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We search for self-gravitating oscillating field lumps (pulsons) in the scalar model with logarithmic

potential. With the use of a Krylov-Bogoliubov–type asymptotic expansion in the gravitational constant,

the pulson solutions of the Einstein-Klein-Gordon system are obtained in the Schwarzschild coordinates.

They are expressed in terms of solutions of the singular Hill’s equation. The masses of the obtained

pulsons are calculated. The initial conditions are found under which the pulson solutions become periodic.

These conditions are then used in direct numerical integration of the Einstein-Klein-Gordon system. It is

shown that they do evolve into a very long-lived periodic pulson. Stability of the self-gravitating pulsons

and their possible astrophysical applications are briefly discussed.
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I. INTRODUCTION

A large number of modern astrophysical observations
suggest the existence of scalar fields in our Universe as
possible candidates for dark matter. Pulsons are localized
configurations of the fields having oscillating energy den-
sity. Numerical simulations of Seidel and Suen [1] have
revealed the existence of long-lived self-gravitating pul-
sons, so-called oscillating soliton stars or oscillatons, in the
Einstein-Klein-Gordon (EKG) system

R�� � 1
2Rg�� ¼ ß½�;��;� � ð12�;��

;� �Uð�ÞÞg���;
�;�

;� þU0ð�Þ ¼ 0; (1)

with the potential Uð�Þ ¼ ðm2=2Þ�2 corresponding to a
free massive scalar field. The authors have established that
soliton stars can be formed from rather general initial field
distributions due to a specific relaxation process, the gravi-
tational cooling.

Pulsons were first observed numerically by Bogolubsky
and Makhankov [2] in the Klein-Gordon (KG) model with
�4 and sG potentials. In these cases, in the absence of
gravity, the formation of the pulsons occurs solely due to
self-coupling effects. In the present-day literature such
configurations are often called oscillons, but below we
shall use their original name, pulsons [3].

Subsequent investigations have shown that pulsons exist
in various models and spatial dimensions, and that they
evolve from the diversity of initial conditions [4–22] (see
[23] for a review). It turns out that pulsons can arise from
both uniform and nonuniform field distributions. Thus
pulsons can emerge in scalar condensates due to the para-
metric instability of the spatially uniform background os-
cillating near a vacuum value [14,18,19,21]. In this case the
energy of the background oscillations is transferred to an
incipient pulson via the resonance mechanism. Quite a

different scenario is realized when pulsons are formed
from localized field distributions that appear, e.g., in
shrinking cylindrical domain walls [7], in collapsing
spherical bubbles [9,10], or at bubble collisions [15]. In
such a case an initial field lump sheds excessive energy by
radiation of scalar waves (gravitational cooling of the
soliton stars) and settles into a quasistable state, the pulson,
whose lifetime depends strongly on the initial conditions.
This suggests the existence of such initial conditions that
evolve into very long-lived quasiperiodic, or even infinitely
long-lived periodic pulsons. The latter would imply the
existence of exact localized time-periodic solutions.
For the �4, �3 ��4, and sG models, certain of these
initial configurations have been found numerically in
[10,12,13,16]. Recently, in Ref. [24] small amplitude pul-
son solutions of the EKG system have been obtained for
the potentials expansible in a power series. This brings up
the following question: How does gravity affect the dy-
namics of the finite amplitude pulsons? For example, could
gravity turn nonperiodic pulson solutions into periodic
ones? Consideration of finite amplitude pulsons takes on
great significance in the case where a scalar field potential
is not expansible in a power series in the small amplitude
limit.
In this paper we search for pulsons in the EKG system

(1) with the potential

Uð�Þ ¼ m2

2
�2

�
1� ln

�2

�2

�
; (2)

where � is a real scalar field, m is a bare mass (in units
ℏ ¼ c ¼ 1), and � is a characteristic amplitude of the field
which is assumed to be finite, but not too large, so that
ß�2 � 1, where ß is the gravitational constant.
The nonlinear KG equation with the logarithmic poten-

tial (2) was first considered in quantum field theory by
Rosen [25] and later by Bialynicki-Birula and Mycielski
[26]. In general, for the nonlinear KG equation the poten-
tial (2) is the only one which permits real solutions of the*zheka@izmiran.ru
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form � ¼ aðtÞuðrÞ to exist [8]. Such singular potentials
currently appear in inflationary cosmology [27] and in
some supersymmetric extensions of the standard model
(flat direction potentials in the gravity mediated supersym-
metric breaking scenario) [28]. The logarithmic term in
parentheses arises due to quantum corrections to the bare
inflaton mass.

