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We consider quantum Einstein gravity in three dimensional de Sitter space. The Euclidean path integral

is formulated as a sum over geometries, including both perturbative loop corrections and nonperturbative

instanton corrections coming from geometries with nontrivial topology. These nontrivial geometries have

a natural physical interpretation. Conventional wisdom states that the sphere is the unique Euclidean

continuation of de Sitter space. However, when considering physics only in the causal patch of a single

observer other Euclidean geometries, in this case lens spaces, contribute to physical observables. This

induces quantum gravitational effects which lead to deviations from the standard thermal behavior

obtained by analytic continuation from the three sphere. The sum over these geometries can be formulated

as a sum over cosets of the modular group; this is the de Sitter analog of the celebrated ‘‘black hole Farey

Tail.’’ We compute the vacuum partition function including the sum over these geometries. Perturbative

quantum corrections are computed to all orders in perturbation theory using the relationship between

Einstein gravity and Chern-Simons theory, which is checked explicitly at tree and one-loop level using

heat kernel techniques. The vacuum partition function, including all instanton and perturbative correc-

tions, is shown to diverge in a way which cannot be regulated using standard field theory techniques.

DOI: 10.1103/PhysRevD.83.124027 PACS numbers: 04.60.Ds, 04.62.+v, 04.60.Kz

I. INTRODUCTION

As the maximally symmetric solution of general relativ-
ity with a positive cosmological constant, de Sitter space is
the natural starting point for the study of quantum cosmol-
ogy. Despite notable efforts it is not known precisely how
to define a theory of quantum gravity in eternal de Sitter
space or even whether such a theory exists (see e.g. [1–5]).
Such a theory would presumably answer several important
questions, including:

(i) What are the appropriate observables for eternal
inflation?

(ii) What is the origin and interpretation of the
Bekenstein-Hawking entropy of a cosmological
horizon?

(iii) How does quantum gravity alter the physics of
observers in a de Sitter universe?

We will not attempt to provide a full answer to these
questions here; rather we will describe a series of explicit
computations which will shed some light on the third
question. We will return to the second at the end of this
paper.

Our focus here is on three dimensional de Sitter gravity,
where the computations are simple and quantum correc-
tions can be computed systematically. We will make pre-
cise the notion of a path integral as a sum over all smooth
geometries in Euclidean signature, and discuss the physical
interpretation of this path integral. Although we will not
use explicitly any notions from string theory or holography,
our approach is inspired by the corresponding analysis in
AdS3 based on the AdS/CFT correspondence.

A. de Sitter space and thermality

Conventional wisdom states that de Sitter space is ther-
mal, in the sense that the de Sitter horizon emits a bath of
Hawking radiation at a fixed temperature. We will argue
that this statement must be modified once quantum gravity
effects are taken into account. In three dimensional de
Sitter gravity the deviations from the standard canonical
ensemble can be computed exactly, but we expect a similar
statement to be true in higher dimensions as well.
We begin by first recalling why de Sitter space is ther-

mal. For field theory in a fixed curved background, unlike
in flat Minkowski space, there is no unique choice of
vacuum. The typical choice of vacuum—often referred to
as the Hartle-Hawking, or Euclidean, vacuum state [6]—is
defined by Wick rotation from Lorentzian to Euclidean
signature. More precisely, the ground state wave func-
tional, viewed as a function of field configurations on a
constant time slice, is computed by performing a Euclidean
path integral with specified data on the constant time slice.
The natural Euclidean continuation of Lorentzian de Sitter
space is the sphere S3; in this continuation the time coor-
dinate of a static observer becomes an angular coordinate
of the sphere. Correlation functions computed in this state
are found by analytic continuation of correlation functions
on S3. These correlators are periodic in Euclidean time and
obey the KMS conditions. So correlation functions of field
operators are evaluated in a canonical ensemble state at
fixed temperature.
In this paper we will assume that the definition of the

Hartle-Hawking state in terms of Euclidean function inte-
gral is, to the extent that it can be made precise, correct.
This means that once quantum gravitational effects are
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included the vacuum state will include contributions from
other geometries. In particular, other solutions to the
Euclidean equations of motion will appear as saddle point
contributions. In three dimensions these other saddle points
are easy to describe; they are quotients S3=� of the three
sphere by a discrete subgroup � of SOð4Þ. In this paper we
focus on a particularly simple class of such geometries of
the form S3=Zp. These spaces, known as lens spaces, have

a very simple physical interpretation. Correlation functions
which are defined by analytic continuation from a lens
space do not describe a canonical ensemble state at fixed
temperature. Rather, they describe a grand canonical en-
semble state at fixed temperature and angular potential. In
such a state the de Sitter horizon emits Hawking radiation
at a fixed angular potential, much like a rotating black hole.

The full Hartle-Hawking state includes a sum over the
quotients of S3. At the classical level, each geometry is
weighted by its Euclidean action. The leading contribution
will be the familiar thermal state coming from the domi-
nant S3 saddle. The quotients give subleading contributions
which are suppressed by terms that are exponentially large
in the de Sitter entropy; they vanish in the classical limit.
Nevertheless their effects can be computed and the full
partition function includes a sum over lens spaces. In fact,
this sum over lens spaces has an elegant mathematical
interpretation as a sum over the modular group SLð2;ZÞ.
This is very reminiscent of the ‘‘black hole Farey Tail’’ of
[7]. In that case the partition function of AdS3 gravity at
finite temperature is interpreted as a sum over the modular
group. The sum over SLð2;ZÞ was a sum over all three
dimensional geometries which ‘‘fill in’’ a T2 at the confor-
mal boundary of space-time [7–10]. In the de Sitter case,
this sum has a similar interpretation as a sum over ways of
filling in a T2 at the Euclidean horizon. Thus our ‘‘de Sitter
Farey Tail’’ provides a construction of Hartle-Hawking
state as a sum over geometries related by modular
transformations.

B. The partition function of de Sitter gravity

The geometries described above all contribute to the
partition function of de Sitter gravity in Euclidean signa-
ture. Formally, this partition function should be regarded as
a path integral over Euclidean metrics

Z ¼
Z

Dge�S½g�: (1)

The Hartle-Hawking state is an integral over metrics with
fixed boundary conditions on a spacelike slice. The path
integral in Eq. (1) is a sum over all compact metrics and is
interpreted as the norm of the Hartle-Hawking state. In the
present work we will consider the case of ‘‘pure’’ Einstein
gravity with only metric degrees of freedom.

Of course, there are very few cases where we know how
to make precise sense of a sum over geometries of the
form (1). When the cosmological constant is negative,

the integral is defined over metrics with fixed conformal
structure at the boundary and the result can be identified
with the partition function of a conformal field theory. This
allows one to make a certain amount of progress. It turns
out that when the cosmological constant is positive there is
an alternate technique—not based on AdS/CFT—which
provides a precise, calculable definition of the partition
function (1).
To begin, we first write down the saddle point approxi-

mation to the partition sum (1)

Z ¼ X
gc

e�kS0½gc�þS1½gc�þð1=kÞS2½gc�þ...: (2)

Here the sum is over all classical solutions gc to the
Euclidean equations of motion, and Si½gc� denotes the
quantum correction to the action at ith order in perturbation
theory. We have extracted explicitly the dimensionless
coupling constant k, which in the present case is equal to
the de Sitter radius in Planck units. In general the expres-
sion (2) will only be an approximation to the full path
integral. However, this approximation is expected to be-
come exact if we can accomplish the following two tasks:
(i) Identify the infinite set of classical solutions gc
(ii) Compute the infinite series of subleading correc-

tions Si around each classical saddle

We will perform both of these computations.
The identification of the classical saddles gc is easy.

They are the quotients S3=�, which can be enumerated
and described explicitly. In principle, a given saddle may
or may not contribute to the path integral—to answer this
question one must define the Lorentzian path integral
precisely, rotate the integral to Euclidean signature and
determine which saddles lie on the contour of stationary
phase. We will not attempt to do so in this paper; instead
we focus on the lens spaces Lðp; qÞ, whose inclusion in the
path integral can be motivated on physical grounds. We
will leave the question of more complicated quotients to
future work.1

In order to compute the series of perturbative correc-
tions, we will use the relationship between three dimen-
sional Einstein gravity and Chern-Simons theory [11]. We
emphasize that we will not attempt to identify the gravita-
tional path integral with that of a Chern-Simons theory.
Indeed, the sum over saddle points takes a very different
form in these two theories. For example, our gravitational
path integral (1) involves a sum over geometries with
different topology, whereas the Chern-Simons partition
function is a sum over flat connections on a space of fixed
topology. However, at the level of perturbation theory, the
rewriting of gravitational degrees of freedom in terms of a
gauge connection is straightforward. Thus one can use

1We will, however, compute the classical sum over geometries
for all possible quotients S3=� in an Appendix.
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Chern-Simons theory as an efficient computational tool to
extract perturbative corrections to a given classical saddle
point. In the Chern-Simons formulation there is a system-
atic perturbative expansion [11–15], and remarkably the
partition function on a lens space is known to all orders
[16]. This will allow us to identify the infinite set of
subleading perturbative corrections in (2).

We note that the use of the Chern-Simons formulation as
a computational tool in perturbative gravity is somewhat
delicate. Previous related efforts include [17–21]. For
example, in the case of a negative cosmological constant
both the space-time and the Chern-Simons gauge group are
noncompact, which makes the gauge theory formulation
subtle. Thankfully, these subtleties do not occur in the
present case. Euclidean gravity with a positive cosmologi-
cal constant is related to SOð4Þ Chern-Simons theory on a
compact space S3=�, so the Chern-Simons formulation is
straightforward.

Wewill devote some time to a precise matching between
the Chern-Simons and gravitational results. At the classical
level, the comparison is simple; the Einstein action is
related to a particular Chern-Simons invariant [11]. We
will also check that Einstein gravity is equal to Chern-
Simons theory at the one-loop level as well. This is con-
siderably more involved. We perform a direct computation
of the one-loop determinant for gravity on a lens space
using heat kernel techniques, and show that this is exactly
equal to the corresponding Chern-Simons result. To our
knowledge this is the first time such a check has been done.
Given this check at the tree and one-loop level, we can then
confidently apply the Chern-Simons result at all orders in
perturbation theory.

The result is that the partition function (1) is divergent.
This is not a surprise, since it involves a sum over quotients
S3=�. As the order of the group � goes to infinity, we find
an infinite number of saddles whose classical actions ap-
proach zero. Indeed, this same divergence appeared in the
case of a negative cosmological constant [7]. In that case it
was necessary to apply a regularization scheme which
rendered the sum finite and provided a match with the
CFT. In fact, the sum over geometries in that case could
be regulated only for certain special values of the coupling
constants, for example, when the central charges satisfy
1
24 ðcL � cRÞ 2 Z. The obvious questions is whether the

same is true in the case of gravity with a positive cosmo-
logical constant. In particular, we ask whether an appro-
priate regularization will render the quantum path integral
for de Sitter gravity finite. Optimistically, this would im-
pose a constraint on the coupling constant of the theory—
i.e. the cosmological constant—required for quantum
mechanical consistency. We will conclude that this is not
the case for pure Einstein gravity in de Sitter space. The
perturbative corrections to the effective action for de Sitter
gravity make the sum over geometries converge more
rapidly, but there is still a divergent piece even after

regularization. Unlike the case of a negative cosmological
constant, there appears to be no way of regulating the
divergence appearing in the sum over geometries. We
will discuss possible implications and interpretations of
this result.

C. Overview

In Sec. II we describe the geometry of the lens spaces
and demonstrate that they construct states for static patch
observers in a grand canonical ensemble. In Sec. III we
describe the Euclidean path integral in the saddle point
approximation and perform the classical sum over lens
spaces. We will also discuss the regularization of this
sum. In Sec. IV we compute the one-loop correction to
this classical sum, using both heat kernel and Chern-
Simons techniques. In Sec. V we compute the sum using
the result at all orders in perturbation theory. We end in
Sec. VI with a discussion of open issues and speculations
regarding the entropy of de Sitter space.
In Appendix Awe describe the regularized sum over all

Euclidean saddles S3=�. We summarize some formulae
relevant for the computations of one-loop determinants
and zeta function regularization in Appendixes B and C.

II. LENS SPACES AND THE STATIC PATCH

In this section we motivate the inclusion of lens spaces
in the path integral of de Sitter gravity and describe their
physical interpretation.

