other ‘‘double-Kasner’’ metrics have
also been considered in Refs. [21,22]; in the former, in
spacetimes of lower symmetry and in the latter, in five-
dimensional spacetime.
In the Kasner case, the three parameters cannot all be

equal. If two are equal, then either p ¼ ð1; 0; 0Þ, in
which case the spacetime is flat or p ¼ ð�1=3; 2=3; 2=3Þ,
which corresponds to the nonflat plane-symmetric case.
Otherwise, the three parameters are all different and take
values within the open interval (� 1=3, 1), with one
negative and two positive. Let us now consider in a similar
way metric (32) by treating the special cases of p and q̂.
We first notice that p and q̂ cannot be equal in curved
spacetime. That is, p ¼ q̂ leads to p1 ¼ 1 or q̂0 ¼ 1 or
indeed both, since with p ¼ ð1; 0; 0Þ, we find q̂ ¼ ð1; 0; 0Þ;
then, in terms of the radial coordinate � defined in Eq. (31),
the double-Kasner metric reduces in this case to

ds2 ¼ ��2dt2 þ 1

q21
t2d�2 þ dy2 þ dz2; (34)

which turns out to represent flat spacetime. Let us briefly
digress here and mention a generalization of this case such
that p1 ¼ q̂0; indeed, it can be shown that for a nonflat
spacetime, we must in general assume that p1 � q̂0. For
instance, a double-Kasner spacetime with p ¼ ð0; 1; 0Þ and
q̂ ¼ ð0; 0; 1Þ is flat. The other five special cases are not flat
and can be expressed as

1: p ¼ ð0; 1; 0Þ; q̂ ¼
�
2

3
;
2

3
;� 1

3

�
; (35)
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2: p ¼
�
� 1

3
;
2

3
;
2

3

�
; q̂ ¼

�
3

7
;
6

7
;� 2

7

�
; (36)

3: p ¼
�
2

3
;� 1

3
;
2

3

�
; q̂ ¼

�
6

7
;� 2

7
;
3

7

�
; (37)

4: p ¼
�
3

7
;
6

7
;� 2

7

�
; q̂ ¼

�
� 1

3
;
2

3
;
2

3

�
; (38)

5: p ¼
�
6

7
;� 2

7
;
3

7

�
; q̂ ¼

�
2

3
;� 1

3
;
2

3

�
: (39)

Here we have taken into account the exchange invariance
as well as the fact that q0 � 0 and that for a nonflat
spacetime q0 � q1.

Finally, let us note that there is a homothetic Killing
vector field here just as in Kasner spacetime. We recall that
in the nonflat case, p1 � 1 and q0 � q1. Consider the
coordinate transformation ðt; x; y; zÞ ! ð~t; ~x; ~y; ~zÞ given by

t¼e!0~t; x¼ ~xþ!1; y¼e!2 ~y; z¼e!3~z; (40)

where !0 is a constant parameter and

!1 ¼ 1� p1

q1 � q0
!0; (41)

!2 ¼ ðq0 � q2Þ!1 þ ð1� p2Þ!0; (42)

!3 ¼ ðq0 � q3Þ!1 þ ð1� p3Þ!0: (43)

Then metric (26) changes only by a constant factor,
namely,

ds2 ¼ e2ð!0þq0!1Þd~s2: (44)

The homothetic generator can be easily deduced from the
above considerations.

IV. SINGULARITIES OF THE
DOUBLE-KASNER SPACETIME

A Ricci-flat spacetime has four algebraically indepen-
dent scalar polynomial curvature invariants. They can be
expressed as (cf. chapter 9 of [10])

I 1 ¼ R��
�R
��
� � iR��
�R

���
�; (45)

I 2 ¼ R��
�R

���R��

�� þ iR��
�R

���R�

��
��: (46)

For the double-Kasner spacetime represented by metric
(26), I1 and I2 are both real and are given by

I1 ¼ �16p1p2p3t
�4��4q̂0 � 16q0q1q2q3t

�4p1��4

� 8q21t
�2ð1þp1Þ��2ð1þq̂0ÞKðp; q̂Þ; (47)

I2 ¼ 48p2
1p

2
2p

2
3t

�6��6q̂0 � 48q20q
2
2q

2
3t

�6p1��6

þ 24q41t
�2ð1þ2p1Þ��2ð2þq̂0ÞL1ðp; q̂Þ

� 24q21t
�2ð2þp1Þ��2ð1þ2q̂0ÞL2ðp; q̂Þ: (48)

Here we have employed the radial variable � defined in
Eq. (31); moreover, to simplify the above invariants for the
double-Kasner spacetime, we have made extensive use of
the relations given in Appendix C. The expressions for
K, L1 and L2 are in general complicated and are given in
Appendix D.
Double-Kasner spacetime is a nonlinear superposition of

two different Kasner spacetimes that are usually charac-
terized as timelike and spacelike—cf. Eq. (32), where we
temporarily set q1 ¼ 1. We note that for the standard time-
like Kasner spacetime,

I 1 ¼ �16p1p2p3t
�4; I2 ¼ 48p2

1p
2
2p

2
3t

�6: (49)

Similarly, for the spacelike Kasner spacetime,

I 1 ¼ �16q̂0q̂2q̂3�
�4; I2 ¼ �48q̂20q̂

2
2q̂

2
3�

�6: (50)

These invariants can be recognized as the components in
the ‘‘nonlinear superpositions’’ given in Eqs. (47) and (48).
It follows from these curvature invariants that the

double-Kasner spacetime has curvature singularities at
t ¼ 0 and � ¼ 0, as expected. These can be generally
characterized as spacelike and timelike, respectively.
Moreover, it follows from Eqs. (47) and (48) that for
p1 < 0, there is an additional curvature singularity at t ¼
1; similarly, for q̂0 < 0, there is an additional curvature
singularity at � ¼ 1. It is important to note that the
physical spacetime domain under consideration in this
paper is free of any singularities; in fact, curvature singu-
larities occur at the boundaries of the admissible intervals
of t and �.