The paper is organized as follows. In Sec. II, using the
smallness of the gravitational constant, we obtain the ap-
proximate solution of the EKG system (1) which describes
time-periodic pulsons of a finite amplitude in the
Schwarzschild metric ds2 ¼ Bdt2 � Adr2 � r2ðd#2 þ
sin2#d’2Þ. In Sec. III we use the obtained solution to
find the initial conditions for direct numerical integration
of the system. We show that these initial conditions do
evolve into a very long-lived periodic pulson. Stability of
the self-gravitating pulsons and their possible astrophysical
meaning are briefly discussed in Sec. IV.

II. SOLUTION

After the scaling t ! t=m, r ! r=m, �=� ! �,
ß�2=2 ! ß, the system (1) takes the form

Ar

A
þA�1

r
¼ßr

�
A

B
�2

t þ�2
rþA�2ð1� ln�2Þ

�
; (3)

Br

B
�A�1

r
¼ßr

�
A

B
�2

t þ�2
r�A�2ð1� ln�2Þ

�
; (4)

A

B
�tt ��rr � 2

r
�r þ

�
A

2B

�
t
�t þ B

2A

�
A

B

�
r
�r ¼ A� ln�2;

(5)

where ß � 1 is the rescaled gravitational constant.
Looking for localized solutions, we impose the boundary
conditions �ðt;1Þ ¼ 0, Aðt;1Þ ¼ 1, Bðt;1Þ ¼ 1,
�rðt; 0Þ ¼ 0, Aðt; 0Þ ¼ 1.

If we set ß ¼ 0, from (3)–(5) we immediately
obtain A ¼ B ¼ 1 and arrive at the nonlinear Klein-
Gordon equation

�tt ��rr � ð2=rÞ�r �� ln�2 ¼ 0: (6)

This equation has a whole family of exact pulson solutions
[4,5,8]. The simplest of them is given by

�ðt; rÞ ¼ aðtÞeð3�r2Þ=2; (7)

where aðtÞ satisfies the equation of a nonlinear oscillator,

att ¼ �dVðaÞ=da; VðaÞ ¼ ða2=2Þð1� lna2Þ: (8)

As is clear from the shape of the potential VðaÞ depicted in
Fig. 1, oscillations are possible in the range�1< aðtÞ< 1,
so we shall consider below that the pulson’s amplitude may
be finite, j�j & Oð1Þ.

For small ß � 1 we construct the Krylov-Bogoliubov–
type asymptotic expansion (see, e.g., [29]) near the non-
gravitating pulson,

�ðt; rÞ ¼ ½að�Þ þ ßQð�; rÞ þOðß2Þ�eð3�r2Þ=2; (9)

�t ¼ 1þ ß�þOðß2Þ; (10)

where að�Þ satisfies Eq. (8), with the phase � instead of t,
and the initial conditions að0Þ ¼ amax < 1, a�ð0Þ ¼ 0. The
function Qð�; rÞ and the constant � (to be found) describe
the deviation of the pulson’s shape from the Gaussian one
and the frequency shift �!=! ¼ ß� due to gravitational
effects.
Setting in Eqs. (3) and (4)

Aðt; rÞ ¼ ð1� rg=rÞ�1; Bðt; rÞ ¼ ð1� rg=rÞe�s

(11)

and using (9) and (10), we find

rgðt;rÞ¼ß
Z r

0

�
1

B
�2

t þ 1

A
�2

rþ�2ð1� ln�2Þ
�
r2dr

¼ß½Vmaxðð
ffiffiffiffi
�

p
=2Þer2erfr�rÞ�a2r3�e3�r2 þOðß2Þ;