A. The static patch and the Hartle-Hawking state

We start by considering the physics of a timelike ob-
server in dS3. Such an observer is in causal contact with
only a portion of the full de Sitter geometry. This region is
known as the static patch (or causal diamond) associated
with the observer. The metric on the static patch of de Sitter
space can be written as

ds2

‘2
¼ dr2 � cos2rdt2 þ sin2rd�2: (3)

Here ‘ is the curvature radius and � is periodically iden-
tified

���þ 2�n 8 n 2 Z: (4)

In these coordinates the observer is located at r ¼ 0. The
boundary of the static patch is the cosmological horizon,
which in these coordinates is located at r ¼ �=2 (see
Fig. 1). We will use units ‘ ¼ 1.
In this coordinate system the metric is static and axially

symmetric. These symmetries are generated by the Killing
vectors

H ¼ i@t; J ¼ i@�: (5)

These vectors define a notion of energy and angular
momentum associated with this patch. We note that the
timelike Killing vector H becomes null at the horizon at
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r ¼ �=2. Indeed, de Sitter space does not possess a glob-
ally timelike Killing vector. Correspondingly, there is no
global notion of conserved energy in de Sitter space. The
best one can do is consider charges of the sort defined in (5)
associated to a particular observer.

Before turning to the physics of quantum gravity, it is
useful to first consider free quantum field theory in a fixed
de Sitter background. Restricting our attention to the static
patch, it is straightforward to construct phase space charges
H and J which generate the Killing symmetries (5). Upon
quantization, these will become operators acting on the
field theory Hilbert space. In free field theory this can be
done completely explicitly and the Hilbert space can be
organized into states of fixed energy and angular momen-
tum. Since � is periodically identified the charge J ¼ i@�
will take integer values.

In order to define quantum field theory in the de Sitter
background it is necessary to choose a vacuum state. The
canonical choice is the Hartle-Hawking (or Euclidean)
state defined by analytic continuation from Euclidean sig-
nature. Correlation functions in this state are obtained by
Wick rotation. We start by defining

t ! tE ¼ it; (6)

to obtain the Euclidean metric

ds2E
‘2

¼ dr2 þ cos2rdt2E þ sin2rd�2: (7)

In order for this geometry to be nonsingular at r ¼ �=2we
see that tE must be periodically identified, so that

ðtE; �Þ � ðtE; �Þ þ 2�ðm; nÞ 8 n; m 2 Z: (8)

With these identifications we recognize (7) as the metric on
S3 written in Hopf coordinates.

We can then compute field theory correlation functions
on the sphere S3 and analytically continue them back to
Lorentzian signature. This gives field theory expectation
values in a particular quantum state, which is usually

referred to as the Hartle-Hawking or Euclidean vacuum
state. The physics of this state is easy to understand. This
identification (8) is generated by the operator

� ¼ e��H; � ¼ 2� (9)

where H is the Hamiltonian operator (5). This is the
density matrix of a canonical ensemble at fixed tempera-
ture. Thus field theory expectation values computed in the
static patch are precisely thermal. This is the famous state-
ment that de Sitter space is thermal; our observer at the
origin r ¼ 0will see the cosmological horizon emit a finite
temperature bath of particles at temperature � ¼ 2�.
Our basic observation is that there are other identifica-

tions of the ðtE; �Þ coordinates which make the Euclidean
geometry (7) smooth. In particular, for any pair of rela-
tively prime integers ðp; qÞ we may identify

ðtE;�Þ�ðtE;�Þþ2�

�
m

p
;m

q

p
þn

�
8n; m2Z: (10)

These identifications define the lens space Lðp; qÞ.
Comparing (10) with (8) we see that the lens space is the
quotient S3=Zp of the sphere by the cyclic group of order

p. Lð1; 0Þ is the original S3. The parameter q labels differ-
ent ways of embedding this cyclic group into the isometry
group SOð4Þ of S3. We note first that a shift of q by a
multiple of p can be absorbed into a change of the parame-
ters n, m. Thus q is defined only modp. Moreover, the
condition that ðp; qÞ ¼ 1 is necessary for the geometry to
be smooth; if ðp; qÞ � 1 one can find a pair of integers n,m
such that mq ¼ �pn with 0<m< p. This would imply
that on a surface of constant�, tE is periodically identified
with period less than 2�, leading to a conical singularity.2

FIG. 1. The causal diagram of de Sitter space, suppressing the angular � coordinate. Horizontal slices of this Penrose diagram are
spheres S2, with North and South Poles given by vertical lines on the left and right, respectively. The static patch associated with an
observer at the South Pole is the wedge shaped region on the right. In our coordinates the observer is at r ¼ 0 and the cosmological
horizon is at r ¼ �=2. On this horizon the timelike Killing vector (denoted by an arrow) becomes null.

2More generally, for p, q 2 R the interpretation is a point
particle carrying mass and angular momentum. Even though the
solution is not a black hole and has a conical singularity, it is
known as Kerr-dS3 [22].
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From the point of view of quantum field theory the
Lðp; qÞ identifications described above have a simple
physical interpretation. This can be seen by noting that
the identification (10) is generated by the operator

� ¼ e�2�ðð1=pÞHþiðq=pÞJÞ: (11)

So, just as S3 defines a canonical ensemble with � ¼ 2�,
the Lðp; qÞ define a grand canonical ensemble with tem-
perature and angular potential

� ¼ 2�

p
; � ¼ 2�i

q

p
: (12)

We note the appearance of a factor of i in Eq. (11). This is
due to the fact that angular momentum J picks up a factor
of i on rotation to Euclidean signature; a similar factor of i
appears, for example, when defining the Euclidean con-
tinuation of the Kerr black hole.

It is important to note that we have been careful to write
Lðp; qÞ as a Euclidean continuation of the static patch of de
Sitter space and to make no reference to global dS3. This is
not an accident; for generic values of p and q, Lðp; qÞ can
not be described as the Wick rotation of smooth global
Lorentzian geometry. Our point of view is that only the
static patch is relevant for the study of the physics of a
timelike observer. The Lðp; qÞ should be viewed as in-
structions for the preparation of a state of a static patch
observer.3

Indeed, from the point of view of the static patch ob-
server the lens spaces Lðp; qÞ have just as much a right to
be called the ‘‘Euclidean continuation of de Sitter space’’
as does the three sphere S3. However, correlation functions
which are obtained by analytic continuation from a lens
space will be different from those obtained by analytic
continuation from the sphere. So we have an apparent
embarrassment of riches; of all the possible Euclidean
geometries one can use to compute correlation functions,
which one should we use?

To answer this question, let us remember that the Hartle-
Hawking state is defined by a path integral in Euclidean
signature. In the limit where gravity is neglected, this
means that we simply Wick rotate Euclidean correlation
functions computed on a fixed background geometry. But
once gravity is included the metric will fluctuate. In a
saddle point approximation, we must include contributions
from all solutions to the equations of motion, and, in
particular, all lens spaces. So once gravity is included it
is not a question of which lens space should be used. They
all contribute to the Hartle-Hawking state. To compute
correlation functions correctly we must sum over this
infinite class of geometries. This sum is the subject of the
remainder of this paper.

It is worth asking how we are to interpret this conclusion
in light of the typical claim that physics de Sitter space is
thermal. As reviewed above, this is a consequence of
analytic continuation from the Euclidean saddle S3. In
the Euclidean sum over geometries each saddle should be
weighted by (minus) its action. This action is proportional
to the volume of the saddle. The lens spaces all have lower
volume than S3. So in the limit where the de Sitter radius is
large in Planck units (‘=G � 1), the contribution from the
S3 saddle will dominate the sum. The contributions from
the lens spaces will be suppressed by factors which are
exponentially large in the volume of the sphere, which is
proportional to the de Sitter entropy. So the effects from the
lens spaces are truly quantum gravitational effects which
are invisible in the semiclassical limit where G ! 0.

B. The lens space Farey Tail

Before discussing details, however, we study briefly the
geometric interpretation of this sum over lens spaces.
Topologically, a lens space can be regarded as two solid

tori glued together along their T2 boundaries (see Fig. 2).
The different lens spaces Lðp; qÞ correspond to different
ways of gluing these boundary tori together. For example,
gluing the boundary tori together in the obvious way using
the identity mapping gives Lð0; 1Þ ¼ S1 � S2. If we use the
mapping which takes the contractible cycle in one torus to
the dual noncontractible cycle in the other torus we obtain
the sphere Lð1; 0Þ ¼ S3. More complicated gluings corre-
spond to more complicated choices of map used to glue
together the boundary tori.
This gives a simple group theoretic classification of lens

spaces. When we glue together the two boundary tori we
must chose an element of the torus mapping class group,
which is the space of smooth maps from T2 into T2 modulo
those which are connected to the identity. This mapping

FIG. 2 (color online). Lens spaces are viewed as pairs of solid
tori glued together along their T2 boundaries using an element of
the torus mapping class group SLð2;ZÞ. Top: the gluing which
takes the contractible cycle of one torus into the dual cycle of the
other torus gives the sphere S3. Bottom: a more complicated map
gives a nontrivial lens space.

3An exception is the case Lð2; 1Þ � RP3, which has an inter-
esting interpretation in terms of global dS3. As described in [23],
the global Lorentzian continuation is ‘‘Schrodinger’s de Sitter
space’’, the quotient of dS3 by the antipodal map.
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class group is SLð2;ZÞ. If we denote by a and b a basis of
cycles inH1ðT2;ZÞ then each element of the mapping class
group gives a map

a

b

� �
! r s

�p q

� �
a

b

� �
(13)

for some

r s
�p q

� �
2 SLð2;ZÞ:

One might therefore conclude that there is a different lens
space for each element of SLð2;ZÞ. This is not quite the
case, because on each solid torus one of the cycles in
contractible; we will take this to be the b cycle. This means
that the change of basis

a

b

� �
! T

a

b

� �
T ¼ 1 1

0 1

� �
(14)

leaves the topology unchanged. We can make this change
of basis for either solid torus. So any two elements �1,
�2 2 SLð2;ZÞ such that Tn�1T

m ¼ �2 for some n,m 2 Z
will lead to the same lens space. We conclude that the lens
spaces Lðp; qÞ are uniquely labeled by elements of the
double coset ZnSLð2;ZÞ=Z, where the quotient is by mul-
tiplication by T on the left or the right.4

This gluing picture is simply related to the explicit
construction of the lens spaces given in Eqs. (7) and (10).
We can divide the geometry (7) into two regions, one with
r < R and the other with r > R, where R is between 0 and
�=2. The region with r < R is a neighborhood of the
observer at r ¼ 0 and the region with r > R is a neighbor-
hood of the Euclidean horizon at r ¼ �=2. Each region is a
solid torus, whose boundary is the T2 of fixed radius r ¼ R.
In the neighborhood of the observer the � cycle is con-
tractible. In the neighborhood of the horizon the qtE � p�
cycle is contractible. The full lens space geometry is found
by gluing these two regions together, giving the topological
picture of Fig. 2.

This is very similar to the corresponding story in the
AdS case, which is known as the black hole Farey Tail [7].
In that case the goal was to compute the partition function
of AdS gravity by performing a sum over Euclidean ge-
ometries which are asymptotically T2 at conformal infinity.

