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I. INTRODUCTION

The investigation of electromagnetic fields coupled to
strong gravitational fields have an interest from both theo-
retical perspectives and from a variety of applications in
astrophysics. Examples on the theory side include studies
of gravitational collapse of charged configurations (see,
e.g., [1,2]), of the validity of the cosmic censorship con-
jecture [3], of the existence and properties of quasi black
holes and wormholes (for recent accounts, see, e.g., [4,5]
and references therein), membranes producing repulsive
gravity [6], and of many other issues. Very often analytical
works employ, as tractable physical models, 2-dimensional
thin shells sweeping out 3-dimensional timelike hyper-
surfaces. Recently, we used this idealization to con-
struct ‘‘spherical gravitating condensers,’’ two concentric
charged shells made of perfect fluids (satisfying energy
conditions) under the condition that the electric field is
nonvanishing only between the shells (see [7] and further
references on charged shells therein).

The literature on electromagnetic fields in relativistic
astrophysics1 is vast. Here we restrict ourselves to referring
to several monographs dealing in detail with black-hole
electrodynamics, e.g., [10–12], and we mention the rela-
tively recent work [13,14] on electromagnetic fields around
compact objects in which various papers are also summa-
rized. In [13,14] solutions to the Maxwell equations are
presented both in the interior and outside a rotating neutron
star and the matching conditions of the electromagnetic
field at the stellar surface are analyzed in detail. The fields
are not continuous across the stellar surface which gives
rise to charges and currents.

In the present paper we study electromagnetic sources
distributed on shells in curved spacetimes in general, con-
sidering, in particular, possible discontinuities of the elec-
tromagnetic field across the shells. The sources discussed
are layers with monopole or dipole currents. As far as we
are aware electric or magnetic dipole layers and the match-
ing conditions for their fields were not studied before in the
context of general relativity.
In general, in the case of dipoles the currents and the

electromagnetic field tensor will be distribution valued.
This implies products of distributions in the stress-energy
tensor. In order to avoid this, one can treat the electromag-
netic field as a test field and solve the Maxwell equations in
a given background metric. In many astrophysical situ-
ations this approach is well justified since typically the
averaged energy density of the electromagnetic field is
much smaller than that of the gravitational field. This
approach is followed here and thus only the standard
theory of generalized functions is used.2

In another work [17] we discuss spherical thin shells
endowed with arbitrary, not necessarily spherical distribu-
tions of charge or dipole densities in a Schwarzschild
spacetime. There it was possible to employ the results of
[18] to calculate the fields directly and read off their
discontinuities across the shell. In the present paper we
generalize the jump conditions to general backgrounds and
general hypersurfaces. As a by-product of those jump
conditions the equivalence of the external fields of mag-
netic dipoles and certain electric charge currents is proven
in general. For elementary dipoles this was already known
in special backgrounds like the Kerr spacetime [19].
The jump conditions can be used to obtain massive disks

endowed with charge and dipole densities using the Israel-
Darboux formalism. In the examples studied here, we
use the Schwarzschild disk spacetime as a background,
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1A very large number of papers is devoted to electromagnetic

fields in cosmology—both to more mathematical aspects like the
Bianchi models with magnetic fields [8], and to the more
physical question of the origin of the fields [9].

2If the full Einstein-Maxwell equations are to be solved, then
the complicated formalism of generalized distributions, i.e.,
Colombeau algebras, might be used—see, e.g., [15,16].
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cf. [20]. Therefore, we generate massive thin disks
(Schwarzschild disks) endowed with either electric/
magnetic test charges or electric/magnetic test dipoles.
The surface currents are depicted and explained using the
membrane paradigm.

We use throughout the article the metric signature
(þ 1;�1;�1;�1) and units in which c ¼ G ¼ 1.

II. MONOPOLE AND DIPOLE LAYERS
IN GENERAL

Although in the examples analyzed in Sec. III we use
the Schwarzschild disk spacetimes as backgrounds, the
results in the next section, i.e., the source terms and the
jump conditions hold in a more general backgrounds. Of
course, it has to admit a hypersurface, where the sources
are situated, and the derivation of a dipole current requires
that a family of ‘‘parallel’’ hypersurfaces as defined
below exists. In [1] the case of charged massive shells
were already discussed in full Einstein-Maxwell theory.
Nonetheless, we consider test charges in our work, mainly
to show in which cases the field generated by an arbitrary
dipole distribution can be seen outside of the source as
generated by moving charges.