(12)

sðt;rÞ¼2ß
Z 1

r

�
A

B
�2

t þ�2
r

�
rdr

¼ßð2Vmaxþa2 lna2þa2r2Þe3�r2 þOðß2Þ; (13)

where a ¼ að�ðtÞÞ, Vmax ¼ VðamaxÞ. Substituting (9) into
(5) leads to the equation for Qð�; rÞ:
Q�� �Qrr þ ð2=rÞðr2 � 1ÞQr � ð2þ lna2ÞQ ¼ Sða; rÞ;

(14)

where

Sða; rÞ ¼ afVmax½
ffiffiffiffi
�

p ð2� r2 � lna2Þð2rÞ�1er
2
erfrþ 3r2

� 4� 3 lna2� � 5a2r2 þ 2a2r4 þ a2

� 2a2ln2a2ge3�r2 � 2�a lna2: (15)

Its solution is given by

FIG. 1. The shape of the potential VðaÞ. Initial conditions for
the nonlinear oscillator (8) are að0Þ ¼ amax, atð0Þ ¼ 0.
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Qð�; rÞ ¼ 1

r

X1
n¼0

cnXnð�ÞH2nþ1ðrÞ; (16)

where cn ¼ ��1=4½22nþ1ð2nþ 1Þ!��1=2 and H2nþ1ðrÞ are
Hermite polynomials. The functions Xnð�Þmust satisfy the
nonhomogeneous singular Hill’s equation

Xn�� þ ðE� 2� lna2ÞXn ¼ fnðaÞ; (17)

where E ¼ En ¼ 4n,

fnðaÞ ¼ 2cn
Z 1

0
Sða; rÞH2nþ1ðrÞe�r2rdr: (18)

The calculation gives

f0ðaÞ ¼ D0ðaÞ �
ffiffiffi
2

p
�1=4�a lna2; (19)

fnðaÞ ¼ DnðaÞ ðn ¼ 1; 2; . . .Þ; (20)

DnðaÞ ¼ ð�1Þnð2nÞ!cn
2nþ4ð2n� 1Þn!

ffiffiffiffi
�

2

r
e3fa3ð4n2 � 1Þ

� ð4n2 � 4n� 7� 16ln2a2Þ
� 2Vmaxa½24n3 þ 20n2 � 46n� 1

þ 4ð2n� 1Þð6nþ 5Þ lna2�g: (21)

Note that fnðaÞ is a T-periodic function of �, while lna2 on
the left-hand side of Eq. (17) is a T=2-periodic one, where
T is a period of að�Þ.

Solutions of the homogeneous singular Hill’s equation
were investigated in Ref. [21]. In accordance with the
Floquet theory (see, e.g., [30]) Eq. (17) with fn ¼ 0 has
two linearly independent solutions of the form ’ð�Þe��

and ’ð��Þe���, where � is a characteristic exponent, and
’ð�Þ is a T-periodic (T=2-periodic or T=2-antiperiodic)
function. Obviously, we can set ’ð0Þ ¼ 1. Let X�ð�Þ be
two solutions of the homogeneous Eq. (17) (with fn ¼ 0)
satisfying the conditions Xþð0Þ ¼ 1, Xþ

� ð0Þ ¼ 0,
X�ð0Þ ¼ 0, X�

� ð0Þ ¼ 1. They can be written as

Xþð�Þ ¼ 1
2½’ð�Þe�� þ ’ð��Þe����; (22)

X�ð�Þ ¼ 1

2ð�þ ’�ð0ÞÞ ½’ð�Þe
�� � ’ð��Þe����: (23)

If jXþðT=2Þj> 1, we have the resonance case: �> 0 and
is determined by the equation coshð�T=2Þ ¼ jXþðT=2Þj,
’ð�Þ is a real T=2-periodic or T=2-antiperiodic function,
and hence oscillations of X�ð�Þ grow exponentially with �.
If jXþðT=2Þj< 1, we have the nonresonance case:� ¼ i�,
and ’ð�Þ is a complex T=2-periodic function such that
’�ð�Þ ¼ ’ð��Þ. Hence the solutions X�ð�Þ are bounded.
They can be periodic (with some period), or nonperiodic
depending on �, which is determined by cosð�T=2Þ ¼
XþðT=2Þ. These cases are realized in different domains
of the ðE; a2maxÞ plane that make up a stability-instability
chart. The domains with �> 0 are known as resonance