V. TIMELIKE GEODESICS

We consider a free test particle with four-velocity vector
u� ¼ dx�=d� as before. The component of this vector
along a Killing vector field is a constant of the motion;
therefore, g22dy=d� ¼ C2 and g23dz=d� ¼ C3, where C2

and C3 are integrals of geodesic motion. Moreover, we
find from u�u

� ¼ �1 that

eq0x
dt

d�
¼

�
1þ g21

�
dx

d�

�
2 þ C2

2

g22
þ C2

3

g23

�
1=2

; (51)

where we have assumed that t increases with � along the
geodesic world line. The geodesic equation for x can be
written as

d2x

d�2
þ 2

p1

t

dt

d�

dx

d�
þ ðq1 þ q0Þ

�
dx

d�

�
2

¼ 1

g21

�
�q0 þ ðq2 � q0ÞC

2
2

g22
þ ðq3 � q0ÞC

2
3

g23

�
: (52)
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Here we have used Eq. (51) as well as the connection
coefficients for metric (26) given in Appendix B. It is
useful to define a new function W given by

W ¼ t2p1eðq1þq0Þx dx
d�

: (53)

Then the autonomous system of equations that we must
numerically integrate is

dt

d�
¼ e�q0x

�
1þ e2ðq1�q0Þx W

2

g21
þ C2

2

g22
þ C2

3

g23

�
1=2

; (54)

dx

d�
¼ eðq1�q0Þx W

g21
;

dy

d�
¼ C2

g22
;

dz

d�
¼ C3

g23
; (55)

dW

d�
¼ e�ðq1�q0Þx

�
�q0 þ ðq2 � q0ÞC

2
2

g22
þ ðq3 � q0ÞC

2
3

g23

�
:

(56)

Let us now imagine the fundamental observers in this
spacetime with tetrad field ��

ð�Þ, where for i ¼ 1, 2, 3,

��
ðiÞ ¼

1

gi
��

i; ��
ð0Þ ¼ e�q0x��

0 : (57)

It follows that the Lorentz factor of the free particle � and
its velocity v as measured by the fundamental observers are
given in terms of the system (54)–(56) by

� ¼ eq0x
dt

d�
(58)

and

�vx¼g1
dx

d�
; �vy¼g2

dy

d�
; �vz¼g3

dz

d�
: (59)

If the q’s all vanish, W ¼ C1 is a constant and system
(54)–(56) reduces to the timelike geodesic equation for the
standard Kasner spacetime, as expected. In that case, one
of the p’s is negative (‘‘collapse’’) and the other two are
positive (‘‘expansion’’), resulting in an asymptotic double-
jet pattern along the direction of collapse. However, the
situation is generally different for the spatially inhomoge-
neous double-Kasner spacetime with nonvanishing q’s as
demonstrated by the following numerical results.

VI. NUMERICAL RESULTS

In integrating the system of Eqs. (54)–(56), we must first
fix the p’s, q’s and the specific momenta along the y and z
directions given, respectively, by C2 and C3. Starting from
initial conditions at � ¼ 0 specified by tð0Þ ¼ t0 ¼ 1,
xð0Þ ¼ x0, yð0Þ ¼ 0, zð0Þ ¼ 0 andWð0Þ ¼ W0, we numeri-
cally integrate forward in proper time such that t ! 1 and
backward to t ¼ 0. Let us note that in our dynamical
system, the equations for tð�Þ, xð�Þ and Wð�Þ are the
primary coupled ordinary differential equations. This is
due to translational invariance along the y and z directions;

moreover, we can always choose the initial values of y and
z at the origin of ðy; zÞ plane without any loss in generality.
There are an infinite number of possible choices of p’s

and q’s; once p is chosen, the two possible q̂ vectors can be
algebraically determined, as discussed in Appendix C. We
then define q0 ¼ q̂0�, q1 ¼ �, q2 ¼ q̂2� and q3 ¼ q̂3�.
Here, � is dimensionless, since � ¼ ct0q1 and c ¼ t0 ¼ 1
in accordance with our Kasner conventions; in fact,
� 2 ½0;1Þ is such that for � ¼ 0 we recover the standard
timelike Kasner metric. Thus � is a measure of how close
the double-Kasner metric is to the original Kasner metric;
moreover, ��1 is a parameter that represents the extent of
spatial inhomogeneities in the x direction. It is important
for the theory of cosmic double-jet configurations to rec-
ognize that for sufficiently small �, 0< � � 1, general
continuity arguments connect the double-Kasner geodesics
to the Kasner geodesics over finite intervals of proper time.
The primary autonomous differential equations can be
expressed as

dt

d�
¼ ��q̂0½1þW2t�2p1��2q̂0 þ C2

2t
�2p2��2q̂2

þ C2
3t

�2p3��2q̂3�1=2; (60)

d�

d�
¼ �Wt�2p1��q̂0 ; (61)

dW

d�
¼ ���q̂0�1½q̂0 þ ðq̂0 � q̂2ÞC2

2t
�2p2��2q̂2

þ ðq̂0 � q̂3ÞC2
3t

�2p3��2q̂3�; (62)

furthermore, dy=d� ¼ C2t
�2p2��2q̂2 and dz=d� ¼

C3t
�2p3��2q̂3 . For W � 0, the primary differential

equations can also be written as

dt

d�
¼ tp1��q̂0ðW2 þUÞ1=2

�W
; (63)

d

d�
W2 ¼ � @Uðt; �Þ

@�
; (64)

where U is given by

U ðt; �Þ ¼ t2p1�2q̂0ð1þ C2
2t

�2p2��2q̂2 þ C2
3t

�2p3��2q̂3Þ:
(65)

Equation (64) can be simplified in certain situations,
thereby leading to the application of the effective potential
method in one-dimensional motion—see, for instance,
Eqs. (67) and (68) in Case 1 below.
The autonomous system of ordinary differential equa-

tions for timelike geodesics has singularities at t ¼ 0 and
� ¼ 0. The family of solutions of this system depends
continuously on proper time � as well as the parameter �.
These solutions converge uniformly to the solution with
� ¼ 0 on every finite time interval. That is, once a finite
interval of proper time is chosen, then for a sufficiently
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small �, the geodesics of double-Kasner spacetime behave
as the geodesics of Kasner spacetime at least up to the end
of this fixed time interval.

We are interested in the main characteristics of peculiar
motion in the double-Kasner spacetime; therefore, it is
useful to mention for future reference that in terms of the
radial coordinate �,

�vx ¼ Wt�p1��q̂0 ; �vy ¼ C2t
�p2��q̂2 ;

�vz ¼ C3t
�p3��q̂3 :

(66)

A complete numerical analysis of timelike geodesic
motion in the double-Kasner spacetime is beyond the
scope of our investigation. To simplify matters, we there-
fore limit our attention to the five special cases listed in
Eqs. (35)–(39), which will be treated in turn below. We
hope that our approach captures the main features of
peculiar motion that could be of interest in connection
with cosmic jets.