A. The 4-currents for charges or dipoles distributed
on a shell

Denoting by F�� the Maxwell tensor and by �F�� its

dual,3 the Maxwell equations in a complex form read as
follows:

F ��
;� ¼ 4�J �; (1)

where F �� ¼ F�� þ i�F�� is a self-dual 2-form. The

4-current J � ¼ j�ðeÞ þ ij�ðmÞ consists of an electric part

j�ðeÞ and a magnetic part j�ðmÞ. If j�ðmÞ is vanishing the

imaginary part of the Maxwell equations (1) allows us to

introduce an electric 4-potential AðeÞ
� such that F�� ¼

AðeÞ
�;� � AðeÞ

�;�. In case there are no electric sources present,

we can analogously introduce a magnetic 4-potential AðmÞ
�

such that �F�� ¼ AðmÞ
�;� � AðmÞ

�;�. In the vacuum region both

4-potentials can be defined and we denote the complex

linear combination by A ¼ AðeÞ þ iAðmÞ.
Timelike hypersurfaces � representing the history of

charged 2-surfaces (shells) are discussed widely in the
literature, see, e.g., [1]. We recall their main properties,
in particular, the form of the 4-current which will help us in
formulating the expressions for the dipole current. Suppose
the hypersurface � is described by��ðx��Þ ¼ 0, where x��
are coordinates in the two parts of the spacetime on the two

sides of � and the index � denotes from which side a
quantity is seen. The unit normal of � is given by n�� ¼
�N�1� ��;�j��¼0, where N� ¼ ð���;��

;�
� j��¼0Þ1=2 and

� ¼ �1 is chosen such that the normal points from� toþ.
To shorten the notation we drop the index� in the follow-
ing wherever no confusion is to be expected. If the intrinsic
coordinates of � are called �a, where a runs from 0 to 2
and �0 is a timelike coordinate, then the tangential vectors
are e

�
a ¼ @x�

@�a . A tensor field B�... can be projected onto

these directions at � and we denote this by

Ba... ¼ B�...e
�
a ; B?... ¼ B�...n

�: (2)

The 4-current of an electrically charged monopole layer
is given by

j
�
ðeMoÞ ¼ saðeMoÞe

�
a N�ð�Þ; saðeMoÞ ¼ 	eu

a; (3)

where saðeMoÞ is the surface current of the electrical

charges, 	e is the rest electric surface charge density and
ua the 4-velocity of the charged particles projected onto �.
Let us consider, at least locally, a Gaussian normal

coordinate system generated by the geodesics 
p orthogo-

nal to� and going out from points p 2 �. Then the metric
is block diagonal

g�� ¼ �ðdx3Þ2 þ �ð3Þ
abdx

adxb; (4)

and � ¼ x3 � x30. The family of hypersurfaces x3 ¼ x30 þ
h, i.e., �ðhÞ, are still orthogonal to the family of geodesics

p and are at a proper distance h measured along 
p from

�ð0Þ. The coordinates xa can be used as intrinsic coordi-
nates, thus e

�
a ¼ �

�
a with the Kronecker delta �

�
a , and

�ð3Þ
abðxa; x30 þ hÞ denote the intrinsic metrics of the hyper-

surfaces �ðhÞ and �ð3Þðxa; x30 þ hÞ their determinant. A

slightly more general form of the metric arises when the
coordinate x3 along geodesics 
p is not measuring

anymore the proper distance, implying g33 � 1. These
‘‘generalized’’ Gaussian normal coordinates are used in
the examples in Sec. III. The 4-current of a charge distri-
bution on the surface in the generalized Gaussian normal
coordinates is given by

j
�
ðeMoÞ ¼ saðeMoÞe

�
a ð�g33ðxa; x30ÞÞ�ð1=2Þ�ðx3 � x30Þ: (5)

To avoid confusion, we recall the definition of the
1-dimensional � distribution: For any sufficiently smooth
test function f the following integral over a spacetime
region � in the generalized Gaussian normal coordinates
reduces to the integral over �ð0Þ as follows:

Z
�
fðxa; x30Þð�g33ðxa; x30ÞÞ�ð1=2Þ�ðx3 � x30Þd�

¼
Z
�\�

fðxa; x30Þd�; (6)

where d� is a spacetime volume element, d� is a volume
element of the hypersurface �ð0Þ.