The saddle point geometries are 3-manifolds of constant
negative curvature which are topologically a solid torus.
On each saddle point geometry one of the cycles of the
boundary T2 is contractible, and the full sum over geome-
tries can be interpreted as a sum over all possible cycles in
the boundary T2. This is a sum over a coset of SLð2;ZÞ, the
mapping class group of the boundary torus. Further, the
sum over the double coset ZnSLð2;ZÞ=Z in AdS gravity
can be interpreted as the Farey Tail expansion for an
infinite family of extremal black holes [24].
We have uncovered a similar structure in de Sitter space,

where the partition function is computed by summing over
lens spaces. This is regarded as the sum over possible
cycles which are contractible at the Euclidean horizon. In
the analogy with the black hole Farey Tail the Euclidean
horizon plays the role of the ‘‘interior’’ of the geometry,
and the neighborhood of the observer r < R plays the role
of the asymptotic boundary.
We conclude with a few comments on lens space ge-

ometry which will be useful later. The lens space Lðp; qÞ is
defined by the identifications (10). To better understand
these identifications we introduce the complex coordinates

z1 ¼ cosreit; z2 ¼ sinrei�: (15)

The three-sphere is the set of points fjz1j2 þ jz2j2 ¼ 1g �
C2. These coordinates make it clear that S3 can be written
as a fibration of S1 over S2 in many different ways, by
taking as our S1 fibre any linear combination of the t and�
directions. The lens space identifications are

z1
z2

� �
� ! 0

0 !q

� �
z1
z2

� �
; ! ¼ e2�i=p: (16)

This identifies points on the three-sphere which are related
by a translation along an S1 fibre by an amount 2�=p; the
choice of fibre is labeled by q.
A second simple description of lens spaces uses the fact

that S3 is the SUð2Þ group manifold. In terms of the zi
coordinates defined above a point on S3 can be identified
with the element

g ¼ z1 z2
��z2 �z1

� �
2 SUð2Þ: (17)

The isometry group is then SOð4Þ ¼ SUð2Þ � SUð2Þ=Z2,
which acts as

ðL;RÞ: g!LgR; ðL;RÞ2SUð2Þ�SUð2Þ=Z2: (18)

The Z2 quotient arises because the element ð�1;�1Þ 2
SUð2Þ � SUð2Þ acts trivially. The identification (10) which
defines the lens space quotient is

g� LgR; L ¼ !ð1þqÞ=2 0

0 !�ð1þqÞ=2

 !
;

R ¼ !ð1�qÞ=2 0

0 !�ð1�qÞ=2

 !
: (19)

4Note that an element of the double coset ZnSLð2;ZÞ=Z is
uniquely labeled by a pair of coprime integers ðp; qÞ where q ¼
1; . . . ; p� 1. To see this, note that for an SLð2;ZÞ matrix

r s
�p q

� �
the condition rqþ ps ¼ 1 can be used to fix s in terms of r, p
and q. Moreover, this condition implies that q and p are coprime
and that r is the inverse of qmodp. The left quotient by T
identifies r� rþ p, and the right quotient identifies q� qþ p.
So as an element of the coset, r is fixed uniquely and q is defined
only modp.
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This generates a Zp quotient since ðL; RÞ 2 SUð2Þ �
SUð2Þ=Z2 is a pth root of unity.

We note that from this description it is easy to describe
the isometries of a lens space. They are those elements of
SUð2Þ � SUð2Þ which commute with the left and right
matrices in Eq. (19). When q � �1modp this is Uð1Þ �
Uð1Þ. When q ¼ �1modp one of the matrices in (19) is
trivial and the isometry group is Uð1Þ � SUð2Þ.

III. PARTITION FUNCTION:
TREE LEVEL RESULTS

Our goal is to evaluate the Euclidean quantum gravity
path integral

Z ¼
Z

Dge�S½g� ¼ X
gc

e�kS0þS1þð1=kÞS2þ...; (20)

by classifying all classical saddles and computing the infi-
nite series of perturbative corrections. In this section we
will classify the classical saddles gc and compute the
classical contribution S0 to the path integral for the three-
sphere and lens spaces. We consider here only contributions
from lens spaces, whose inclusion in the path integral was
motivated on physical grounds in the previous section. It is
easy enough, however, to compute the tree level contribu-
tion from all solutions; this is described in Appendix A.

We start by describing the classical saddles and comput-
ing the resulting partition sum in Sec. III A and III B. In
Sec. III C we compare the tree level action to that obtained
using the Chern-Simons formulation.

A. The classical saddles

We start by considering gravity in Euclidean signature
with a positive cosmological constant. The action is

S ¼ � 1

16�G

Z
M

d3x
ffiffiffi
g

p �
R� 2

‘2

�
: (21)

We will use units where ‘ ¼ 1 and write everything in
terms of the dimensionless coupling k ¼ ‘=4G. The equa-
tions of motion are

R�� ¼ 2g��: (22)

The solutions to (22) are three dimensional manifolds M
which are locally isometric to the three-sphere S3. These
geometries have been classified in the literature. We review
a few relevant results here and refer the reader to e.g. [25]
for details.

The smooth solutions are quotients of the three-sphere of
the form S3=�where � is a discrete, freely acting subgroup
of the isometry group SOð4Þ of the sphere.5 These

geometries are usually referred to as elliptic three-
manifolds. There are an infinite and countable number of
choices for the group �. In particular, � must be either a
cyclic group or a central extension of a dihedral, tetrahe-
dral, octahedral, or icosahedral group by a cyclic group of
even order. This completely characterizes all possible
smooth solutions to the equations of motion.
The on shell action of one of these saddles is propor-

tional to its volume:

S½gc� ¼ � k

�
VolðMÞ: (23)

Hence for S3=� we have

S½gc� ¼ � k

�

VolðS3Þ
j�j ¼ � 2�k

j�j ; (24)

where j�j is the order of the group.

B. The sum over geometries

The contribution to the path integral of these saddles is,
at tree level, equal to

Zð0Þ ¼ X
gc

e�S0 ¼ X
�

exp

�
2�k

j�j
�
: (25)

We note that the three-sphere S3 gives the dominant con-
tribution to the partition function. We now describe the
sum over the lens spaces, which are the saddles where � is
Abelian. In Appendix A we describe the inclusion of the
saddles with non-Abelian quotients.
For the lens space Lðp; qÞ the group � ¼ Zp is cyclic.

Here p � 1 is a positive integer and q is a number between
1 and p which is coprime to p. So the sum is

Zð0Þ
lens ¼

X1
p¼1

Xp
q¼1

ðq;pÞ¼1

e2�k=p ¼ X1
p¼1

e2�k=p�ðpÞ: (26)

Here �ðpÞ is Euler’s totient function, which counts the
number of integers less than p and coprime to p. The sum
is divergent, since as p goes to infinity the exponential
approaches one. So this sum is dominated by terms with
large p, i.e. by geometries whose volume is small in Planck
units. To better understand the nature of the divergence, we
will rewrite (26) in terms of zeta functions. Expanding the
exponential we get

Zð0Þ
lens¼

X1
r¼0

ð2�kÞr
r!

X1
p¼1

�ðpÞp�r¼X1
r¼0

ð2�kÞr
r!

	ðr�1Þ
	ðrÞ ; (27)

where we used the Dirichlet series (C7) and 	ðsÞ is the
Riemann zeta function.
We can now attempt to regularize the sum (27). The

most natural way to do so is by using zeta function regu-
larization, which amounts to using in (27) the values of the
zeta function 	ðsÞ obtained by analytic continuation of the
argument s. This makes 	ðsÞ finite for all s � 1. However,

5In principle we could also include saddles with orbifold-type
singularities coming from quotients which do not act freely. In
the absence of evidence that these geometries should be included
in the path integral we will not include them, but they may be
worth further study.
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the zeta function has a pole at 1 which remains even after
analytic continuation. Thus the r ¼ 2 term in the sum is
divergent and the sum cannot be regularized using zeta
function techniques. This divergence gets even worse if we
add the remaining elliptic manifolds (see Appendix A).

It is important to emphasize that, at this point, the
divergence in the sum over p should not worry us too
much. We have included only the tree level action, and it
is natural to expect that the quantum corrections to the
effective action will introduce additional p-dependence
which might make the series more convergent. We will
see in the next section that this is precisely the case.

However, we note that there is a clear difference with the
corresponding story in AdS/CFT. In that case a similar
divergence arises from the sum over saddles which have
(regularized) volume which is small in Planck units [7].
Even at tree level, however, this divergence can be re-
moved by regulating the sum in one of a variety of ways.
It can be regulated by using the ‘‘Farey-Tail transform’’ of
[7], using zeta function regularization following [10] or by
carefully summing over the terms in the sum in the correct
order [26]. In each case the answer was the same and had a
natural physical interpretation. We see that, at least for the
tree level computation, the partition function of de Sitter
quantum gravity can not be so regulated.

Finally, we note one subtlety in computing the sum over
geometries. In the sum (25) we should in principle sum
only over those geometries which are not diffeomorphic to
one another, otherwise we are in danger of over counting
geometries. In three dimensions, the task of determining
which manifolds are diffeomorphic is relatively easy:
manifolds are diffeomorphic if and only if they are homeo-
morphic. So we should sum only over topologically dis-
tinct manifolds. The three manifold S3=� has fundamental
group �1ðS3=�Þ ¼ �, so S3=� and S3=�0 can be diffeo-
morphic only if � ¼ �0. So we need to ask whether it is
possible for Lðp; q1Þ and Lðp; q2Þ to be diffeomorphic
when q1 � q2 modp. It turns out that these lens spaces
are diffeomorphic if and only if

q1 ¼ �q2 modp; or q1q2 ¼ �1modp: (28)

It is easy to find the diffeomorphisms relating these
values of q1 and q2 using the explicit presentation of the
metric (7). For example, the diffeomorphism � ! ��
leads to the identification of q with �q. It is more chal-
lenging to show that these are the only possible diffeo-
morphisms; we refer the reader to [25] for details.

In computing the sum over lens spaces we should,
strictly speaking, sum only over lens spaces modulo the
relation (28). In computing the exact numerical value of
the partition function this is an important subtlety, but it is
one that can be ignored in the present section. The reason is
that the identifications (28) will lead to at most a factor of 4
in the partition sum, and will therefore appear that at the
same order as the one-loop results discussed in the next

section. In our present discussion of tree level results, we
can therefore treat as distinct the lens spaces Lðp; qÞ for all
values of qmodp.6 In Sec. IV when we compute one-loop
effects we will return to this correction.

C. Chern-Simons formulation

It is instructive to compare the results derived above to
those found using the Chern-Simons formulation of three
dimensional gravity. This is a straightforward computation
at tree level, but we will go through the details explicitly in
order to set the stage for less trivial uses of Chern-Simons
theory in later sections. In this section we work entirely in
Euclidean signature.
The Chern-Simons formulation of three dimensional

gravity is a first order formalism, where the basic variable
is taken not to be the metric g�� but rather the frame fields

e�
a and the connection !�

bc, where a; b; . . . are local flat

indices. These fields are typically packaged into the one
forms ea and !a defined by

ea ¼ e�
adx�; !a ¼ 1

2

abc!

bc
� dx�: (29)

The frame fields are related to the metric in the usual way:

g�� ¼ ea�e
b
��ab; (30)

and the connection is determined by the flatness condition:

dea � 
abc!
b ^ ec ¼ 0: (31)

Einstein’s equation is

d!a � 1

2

abcð!b ^!c þ eb ^ ecÞ ¼ 0; (32)

and the action (21) is

S¼� k

2�

Z
M

�
ea^ðd!a�1

2

abcð!b^!cþ1

3
eb^ecÞ

�
:

(33)

6In fact, there is a sense in which this is the most reasonable
thing to do. The identifications (28) are due to large diffeo-
morphisms which are not continuously connected to the identity.
In defining our path integral over the space of metrics we should
clearly mod out by the set of local diffeomorphisms, but in
principle we could simply define our set of symmetries to not
include the large diffeomorphisms which lead to the identifica-
tions (28). This is exactly what we do when we define the path
integral of gravity in AdS/CFT; two metrics define the same state
only if they are related by a diffeomorphism which vanishes
sufficiently quickly at infinity. The large diffeomorphisms which
act on the boundary via conformal transformations change the
state of the theory and give distinct contributions to the
Euclidean path integral. This leads to, for example, boundary
gravitons (for infinitesimal conformal transformations) and the
SLð2;ZÞ family of black holes (for large conformal transforma-
tions). It would be interesting to define precisely the relevant
symmetry group for de Sitter gravity, but we will not attempt to
do so here.
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The remarkable observation of [11,13,14] is that
Eqs. (31)–(33) are the action and equations of motion of
a Chern-Simons theory. To see this, we define the linear
combinations

Aa� ¼ !a � ea; (34)

which are regarded as a pair of SUð2Þ gauge fields. If we
introduce SUð2Þ algebra generators Ta and write

A� ¼ Aa�Ta; (35)

then the equations of motion simply become the flatness
conditions for a pair of SUð2Þ connections:

F� ¼ dA� þ A� ^ A� ¼ 0: (36)

This is the equation of motion of a Chern-Simons gauge
field in three dimensions. The action of such a gauge field
is the Chern-Simons invariant

I½A� ¼
Z
M

Tr

�
A ^ dAþ 2

3
A ^ A ^ A

�
; (37)

where Tr is the usual trace on the SUð2Þ Lie algebra. The
action (33) is just

S ¼ � k

4�
ðI½Aþ� � I½A��Þ: (38)

Thus Euclidean gravity is, at the level of the classical
action and equations of motion, equivalent to a pair of
SUð2Þ Chern-Simons theories.