zones. The special case jXþðT=2Þj ¼ 1 is realized on their
boundaries where � ¼ 0. Then one of the solutions, either
Xþð�Þ or X�ð�Þ, is a T-periodic (T=2-periodic or
T=2-antiperiodic) function, and another one is proportional
to the product of this function times � plus some T-periodic
function (T=2-periodic or T=2-antiperiodic, respectively).
The surface �ðE; a2maxÞ over the resonance zones has

been constructed in Ref. [21]. For discrete E ¼ 4n the
above functions acquire the subscript n, so we shall write
’nð�Þ, X�

n ð�Þ, �nða2maxÞ.
Each cross section of the surface �ðE; a2maxÞ with the

plane E ¼ 4n, n ¼ 1; 2; . . . , gives the characteristic expo-
nent �n as a function of a2max. This function is represented
by a series of peaks �n > 0 separated by intervals of
stability. By superposing the curves �nða2maxÞ for all con-
sidered modes n ¼ 1; 2; . . . ; N, one gets the pattern shown
in Fig. 2. The mode n ¼ 0 corresponds to the above special
case� ¼ 0 and thus does not contribute to the pattern. The
obtained composite plot gives an idea of the existence of
unstable and (quasi)stable modes in different regions of the
a2max axis and demonstrates the tendency to progressively
fill the interval 0< a2max < 1 by the resonant peaks as the
successively higher energy levels En ¼ 4n are accounted
for.
In terms of X�

n ð�Þ the general solution of Eq. (17) is
written as

Xnð�Þ ¼
�
Xnð0Þ �

Z �

0
X�
n fnd�

�
Xþ
n ð�Þ

þ
�
Xn�ð0Þ þ

Z �

0
Xþ
n fnd�

�
X�
n ð�Þ: (24)

The solutions X�
0 ð�Þ have the form

Xþ
0 ð�Þ ¼ 	q�1=3ð	2Þ � 	�

Z �

0
Kð	2Þd�; (25)

X�
0 ð�Þ ¼ �ð!2

0 � 1Þ�1	�; (26)

where the notations 	ð�Þ ¼ a=amax, !
2
0 ¼ 1� lna2max are

introduced,

	2
� ¼ ð!2

0 � 1Þð1� 	2Þq�2=3ð	2Þ (27)

is the first integral of Eq. (8) in terms of 	ð�Þ, and the
functions qð	2Þ and Kð	2Þ are

FIG. 2. A collection of the resonance peaks obtained by su-
perposition of the functions �nða2maxÞ.
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qð	2Þ ¼
�

!2
0 � 1

!2
0 þ ð1� 	2Þ�1	2 ln	2

�
3=2

; (28)

Kð	2Þ ¼ 1� qð	2Þ
1� 	2

q�1=3ð	2Þ: (29)

Note that 0< ð1�!�2
0 Þ3=2 � qð	2Þ � 1, dq=d	2 > 0

(	2 � 1), and qð1Þ ¼ 1. Since Kð	2Þ is a sign-definite
periodic function of �, its average �K ¼ T�1

R
T
0 Kd� � 0,

so the solution (25) can be represented in the
form Xþ

0 ð�Þ ¼ � �K	��þ c ð�Þ, where c ð�Þ is a

T=2-antiperiodic function with c ð�Þ ¼ 0 [here and else-
where the bar means the average over the period T of að�Þ].
Thus oscillations of Xþ

0 ð�Þ grow linearly with � for any

amax. This is in agreement with the fact that Xþ
0 ðT=2Þ ¼

�1 and the line E ¼ 0 is the boundary of a resonance zone
on the ðE; a2maxÞ plane [21]. The equality Xþ

0 ðT=2Þ ¼ �1
immediately follows from Eq. (25) if one takes into ac-
count that 	ðT=2Þ ¼ �1, 	�ðT=2Þ ¼ 0 (see Fig. 1).