3Note that we use the signature �2 of the metric and the
orientation of the volume form as in [21], with the important
difference that the indices of our Maxwell tensor F�� are
interchanged.

NORMAN GÜRLEBECK et al. PHYSICAL REVIEW D 83, 124023 (2011)

124023-2



We construct dipole layers from two oppositely charged
monopole layers which are separated by a proper distance
h. For simplicity we derive the 4-current in the Gaussian
normal coordinates (4) and make a coordinate transforma-
tion to the generalized Gaussian normal coordinates sub-
sequently. Dipole layers arise in the limit of vanishing h
with a simultaneous limit to infinite (and opposite) rest
surface charge densities of the two shells. This means we
consider two hypersurfaces �ð0Þ and �ðhÞ endowed with
surface rest charge densities of opposite sign4 	hðxa; x30Þ
and 	hðxa; x30 þ hÞ and with velocity fields u�ðxa; x30Þ and
u�ðxa; x30 þ hÞ, so giving rise to two 4-currents. Note that

the change of the charge densities in the limit is such that
it does not affect the velocity fields. Dipole layers result
only in the limiting process h ! 0 if certain properties hold
true in the limit which, for simplicity, we assume to hold
throughout the entire limiting procedure. The family of
geodesics 
p gives locally rise to an equivalence relation

of points similarly to [22], i.e., p� q if there exist a point
p0 such that p, q 2 
p0

, cf. Fig. 1. Since the intrinsic

coordinates are carried along the geodesics, equivalent
points are characterized by the same intrinsic coordinates.
Let us assume that two charge elements initially placed at
two equivalent points ð�a; x30Þ and ð�a; x30 þ hÞ stay during

their motion in equivalent points at every moment of time,
e.g., the intrinsic time coordinate x0, cf. Fig. 2. Then the
coordinate velocities of the charge elements are the same,
so we have

u�ð�a; x30Þ
u0ð�a; x30Þ

¼ u�ð�a; x30 þ hÞ
u0ð�a; x30 þ hÞ : (7)

Analogously to the equivalence of points, we also can, with
each area element �S0 in �ð0Þ, associate an area element
�Sh in �ðhÞ which is cut out by the geodesics emanating
from the boundary of�S0, cf. Fig. 1. Since the total charge
of the dipole shell has to vanish, we suppose that the charge
�Q0 enclosed in any area �S0 (as seen by observers at rest
with respect to the intrinsic coordinates) is the opposite of
that enclosed in �Sh. This condition yields

	hð�a; x30Þu0ð�a; x30Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3Þðxa; x30 þ hÞ

q ¼ �	hð�a; x30 þ hÞu0ð�a; x30 þ hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3Þðxa; x30Þ

q :

(8)

As in the classical case, the charge density 	hðxa; x30Þ !
�1 as h ! 0. The electrical rest dipole moment
surface density is then naturally defined as deðxaÞ ¼
�limh!0	hðxa; x30Þh.

Therefore, the limiting procedure based on (3), (7), and
(8), yields the resulting dipole 4-current in the form

j
�
ðeDiÞ ¼ �deðxaÞu�ðxaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3Þðxa; x30Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3Þðxa; x3Þ

q �0ðx3 � x30Þ: (9)

Of course, the total charge contained in any proper volume
enclosing a part of the electric dipole layer is vanishing.
Rewriting this in the generalized Gaussian normal coordi-
nate system we find the 4-current to read

j�ðeDiÞ ¼ saðeDiÞe
�
a

ffiffiffiffiffiffiffiffi
�ð3Þ

q
ffiffiffiffiffiffiffiffiffiffiffi�g33

p
��������x3¼x3

0

1ffiffiffiffiffiffiffi�g
p �0ðx3 � x30Þ;

saðeDiÞ ¼ �deu
a;

(10)

FIG. 1. Equivalent points and associated 3-volumes. The time-
like coordinate x0 is suppressed. (For notation see the text.)

FIG. 2. Themotion of two associated infinitesimal charges. The
spacelike coordinate x2 is suppressed. (For notation see the text.)