It is important to note that in Euclidean signature the
Chern-Simons action is typically defined with an addi-

tional factor of i, so that SCS ¼ �i kcs4� I½A� where kcs is

the level of the theory. The real part of this level must be an
integer in order to insure invariance under large gauge
transformations. Euclidean gravity is related to Chern-
Simons theory with purely imaginary levels:

ikþ ¼ k; ik� ¼ �k: (39)

We will not attempt to study Chern-Simons theory with
imaginary level nonperturbatively (see however [27]). Our
goal is simply to use Chern-Simons formulation to com-
pute perturbative corrections in a systematic manner.

It is illustrative to work out explicitly the Chern-Simons
connections A� for the S3 and lens space geometries. The
metric in Hopf coordinates is

ds2 ¼ dr2 þ cos2rdt2E þ sin2rd�2: (40)

In these coordinates the two circles �� ¼ �� tE have
constant length S1 fibers. The frame field is

e ¼ eaTa ¼ T1drþ cosrT2dtþ sinrT3d�; (41)

and the connection is

! ¼ !aTa ¼ cosrT2d�þ sinrT3dt; (42)

so that

A� ¼ Aa�Ta ¼ �T1drþ ðcosrT2 � sinrT3Þd��: (43)

It is straightforward to check that this connection is flat.

Equation (43) gives the connection both on the three-
sphere S3 as well as on its quotients Lðp; qÞ ¼ S3=Zp. In

terms of the Hopf circles ��, the lens space is defined by
the identifications (c.f. (16))

�����þ2�
nðq�1Þ�mp

p
; 8n; m2Z: (44)

The m identification is just the usual ���þ 2�. The n
identification is the nontrivial Zp quotient of S3.

It is useful to describe the flat connection a bit more
geometrically. The lens space Lðp; qÞ ¼ S3=Zp has a to-

pologically nontrivial cycle coming from the quotient by
Zp. A flat connection on Lðp; qÞ is characterized by its

holonomy around this nontrivial cycle. More precisely, the
fundamental group of Lðp; qÞ is �1ðLðp; qÞÞ ¼ Zp. An

SUð2Þ connection on Lðp; qÞ then defines a map from
�1ðLðp; qÞÞ ¼ Zp ! SUð2Þ, defined by the holonomy of

the connection around each cycle. Since Zp is a cyclic

group, this map must take each nontrivial cycle into a pth
root of unity in SUð2Þ. So the image of the noncontractible
cycle in Lðp; qÞmust be conjugate to a rotation by an angle
2�n
p in SUð2Þ for some integer nwhich is defined modulo p.

Thus the round metric on the lens space Lðp; qÞ is charac-
terized by a pair of integers ðnþ; n�Þ which give the
holonomy around the noncontractible cycle of the two
SUð2Þ connections.
To compute these holonomies we note that the integral

of d�� around the topologically nontrivial cycle with
ðn;mÞ ¼ ð1; 0Þ is I

d�� ¼ 2�
q� 1

p
; (45)

so that I
A� ¼ 2�

q� 1

p
ðcosrT2 � sinrT3Þ: (46)

The holonomy of the gauge field is

exp
I
A�¼ cos

�
2�

q�1

p

�
þðcosrT2�sinrT3Þ

� sin

�
2�

q�1

p

�
: (47)

In writing this we have used the formula

eu� ¼ cos�þ u sin�; (48)

for any u ¼ uaTa such that u
aua ¼ 1. We see, as expected,

that e
H

A� is a root of unity in SUð2Þ. We conclude that the
lens space Lðp; qÞ corresponds to a pair of SUð2Þ gauge
fields A� with holonomy7

7We note that these are half-integer rather than integer because
SOð4Þ is actually the Z2 quotient SOð4Þ ¼ SUð2Þ � SUð2Þ=Z2.
So the holonomy of the connection is pth root of unity in SOð4Þ
even though nL and nR are in some cases half-integer.
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ðnþ; n�Þ ¼
�
qþ 1

2
;
q� 1

2

�
: (49)

In fact, we could have concluded this without doing any
work. If we regard the three sphere as the SUð2Þ group
manifold, the two SUð2Þ Chern-Simons connections are
associated with the group actions by left and right multi-
plication. The holonomies can then be read off from (19).

We can now go ahead and compute the action of the
Chern-Simons theory with this connection. The Chern-
Simons invariant of an SUð2Þ gauge field on a lens space
Lðp; qÞ with holonomy n is [16]

1

8�2

Z
Tr

�
A ^ dAþ 2

3
A ^ A ^ A

�
¼ q	

p
n2; (50)

where q	 is the inverse of qmodp:

q	q ¼ 1modp: (51)

Plugging this into the Chern-Simons action (33) we see
that this reproduces the correct gravity action (24)8

Zð0Þ
ðp;qÞ ¼ expð�S½gð0Þ�Þ¼ exp

�
i
kþ
4�

I½Aþ�þ i
k�
4�

I½A��
�

¼ exp

�
�i

q	

2p
ðkþðqþ1Þ2þk�ðq�1Þ2Þ

�
¼ exp

�
2�k

p

�
:

(52)

IV. PARTITION FUNCTION: ONE-LOOP RESULTS

We turn now to the evaluation of quantum corrections to
the partition function at the one-loop level, i.e. the compu-
tation of S1 in (2). We will start by computing the answer
directly in gravity, evaluating the appropriate one-loop
determinants using heat kernel techniques. In Sec. IVB
we compute the sum over geometries including this one-
loop contribution. In Sec. IVC we check this answer by
comparing with the results in Chern-Simons theory.

A. Gravity computation

1. One-loop determinants in Einstein gravity

The one-loop partition function of Einstein gravity has
been considered by various authors; see [28–30] for dis-
cussion of the D-dimensional case. We only summarize a
few results here.

The one-loop contribution S1 to the path integralZ Dg

Vdiff

e�S ¼ X
e�kS0þS1þ... (53)

is obtained by integrating over the linearized fluctuations
around each classical saddle. The measure factor Vdiff

reflects the fact that we integrate only over orbits of the

diffeomorphism group in the space of metrics. At the
linearized level a diffeomorphism generated by the vector
V� takes

g�� ! g�� þrð�V�Þ: (54)

This can be used to impose a gauge condition on the
linearized metric fluctuations. A standard choice is trans-
verse gauge. Linearizing the action and computing the
appropriate Gaussian integrals in this gauge we obtain a
ratio of functional determinants

Zð1Þ ¼ eS
ð1Þ ¼ detð�LL

ð1Þ � 2
3RÞ

det1=2ð�LL
ð2Þ � 2

3RÞdet1=2ð�LL
ð0Þ � 2

3RÞ
: (55)

The denominator comes from linearized metric fluctua-
tions, which have been decomposed into a transverse trace-
less part and a scalar part coming from the trace of the
metric. The numerator is the Fadeev-Popov determinant
which arises when we gauge fix, and can be regarded as the
contribution of a spin-1 ghost.
The operators in (55) are obtained by linearizing the

action and are defined as follows: R is the Ricci scalar. The
operator �LL

ð2Þ acts on symmetric, traceless 2-tensors and

�LL
ð1Þ acts on both the transverse and longitudinal compo-

nents of a vector. They are Lichnerowicz Laplacians which
are written in terms of the usual Laplacian �ðjÞ ¼ r�r�

acting on a field of spin j as 9:

�LL
ð2ÞT��¼��ð2ÞT���2R����T

��þR��T
�
�þR��T

�
�;

�LL
ð1ÞT�¼��ð1ÞT�þR��T

�; �LL
ð0ÞT¼��ð0ÞT: (56)

In the absence of zero or negative modes (55) can be
simplified further. This follows from the harmonic decom-
position of tensors, which is reviewed in Appendix B 1.
This decomposition allows us to cancel common factors in
the numerator and denominator of (55) to obtain

Zð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det0ð�LL

ð1Þ � 2R=DÞT
det0ð�LL

ð2Þ � 2R=DÞTT

vuut : (57)

Here prime denotes only the positive eigenvalues of the
operators and the subscript T denotes the transverse part. In
three dimensions

R����¼R

6
ðg��g���g��g��Þ; R��¼R

3
g��; R¼6;

(58)

so the above expressions simplify to

8To obtain the last line in (52), we first take kþ ¼ �k� and
then use the analytic continuation (39).

9We note that �LL
ðpÞ coincides with the Hodge-de Rham

Laplacian when acting on p forms.
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�
�LL

ð2Þ �
2

3
R

�
T�� ¼ ð��ð2Þ þ 2ÞT��;�

�LL
ð1Þ �

2

3
R

�
T� ¼ ð��ð1Þ � 2ÞT�:

(59)

Formula (57) is perfectly correct if all of the relevant
operators have positive definite spectrum. However, on the
compact manifolds of interest this is not quite the case. We
must include in (57) corrections coming from the non-
positive eigenvalues of the operators

�LL
ð0Þ �

2

3
R; �LL

ð1Þ �
2

3
R: (60)

Let us first consider the vector operator in (60). It is easy
to show that for the spherical three-manifolds under con-
sideration this operator has no negative modes. The zero
modes of this operator are Killing vectors.10 By construc-
tion, these zero modes are not included in the vector
determinant in (55). Indeed, from Eq. (54) we see that a
Killing vector (KV) V� generates the trivial diffeomor-

phism. This means that our gauge-fixing procedure is
slightly ill-defined. In writing (55) we have introduced
gauge-fixing terms which define sections in the space of
metrics which are supposed to intersect each orbit of the
diffeomorphism group exactly once. Metrics which are
related by an isometry are of course diffeomorphic, but
this has been missed by our gauge-fixing procedure. This
can be repaired by splitting Vdiff into two parts, one coming
from isometries and one coming from the gauge condition:

Z Dg

Vdiff

¼
Z Dg

VKVVgauge

¼
Z Dhdetghost

kVKV

: (61)

Here h is a linearized gauge fixed metric and detghost is the

vector determinant appearing in (60). We also included a
factor of the coupling to account for the normalization of
the metric fluctuations. This gives a correction to (57) for
each Killing vector; we must include the volume VKV of
the isometry group.

We now turn to the scalar Laplacian. For a spherical
manifold the constant mode will lead to single negative
eigenvalue for the scalar operator in (60). There will be
additional negative modes coming from conformal Killing
vectors (CKVs). To see this, we note that for every solution
of the CKV equation

rð�V�Þ � 2

D
g��r�V

� ¼ 0; (62)

the scalar � ¼ r�V
� will be an eigenmode of the scalar

Laplacian in (60) with negative eigenvalue. In both of these
cases, the path integral now appears to contain a Gaussian

integral with the wrong sign. This can be remedied
by rotating the contour of integration in field space by
90 degrees, turning this into a convergent integral. This
is a standard procedure in gravitational path integrals,
following [31] (see also [32]).
Our final expression for the one-loop determinant is

Zð1Þ ¼Dzm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det0ð��ð1Þ�2ÞT
det0ð��ð2Þþ2ÞTT

s
; Dzm¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detCKV

p
kVKV

(63)

where Dzm is the contribution from zero and negative
modes.

2. Heat kernels and functional determinants

We now compute the one-loop determinants in (63). To
obtain the eigenvalues and degeneracies of the operators
appearing in this equation we will use heat kernel
techniques.
For the differential operator �ðjÞ we define the heat

kernel11

KðjÞðx; y; tÞ ¼ hyjet�ðjÞ jxi ¼ X
n

c ðjÞ
n ðxÞc ðjÞ

n ðyÞ	e
j
nt; (64)

where c ðjÞ
n ðxÞ and 
j

n are the eigenfunctions and eigenval-

ues of �ðjÞ. The heat kernel KðjÞðx; y; tÞ obeys the heat

equation, which is the statement that it is annihilated by
the differential operator @t � �ðjÞ. If we integrate over

space and use the orthonormality of the eigenfunctions
we obtain

KðjÞðtÞ 

Z

d3x
ffiffiffiffiffiffiffi�g

p
KðjÞðx; x; tÞ ¼ X

n

dne

j
nt: (65)

This is a function of t which encodes the spectrum of the
operator �ðjÞ. The utility of this method is that heat kernel

(64) on the sphere is relatively easy to compute, either by
constructing eigenfunctions or using the description of S3

as the SUð2Þ group manifold. The heat kernel on the lens
space is then by found by using the method of images. This
was done explicitly by [33]; we refer the reader there for
details.
The operators of interest all have an infinite number of

eigenvalues, so the one-loop determinants must be regu-
lated carefully. We will use zeta function regularization,
following [34]. Let us consider a differential operator with
eigenvalues 
n which have degeneracies dn. The logarithm
of the functional determinant is

logdet ¼X
n

dn lnð
nÞ: (66)

To regulate the sum over n we define the zeta function

10To prove this, note that the Killing’s equation rð�V�Þ ¼ 0
along with (58) give

�r�r�V� � R��V
� ¼ 0:

11The heat kernel computed in [33], and used here, uses the
Hodge-de Rham decomposition for tensors, e.g. Kð1Þ is the heat
kernel for a transverse vector, and Kð2Þ is the kernel for a
symmetric, traceless and transverse 2-tensor and so forth.