A. Case 1: p ¼ ð0; 1; 0Þ and q̂ ¼ ð23 ; 23 ;� 1
3Þ

The temporal dependence of the metric in this special
case simply consists of expansion along the y axis; more-
over, the corresponding curvature invariants considered in
Sec. IVessentially reduce to those of the spacelike form of
the Kasner metric. In fact, theses curvature scalars are
given in Case 1 by q41I1 and q61I2, where I1 and I2 are

the spacelike Kasner invariants given in Eq. (50).
Numerical experiments involving forward integration in

time indicate in this case the dominant attractive character
of the timelike singularity at � ¼ 0 corresponding to x ¼
�1. In finite proper time, all timelike geodesics appear to
approach this singularity with a peculiar velocity that
approaches the velocity of light. To see this analytically,
let us find dW=d� from Eqs. (61) and (62). In this case, the
result is

�W
dW

d�
¼ 2

3
�1=3 þ C2

3�: (67)

Numerical experiments indicate that � ¼ 0 at t ¼ ts > 1,
� ¼ �s > 0 andW ¼ Ws < 0. Integrating Eq. (67), we find

W2 þ ð�4=3 þ C2
3�

2Þ ¼ W2
s : (68)

It follows that if W0 > 0 at �ð0Þ> 0, then a free test
particle will move such that its x component of motion
monotonically increases and W monotonically decreases
until x, or equivalently �, reaches its maximum value
where W ¼ 0. At this point, the test particle stops along
the x axis and changes direction such that subsequently
W < 0 and the particle falls toward the timelike singularity
at � ¼ 0. It then follows from Eq. (66) that

� ¼ ��2=3

�
W2

s þ C2
2

t2

�
1=2

(69)

and as � ! 0, � ! 1 and

vx ! � tsjWsj
ðC2

2 þ t2sW
2
s Þ1=2

; vy ! C2

ðC2
2 þ t2sW

2
s Þ1=2

;

vz ! 0; (70)

so that v ! 1.
Using Eq. (68), it is possible to reduce the differential

equations for the world line to quadratures in this case. It
then follows from these results in the case of backward
integration in time that as t ! 0, � approaches a finite
nonzero number and

vx ! 0; vy ! C2

jC2j ; vz ! 0: (71)

Indeed, it is clear from Eq. (69) in this case that � ! 1 as
t ! 0. It is important to recall here that the results for
geodesic motion in the spatially inhomogeneous double-
Kasner spacetime are not in general expected to be con-
sistent with the general notion, developed for spatially
homogeneous spacetimes in Sec. II, that peculiar velocities
decrease to zero along expanding directions and increase
up to the speed of light along contracting directions.
However, throughout this section, our numerical results
for backward integration in time generally agree with those
in Kasner spacetime, since � generally approaches a finite
nonzero value as t ! 0. To see the influence of spatial
inhomogeneities on peculiar velocities, we henceforth con-
centrate on forward temporal integration.
These analytic results illustrate a feature that is ubiquitous

in the numerical results of forward integration in the other
cases as well, except for Case 4, where q̂0 < 0. Therefore,
let us assume that q̂0>0 and we setC2¼C3¼0 for the sake
of simplicity. As we integrate forward from � ¼ 0, we soon
encounter the � ¼ 0 singularity at t ¼ ts > 1, � ¼ �s > 0
and W ¼ Ws < 0. Thus near � ¼ 0, under the square root
in Eq. (60), we can neglect the first term (i.e., unity) in
comparison to the second; hence,

dt

d�
� �Wt�p1��2q̂0 ; (72)

d�

d�
¼ �Wt�2p1��q̂0 : (73)

Thus,

d�

dt
� ��t�p1�q̂0 : (74)

Integrating this relation near the singularity results in

�1�q̂0 � �ð1� q̂0Þt�p1
s ðts � tÞ: (75)

Similarly consistent results can be obtained for � andW near
the singularity. From Eq. (66), we find that as � ! 0, �
diverges; indeed, near � ¼ 0,

� � ð�Wst
�p1
s Þ��q̂0 ; (76)

so that vx ! �1, since vy ¼ 0 and vz ¼ 0.
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For the sake of completeness, it is important to compare
and contrast here the timelike motion of a test particle
along the x direction, discussed above, with that of a light
ray. The equation of motion of the light ray follows from
Eq. (32) and ds2 ¼ 0, namely, d�=dt ¼ ��t�p1�q̂0 . We
find that if the light ray is initially moving along the
positive x direction, then integrating the equation of
motion with the upper sign implies that it will continue
to do so and x ! 1 as t ! 1. On the other hand, if the
light ray is initially moving in the negative x direction, then
integrating the equation of motion with the lower sign
implies that it reaches the singularity at x ¼ �1 in a finite
interval of time, essentially as in the treatment presented
above.

B. Case 2: p ¼ ð� 1
3 ;

2
3 ;

2
3Þ and q̂ ¼ ð37 ; 67 ;� 2

7Þ
This case is particularly interesting as the direction of

collapse coincides with the direction of spatial inhomoge-
neities in the double-Kasner spacetime. Thus for suffi-
ciently small �, we expect that test particles following
timelike geodesics would exhibit a double-jet configura-
tion parallel to the x axis as in Kasner spacetime. This turns
out to be true only if we limit our considerations to finite
intervals of proper time. Beyond that, the singularity at
� ¼ 0 is expected to dominate the motion as discussed in
Case 1. This duality has interesting consequences to which
we now turn.