4The second argument of the function 	hð�a; x3Þ denotes the
layer �x3�x3

0
on which the current is given and the index h labels

different currents during the limiting procedure—the increase/
decrease of the charge densities while bringing both shells
together.
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where saðeDiÞ is the surface current of the electrical dipoles
and ua is the 4-velocity of the dipoles projected onto �.
Let us repeat the definition of the normal derivative of
a � distribution in a curved background. For an arbitrary,
sufficiently smooth test function f the following holds:

Z
�
fðxa; x3Þ

ffiffiffiffiffiffiffiffi
�ð3Þ

q
ffiffiffiffiffiffiffiffiffiffiffi�g33

p
��������x3¼x3

0

1ffiffiffiffiffiffiffi�g
p �0ðx3 � x30Þd�

¼ �
Z
�\�

ðn�f;�Þðxa; x30Þd�: (11)

Note that even though a derivative of the delta function
appears, no metric functions have to be differentiated
because of the integral definition of distributions whereffiffiffiffiffiffiffi�g
p

appears and cancels with the only metric term in the

4-current depending on x3. Thus, also metrics which are
notC1 as they arise in the Israel formalism are allowed. It is
also clear by construction and a short calculation that the
continuity equation for j� implies that the surface currents
saðeMoÞ and saðeDiÞ satisfy the continuity equation on �. The

currents for shells endowed with a magnetic charge or a
magnetic dipole density are analogously defined, i.e., we
just have to replace the index e by the index m.

B. Discontinuities in the potential and the fields

As is well known from flat space, the jumps of various
components of the fields or potentials across a surface are
related to electromagnetic sources distributed on that sur-
face. However, even in special relativity magnetic charges
are usually not discussed. The jumps resulting from a
dipole layer were, to the best of our knowledge, not dis-
cussed in curved spacetimes. We denote the jumps of a
function f by ½f� ¼ fþ � f�. We study the four cases of
electric/magnetic charged shells and electric/magnetic di-
pole shells separately. All of them can be obtained using
the equivalence principle and Maxwell theory.

In the case of an electrically charged surface Kuchař
showed in [1] (see also [23–25]) that5

½FðeMoÞa?� ¼ �4�sðeMoÞa; ½FðeMoÞab� ¼ 0: (12)

Note that these equations are covariant with respect to a
change of intrinsic coordinates �a and scalars with respect
to the coordinates x�. For the electric 4-potential in an
appropriate Lorenz gauge it follows:

½AðeÞ
ðeMoÞa� ¼ ½AðeÞ

ðeMoÞ?� ¼ 0: (13)

The magnetic 4-potential AðmÞ� will, in general, not be
continuous across � owing to the fact that it can only be
introduced in the absence of electrical currents and, there-
fore, different potentials will occur in the lower and the
upper half of the spacetime. Furthermore, introducing the

potential AðeÞ� on both sides of � in different gauges will
not change the external field, however, jumps in the poten-
tial are, as seen below, related to dipole densities and
therefore describe a different physical system; in particu-
lar, the field in � is changed.
In case of a shell endowed with magnetic charges the

same equations as (12) and (13) hold for the dual of the
Maxwell tensor and for the magnetic 4-potential in a
Lorenz gauge:

½�FðmMoÞa?� ¼ �4�sðmMoÞa;

½�FðmMoÞab� ¼ 0;

½AðmÞ
ðmMoÞa� ¼ ½AðmÞ

ðmMoÞ?� ¼ 0:

(14)

For the Maxwell tensor it follows that the tangential com-
ponents jump and the normal components are continuous:

½FðmMoÞa?� ¼ 0; ½FðmMoÞab� ¼ 4��ð3Þabcs
c
ðmMoÞ; (15)

where �ð3Þabc ¼ �abc? is the volume form of � related to the

induced metric �ab of�whereas ����� is the volume form

of the spacetime. Tangential indices are raised and lowered
with the induced metric and its inverse.
Analogously, from the equivalence principle the discon-

tinuities of the Maxwell tensor for electric and magnetic
dipole densities follow:

½FðeDiÞa?�¼ 0; ½FðeDiÞab�� 8�sðeDiÞ½a;b�;

½�FðmDiÞa?�¼ 0; ½�FðmDiÞab� ¼�8�sðmDiÞ½a;b�:
(16)

Here the antisymmetrization in the derivatives of sa is
defined as B½ab� ¼ 1

2 ðBab � BbaÞ. Note that a layer with a

curl-free sðmDiÞa will not produce a jump in the external

field and thus the source can only be detected by observing
the trajectories of particles crossing that layer, i.e., by
measuring the internal field in �.
The 4-potentials satisfy in these cases the following

jump conditions:

½AðeÞ
ðeDiÞ?� ¼ 0; ½AðeÞ

ðeDiÞa� ¼ 4�sðeDiÞa; (17)

½AðmÞ
ðmDiÞ?� ¼ 0; ½AðmÞ

ðmDiÞa� ¼ 4�sðmDEiÞa: (18)

Additionally, the normal components of the Maxwell ten-
sor have a �-like contribution Va ¼ ½Aa�N�ð�Þ, the field
‘‘between the two layers.’’ In order to see this contribution,
we insert the aforementioned jumps into the Maxwell
equations and calculate the source. Using again Gaussian
normal coordinates we start with an electric 4-potential
which is discontinuous across � and calculate the sources.
Hence, we write

AðeÞ
� ¼ AðeÞþ

� 
ðx3 � x30Þ þ AðeÞ�
� 
ð�x3 þ x30Þ; (19)

with ½AðeÞ
z � ¼ 0, which implies the Maxwell tensor to be

5The differences in the sign have their origin in a different
signature of the metric.
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Fa� ¼ Fþ
a�
ðx3 � x30Þ þ F�

a�
ð�x3 þ x30Þ
� �z

�½AðeÞ
a ��ðx3 � x30Þ: (20)

Inserting this into the Maxwell equations and using the
jump conditions above yields

F��
;� ¼ 4�saðeMoÞe

�
a �ðx3 � x30Þ

þ 4�saðeDiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3Þð�a; x30Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3Þð�a; x3Þ

q e
�
a �0ðx3 � x30Þ

þ 4�j�þ
ðx3 � x30Þ þ 4�j��
ðx30 � x3Þ; (21)

where the first two terms are the source terms for a charged
layer and for a dipole layer. The last two terms are sources
outside of �, for instance a volume charge density. In the
remainder we will assume that outside of the shell there are
no magnetic or electric sources.

C. The equivalence of electric charges
and magnetic dipoles

In flat spacetimes and also in certain cases of
electromagnetism in curved backgrounds, e.g., in the
Schwarzschild and the Kerr spacetimes [18,19], the
equivalence of the external field of a magnetic point dipole
and of an infinitesimal electric charge current loop is
known and often used. Naturally, it can also be easily
shown that the external field of an electric point dipole is
indistinguishable from that of an infinitesimal magnetic
charge current loop. A similar result can be shown to hold
in the case of layers of dipoles. In our Gaussian normal
coordinates the dual of the Maxwell tensor for a shell
endowed with magnetic dipoles reads as follows, cf. (17)
and (20):

�FðmDiÞ
a� ¼ �FðmDiÞþ

a� 
ðx3 � x30Þ þ �FðmDiÞ�
a� 
ðx30 � x3Þ

� 4��z
�s

ðmDiÞ
a �ðx30Þ: (22)

Of course, the internal field must be changed to transform
locally from sources in the form of magnetic dipoles to
electric currents. However, if we remove the last term in
(22) from the field the external field remains unchanged.
An observer outside can detect the difference only by
examining trajectories of charged test particles crossing
the shell. Furthermore, the jumps of the Maxwell tensor
remain the same:

½FðmDiÞa?� ¼ 4��ð3ÞabcsðmDiÞb;c; ½FðmDiÞab� ¼ 0:

(23)

Using Eq. (12), these jumps are produced by an electric
current saðeMoÞ if

saðeMoÞ ¼ ��ð3ÞabcsðmDiÞb;c: (24)

The electric charge current defined in such a way can
also be seen as a source. The continuity equation for
saðeMoÞ is satisfied trivially. However, since the charge

density s0ðeMoÞ does not need to vanish, electrical charges

are introduced in general. The total charge is in principle
detectable at infinity in the asymptotics of the field assum-
ing it falls off sufficiently fast. Nonetheless, the total
charge for a field generated by magnetic dipoles is vanish-
ing. How is this to be resolved? The total electric charge Q
of � as seen for observers at rest with respect to the
intrinsic coordinates is given by

Q ¼
Z
�\fx0¼x0

0
g
s0ðeMoÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3Þð�a; x30Þ

q
j�0¼x0

0
d�1d�2: (25)

Together with Eq. (24) and Stokes’s theorem we obtain

Q ¼
Z
@ð�\fx0¼x0

0
gÞ
ðsðmDiÞ1d�1 þ sðmDiÞ2d�2Þ: (26)