The requirement of boundedness of the general solution
X0ð�Þ (24) determines� and, hence, the frequency shift in
accordance with Eq. (10). Indeed, substituting Xþ

0 ð�Þ,
X�
0 ð�Þ, and f0ðaÞ into Eq. (24) and integrating by parts,

we find that the linearly growing terms cancel out if

� ¼
ffiffiffi
2

p

�1=4amax

0
@Xþ

0 ð�ÞD0ðaÞ
lna2max

� X0ð0Þ �K
1
A: (30)

Under the condition (30) the solution X0ð�Þ is a bounded
T-periodic function.

To obtain the corresponding conditions for n � 1, we
substitute (22) and (23) into (24) and require that Xnð�Þ ¼
Xnð�þ TÞ. In this equality the integrals between the limits
0 and � cancel out. The remaining terms make up a linear
combination of the independent solutions ’nð�Þe�n� and
’nð��Þe��n�. Equating to zero coefficients of these solu-
tions and using the identities

e��nT=2’nð�Þe�n�fnðaÞ ¼ e�nT=2’nð��Þe��n�fnðaÞ

¼ Xþ
n ð�ÞfnðaÞ

coshð�nT=2Þ ; (31)

�n þ ’n�ð0Þ ¼
Xþ
n�ðTÞ

sinhð�nTÞ ; (32)

we arrive at the conditions

Xnð0Þ ¼ � T

Xþ
n�ðTÞ

Xþ
n ð�ÞfnðaÞ; (33)

Xn�ð0Þ ¼ 0: (34)

Note that Xþ
n�ðTÞ � 0 because �n þ ’n�ð0Þ in (32) is pro-

portional to the Wronskian Wð’nð�Þe�n�; ’nð��Þe��n�Þ.
Equation (32) can be easily derived if one expresses ’nð�Þ

from (22) in terms of Xþ
n ð�Þ and Xþ

n ð�þ TÞ and takes into
account that Xþ

n ðTÞ ¼ coshð�nTÞ.
Interestingly, Eq. (33) is still valid on the boundaries of

resonance zones, Eq. (34) being no longer necessary. In
particular, this is true for n ¼ 0. Indeed, differentiation of

(25) gives Xþ
0�
ðTÞ ¼ �T �K lna2max. To calculate X

þ
0 ð�Þf0ðaÞ

we substitute a lna2 ¼ a�� ¼ amax lna
2
maxX

�
0�
ð�Þ in (19)

and, integrating by parts, take into account that
WðXþ

0 ð�Þ; X�
0 ð�ÞÞ ¼ 1. As a result, we arrive at the condi-

tion (30) again.
Thus, under the conditions (30), (33), and (34) the

solution (16) is T periodic with respect to �. This means
the solution (9) is also periodic [with the period ð1þ
ß�Þ�1T with respect to t]. Note it involves the free pa-
rameters amax, X0ð0Þ, and X0�ð0Þ.
To be certain that the obtained solution is correct, we

examine the mass conservation law. The mass of a self-
gravitating field lump is defined as M ¼ 4�

R1
0 T0

0r
2dr,

where T0
0 is the energy density of the scalar field involved

in the EKG system (1). In terms of the rescaled variables
it can be written as M ¼ ð2��2=mÞlimr!1ðrgðt; rÞ=ßÞ,
where rgðt; rÞ is defined in (12), ß being the rescaled

gravitational constant. This limit must be time indepen-
dent. To check this, we substitute the solution (9) into (12)
and calculate the limit of rg=ß in the first order in ß using

the orthogonality of the Hermite polynomials. The result is
given by

M ¼ ðe ffiffiffiffi
�

p Þ3�2Vmax

m

�
1� ß

ffiffiffi
2

p
amax

�1=4Vmax

�
�
X0ð0Þ lna2max � e3�1=4

128
a3maxð1þ 14 lna2maxÞ

�

þOðß2Þ
�
; (35)

which is evidently constant.
Since ß � 1, the gravitational field created by this

mass is weak, as is clearly seen from (11)–(13). In the
limit ß ! 0 the gravity vanishes. However, the rescaled
scalar field persists, satisfying Eq. (6), and its amplitude
may have any value in the range 0< amax < 1. As amax