Let us first recall that for � ¼ 0, free test particles with
nonzero peculiar velocity form an asymptotic Kasner
double-jet pattern parallel to the x axis as t ! 1. To
simplify matters, we assume that C2 ¼ C3 ¼ 0, so that
we have geodesic motion only in the x direction.
Moreover, let us suppose that �, 0< � � 1, is fixed.
Then, a free test particle with a positive peculiar velocity
characterized by W0 > 0 is expected to move along the
positive x direction and experience peculiar acceleration
just as in the Kasner spacetime. Numerical experiments
show that this is indeed the case, as illustrated in Fig. 2, but
that peculiar acceleration along the positive x axis later
changes to deceleration. The particle decelerates for a
while until it stops (� ¼ 1) at a finite proper time and
reverses course, moving along the negative x direction
until it eventually reaches the singularity x ¼ �1
(� ¼ 0) after a long but finite proper time with its peculiar
speed approaching unity (� ! 1). To see how this comes
about, we note that Eq. (62) can be written in this case as

dW

d�
¼ � 3

7
���4=7: (77)

Let us define a new parameter �0 along the geodesic world

line such that d�0 ¼ ��4=7d�, so that �0 increases with
proper time � along the path. It follows from Eq. (77)
that �dW=d�0 is a positive constant that is much less
than unity; therefore, W monotonically decreases along
the path. This means that even whenW is initially positive,

W0 > 0, it will eventually turn negative in finite proper
time and then the general argument presented in
Eqs. (72)–(76) can be employed to show that the free test
particle should stop at some time and then fall back toward
the dominant singularity at x ¼ �1. An example of this
general behavior is given in Fig. 2 for W0 ¼ 1. If W0 is
negative, the corresponding test particle simply moves
along the negative x direction and inevitably ends up at
the x ¼ �1 (� ¼ 0) singularity with its peculiar velocity
approaching the velocity of light, in accordance with the
analysis contained in Eqs. (72)–(76).
When we allow C2 and/or C3 to be nonzero, the motion

is in general more complicated due to the extra degrees of
freedom; in fact, an interesting oscillatory behavior can in
general occur that will be discussed in the last part of this
section.
We conclude that even when spatial inhomogeneities are

turned on, as in the double-Kasner spacetime, the Kasner
double-jet pattern can survive over a finite time interval
under favorable circumstances, but it is then significantly
modified by the presence of spatial inhomogeneities.
Finally, backward numerical integration in the case

under consideration in this subsection, namely, x0 ¼ 0,
W0 ¼ 1 and C2 ¼ C3 ¼ 0, is consistent with the result
that as t ! 0, � ! 1 and vx ! 0, while vy ¼ vz ¼ 0 by

assumption. That is, the motion is in this case confined to
the x direction, which expands as t ! 0 and, as expected,
we find that vx ! 0. The same result can be obtained from
a straightforward mathematical analysis of our dynamical
system near t ¼ 0. The geodesic equations of motion are
simplified by considering the dominant terms for t ! 0; in

0 100 200 300 400 500
1

2

3

4

5

FIG. 2 (color online). Plot of the Lorentz factor � versus
proper time � for the peculiar motion of a free test particle along
the x direction in Case 2. The initial conditions at � ¼ 0 are
x0 ¼ 0 and W0 ¼ 1; moreover, � ¼ 10�3 and C2 ¼ C3 ¼ 0.
Thus at � ¼ 0 we have � ¼ ffiffiffi

2
p � 1:4. The figure shows that

the initial peculiar acceleration reaches a peak around � ¼ 50
and then turns to deceleration. Further numerical integration
shows that the particle eventually stops at around � ¼ 50 000,
reverses course and accelerates toward the � ¼ 0 singularity
with � ! 1.
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fact, this can be done for all the subsequent cases discussed
in this section.

C. Case 3: p ¼ ð23 ;� 1
3 ;

2
3Þ and q̂ ¼ ð67 ;� 2

7 ;
3
7Þ

In this case, the Kasner limit (for � ¼ 0) involves a
double-jet pattern along the y axis. Following our general
approach, we set � ¼ 10�3 and numerically integrate the
equations of motion forward in time with x0 ¼ 0,W0 ¼ 0,
C2 ¼ �1 and C3 ¼ 0. As expected, the result of the in-
tegration is similar to the Kasner case over a certain initial
time interval, but later the motion along the negative x
direction toward the timelike singularity at x ¼ �1 takes
over and � tends to infinity. That is, as � ! 0, v2

xþv2
y!1,

while vz ¼ 0. The situation in the descent toward the
singularity is essentially analogous to the analysis con-
tained in Eqs. (72)–(76) for q̂0 > 0. The numerical results
for � are presented in Fig. 3.

When we numerically integrate the equations of motion
backward in time, we find that as t ! 0, vx ! 1, vy ! 0,

while vz ¼ 0. Thus � ! 1 and the peculiar velocity of a
free test particle approaches the velocity of light toward the
cosmological singularity at t ¼ 0. This conclusion is in
agreement with a detailed theoretical analysis of the equa-
tions of motion in Case 3 near t ¼ 0.

D. Case 4: p ¼ ð37 ; 67 ;� 2
7Þ and q̂ ¼ ð� 1

3 ;
2
3 ;

2
3Þ

This case is qualitatively different from the other cases as
q̂0 < 0, which means that an analysis similar to that con-
tained in Eqs. (72)–(76) for forward integration does not
apply here; that is, forward integration in time is not
dominated by the singularity at � ¼ 0. The Kasner limit
(for � ¼ 0) involves a double-jet pattern along the z axis,
which we expect can persist here for a finite interval of time
when � is sufficiently small. Our numerical experiments

indicate similar qualitative behavior for �� 10�3 as for
�� 1. Therefore, we set � ¼ 1 and integrate the equations
of motion forward in time with x0 ¼ 0, W0 ¼ 0, C2 ¼ 0
and C3 ¼ �1. The initial peculiar acceleration later turns
to deceleration until the peculiar velocity of a free test
particle approaches a constant terminal velocity vector
whose magnitude is always less than the speed of light.
The corresponding behavior of � is presented in Fig. 4. If
the initial value of W is negative, W0 < 0, the free test
particle’s initial movement along the negative x direction
comes to a halt after a while, the particle reverses course
and, as before, approaches � ¼ 1 with a terminal peculiar
speed that is less than unity. The existence of the turning
point in this case appears to imply that there is a barrier
blocking the particle’s access to the � ¼ 0 singularity. For
large �, � ! 1, the asymptotic behavior of the equations
of motion can be worked out in this case, and we find that

t� �7=3, �� �2 and W � �2=3.
Let us recall here that when q̂0 > 0, the only timelike

singularity is the one at � ¼ 0. This strongly attracts free
test particles, which can reach � ¼ 0 in finite values of
proper time. When q̂0 < 0, however, there is an additional
timelike singularity at � ¼ 1. Indeed, our numerical re-
sults in this case seem to indicate that the new singularity at
� ¼ 1 is dominant for q̂0 < 0, while the � ¼ 0 singularity
is inactive. Moreover, the � ¼ 1 singularity seems to be
somehow weaker in terms of its attractive character: free
test particles approach � ¼ 1 with proper times that go to
infinity and terminal peculiar speeds that are less than the
speed of light.
This case brings out a certain generic behavior of time-

like geodesics for q̂0 < 0. To illustrate this point, let us set
C2 ¼ C3 ¼ 0 for the sake of simplicity and assume that
as � ! 1, the asymptotic behaviors of t, � and W are
given by