A DE SITTER FAREY TAIL PHYSICAL REVIEW D 83, 124027 (2011)

124027-11



	ðsÞHK ¼ X
n

dn

s
n

; (67)

The identity

d

ds
	ð0ÞHK ¼ �X

n

dn lnð
nÞ (68)

can then be used to compute the determinant (66). In
general, the sum (67) converges only when the real part
of s is sufficiently large. However, we can regard 	ðsÞHK as
the function on the complex s plane obtained by analytic
continuation of the sum for large s. With this definition,
Eq. (68) provides a regulated version of the determinant.

Comparing (65) and (67), we see that the zeta function is
related to the heat kernel by the integral

	ðsÞHK ¼ 1

�ðsÞ
Z 1

0
ts�1KðjÞðtÞ: (69)

Thus

log½detð��ðjÞ þm2
j Þ�

¼ � d

ds

�
1

�ðsÞ
Z 1

0
ts�1KðjÞðtÞe�m2

j tdt

�
s¼0

: (70)

The one-loop determinant (63) of three dimensional grav-
ity is

logZð1Þ ¼�1

2
log½det0ð��ð2Þ þ2Þ�þ1

2
log½det0ð��ð1Þ�2Þ�

¼1

2

d

ds

�
1

�ðsÞ
Z 1

0
ts�1Kð2ÞðtÞe�2tdt

� 1

�ðsÞ
Z 1

0
ts�1Kð1ÞðtÞe2tdt

�
s¼0

: (71)

For simplicity we have suppressed the factors of VKV and
det CKV in (63). We now need explicit expressions for the
heat kernels on the lens spaces Lðp; qÞ.

We first consider the simple case of the three-sphere.
The heat kernel for a bosonic field with spin j � 0 is

KðjÞðtÞ ¼ ð2� �j;0Þ
X1

n¼jþ1

ðn2 � j2ÞeEj
nt; (72)

where

Ej
n ¼ �n2 þ jþ 1: (73)

It is worth noting that from (72) we can derive explicitly
the zero and negative modes discussed above. At large t the

vector heat kernel becomes Kð1Þ � 6e�2t, so that �1 þ 2
has six zero modes corresponding to the six Killing vectors

of S3. Likewise, the scalar heat kernel behaves as Kð0Þ �
1þ 4e�3t þ . . . ; these coefficients come from the constant
mode and the four CKVs of the sphere.

Using (72) in (71) we get

logZð1Þ
S3

¼�X1
n¼3

½ðn2�4Þlnðn2�1Þ�ðn2�1Þlnðn2�4Þ�:

(74)

The corresponding zeta function is

	ðsÞS3 ¼�X1
n¼3

�
n2�4

ðnþ1Þsþ
n2�4

ðn�1Þs
�

þX1
n¼3

�
n2�1

ðnþ2Þsþ
n2�1

ðn�2Þs
�

¼12	ðsÞ� 2

2s
� 3

4s
; (75)

where 	ðsÞ is the Riemann zeta function and we dropped
terms independent of s. Using (C3) and (68), we find

Zð1Þ
S3

¼ �6

4
: (76)

For a lens space we can use this same technique to
compute the regularized determinant. Defining

�¼�1��2; ��¼�1þ�2; �1¼2�q

p
; �2¼2�

p
; (77)

the heat kernel is [33]

KðjÞðtÞ ¼ 1

p

�
1� �j;0

2

� X1
n¼jþ1

dðjÞn eE
j
nt; (78)

where Ej
n is given by (73) and

dðjÞn ¼ X
m2Zp

1

sinm�
2 sinm ��

2

½cosðjm�1Þ cosðnm�2Þ

� cosðjm�2Þ cosðnm�1Þ�: (79)

We note that, as above, we can extract from this expression
the number of Killing vectors and conformal Killing vec-

tors of the lens space. The n ¼ 2 term in Kð1ÞðtÞ gives the
number of Killing vectors of Lðp; qÞ, which is

2

p

X
m2Zp

ð1þ cosðm�Þ þ cosðm ��ÞÞ ¼ 2ð1þ �q;1 þ �q;p�1Þ:

(80)

This agrees with the fact (noted below Eq. (19)) that when
q � �1modp the isometry group is Uð1Þ �Uð1Þ and
when q ¼ �1modp the isometry group is SUð2Þ �
Uð1Þ. Likewise, the CKVs are given by the n ¼ 2 term in

Kð0ÞðtÞ. From (78) this term is exactly zero; lens spaces do
not have CKVs. Indeed, one can check explicitly that all
four of the CKVs of the sphere are removed by the quotient
by Zp.

The one-loop determinant is

logZð1Þ
lens¼

1

2p

X
n¼3

½dð1Þn lnðn2�4Þ�dð2Þn lnðn2�1Þ�: (81)

We must now regulate (71) and construct the appropriate
zeta function. A detailed derivation of the zeta function is
given in Appendix B 2. The result is
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	ðsÞlens¼p�s
X
�

�
	

�
s;�q	�1

p

�
þ	

�
s;�q	þ1

p

�

þ	

�
s;�q�1

p

�
þ	

�
s;�qþ1

p

�
�
�

p

�1�q	

�
s

�
�

p

�1�q

�
s
�
þ4p�s	ðsÞ� 1

4s
; (82)

when q� 1 is not a multiple of p, and 	ðs; aÞ is the
Hurwitz zeta function. 	ðsÞlens includes both the j ¼ 1, 2
contributions from the heat kernel. Differentiating (82)
we get

d

ds
	ð0Þlens¼�X

�
ln

�
16�2

p2
sin

�
2�

q	�1

p

�
sin

�
2�

q�1

p

��
;

(83)

where we have used (C5) and (C6). Exponentiating (83)
we get

Zð1Þ
lens¼

4�2

p2

�
cos

�
2�

p

�
�cos

�
2�q

p

��

�
�
cos

�
2�

p

�
�cos

�
2�q	

p

��
: (84)

This is the one-loop determinant for Lðp; qÞ, valid for
p > 2 and q � �1modp.

If we take q ¼ �1modp in (89) several of the steps
used to obtain (82) break down. The correct zeta function
in this case is given by (B19)

	ðsÞðp;1Þ ¼ 	ðsÞðp;p�1Þ

¼ 2p�s

�
	

�
s;
2

p

�
þ 	

�
s;� 2

p

�
�
�
�p

2

�
s
�

þ 8p�s	ðsÞ � 2

4s
� 1

2s
; (85)

and the one-loop contribution is

Zð1Þ
ðp;1Þ ¼ Zð1Þ

ðp;p�1Þ ¼
2�4

p4
sin2

�
2�

p

�
: (86)

when p > 2.
The case p ¼ 2 and q ¼ 1 must be treated separately.

The zeta function is given by (B20) and the partition
function is

Zð1Þ
ð2;1Þ ¼

�6

28
: (87)

3. Volume of zero modes

We now need to compute the prefactor Dzm in (63)
which comes from the zero and negative modes. As lens
spaces do not have conformal Killing vectors we need only
to compute the volume VKV of the isometry group.

The Killing vectors generate the isometry groups are
Uð1Þ �Uð1Þ or Uð1Þ � SUð2Þ, depending on whether or
not q ¼ �1modp. In computing the volume of the

isometry groups we must take care to normalize our
Killing vectors appropriately. In doing so we will follow
the logic of [17,28]. Each Killing vector is normalized so
that the integral of the norm of the volume of the manifold
is fixed. Thus

VKV ¼ ðVolðS3=�ÞÞnk=2 ¼
�
2�2

j�j
�
nk=2

; (88)

where nk is the number of Killing vectors of S3=�.
Incorporating this factor in (84) and (86)

Zð1Þ
lens¼

2�

kp

�
cos

�
2�

p

�
�cos

�
2�q

p

��

�
�
cos

�
2�

p

�
�cos

�
2�q	

p

��
; (89)

and

Zð1Þ
ðp;1Þ ¼ Zð1Þ

ðp;p�1Þ ¼
�

2kp2
sin2

�
2�

p

�
: (90)

The results for S3 and Lð2; 1Þ give

Zð1Þ
S3

¼ �3

25k
Zð1Þ
ð2;1Þ ¼

�3

211k
: (91)

Finally, we note that in the above discussion we have
included only those isometries which are connected to the
identity. There are also discrete isometries not connected to
the identity, which contribute an additional finite factor to
VKV. For a general lens space there are four such discrete
symmetries; these are precisely the discrete symmetries
which lead to the identifications between lens spaces de-
scribed in Eq. (28). For example, the reflection � ! ��
takes Lðp; qÞ to Lðp; p� qÞ. In our sum over geometries
we have chosen to sum over all coprime values of ðp; qÞ
without enforcing condition (28). Thus we should in prin-
ciple divide (90) by an additional factor to account for this.
This will lead to at most a factor of 4, and will not affect the
qualitative results of our analysis. We will therefore omit
this factor in what follows.

B. Regulating the partition function

Gathering our results, the partition function including
the tree level and one-loop contributions takes the form

Z ¼ ZS3 þ Zlens (92)

with

ZS3 ¼ Zð0Þ
S3
Zð1Þ
S3

¼ �3

25
e2�k; (93)

and

Zlens ¼
X1
p¼1

X
ðp;qÞ¼1

e2�k=pZð1Þ
lens þ

X1
p¼1

e2�k=pZð1Þ
ðp;1Þ

þ X1
p¼1

e2�k=pZð1Þ
ðp;p�1Þ þ e�kZð1Þ

ð2;1Þ; (94)
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where we used that the tree level contribution is (24) and
the one-loop terms are given by (89)–(91).

As we showed in Sec. III B the tree level sum over p is
divergent because spaces with small volume dominate the
partition function. This divergence was not cured by zeta
function regularization. Now that we have included the
proper measure and quantum corrections we can ask if
the sum is more convergent. We start by looking at
each contribution to (94) separately, starting from the
q ¼ �1modp terms which are proportional to

X1
p¼1

e2�k=p

p2
sin2

�
2�

p

�
: (95)

This sum is absolutely convergent, and, in particular, the
very ‘‘quantum’’ saddles are suppressed by p�2. Quantum
corrections have drastically modified the convergence of
the series for this class of instantons.

The first term in (94) (q � �1modp), after summing
over q, is given by

X1
p¼1

e2�k=p

p

�
cos2

�
2�

p

�
�ðpÞ � 2 cos

�
2�

p

�
�ðpÞ

þ 1

2
ðSð1; 1; pÞ þ Sð1;�1; pÞÞ

�
; (96)

where �ðpÞ is the Euler’s totient function as introduced in
(26). Sða; b;mÞ is the Kloosterman sum and �ðmÞ is the
Mobius function which we briefly review in Appendix C.
We will consider each term separately. The terms propor-
tional to the Kloosterman sum in (96) are

X1
p¼1

1

p
e2�k=pSð1;�1;pÞ¼X1

r¼0

ð2�kÞr
r!

X1
p¼1

p�r�1Sð1;�1;pÞ:

(97)

As we explained in Appendix C 2 the generating function
for Sð1;�1; pÞ has no poles for positive integral values of
(rþ 1). Thus the sum can be regulated. Similarly, the term
in (96) proportional to the Mobius function

X1
p¼1

1

p
e2�k=p cos

�
2�

p

�
�ðpÞ

¼ X1
m;n¼0

ð�1Þn ð2�Þ
mþ2n

m!ð2nÞ!
km

	ðmþ 2nþ 1Þ ; (98)

can also described by an analytic function with no poles
(see (C11)). So this term can also be regulated.

We are left with the first term in (96), which up to an
overall constant is

X1
p¼1

1

p
e2�k=pcos2

�
2�

p

�
�ðpÞ: (99)

Expanding both the exponential and cosine function we get

1

2

X1
n;m¼0

ð�1Þn ð4�Þ
2n

ð2nÞ!
ð2�kÞm
m!