changes from unity to zero, the pulson’s frequency changes
from zero to infinity, correspondingly. In particular, in

the small amplitude limit the pulson’s frequency is !0 ¼
ð1� lna2maxÞ1=2.
Thus, we have obtained a three-parametric family of the

spatially localized time-periodic solutions (9)–(13) of the
system (3)–(5), wherein only the smallness of the rescaled
gravitational constant ß has been required. Note that the
smallness of the pulson’s amplitude, amax � 1, is not
assumed in the above consideration. To our knowledge,
this is the first example of the pulson solutions of the EKG
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system that has an arbitrary frequency. We have named
them gravipulsons.

III. NUMERICAL SIMULATION

Our solution, however, is an approximate one. It was
obtained in the first order in the gravitational constant.
Hence its deviation from an exact solution increases in
time, as happens with any asymptotic solution in the theory
of nonlinear oscillations [29]. But we can go back in time
and take the initial state of the obtained solution as initial
conditions for direct numerical integration of the starting
EKG system. As a result, we have a three-parametric
family of the initial conditions:

�ð0; rÞ ¼ amaxe
ð3�r2Þ=2 þ ßGðr;amax; X0ð0ÞÞ; (36)

�tð0; rÞ ¼ 2ßc0X0�ð0Þeð3�r2Þ=2: (37)

The functionGðr; amax; X0ð0ÞÞ ¼ Qð0; rÞeð3�r2Þ=2 describes
admissible deformations of the initial pulson’s profile
which evolve into periodic solutions. In calculating G
we assume that amax belongs to one of the intervals of

quasistability [20,21] where X�
n ð�Þ, with 1 � n � N, are

bounded for sufficiently large N. This can be easily in-
spected by numerical integration of the Hill’s equation,
taking into account that the boundedness of X�

n ð�Þ is
equivalent to the condition jXþ

n ðT=2Þj< 1. We restrict
ourselves to the summation from 0 toN in (16). In deciding
on N, it is necessary to take into account that the related
error in Q must not exceed OðßÞ. Below we take
ß ¼ 0:005, N ¼ 9, and set X0ð0Þ ¼ X0�ð0Þ ¼ 0 for

simplicity.
Figure 3 shows the examples of the admissible deforma-

tions calculated for three different values of amax.
In Figs. 4 and 5 we compare our solution (9)–(13) (solid

lines) with the results of direct numerical integration of the

FIG. 3. Admissible deformations of the initial pulson’s profile
calculated by formula (16) with X0ð0Þ ¼ 0 and Xnð0Þ (33).

FIG. 5. Profiles of the scalar field and metric coefficients.

FIG. 4. Oscillations of the scalar field (top panel) and metric coefficient (bottom panel) at the center of the pulson for ß ¼ 0:005,
amax ¼ 0:64.
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EKG system (indicated by dots). We started with one of the
admissible deformations of the pulson’s profile that we
have found (see Fig. 3). Oscillations of the scalar field
and metric at the center of the pulson are shown in Fig. 4.
Figure 5 shows the pulson’s and metric’s profiles taken in
some intermediate moment of time.

We have performed the Fourier analysis of the scalar
field oscillations obtained by numerical integration of the
EKG system. The resulting spectrum shown in Fig. 6(a)
demonstrates periodicity with high accuracy.

Then we violated the condition (33) by tripling X1ð0Þ
that was calculated before, and integrated the EKG system

again. As expected, the resulting field oscillations were
found to be nonperiodic. The corresponding spectrum is
presented in Fig. 6(b). Nonperiodicity manifests itself
as additional peaks in the spectrum which are absent in
Fig. 6(a).
To clarify the meaning of gravity, we used the obtained

initial conditions (36) and (37) with ß as a formal parame-
ter for the numerical integration of the nonlinear KG
equation (6). The solution was found to be nonperiodic,
as is clear from its spectrum which is shown in Fig. 7. We
thus conclude that it is because of gravity that the periodic
pulsons of the considered non-Gaussian shapes exist.