The asymptotic behavior of the field implies a vanishing
current at infinity.6 Thus, no total electric charge Q will be
present though ‘‘local’’ volumes can contain a net charge.
This is also in correspondence with the known results for
point dipoles. In a rest frame of a point dipole the external
field can be seen as caused by an infinitesimal charge
current loop with a vanishing time component. This is
usually interpreted as two currents of positive and negative
charges such that the charge densities in the rest frame of
the dipole cancel each other and, for example, the positive
charges are at rest (ions of the conductor) and the negative
charges (electrons) contribute to the current. However, in a
general frame as used here the charge densities do not
necessarily cancel anymore. To generalize this to layers
these point dipoles have to be superposed and so the
current loops. The net current can have a charge density
because one is not in a comoving frame of the dipoles.
If the fields do not fall off sufficiently fast, then the total

charge of the shell need not vanish or be definable. In such
a case charges can also be ‘‘placed at infinity’’ which is
reflected by a corresponding boundary condition. An ex-
ample is given in Sec. III A.
The argument given above can be reversed and used to

show that the external field of every electric charge surface
current can also be produced by a charge density at rest in a
given frame of reference and a magnetic dipole surface
current. The integrability condition of Eq. (24) for saðmDiÞ is
then equivalent to the continuity equation of the electric
charge surface current. It is obvious that an analogous
equivalence between electric dipoles and magnetic charges
can be established. Except for this kind of nonuniqueness,
the field and its sources are completely determined by the
jump conditions (12)–(17).

6For closed shells this integral vanishes trivially.
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III. SCHWARZSCHILD DISKS WITH ELECTRIC/
MAGNETIC CHARGE AND DIPOLE DENSITY

The Schwarzschild metric in Schwarzschild coordinates
ðx�Þ ¼ ðt; r; 
; ’Þ reads

ds2 ¼
�
1� 2M

r

�
dt2 �

�
1� 2M

r

��1
dr2

� r2ðd
2 þ sin2
d’2Þ: (27)

In [20] massive disks of counterrotating matter, the
‘‘Schwarzschild disks,’’ were constructed from this
spacetime using the Israel-Darboux formalism and Weyl
coordinates ðx�Þ ¼ ðt; �; z; ’Þ,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2Mr

p
sin
; z ¼ ðr�MÞ cos
: (28)

This was done by identifying the surfaces z ¼ z0
and z ¼ �z0. From the jumps of the extrinsic curvature
of the resulting surface an energy-momentum density
of the disk was obtained. The disks are infinite but
their mass is finite and the mass density decreases
rapidly at large radii. We show here how to endow such
disks with an electric/magnetic charge densities or electric/
magnetic dipole densities in a test field approach. We
demonstrate this with two examples using the asymptotic
homogeneous field and the field generated by a point
charge. The same can be done to model more general
distributions using the general solutions of the Maxwell
equations for test fields on a Schwarzschild background
given in [18].

In � defined by z ¼ z�0, we introduce intrinsic coordi-
nates ð�0; �1; �2Þ ¼ ðT; R;�Þ which coincide with the
Schwarzschild coordinates ðt; r; ’Þ in the disk but are
capitalized to prevent confusion. The components
of the normal vector in Schwarzschild coordinates are
given by

ðn�Þ ¼ Nð0; cos
�;�ðR�MÞ sin
þ; 0Þ;

N ¼ �
�
1� 2M

R
þM2

R2
sin2
þ

��ð1=2Þ
;

(29)

where again ‘‘þ’’ denotes the quantities as seen from
z > z0 and ‘‘�’’ as seen from z <�z0. Note that
cos
� ¼ � z0

R�M .

A. Asymptotically homogeneous electric
and magnetic field

The first test field to be discussed is the asympto-
tically homogeneous electric and magnetic field,
for which the complex 4-potential and Maxwell tensor
in Schwarzschild coordinates read as follows (see,
e.g., [18]):

At ¼�F 0ðr� 2MÞcos
þAt0;

A’ ¼� i

2
F 0sin

2
r2þA’0; Ar ¼A
 ¼ 0;

F tr ¼F 0 cos
; F t
 ¼�F 0ðr� 2MÞ sin
;
F 
’ ¼�iF 0r

2 cos
 sin
; F r’ ¼�iF 0rsin
2
;