0 200 000 400 000 600 000 800 000 1 106

500

1000

1500

FIG. 3 (color online). Plot of the Lorentz factor � versus
proper time � for the peculiar motion of a free test particle in
the ðx; yÞ plane in Case 3. Note that initially � ¼ ffiffiffi

2
p � 1:4 at

� ¼ 1, but in time � ! 1 as the � ¼ 0 singularity is ap-
proached. The initial conditions at � ¼ 0 are x0 ¼ 0 and
W0 ¼ 0; moreover, � ¼ 10�3, C2 ¼ �1 and C3 ¼ 0.
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FIG. 4 (color online). Plot of the Lorentz factor � versus
proper time � in Case 4. The initial conditions at � ¼ 0 are
x0 ¼ 0 and W0 ¼ 0; moreover, � ¼ 1, C2 ¼ 0 and C3 ¼ �1.
Note that � is initially

ffiffiffi
2

p � 1:4 and approaches a finite terminal
value as � ! 1.
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t� ��1 ; �� ��2 ; W � ��3 : (78)

A detailed analysis of the autonomous system (60)–(62)
reveals that this assumption is valid with �1, �2 and �3 all
positive and given by

�1 ¼ 1� q̂0
1� p1

; �2 ¼ 1þ p1�1; �3 ¼ q̂0 þ p1�1:

(79)

Moreover, it is possible to show that the motion along the x
direction reaches a terminal peculiar speed as � ! 1 with
Lorentz factor �1,

�1 ¼
�
1� q̂0

�3

�
1=2

: (80)

The result of the integration of the equations of motion
backward in time is that as t ! 0, vx ! �1, vy ¼ 0 and

vz ! 0. This means that the peculiar velocity of a free
test particle approaches the velocity of light and � ! 1
as t ! 0. This result is consistent with a detailed analytic
treatment of the equations of motion in this case near t ¼ 0.

E. Case 5: p ¼ ð67 ;� 2
7 ;

3
7Þ and q̂ ¼ ð23 ;� 1

3 ;
2
3Þ

It is interesting to point out that if in this case we switch
p and q̂, we get Case 3. There is a similar connection
between Cases 2 and 4. Case 1 stands alone, however,
since switching p and q̂ in this case leads to Kasner
spacetime.

Let us note that the Kasner limit (� ¼ 0) in this case
involves a double-jet pattern along the y axis, as in Case 3.
Therefore, just as in Case 3, we set � ¼ 10�3 and integrate
the equations of motion forward in time with x0 ¼ 0,
W0 ¼ 0, C2 ¼ �1 and C3 ¼ 0. Though the details are
different, the end result of forward integration is qualita-
tively the same as in Case 3; in fact, this is also the case
when we integrate the equations of motion backward in
time toward t ¼ 0.

F. Concluding remarks

We conclude this section with some general observa-
tions. Starting from the present cosmic epoch t ¼ t0 ¼ 1
and integrating the geodesic equations backward to t ¼ 0,
we have found that the behavior of double-Kasner peculiar
velocities near the cosmological singularity is essentially
the same as in Kasner spacetime. Therefore, we turn to
forward integration (t:1 ! 1). Here, beyond the initial
Kasner double-jet configuration, our limited numerical
results for late-time peculiar motion in the double-Kasner
spacetime depend significantly on whether q̂0 is positive or
negative. For q̂0 > 0, there seems to be a strong source of
gravitational attraction at the timelike curvature singularity
� ¼ 0. We note that for the double-Kasner metric, gtt ¼
��2q̂0 , so that gtt ! 0 as � ! 0 for q̂0 > 0. In this limit,
furthermore, the peculiar velocity approaches the velocity
of light. On the other hand, for q̂0 < 0, gtt ! 0 as � ! 1;

in this case, � ¼ 1 also happens to be a timelike curvature
singularity according to the results of Sec. IV.
Qualitatively, for q̂0 < 0, the � ¼ 0 singularity is somehow
inactive and the dominant attractive influence is exerted by
the singularity at � ¼ 1, which results in uniform peculiar
motion at late times (� ! 1 and � ! 1).
To find an explanation for this type of late-time behav-

ior, we must turn to the other half of the double-Kasner
geometry. Let us recall here that the double-Kasner
solution is a certain nonlinear superposition of the standard
timelike Kasner solution (16) and the spacelike Kasner
solution given by

ds2 ¼ ��2q̂0dt2 þ d�2 þ �2q̂2dy2 þ �2q̂3dz2: (81)

This is a static Ricci-flat solution of general relativity with
commuting Killing vector fields @t, @y and @z. The admis-

sibility conditions restrict the radial coordinate � such that
� 2 ð0;1Þ; moreover, there exists a curvature singularity
at � ¼ 0. The motion of a free test particle in this space-
time is such that the components of the four-velocity vector
of the particle u� along the Killing vectors are constants
of the motion; that is, u 	 @t ¼ �E0, u 	 @y ¼ E2 and u 	
@z ¼ E3. Here E0 > 0 is the constant specific energy of the
particle, while, as before, E2 and E3 are constant specific
momenta. The geodesic equation of motion for the
radial coordinate � of the test particle then follows from
u 	 u ¼ �1; that is,

�
d�

d�

�
2 þV ð�Þ ¼ �1; (82)

where V is the effective potential given by

V ð�Þ ¼ � E2
0

�2q̂0
þ E2

2

�2q̂2
þ E2

3

�2q̂3
: (83)