	ðmþ 2nÞ
	ðmþ 2nþ 1Þ

þ 1

2

X1
m¼0

ð2�kÞm
m!

	ðmÞ
	ðmþ 1Þ : (100)

The denominators in these expressions are finite and non-
zero for all values of n and m. However, the analytic
continuation of 	ðsÞ has a pole at s ¼ 1 leading to diver-
gences from the n ¼ 0 and m ¼ 1 terms.
This implies that the inclusion of one-loop effects, while

they make the sum over geometries more convergent, still
do not allow us to regulate the partition function using
standard techniques. Explicitly,

Z ¼ 24	ð1Þ þ . . . (101)

where . . . denote terms which are finite upon zeta function
regularization. One might hope that there might be another
regularization scheme that will cure this divergence, but
that does not seem feasible. Note that the phases in (99) are
all positive, implying that there is no obvious reordering of
summations involved in Zlens that will regulate the infinity.
This is in contrast with analogous computations of the
elliptic genus in the black hole Farey Tail, where a delicate
cancellation of phases could render the sum regularizable.
In the following section we will demonstrate that this

divergence persists even when all order loop effects are
included. We will comment more on the nature and impli-
cations of this divergence in the discussion.

C. Comparison with Chern-Simons formulation

Before proceeding to the all-loop results, it is useful to
check that the one-loop expressions derived above agree
with those computed using the Chern-Simons formulation.
As reviewed above, the action and equations of motion of
Einstein gravity are equivalent to two copies of SUð2Þ
Chern-Simons theory at levels �ik. It is worth stressing
that at the nonperturbative level Chern-Simons theory and
gravity do not appear to be equivalent (for a more detailed
discussion, see [35]). But at the level of perturbation theory
the rewriting of the metric variables in terms of the con-
nection variables is straightforward, so we expect that the
two theories should agree to all orders in perturbation
theory around a given saddle. In this section we check
this agreement explicitly at the one-loop level.
The advantage of the Chern-Simons approach is that it is

relatively easy to compute the relevant partition functions,
following [12]. The SUð2Þ Chern-Simons partition func-
tion on Lðp; qÞ was computed in [16]. This exact answer
can then be reorganized so that it looks like a sum over
classical saddles, i.e. a sum over flat SUð2Þ connections on
Lðp; qÞ. Each saddle is then weighted by its classical action
along with an (in principle infinite) series of perturbative
corrections. All perturbative corrections are computed
in one fell swoop using the techniques of topological
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quantum fields theory. The only tricky part is to isolate the
correct contribution which comes of the flat connection
corresponding to the usual metric on the lens space.

For an SUð2Þ Chern-Simons theory on a lens space, a flat
connections is labeled an integer n which gives the hol-
onomy of the connection around the noncontractible cycle,
as described in Sec. III C. In the large k limit, the contri-
bution to the partition function of one of these flat con-
nections is [16,36]

ZCS� i

ffiffiffiffiffiffiffiffiffi
2

k�p

s Xp
n¼1

exp

�
2�ik�

q	n2

p

�
sin

�
2�

q	n
p

�
sin

�
2�

n

p

�
:

(102)

This encapsulates the tree and one-loop expressions. Using
(38) and isolating the contribution of the flat connection
with holonomy (49), from (102) the contribution of Lðp; qÞ
to the gravitational partition function is

Zðp;qÞ ¼ expð�kSð0Þ þ Sð1ÞÞ
¼ 1

2kp
e2�k=p

�
cos

�
2�

p

�
� cos

�
2�q

p

��

�
�
cos

�
2�

p

�
� cos

�
2�q	

p

��
: (103)

This expression exactly agrees with the gravitational
result (89), up to numerical factors that are independent
of p and q.

It is worth commenting on some features of the deriva-
tion of (102) in the Chern-Simons theory [12,36]. In the
perturbative expansion of the path integral, the one-loop
contribution involves a product of determinants which turn
out to be the square root of the Ray-Singer torsion. One
could wonder, as we did for the gravity calculation, if these
determinants have zero modes, i.e. if there is a residual
gauge symmetry that leaves the connection invariant. A
simple computation shows that this is not the case. This
implies that when going from the metric formulation grav-
ity to the first order formalism, the ambiguities in the
gauge-fixing procedure of the metric due to Killing vectors
disappear and there is no need to include an integral over a
space of collective coordinates.

We also note that the gravitational interpretation of (103)
when q ¼ �1modp is a bit subtle, since in this case one
of the holonomies (either nþ or n�) vanishes and the
connection is trivial. This does not imply that the path
integral of CS is zero, but it does mean that the constant
piece in large k expansion is ill-defined. As we will show in
the next section, the all-loop invariant is nonzero for
q ¼ �1modp.

V. PARTITION FUNCTION: ALL-LOOP RESULTS

We now use the Chern-Simons formulation to compute
quantum corrections to the saddle point action at all orders
in perturbation theory. In prior sections we reviewed the

gravity/Chern-Simons theory dictionary and checked the
equivalence at tree and one-loop level. We now apply this
relation at all orders, which combined with our classifica-
tion of classical saddles gives a complete computation of
the gravitational path integral over lens spaces.
The exact partition function of SUð2Þ Chern-Simons

theory on a lens space is [16]

ZCS¼
Z
DAexp

�
ikcs
4�

I½A�
�

¼ �iffiffiffiffiffiffiffiffi
2rp

p exp

�
6�isðq	;pÞ

r

�X
�

Xp
n¼1

�exp

�
2�ir

q	n2

p
��i

rp

�

�cos

�
2�

ðq	�1Þn
p

�
: (104)

The Dedekind sum sðq; pÞ is defined in Appendix C 1 and r
is related to the level kcs as

r 
 kcs þ 2: (105)

The sum over n is a sum over saddle points, i.e. a sum over
flat connections. Each term in the sum represents the
classical action (the Chern-Simons invariant) for this
saddle along with all perturbative corrections in powers
of kcs.
It is important to note that when the connection is trivial

(n ¼ 0modp) the invariant (104) is not zero as one might
have concluded from (102). Instead the n ¼ 0 saddle point
contributes a factor

ZCSðn ¼ 0Þ ¼
ffiffiffiffiffiffi
2

rp

s
exp

�
6�isðq	; pÞ

r

�
sin

�
�

rp

�
: (106)

which resembles the result for S3 computed in [12].
We now proceed to compute the all-loop gravitational

partition function. To do so we need to isolate those
terms in (104) which come from the flat connections with
holonomy

ðnþ; n�Þ ¼
�
qþ 1

2
;
q� 1

2

�
; (107)

for A�.
Interpreting the topological invariant as an infinite series

of perturbative corrections is delicate and requires some
discussion. The path integral is an exact polynomial in
powers of r, but not in powers kcs. In taking the semiclas-
sical limit and reading off loop contributions in (104), the
shift by 2 in (105) creates an potential ambiguity. Here we
will use the one-loop result computed in the gravitational
theory to give a precise dictionary between gravity and
Chern-Simons theory. In the limit r ! 1 the topological
invariant (104) reproduces the tree level and one-loop
gravitational result (89) if we identify the gravitational
coupling as the analytic continuation of r, rather than kcs.
Explicitly, the correct prescription to reproduce the gravi-
tational results is to take two copies of the Chern-Simons
invariant with the identification
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rþ ¼ �ik; r� ¼ ik: (108)

This modified analytic continuation procedure is required
to obtain the gravitational interpretation of the Chern-
Simons path integral. Using this dictionary, the full gravi-
tational path integral for Lðp; qÞ is

Zlens¼ 1
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ðqþq	Þ

���
: (109)

Now that we have an expression at all orders in pertur-
bation theory, we can consider the sum over geometries
and attempt to regulate the sum. The discussion is nearly
identical to that in Sec. IVB. Using (109) in (94) we
encounter again a divergent sum that cannot be regulated.
In particular, the p dependence of the higher loop terms
does not fall-off quickly enough to make the sum conver-
gent. Moreover, the divergence can not be regulated using
zeta function techniques. Explicitly, if we perform the sum
over q and p in (109) we get

Zlens ¼
X1
p¼1

1

4kp
e2�k=p

�
�4 cos

�
2�

p

�
�ðpÞ

þ e�ð2�=kpÞ
�
cos

�
4�

p

�
�ðpÞ þ Sð1;�1; pÞ

�

þ e2�=kpð�ðpÞ þ Sð1; 1; pÞÞ
�
: (110)

The divergent contributions to the sum are those propor-
tional to �ðpÞ. At large p the higher loop corrections

proportional to e2�=kp are irrelevant and the computation
is identical to that discussed below (100). The result is a
divergence proportional to 	ð1Þ which remains after zeta
function regularization.

VI. DISCUSSION AND SPECULATION

We have initiated a systematic study of quantum gravity
in three dimensional de Sitter space, constructing explicitly
a path integral including quantum gravitational effects due
to both loops and instantons. We now discuss possible
implications of our results.

A. The status of de sitter quantum gravity

We have computed the sum over a class of smooth
Euclidean saddles of dS3 gravity. From our analysis we
find that the sum is divergent and cannot be regulated using
normal techniques. Explicitly, using zeta function regulari-
zation the path integral is

Z ¼ 24	ð1Þ þ . . . (111)

where . . . denotes finite terms. This divergence is due to the
infinite number of saddles with small volume in Planck
units.
This is in contrast to the AdS case. In that case the

corresponding divergence exists, but it can be regulated.
The corresponding AdS geometries have an important
physical interpretation as those responsible for the modular
invariance of the dual CFT. Although the locally de Sitter
geometries we have identified have a similar physical
interpretation, we see no way to regulate the sum in this
case. We now discuss possible physical implications of this
fact.
One possible conclusion is that quantum gravity in de

Sitter space does not exist. All known de Sitter vacua in
string theory are unstable, due to either classical or quan-
tum mechanical instabilities. This may indicate a funda-
mental obstruction to de Sitter quantum gravity. However,
as long as the decay rate is slow compared to the Hubble
time some patch of the space-time will inflate eternally, so
it seems that eternally inflating backgrounds are generic in
string theory. It would be surprising if quantum gravity
theories could be defined in complicated eternally inflating
backgrounds with bubble nucleation, but not in the highly
symmetric de Sitter background.
A second, related possibility is that pure Einstein gravity

is pathological in some way, but that other more compli-
cated theories of de Sitter quantum gravity do exist. As we
saw in Sec. IV, loop corrections due to gravity will sup-
press higher order terms in the sum over geometries. In the
case of pure gravity, this suppression was not sufficient to
make the path integral converge. However, it is easy
to imagine that theories with more interesting matter
content—such as that coming from string theory—will
lead to further suppressions which render the sum conver-
gent. Unfortunately, a complete computation of the path
integral is much more difficult once local degrees of free-
dom are included. Our classification of classical solutions
relied on the fact that all solutions to the equations of
motion are locally de Sitter. This is no longer true once
matter fields with local degrees of freedom are present.
One simple case where computations do seem possible is
three dimensional topologically massive gravity. It may be
that topologically massive gravity is the only purely metric
theory of de Sitter gravity which can be defined consis-
tently in three dimensions [37]. For a discussion of some-
what similar results in the AdS context see [38].
Another possibility is that the divergence must be regu-

lated in some manner. One indication that this might be the
case is that the divergence is in fact independent of the
coupling constant k. This means that if we compute, for
example, the expectation value of the Euclidean volume

hVi ¼ @kZ

Z
: (112)

the numerator does not depend on the cutoff as the diver-
gence in Z is independent of k. However, the denominator
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in this expression is, strictly speaking, infinite. This can be
remedied, for example, if we choose to sum only up to
quotients with j�j<� where � is some cutoff of order k.
This removes saddles with sub-Planckian volume. In order
to make this proposal precise, however, one would need to
demonstrate that the appropriate low energy observables
are regulator independent.

In the computations of this paper we have included only
the sum over lens spaces. It is possible that the divergence
could disappear if additional saddle points (corresponding
to S3=� where � is non-Abelian) are included in the sum.
These other saddles do not have a simple Lorentzian
interpretation so it is not clear a priori whether they should
be included. However, the question of which saddles
should be included can be answered only if we give a
precise definition to the quantum mechanical path integral,
which we have not attempted. If included these saddles will
lead to additional divergences which might render the
whole path integral finite. This computation is easy to
perform at tree level, as outlined in Appendix A. In this
case we find that the additional geometries do not help.
One could also perform perturbative computations for
these other saddles; this is a straightforward but difficult
task. We hope to turn to this in future work. An intriguing
possibility is that the sum will be finite only for certain
(discrete) values of k, indicating that the quantum theory
exists only for certain quantized values of the cosmological
constant. In the AdS case this is essentially what happens,
since the corresponding sum over geometries can only be
regulated for certain values of cL and cR.