F t’ ¼F r
 ¼ 0; F 0 ¼E0þ iH0:

(30)

The 4-potential is in fact not given in [18] but can be
calculated easily. Assume the field in the upper/lower
half is parametrized byF 0�,At0�, andA’0�. The jumps

of the potential across � are given by

½AT� ¼ �ðR� 2MÞ cos
þðF 0þ þF 0�Þ
þAT0þ �AT0�;

½AR� ¼ ½A?� ¼ 0;

½A�� ¼ � i

2
sin2
þR2ðF 0þ �F 0�Þ þA�0þ �A�0�:

(31)

As it should be according to Eqs. (13), (14), and (17), the
orthogonal component of the potential is continuous.
Furthermore, the radial component is continuous as well,
i.e., the dipole currents (electric or magnetic) in the radial
direction are vanishing. The dipole density approaches a
constant value, so does the current in the � direction, as
one can expect from the analogous result obtained in
Maxwell theory in flat space or after setting the mass M
to zero in the equations above. The jumps in the fields read

½F T?�¼N

�
1�2M

R

��
1�M

R
sin2
þ

�
ðF 0��F 0þÞ;

½F �?�¼ iNMcos
þsin2
þðF 0þþF 0�Þ;
½F TR�¼ M

R�M
cos
þðF 0þþF 0�Þ;

½F R��¼�i
R

R�M
ðR�Msin
2þÞðF 0þ�F 0�Þ;

½F R?�¼½F T��¼0:

(32)

Using Eqs. (12) and (14)–(16) we observe again that for
electric/magnetic charges the radial current is vanishing
and that the electric and magnetic charges do rotate around
the axis. The current is vanishing for R ! 1. The total
electric or magnetic charge of such a system will be
infinite. This will be different for the case of the field
discussed in the next subsection.
We will now treat the case of electric monopoles and

magnetic dipoles independently of the case of magnetic
monopoles and electric dipoles. Afterwards the results can
be superposed.
Electric monopoles or magnetic dipoles.—This case is

obtained for E0þ ¼ �E0� ¼ E0 and H0þ ¼ H0� ¼ H0,

together with AðeÞ
t0þ ¼ AðeÞ

t0� and AðeÞ
’0þ ¼ AðeÞ

’0�. This leads to
a surface current
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sTðeMoÞ ¼�E0

2�
N

�
�1þM

R
sin2
þ

�
; sRðeMoÞ ¼ 0;

s�ðeMoÞ ¼�H0

2�
N
M

R2
cos
þ:

(33)

In the classical case M ¼ 0 the charges are at rest with a
charge density equal to the first factor in the first equation.
The discontinuities in the magnetic potential and the
tangential components of the dual of the Maxwell tensor
are in this case understood as being caused by the dis-
continuities of the orthogonal components of the Maxwell
tensor and the presence of the electric monopole layer and,
hence, the impossibility to introduce a magnetic potential
globally. Looking at the classical case M ¼ 0, the princi-
pal problem mentioned after Eq. (26) becomes apparent
when dealing with fields which are not falling off suffi-
ciently fast at infinity. The axial current vanishes in this
limit and thus cannot cause the magnetic field. The exist-
ing magnetic field can be explained by ‘‘magnetic charges
or electric currents at infinity.’’ Therefore, the disk is not
the only source of the external field. This problem does not
occur for fields which are falling off sufficiently fast. An
example is discussed below. However, for completeness
we give here the 4-current provided that the discontinu-
ities are interpreted as the result of a magnetic dipole layer
according to Eq. (16):

sTðmDiÞ ¼
H0

2�

MR

R�2M
cos
þ; sRðmDiÞ ¼ 0; s�ðmDiÞ ¼

E0

4�
:

(34)

Here the constants AðmÞ
T� and AðmÞ

�0� are chosen such that the

current is not singular at the axis and the dipole density
vanishes at infinity.

Analogously, we can study disks endowed with a
magnetic charge density or electric dipole density by
setting E0þ ¼ E0� ¼ E0 and H0þ ¼ �H0� ¼ �H0. The
results are very similar to (33) and (34); they can be
obtained by a substitution E0 ! H0 and E0 ! �H0 into
(33) and (34).