For q̂0 > 0, the effective potential is such that the mo-
tion can be either confined within the interval ð0; �max� and
may then be described as a ‘‘fall’’ toward � ¼ 0, or it can
be oscillatory within the interval ½�min; �max�. Here �min

and �max are turning points such that 0< �min < �max, or
the turning points could coincide, in which case � would
be fixed at the minimum of the effective potential. Only the
fall toward the curvature singularity � ¼ 0 is available for
E2 ¼ E3 ¼ 0. On the other hand, for q̂0 < 0, the effective
potential for �: 0 ! 1 is monotonically decreasing from
þ1 to �1, so that radial motion in � is confined within
the interval ½�min;1Þ and may be described as ‘‘escape’’ to
infinity. These possibilities for radial motion may be com-
pared and contrasted with geodesic motion in exterior
Schwarzschild spacetime. Furthermore, we note that @t 	
@t ¼ ��2q̂0 , so that the timelike Killing vector becomes
null at the endpoints that we have discussed here: the
curvature singularity � ¼ 0 for q̂0 > 0 and � ¼ 1 for
q̂0 < 0.
It remains to discuss the possibility of oscillatory motion

within the interval ½�min; �max�. Let us assume, for instance,
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that q̂2 > q̂0 > 0 and q̂3 < 0; then, oscillatory motion is
possible for E2 � 0. Moreover, we expect time-dependent
oscillatory peculiar motion in the more general context of
the double-Kasner spacetime. To see an example of this
behavior, we return to Case 2 above and assume that � ¼ 1,
x0¼�1 andW0¼0; moreover, we set C2 ¼ 1 andC3 ¼ 2.
The time-dependent oscillatory character of the Lorentz
factor for peculiar motion in this case is illustrated in
Fig. 5. We intuitively expect the turning points to be time-
dependent in this case; in fact, in time �min approaches the
singularity at � ¼ 0 in the case depicted in Fig. 5.

VII. DISCUSSION

From the spatially homogeneous examples discussed in
Sec. II of this paper, one may draw some tentative con-
clusions (compare, in particular, Fig. 1). As a general re-
mark, the occurrence of jets requires peculiar acceleration;
therefore, jets occur in more special situations compared to
peculiar acceleration itself, which is consequently a more
general phenomenon. Restricting attention first to peculiar
acceleration, we need some basic ingredients to describe it,
and to characterize its properties. To begin with, we must
define an appropriate background field of observers. This is
because to define peculiar acceleration as such, we need
some reference background, since only relative accelera-
tions are possible when gravitational interactions are in-
volved. In typical physical situations, there is, in most
cases, a preferred observer family. For example, in spa-
tially homogeneous (nontilted) models, such as Kasner
spacetime, the preferred family corresponds to the normals
of the homogeneous hypersurfaces (see Sec. II).

As for the observed objects, it is natural to consider them
as members of a test field of geodesics. It is the peculiar

velocity and acceleration of this test field with respect to
the background observers that is the subject of investiga-
tion here. The relative velocity can be identified with the
peculiar velocity in the astrophysical sense. Therefore, let
v be the peculiar velocity of a free test particle relative to
the background observer family. Then our findings indicate
that along any expanding axis v ! 0 as expansion tends to
infinity, while along any contracting axis v ! �c as con-
traction tends to zero. Relating this behavior to the back-
ground flow, it appears that if in an expanding direction the
flow is stable (corresponding to attraction) then there is no
acceleration. Whereas, in a contracting direction, if the
flow is unstable (repulsion), then there is acceleration.
In the gravitational collapse of an astrophysical object

such as a star, the peculiar motion of free test particles
would be referred to the collapsing medium, so that at first
sight peculiar acceleration might appear as a simple kine-
matic effect of relative motion. However, the limiting
situation of peculiar acceleration to the speed of light—
emphasized in [1,2]—is observer-independent and seems
to us to indicate true transfer of energy from the gravita-
tional field to the free test particles in analogy with the
electromagnetic acceleration of charged particles. Indeed,
this gravitational transfer of energy is expected to be a
general feature of expanding or contracting geodesic con-
gruences in spacetimes that have no timelike Killing vector
field; in these gravitational fields, energy gain is associated
with collapse and energy loss is associated with expansion.
The energy loss in the context of an expanding FLRW
model has been discussed by Harrison [23]. We have
emphasized energy gain in connection with gravitational
collapse. However, in realistic collapse scenarios of astro-
physical interest involving jets and cosmic rays, it remains
to see if the gravitational energy gain associated with
peculiar acceleration is in fact significant. This important
problem is beyond the scope of our investigation. Instead,
we have concentrated in this work on the simpler problem
of the behavior of peculiar motions in the spatially inho-
mogeneous and anisotropic double-Kasner spacetime.
The double-Kasner metric reduces to the standard time-

like Kasner metric when the inhomogeneity parameter � is
zero. Thus when � is sufficiently small, 0< � � 1, we
expect on the basis of continuity arguments that the Kasner
double-jet pattern of peculiar motions would persist over a
finite time interval. This general behavior is indeed con-
firmed by our numerical work. At late times, however, a
significant feature of peculiar motions is that the jets tend
to move toward either x ¼ �1ð� ¼ 0Þ or x ¼ 1ð� ¼ 1Þ
depending on whether q̂0 > 0 or q̂0 < 0, respectively. For
q̂0 > 0, it follows from forward integration in proper time
that at late times the dominant aspect of the peculiar
motions in the double-Kasner spacetime is the strong
gravitational attraction toward the timelike curvature sin-
gularity at x ¼ �1ð� ¼ 0Þ with a peculiar velocity ap-
proaching the velocity of light. On the other hand, for
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FIG. 5 (color online). Plot of the oscillatory Lorentz factor �
versus proper time � in Case 2. The initial conditions at � ¼ 0
are x0 ¼ �1 andW0 ¼ 0; moreover, � ¼ 1, C2 ¼ 1 and C3 ¼ 2.
Note that the Lorentz factor is initially � � 2:97. The compo-
nents of the peculiar velocity are all oscillatory with increasing
amplitudes for vx and vy and decreasing amplitude for vz. In

fact, vz tends to zero as �min approaches zero.
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q̂0 < 0, we find jets moving toward another timelike cur-
vature singularity at x ¼ 1ð� ¼ 1Þ with uniform terminal
speeds that stay well below the speed of light. We have
shown that these aspects are associated with the other
(spacelike) Kasner geometry that is part of the double-
Kasner gravitational field. In these considerations the x
axis is distinguished from the other spatial axes in
double-Kasner spacetime, since all spatial inhomogene-
ities occur along the x direction.