A final possibility is that quantum gravity in de Sitter
space makes sense, but we are not computing the correct
physical quantity. For example, it might be that the correct
definition of the path integral involves fixing boundary data
of some sort. In AdS/CFT the canonical ensemble partition
function is given by a Euclidean path integral over geome-
tries which are asymptotically a torus with fixed conformal
structure. This computation naturally leads to an interpre-
tation of the modular group as bulk diffeomorphisms
which act nontrivially at infinity. In the case of de Sitter
space there is no obvious definition of boundary, hence it is
not clear what should be held fixed and how to identify the
conformal structure relevant for the modular sum over
Lðp; qÞ. We hope future work will shed some light in this
direction.

B. Speculations on dS/CFT, entropy and the wave
function of the universe

We conclude with a few speculations on the relationship
between our de Sitter Farey Tail and other approaches to de
Sitter quantum gravity, as well as the question of the nature
and interpretation of the entropy of the cosmological hori-
zon [39].

We have argued that the path integral of de Sitter gravity
naturally includes a sum over a coset of SLð2;ZÞ. This

group is familiar as the group of modular transformations
acting on the conformal structure parameter � of a torus. It
is therefore natural to ask whether this modular group has
an interpretation in terms of a two dimensional CFT.
Indeed, the dS/CFT conjecture states that three dimen-
sional de Sitter gravity is related to a two dimensional
Euclidean conformal field theory [2]. However, the precise
relationship between our modular sum and the proposed
CFT2 dual to dS3 is far from clear. The dS/CFT conjecture
is motivated by the observation that the group of bulk
diffeomorphisms acts naturally as conformal transforma-
tions on the asymptotic boundary I� of de Sitter space.
Our sum arises in Euclidean signature where there is no
boundary. If anything, our sum appears to be related to a
sum over conformal structures on the horizon of de Sitter
space, rather than on I�.
We emphasize that the question of modular invariance of

dS/CFT is fundamentally related to the problem of the de
Sitter entropy. Perhaps the most notable success of the dS/
CFT correspondence is the derivation of de Sitter entropy
given by [40–42]. This derivation starts by assuming that
the CFT dual to de Sitter space is modular invariant, so that
Cardy’s formula can be used to compute the asymptotic
density of states. The answer matches precisely the
Bekenstein-Hawking entropy of the de Sitter horizon.
Cardy’s formula applies only to unitary CFTs with a nor-
malizable ground state. Thus without any further under-
standing of the CFT dual to de Sitter space this result
should be regarded as suggestive, but not as a complete
derivation of de Sitter entropy.
It is tempting to speculate that our lens spaces are the

bulk geometries responsible for the modular invariance of
the CFT2 dual to de Sitter space. This is precisely how it
works in the AdS case; the sum over bulk geometries
related by SLð2;ZÞ modular transformations naturally
leads to the modular invariance of the CFT partition func-
tion. A more careful study of the rotation from Lorentzian
to Euclidean signature might shed light on this issue.12

We conclude with the observation that there is a slightly
different setting in which the modular invariance of
dS/CFT might arise. Rather than the Euclidean path inte-
grals considered in this paper, one could imagine comput-
ing the wave function of the universe via a Lorentzian path
integral of the form

c ðhÞ �
Z
gj@M¼h

DgeikS: (113)

12As an interesting aside, we note that if the sum over geome-
tries is to include the sum over all elements of ZnSLð2;ZÞ=Z, we
should include the lens spaces Lðp; qÞ for all coprime values of
ðp; qÞ. This includes the case ðp; qÞ ¼ ð0; 1Þ, for which Lð0; 1Þ ¼
S1 � S2. This is not a smooth saddle point of the Euclidean
equations of motion; instead it is a singular solution with zero
action. Our conjecture is that the proper Euclidean path integral
should include this singular saddle as well.
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This path integral is a functional of the induced metric h on
a two dimensional spacelike slice, as well as on some
(unspecified) initial data which determine the state. The
dS/CFT correspondence is the statement that as the space-
like slice is taken towards Iþ, c ðhÞ will approach the
partition function of a two dimensional CFT, regarded as
a function of the conformal structure of the spacelike slice.
When the spacelike slice is taken to be a sphere the
dominant contribution comes from the usual de Sitter
geometry and the wave function can be computed explic-
itly. This computation was described in [3].

However, one could also take spacelike slice in the wave
function (113) to be a torus at timelike future infinity. In
this case c is conjectured to be a CFT partition function on
a torus, which should exhibit the expected modular invari-
ance. Although we will not attempt to compute the wave
function explicitly, it is easy to see how this modular
invariance should arise. The saddle point geometry which
will arise in the semiclassical approximation to (113) is not
de Sitter space, but rather the quotient dS3=Z. This can be
understood by writing the metric on de Sitter space in
cylindrical. coordinates

ds2 ¼ �dt2 þ cosh2td�2 þ sinh2td�2; (114)

with ���þ 2�. We can further identify �� �þ 2� to
obtain a geometry which approaches a torus at future
infinity t ! 1. This quotient dS3=Z has a singularity at
t ¼ 0. This geometry is a saddle point which will contrib-
ute to the wave function (113).

In fact there are an infinite number of such saddle point
geometries, related by modular transformations, which are
labeled by the coset SLð2;ZÞ=Z. To see this, note that the
� and � coordinates are not treated democratically in the
geometry (114). Indeed, one of them shrinks to zero size at
the Milne singularity t ¼ 0 whereas the other has finite
size. Thus in writing the saddle (114) we have singled out
one of the two cycles of the boundary torus. By a change of
coordinates, one can obtain a geometry where any cycle of
the boundary torus shrinks to zero, not just the � cycle.
These geometries are related by large diffeomorphisms in
the bulk, and hence by large conformal transformations on
the boundary. These large conformal transformations are
modular SLð2;ZÞ transformations and the corresponding
geometries are labeled the coset SLð2;ZÞ=Z. We expect
that this set of modular transformations is related by ana-
lytic continuation to the modular sum over lens spaces
described in this paper; it would be nice to make this
correspondence explicit.
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APPENDIX A: CLASSICAL SADDLE
POINT CONTRIBUTIONS

In this Appendix we compute the tree level contributions
to the path integral of all smooth solutions to the Euclidean
equations of motion. As discussed in section III these
classical saddles are quotients S3=� where � is a discrete,
freely acting subgroup of SOð4Þ. Their classical contribu-
tion to the action is given by (24). With the exception of the
lens spaces described in Sec. II, the groups � are non-
Abelian and are central extensions of crystallographic
groups. Such spaces are uniquely labeled by their funda-
mental group �. We refer the reader to [25] for a complete
classification.

1. Dihedral case

When � is a central extension of the dihedral group the
spherical manifold is known as a prism manifold. The
fundamental group is

hx; yjx�1yx ¼ y�1; x2m ¼ yni; (A1)

withm � 1 and n � 2 and � is of order 4mn. The tree level
sum over geometries is

Zð0Þ
prism ¼ X1

m¼1
n¼2

e2�k=ð4mnÞ: (A2)

Taylor expanding the exponential gives

Zð0Þ
prism ¼ X1

r¼0

�
�k

2

�
r 1

r!

�X1
m¼1

m�r

��X1
n¼2

n�r

�

¼ X1
r¼0

�
�k

2

�
r 1

r!
	ðrÞð	ðrÞ � 1Þ: (A3)

In this case Zð0Þ
prism has a simple and double pole at r ¼ 1.

2. Tetrahedral case

In this case the fundamental group can take one of two
forms. It is a product of cyclic group of orderm with either
a binary tetrahedral group of order 24 or a general tetrahe-
dral group of 8 � 3n with n � 1. In both cases m is coprime
to 6. For the binary tetrahedral case, � is of order 24m and
the tree level partition sum is

Zð0Þ
bi-tetra ¼

X1
m¼1

ðm;6Þ¼1

e2�k=ð24mÞ ¼ X1
r¼0

�
�k

12

�
r 1

r!

X1
m¼1

ðm;6Þ¼1

m�r

¼ X1
r¼0

�
�k

12

�
r 1

r!
	ðrÞð1� 2�rÞð1� 3�rÞ: (A4)

In the general case j�j ¼ 8 � 3nm and the contribution to

Zð0Þ is

CASTRO, LASHKARI, AND MALONEY PHYSICAL REVIEW D 83, 124027 (2011)

124027-18



Zð0Þ
tetra¼

X1
m¼1

ðm;6Þ¼1

X1
n¼1

e2�k=ð8m3nÞ ¼X1
r¼0

�
�k

4

�
r 1

r!

X1
m¼1

ðm;6Þ¼1

m�r
X1
n¼1

3�rn

¼X1
r¼0

�
�k

12

�
r 1

r!
	ðrÞð1�2�rÞ: (A5)

Here both sums have a pole at r ¼ 1.

3. Octahedral case

Here � is a product of the cyclic group of order m with
the binary octahedral group of order 48, so j�j ¼ 48m. The
order m must be coprime to 6 so the contribution to the
partition function is

Zð0Þ
oct ¼

X1
m¼1

ðm;6Þ¼1

e2�k=ð48mÞ ¼ X1
r¼0

�
�k

24

�
r 1

r!

X1
m¼1

ðm;6Þ¼1

m�r

¼ X1
r¼0

�
�k

24

�
r 1

r!
	ðrÞð1� 2�rÞð1� 3�rÞ: (A6)

4. Icosahedral case

For the last class of spherical manifolds the fundamental
group is a product of a cyclic group of order m coprime to
30 with the binary icosahedral group. Here � is of order
120m and the saddle contribution is

Zð0Þ
icos ¼

X1
m¼1

ðm;30Þ¼1

X1
n¼1

e2�k=ð120mÞ ¼ X1
r¼0

�
�k

60

�
r 1

r!

X1
m¼1

ðm;30Þ¼1

m�r

¼ X1
r¼0

�
�k

60

�
r 1

r!
	ðrÞð1� 2�rÞð1� 3�rÞð1� 5�rÞ:

(A7)

5. Putting it together

Gathering the results from all five classes of S3=�
geometries and adding the classical saddle point contribu-
tions, the partition function at tree level is

Zð0Þ ¼Zð0Þ
lensþZð0Þ

prismþZð0Þ
bi-tetraþZð0Þ

tetraþZð0Þ
octþZð0Þ

icos; (A8)

with each individual term given by (27) and (A3)–(A7). As
it stands the sum (A8) is divergent, and the divergences are
determined by the pole of the zeta function. In particular, it

has a double pole contained in Zð0Þ
prism due to the term 	ð1Þ2

with coefficient

�k

2
: (A9)

In addition (A8) has a single pole due to 	ð1Þ in all six
saddles in (A8) and the residue is

12k2 � 371

302
�k: (A10)

We conclude that the classical partition function diverges
even after zeta function regularization.

APPENDIX B: DETAILS ON ONE-LOOP
DETERMINANTS

1. Harmonic decomposition

In Sec. IVA, and, in particular, to obtain (57), we use the
harmonic decomposition for vectors and 2-tensors. For
completeness we review this decomposition here.
A vector can be split into transverse and longitudinal

modes

V� ¼ T� þ L�; (B1)

where

r�T� ¼ 0; L� ¼ r��; (B2)

with � a scalar. For a symmetric 2-tensor the analogous
decomposition is

h�� ¼ T�� þ 1

D
g��c þ L��: (B3)

Here T�� is symmetric, transverse and traceless

T
�
� ¼ 0; r�T�� ¼ 0; (B4)

and L�� is the longitudinal and traceless which we write as

L�� ¼ rð�V�Þ � 2

D
g��r�V�: (B5)

Note that the decomposition for L�� is not unique. The

vector V� þ C� with C� a conformal Killing vector gives

the same tensor L��. We can further split the vector in (B5)

into its harmonic components, breaking down L�� into

longitudinal-transverse (LT) and longitudinal-longitudinal
(LL) components:

LLT
��¼rð�T�Þ; LLL

��¼rð�L�Þ � 2

D
g��r�L�; (B6)

with T� and L� as defined in (B2).