IV. CONCLUDING REMARKS

Thus we have demonstrated the existence of long-lived
time-periodic pulsons in the EKG system. These pulsons
differ from the nongravitating ones in their shapes and
frequencies and exist only due to gravitational effects.
The question arises as to whether these gravipulsons are

stable. While the stability analysis is out of the scope of
the present work, it is worth noting that the stability of
the solution (9), and hence (11), is determined by the
stability of the solutions of the nonhomogeneous Hill’s
equation Xnð�Þ involved in (16). In turn, as it follows from
(24), the stability of the general solution Xnð�Þ is deter-
mined by the behavior of the functions Xþ

n ð�Þ and X�
n ð�Þ.

It is clear that all solutions Xnð�Þ satisfying the initial
conditions (33) and (34) are unstable in the resonance case
�n > 0. Indeed, any perturbation of the initial values
Xnð0Þ, Xn�ð0Þ, determined by (33) and (34), leads to the

appearance of terms 	 expð�n�Þ on the right-hand side of
(24), thus making the corresponding function Xnð�Þ, and
hence the solution (9), exponentially growing in time.
On the other hand, in the nonresonance case �n ¼ i�n,

the functions Xþ
n ð�Þ, X�

n ð�Þ as well as Xnð�Þ in (24) are
bounded, and a small perturbation of the initial conditions
(33) and (34) results in the appearance of only small
oscillating terms in Xnð�Þ. So we can expect that the
solution (9) is stable if all modes Xnð�Þ are nonresonant.
The question is, does any value of amax exist such that all
modes En ¼ 4n ðn > 0Þ are stable?
A collection of the peaks �n > 0 with n ¼ 1; 2; . . . ; 10,

shown in Fig. 2, demonstrates the existence of numerous
stability intervals separating the instability ones on the a2max

axis. All modes n ¼ 1; 2; . . . ; 10 are stable in the gaps be-
tween the peaks, and thus�n ¼ i�n. However, ifwe take into
consideration additional modes with 10< n � N, supple-
mentary peaks must be added to this plot. Some of the new
peaks will be overlapped by the existing ones, but the rest
will fall within the stability intervals and erode them.
Nevertheless, narrow stability gaps remain visible on the
abscise axis even in the case of large N.
While we have no proof that some gaps of stability

survive as N goes to infinity, one should take into account
that the amplitude of the peaks in Fig. 2 decreases with

FIG. 6. Fourier spectrum of �ðt; 0Þ for admissible (a) and
inadmissible (b) initial conditions.

FIG. 7. Fourier spectrum of �ðt; 0Þ obtained from the solution
of the nonlinear KG equation (6) with the initial conditions (36)
and (37). All parameters are the same as in Figs. 4 and 5.

VLADIMIR A. KOUTVITSKYAND EUGENE M. MASLOV PHYSICAL REVIEW D 83, 124028 (2011)

124028-6



increasing n, and in any case, narrow intervals on the a2max

axis can be found where only high-n modes are unstable.
We refer to them as intervals of quasistability. Indeed,
while the solution (9) with amax falling in one of these
intervals is unstable, this instability evolves very slowly,
and the gravipulson still remains a long-lived object.
Moreover, as it was demonstrated in our simulation [20],
in the case of the nongravitating pulson, the nonlinear stage
of instability saturates very quickly, resulting in a slightly
modified pulson which remains a compact oscillating ob-
ject. We expect the same instability behavior in the case of
gravipulsons also, at least at small ß, even if this instability
is caused by the action of some other perturbative objects
around them.

A few words about possible astrophysical applications
of the obtained solution are in order. There are a number of
papers where scalar solitons are considered as models of
galactic halos in hopes of explaining the observational

flatness of the rotation curves (see, e.g., [31] and references
therein). It is easy to see that then the energy density of a
scalar field must not decay faster than r�2. Evidently, our
solution does not satisfy this criterion. However, if a galac-
tic halo is not a single solitonlike object, but is an ensemble
of dark matter lumps, of so-called ’’mini-MACHOs’’ [32],
the gravipulsons may be reasonable candidates for these
compact constituents. In this case the gravipulson masses
(35) need to be limited by the condition M & 10�7M

following from microlensing data [33]. This constrains
the amplitude of the gravipulsons and the parameters of
the potential (2).
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