Finally, it is interesting to note that recent measurements
of large-scale peculiar velocities of clusters of galaxies
have been interpreted in terms of an anomalously rapid
bulk flow in a common direction (‘‘dark flow’’)—see
[24–27] and the references cited therein. If confirmed,
this dark flow would indicate a significant departure from
the presumed large-scale spatial homogeneity and isotropy
of the standard FLRW cosmology.
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APPENDIX A: PECULIAR
VELOCITIES IN FLRW MODELS

The spatial isotropy and homogeneity of the FLRW
universe imply that in the standard ðt; �; ;�Þ coordinates
about any point in space as origin of spherical polar
coordinates ðr; ;�Þ—with r ¼ R0�, R0 sin� or
R0 sinh�, respectively, for flat, closed or open models—
the geodesics issuing from this spatial origin are purely
radial. Here R0 is the radius of curvature at the present
epoch. Therefore, the geodesic equations are such that 
and � are fixed while

dt

d�
¼

�
1þD2

a2

�
1=2

; (A1)

R0

d�

d�
¼ D

a2
; (A2)

where D is a dimensionless constant of integration and a,
aðt0Þ ¼ 1, is the scale factor. Thus with respect to the
natural tetrad frame of the fundamental observer at the
spatial origin, the nonzero components of uð�Þ are given

by uðtÞ ¼ �dt=d� and uð�Þ ¼ D=a. It follows that

� ¼
�
1þD2

a2

�
1=2

; �v ¼
�
D

a
; 0; 0

�
: (A3)

Hence as a ! 0, v2 ! 1. In particular, this proves that in
general P ðtÞ / aðtÞ�1, which is the law of variation of
peculiar velocities in standard cosmological models [28].

APPENDIX B: CHRISTOFFEL SYMBOLS

The nonzero components of the connection—modulo
their symmetry ��

�� ¼ ��
��—for metric (26) are given by

�t
tx ¼ q0,

�t
xx ¼ p1

t
g21e

�2q0x; (B1)

�t
yy ¼ p2

t
g22e

�2q0x; (B2)

�t
zz ¼ p3

t
g23e

�2q0x: (B3)

Moreover, we have

�x
tt ¼ q0

e2q0x

g21
; �x

tx ¼ p1

t
; (B4)

�x
xx ¼ q1; �x

yy ¼ �q2

�
g2
g1

�
2
; �x

zz ¼ �q3

�
g3
g1

�
2
:

(B5)

Finally, we find that

�y
ty ¼ p2

t
; �y

xy ¼ q2 (B6)

and

�z
tz ¼ p3

t
; �z

xz ¼ q3: (B7)

APPENDIX C: RELATIONS INVOLVING p AND q̂

We start with the defining properties of p and q̂, namely,X
i

pi ¼ 1; q̂0 þ q̂2 þ q̂3 ¼ 1; (C1)

X
i

p2
i ¼ 1; q̂20 þ q̂22 þ q̂23 ¼ 1: (C2)

For simplicity, the following consequences of Eqs. (C1)
and (C2) are stated only for p with the understanding that
corresponding relations hold for q̂ as well.
It follows from squaring Eq. (C1) and then using

Eq. (C2) that

p1p2 þ p1p3 þ p2p3 ¼ 0: (C3)

Next, from Eqs. (C1) and (C3) we find that for each
i ¼ 1, 2, 3,

p2
i ðpi � 1Þ ¼ p1p2p3: (C4)

Squaring Eq. (C3) and then using Eq. (C1) result in

p2
1p

2
2 þ p2

1p
2
3 þ p2

2p
2
3 ¼ �2p1p2p3: (C5)

Equations (C4) and (C2) imply that
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X
i

p3
i ¼ 1þ 3p1p2p3: (C6)

Similarly, it follows from Eq. (C5) and the square of
Eq. (C2) that

X
i

p4
i ¼ 1þ 4p1p2p3: (C7)

Multiplying Eqs. (C3) and (C5) together, and then using
Eqs. (C1) and (C6), we get

p3
1p

3
2 þ p3

1p
3
3 þ p3

2p
3
3 ¼ 3p2

1p
2
2p

2
3; (C8)

alternatively, one can cube Eq. (C3). We find from
Eqs. (C3), (C5), and (C8), via division by powers of
p1p2p3 � 0, that

X
i

1

pi

¼ 0;
X
i

1

p2
i

¼ � 2

p1p2p3

;

X
i

1

p3
i

¼ 3

p1p2p3

:
(C9)

Next, multiplying Eqs. (C2) and (C6) together, and then
using Eqs. (C1), (C3), and (C5), we find

X
i

p5
i ¼ 1þ 5p1p2p3: (C10)

Similarly, multiplying Eqs. (C2) and (C7) together, and
then using Eqs. (C2) and (C5), we find

X
i

p6
i ¼ 1þ 6p1p2p3 þ 3p2

1p
2
2p

2
3; (C11)

alternatively, we can square Eq. (C6) and then use Eq. (C8).
Finally, let us note that the connection between p and q̂,

given by Eq. (30), can be written as

p 	 q̂ ¼ p1ð1� q̂0Þ þ q̂0: (C12)

This relation is invariant under the exchange of p and q̂,
since the right-hand side of Eq. (C12) can be written as
q̂0ð1� p1Þ þ p1. The general reciprocity between p and q̂
is noteworthy. Excluding the flat spacetime case with
p ¼ q̂ ¼ ð1; 0; 0Þ given in Eq. (34), let us introduce

� ¼ p2 � p1

p2 þ p3

; � ¼ p3 � p1

p2 þ p3

; (C13)

so that Eq. (C12) can be written as q̂0 ¼ �q̂2 þ �q̂3. It is
interesting to note that

ð�� �Þ2 þ 2ð�þ �Þ ¼ 3: (C14)

Once one member of the pair (p, q̂) is chosen, the other can
be algebraically determined. Suppose, for instance, that p
has been fixed; then, one possible q̂ is given by

q̂ 0
0 ¼

1

2�
ð2��þ �� 3�þ 3Þ; (C15)

q̂ 0
2 ¼

1

2�
ð��2 þ ��� �þ 6Þ; (C16)

q̂ 0
3 ¼

1

2�
ð�2 � ��� 2�þ �� 1Þ; (C17)

where � can be expressed as

� ¼ ��� �� �þ 4: (C18)