2. Heat kernel regularization

Here we give a detailed derivation of the zeta function
for lens spaces (82). Starting from (81) and using (79), we
have

logZð1Þ ¼ 1

2p

X
m2Zp

�X1
n¼3

lnðn2 � 4Þ
sinm�

2 sinm ��
2

½cosðm�1Þ cosðnm�2Þ

� cosðm�2Þ cosðnm�1Þ�

� X1
n¼3

lnðn2 � 1Þ
sinm�

2 sinm ��
2

½cosð2m�1Þ cosðnm�2Þ

� cosð2m�2Þ cosðnm�1Þ�
�
: (B7)
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The sums we have to regulate are of the formX
n¼3

lnðn2�1ÞcosðnxÞ; X
n¼3

lnðn2�4ÞcosðnxÞ; (B8)

with x ¼ m�1;2. A useful way to regulate such expressions

is by defining13

	1ðs; xÞ ¼
X1
n¼3

cosðnxÞ
ðn� 1Þs þ

cosðnxÞ
ðnþ 1Þs ; (B9)

and

	2ðs; xÞ ¼
X1
n¼3

cosðnxÞ
ðn� 2Þs þ

cosðnxÞ
ðnþ 2Þs : (B10)

The above functions satisfy

d

ds
	1ð0; xÞ ¼ �X

n

lnðn2 � 1Þ cosðnxÞ;

d

ds
	2ð0; xÞ ¼ �X

n

lnðn2 � 4Þ cosðnxÞ:
(B11)

By shifting the sums in 	1;2ðs; xÞ we get

	1ðs;xÞ¼2cosðxÞCðs;xÞ�Xn¼3

n¼2

cosððn�1ÞxÞn�s;

	2ðs;xÞ¼2cosð2xÞCðs;xÞ�Xn¼4

n¼2

cosððn�2ÞxÞn�s;

(B12)

where we dropped terms independent of s and we defined

Cðs; xÞ ¼ X1
n¼1

cosðnxÞn�s: (B13)

Using (B12) we construct the zeta function for the non-
zero eigenvalues in (B7),

	ðsÞlens ¼ 1

2p

X
m2Zp

1

sinm�
2 sinm ��

2

½cosðm�1Þ	2ðs; m�2Þ

� cosðm�2Þ	2ðs;m�1Þ � cosð2m�1Þ	1ðs; m�2Þ
þ cosð2m�2Þ	1ðs;m�1Þ�: (B14)

The explicit relation between 	ðsÞHK and logðZð1ÞÞ is given
in (68). Using (B12) we can simplify (B14) as

	ðsÞlens ¼ 2

p

X
m2Zp

ð1þ cosðm�Þ þ cosðm ��ÞÞ

� ½Cðs;m�1Þ þ Cðs;m�2Þ� � 1

4s

� 1

p

Xp�1

m¼0

ðcosðm�Þ þ cosðm ��ÞÞ
�
1

2s
þ 1

4s

�
: (B15)

The advantage of working with (B15) is that now the sum
over m is straightforward. For example, consider

X1
n¼1

Xp�1

m¼0

1

ns
cosðm�Þ cosðmn�1Þ ¼

¼ 1

2

X1
n¼1

Xp�1

m¼0

1

ns

�
cos

�
2�

mq

p
ðq	 � 1þ nÞ

�

þ cos

�
2�

mq

p
ðq	 � 1� nÞ

��

¼ p1�s

2

�
	

�
s;� q	 � 1

p

�
þ 	

�
s;
q	 � 1

p

�
�
�

p

1� q	

�
s
�
;

(B16)

where in the second line of (B16) we introduced the q	
which satisfies qq	 ¼ 1modp, and in the last line we used

	ðs; aÞ ¼ X1
n¼0

1

ðnþ aÞs ; (B17)

the zeta Hurwitz function. It is important to note that the
derivation (B16) is not valid if q ¼ �1modp and it will be
a case we will treat separately below. Assuming q �
�1modp and implementing (B16) in all terms in (B15)
we get

	ðsÞlens¼p�s
X
�

�
	

�
s;�q	�1

p

�
þ	

�
s;�q	þ1

p

�

þ	

�
s;�q�1

p

�
þ	

�
s;�qþ1

p

�
�
�

p

�1�q	

�
s

�
�

p

�1�q

�
s
�
þ4p�s	ðsÞ� 1

4s
: (B18)

We now consider the case q ¼ �1modp. From (B15)
we have

	ðsÞðp;1Þ ¼	ðsÞðp;p�1Þ

¼ 4

p

X
m2Zp

�
2þcos

�
4�m

p

��
C

�
s;
2�m

p

�
� 2

4s
� 1

2s

¼2p�s

�
	

�
s;
2

p

�
þ	

�
s;�2

p

�
�
�
�p

2

�
s
�

þ8p�s	ðsÞ� 2

4s
� 1

2s
; (B19)

which is valid for p > 2. The special case p ¼ 2 and q ¼ 1
gives

13For a pair of functional operators A and B it is not true that
regulated determinant detðABÞ is equal to the product of the
regulated determinants detðAÞ � detðBÞ. This ‘‘anomaly’’ arises
because the zeta functions associated with these operators might
have poles with nonzero residue [43]. We have checked explic-
itly that this anomaly does not arise for the Lðp; qÞ one-loop
determinants. Thus we can safely use the product formulaY

k

ð
2
k � 
2Þ ¼ Y

k

ð
k � 
ÞY
k

ð
k þ 
Þ:
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	ðsÞð2;1Þ ¼6
X

m2Z2

Cðs;�mÞ� 3

4s
� 2

2s
¼12

2s
	ðsÞ� 3

4s
� 2

2s
:

(B20)

APPENDIX C: DIRICHLET SERIES AND
RELATED FORMULAS

In this Appendix we summarize some useful number-
theoretic formulas.

1. Riemann and related zeta functions

Riemann zeta function:
The Riemann zeta function 	ðsÞ is the analytic continu-

ation of the series

	ðsÞ ¼ X1
n¼1

1

ns
¼ Y

pprime

ð1� psÞ�1; (C1)

to the complex s plane. The function has a simple pole at
s ¼ 1 and Laurent series

	ðsÞ ¼ 1

s� 1
þ X1

k¼0

�k

ð�1Þk
k!

ðs� 1Þk (C2)

where �k is the Stieltjes constant. Some useful values of
	ðsÞ are

	ð0Þ ¼ � 1

2
;

d

ds
	ð0Þ ¼ � 1

2
lnð2�Þ: (C3)

Hurwtiz zeta function:
A simple generalization of the Riemann zeta function is

the Hurwitz function

	ðs; aÞ ¼ X1
n¼0

1

ðnþ aÞs : (C4)

It is a meromorphic function in s and <ðaÞ>�1 with a
simple pole at s ¼ 1. We will need the following values:

	ð0;aÞ¼1

2
�a;

d

ds
	ð0;aÞ¼ lnð�ðaÞÞ�1

2
lnð2�Þ: (C5)

so that in particular

d

ds
	ð0;aÞþ d

ds
	ð0;�aÞ¼�lnðsinð�aÞÞ� lnð�2aÞ: (C6)

Euler’s totient function:
The Euler’s totient function �ðpÞ is defined as the

number of positive integers less than pwhich are relatively
prime to p. The Dirichlet series for the totient function is

X1
n¼1

�ðnÞn�s ¼ 	ðs� 1Þ
	ðsÞ : (C7)

Ramanujan’s sum and Mobius function:
For a pair of integers m and s, Ramanujan’s sum is

defined as

cmðsÞ ¼
Xm
n¼1

ðm;nÞ¼1

exp

�
2�i

n

m
s

�
: (C8)

The Mobius function is defined as

�ðmÞ¼
8<
:
0 ifmhas one ormore repeated prime factor,

1 ifm¼1;
ð�1Þk ifmis a product ofkdistinct primes.

(C9)

It satisfies

�ðmÞ ¼ cmð1Þ; (C10)

The Dirichlet series for the Mobius function is

X1
m¼1

m�s�ðmÞ ¼ 1

	ðsÞ : (C11)

This has no poles for positive integer values of s.
Dedekind sum:
For a pair of coprime integers ðc; dÞ with c > 0, the

Dedekind sum is defined by

sðd; cÞ ¼ 1

4c

Xc�1

k¼1

cot
�k

c
cot

�dk

c
: (C12)

2. Kloosterman zeta function

We now summarize a few features of Kloosterman zeta
functions. The Kloosterman sum is defined as

Sða; b;mÞ ¼ Xm
n¼1

ðn;mÞ¼1

expð2�iðan	 þ bnÞ=mÞ (C13)

where n	 is the inverse of nmodulom. We are interested in
sums of the form

Lðm; n; sÞ ¼ X1
p¼1

p�2sSðm; n;pÞ: (C14)

This is known as the Kloosterman zeta function. This series
converges absolutely when <s > 1=2. The structure of
Lðm; n; sÞ is quite rich, and its poles contain data about
the spectrum of the hyperbolic Laplacian onH =SLð2;ZÞ.
We will summarize a few of its salient features here,
focusing primarily on its analytic properties on the real s
axis, and refer the reader to [44] for details and proofs.
We first consider the simple case where either m or n is

equal to zero. In this case the Kloosterman sum reduces to
a Ramanujan sum and

Lð0; n; sÞ ¼ 1

n2s	ð2sÞ
X
�jn

�1�2s; (C15)

has no poles and is analytic everywhere. Moreover,
Lð0; n; sÞ vanishes at s ¼ 1=2.
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The analytic properties are most conveniently summa-
rized by the function [44]

Zðm;n;sÞ¼ 1

2
ffiffiffiffiffiffiffi
mn

p X1
p¼1

p�1Sðm;n;pÞJ2s�1

�
4�

p

ffiffiffiffiffiffiffi
mn

p �
;

(C16)

when mn positive, with a similar formula for mn negative.
Using the Neumann expansion

z� ¼ 2�
X1
k¼0

ð�þ 2kÞ�ð�þ kÞ
k!

J�þ2kðzÞ (C17)

with z ¼ 4�
p

ffiffiffiffiffiffiffi
mn

p
and � ¼ 2s� 1 we see that

Lðm;n;sÞ¼ 22s
ffiffiffiffiffiffiffi
mn

p
ð4� ffiffiffiffiffiffiffi

mn
p Þ2s�1

X1
k¼0

ð2ðsþkÞ�1Þ�ð2s�1þkÞ
k!

�Zðm;n;sþkÞ: (C18)

The functions Lðm; n; sÞ and Zðm; n; sÞ can both be
analytically continued to meromorphic functions on the
complex s plane. The locations of the poles are related to
the eigenvalues of the hyperbolic Laplacian on
H =SLð2;ZÞ. This operator has a discrete spectrum which
is bounded below at 1=4. We denote one of the eigenvalues
as 
j ¼ �sjðsj � 1Þ, where sj ¼ 1=2þ itj. We note that

when 
 > 1=4 the tj are real. These eigenvalues lead to

simple poles for Zðm; n; sÞ at s ¼ sj. These poles do not

concern us, as they are away from the <s axis. The
remaining possible pole is at s ¼ 1=2. If the hyperbolic
Laplacian has an eigenvalue 1=4, then this would lead to a

double pole at s ¼ 1=2. However, for SLð2;ZÞ the first
eigenvalue appears at 
 > 1=4 so there is no double pole.
There is, however, the possibility of a simple pole at
s ¼ 1=2, even without an eigenvalue at 
 ¼ 1=4:

Zðm; n; sÞ � Rðm; nÞ
s� 1=2

þ . . . : (C19)

However, the residue of the pole at s ¼ 1=2 was computed
in [44] to be

Rðm; nÞ ¼ �1

4
�ðm; 1=2Þ�ðn; 1=2Þ; (C20)

where

�ðn; sÞ ¼ �s

�ðsÞ jnj
s�1Lð0; n; sÞ; (C21)

is zero at s ¼ 1=2. We conclude that Zðm; n; sÞ has no
poles on the real s axis.
From this it follows that the only poles of Lðm; n; sÞ on

the real s axis come from the gamma function, which has
simple poles at the nonpositive integers. For the k ¼ 0 term
in the sum these poles are cancelled by the coefficient
2ðsþ kÞ � 1. Thus Lðm; n; sÞ has no pole at s ¼ 1=2.
However, when s ¼ �n=2, n ¼ 0; 1; . . . there will be
simple poles. For example, there is a pole at s ¼ 0 with
nonzero residue coming from the k ¼ 1 term:

Lðm; n; sÞ � 1

s
4�mnZðm; n; 1Þ þ . . . : (C22)

Similar conclusions hold for the case wheremn is negative.
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