There is, however, a second possible q̂, which is given by

q̂ 00
0 ¼ 1

2�
ð2��� 3�þ �þ 3Þ; (C19)

q̂ 00
2 ¼ 1

2�
ð�2 � ��þ �� 2�� 1Þ; (C20)

q̂ 00
3 ¼ 1

2�
ð��2 þ ��� �þ 6Þ: (C21)

We note that under the interchange of p2 with p3, or
equivalently, of � with �, the first possible q̂ ¼
ðq̂0; q̂2; q̂3Þ transforms into the second, but with q̂2 and
q̂3 interchanged.
Let us now turn to a useful Kasner index parameteriza-

tion due to Lifshitz and Khalatnikov—see [29,30] and
the references cited therein. It is interesting to extend
this parameterization to double-Kasner spacetime. Intro-
ducing �ðwÞ,

�ðwÞ ¼ 1þ wþ w2; (C22)

we define parameters U and V as follows:

p ¼ 1

�ðUÞ ð�U; 1þU;Uð1þUÞÞ; (C23)

q̂ ¼ 1

�ðVÞ ð�V; 1þ V; Vð1þ VÞÞ: (C24)

Using this parameterization, Eqs. (C1) and (C2) are auto-
matically satisfied. On the other hand, Eq. (C12), the
relation between p and q̂, reduces to

ð1þ 2V þUVÞð1þ 2UþUVÞ ¼ 0: (C25)

For a given p, U is fixed and there are two possible
solutions for V, namely,

V0 ¼ � 1

2þU
; V00 ¼ � 1þ 2U

U
; (C26)

corresponding to q̂0 and q̂00, respectively. That is, one can
directly verify that the substitution of V 0 for V in Eq. (C24)
leads to Eqs. (C15)–(C17), where

� ¼ 1þ 2U

ð1þUÞ2 ; � ¼ Uð2þUÞ
ð1þUÞ2 : (C27)

Similarly, the substitution of V 00 for V in Eq. (C24) leads to
Eqs. (C19)–(C21). Explicitly, we have
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�1q̂
0 ¼ ð2þU; ð2þUÞð1þUÞ;�1�UÞ; (C28)

�2q̂
00 ¼ ðUð1þ2UÞ; �Uð1þUÞ; ð1þUÞð1þ2UÞÞ;

(C29)

where

�1 ¼ 3þ 3UþU2; �2 ¼ 1þ 3Uþ 3U2: (C30)

The same interchange property noted above is recovered in
this parameterization when U is replaced by 1=U.

Let us note here, for the sake of concreteness, that with
our choice of Kasner p exponents, namely, p1 � p2 � p3,
U 2 ½1;1Þ. In general, there are six possible permutations
of the Kasner q̂ exponents; for instance, V ! �1� V
merely interchanges q̂0 and q̂2 in Eq. (C24), while leaving
q̂3 invariant. Such permutations divide the real V axis into
six equivalent intervals with endpoints that are given by the
set f�1;�2;�1;� 1

2 ; 0; 1;1g—see Fig. 4 of Ref. [30].

APPENDIX D: K, L1 AND L2

The purpose of this appendix is to give the expression
for K, which appears in the Kretschmann scalar I1, as well
as the expressions for L1 and L2, which appear in the
expression for I2 in Sec. IV.

The curvature tensor can be computed using the double-
Kasner metric (26) and the corresponding expressions for
curvature invariants can be simplified using the relations
involving p, given explicitly in Appendix C, and similar
ones involving q̂, but not the connection between p and q̂.
The results for K, L1 and L2 are then given by:

Kðp; q̂Þ ¼ p2
2ðq̂20 � q̂0q̂2 þ q̂22Þ þ p2ð�q̂0q̂2 þ p3q̂2q̂3Þ

þ p2
1ð1� q̂0Þ � p1q̂

2
0 � p1p2q̂2ð1þ q̂2Þ

� p1p3q̂3ð1þ q̂3Þ þ p1q̂0ð1þ 2p2q̂2 þ 2p3q̂3Þ
� p3q̂0q̂3 þ p2

3ðq̂20 � q̂0q̂3 þ q̂23Þ; (D1)

L1ðp; q̂Þ ¼ p2
1q̂0ðq̂32 þ q̂33Þ � p1q̂

2
2q̂

2
3

þ p2
2q̂0q̂

2
2ð2� q̂2 þ 2q̂3Þ

þ p2
3q̂0q̂

2
3ð2� q̂3 þ 2q̂2Þ

þ q̂0ð3p1q̂0 � 2p1 � q̂0Þðp2q̂
2
2 þ p3q̂

2
3Þ; (D2)

and

L2ðp; q̂Þ ¼ p2p3ð3p2
1 � 2p1 � 1Þq̂20

þ p2ð5p1p2p3 þ 3p1p2 � 2p1p3 þ 2p3Þq̂22
þ p3ð5p1p2p3 þ 3p1p3 � 2p1p2 þ 2p2Þq̂23
þ 2p2p3ð1� p2

1q̂0 � p2
3q̂2 � p2

2q̂3Þ: (D3)

We note that these expressions are exchange invariant,
namely, they remain the same under the simultaneous
exchange of p2 with p3 and q̂2 with q̂3.
Next, it is important to implement in Eqs. (D1)–(D3) the

relation between p and q̂ given, for instance, in Eq. (C12),
via the Lifshitz-Khalatnikov parameterization of the
double-Kasner spacetime described in Appendix C. We
recall that for a given p, there are two possible values for
q̂, given explicitly by q̂0 and q̂00. The results for the
Kretschmann scalar can be expressed as

Kðp;q̂0Þ¼�4p1p3q̂
0
0q̂

0
2; Kðp;q̂00Þ¼�4p1p2q̂

00
0 q̂

00
3 : (D4)

In a similar way, one can show that

L1ðp; q̂0Þ ¼ 2p1p3q̂
02
2 q̂

0
3ð3q̂00 � q̂03Þ (D5)

and

L2ðp; q̂0Þ ¼ 2p2p
2
3ð3p1 � p2Þq̂00q̂02: (D6)

Moreover, we find that

L1ðp; q̂00Þ ¼ 2p1p2q̂
002
3 q̂002 ð3q̂000 � q̂002 Þ (D7)

and

L2ðp; q̂00Þ ¼ 2p3p
2
2ð3p1 � p3Þq̂000 q̂003 : (D8)

A significant feature of these results is that they are all
consistent with the interchange property discussed in
Appendix C.
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