B. Disks generated by point charges

The question whether a field is generated solely by
disks or also by sources at infinity is circumvented if a
solution is chosen such that it falls off sufficiently fast
at infinity. We now consider the electromagnetic field
produced by a point charge e situated in an arbitrary
position ðr0; 
0; ’0Þ. The electric 4-potential for such a
point charge was given in [18], and in closed form by
Linet in [26]. It reads7:

AðeÞ
t ¼�Me

rr0
� e

Drr0
ððr�MÞðr0�MÞ�M2�Þ;

AðeÞ
r ¼ AðeÞ


 ¼ AðeÞ
’ ¼ 0;

�¼ cos
cos
0þ sin
sin
0 cosð’�’0Þ;
D¼ ððr�MÞ2þðr0�M2Þ�M2� 2ðr�MÞðr0�MÞ�

þM2�2Þ1=2: (35)

We consider two different test fields in the Schwarzschild
spacetimes: the field produced by a point charge at
ðrþ; 
þ; ’þÞ and the field produced by a point charge at
ðr�; 
�; ’�Þ. In the spacetime with the first test field we
make a cut at z ¼ z0 such that the black hole and the point
charge are below the cut. For the second test field the cut is
made at z ¼ �z0 such that the charge and the black hole
are above the cut. After identifying the two hypersurfaces
z ¼ �z0 there is no black hole or point charge in the
spacetime, rather a massive disk with electromagnetic
sources. However, the electromagnetic field outside the
disk and thus the sources can be understood using the field
lines in the ‘‘original’’ spacetime for the original test field,
i.e., the Schwarzschild black hole spacetime with a point
charge. This point of view is employed several times in the
following; e.g., the charge density of the disk is explained
by referring to the original black hole and its polarization.
The fields of the two point charges can be obtained from

the 4-potential (35) in a straightforward way and so also
the jumps. In order to obtain a layer endowed with either
charges or dipoles we have to require that the point charges
be located symmetrically in the original spacetime, i.e.,
r0þ ¼ r0� ¼ r0, ’0þ ¼ ’0�, 
0þ ¼ �� 
0�, as well as
that the charges are either equal, eþ ¼ e�, or opposite,
eþ ¼ �e�. Because of the axial symmetry of the space-
time we can set ’0þ ¼ 0. The jumps evaluate to

½AðeÞ
T � ¼ ðe2 � e1Þ

r0RD
ððR�MÞðr0 �MÞ þMD�M2�Þ;

½AðeÞ
R � ¼ ½AðeÞ

� � ¼ ½AðeÞ
? � ¼ ½FR?� ¼ ½F�?� ¼ 0;

½FT?� ¼ ðe1 þ e2Þð�2 � 2MÞ
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM� �2Þ4 � z20M

2
q

�2
2D

3

� ½z0ððM� r1ÞððM� �2Þ2�2 �MD2Þ �MD3Þ
þ z0ðð�2 �MÞ�2ðM2 þ ðM� r1Þ2Þ þM2D2Þ�
þ z0M

2ðM� r1Þ�2�
2 þ ð2M� r1Þr1 sin
þ

� ðM� �2Þ2�2�;
�: (36)

Note that functions D and � have to be evaluated at the
respective�� with the respective point charge. However, it
holds that �ð
þ; 
0þÞ ¼ �ð�� 
þ; �� 
0þÞ, so the same
holds for D. Therefore, functions D, �, and �;
 should be

read as functions with the argument r ¼ R, 
 ¼ 
þ ¼
arccos z0

R�M , ’ ¼ �, r0 ¼ r0þ, 
0 ¼ 
0þ, ’0þ ¼ 0.

7The different sign in the potential has its origin in the
exchange of the indices of the Maxwell tensor, cf. footnote 3.
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The jumps of the tangential components of the Maxwell
tensor can be inferred from the jumps of the 4-potential.
We can now discuss two cases—a monopole layer and a
dipole layer.

Electric monopoles or magnetic dipoles.—In order to
obtain continuous tangential components of the 4-potential
we have to set e1 ¼ e2. Then the surface 3-current can be
read off (36) and (12). The only nonvanishing component
is sT . However, it is possible to consider two counterrotat-
ing streams with an equal charge, cf. with the underlying
matter currents in the Schwarzschild disk [20]. This would
of course change the charge density seen by a comoving
observer. There are several parameters governing the be-
havior of the solution: the cut parameter z0, the charge e1
which acts as scaling, and the position of the two charges
fr0; 
0�; 0g. In general, there is one maximum associated
with the position of the charge e1 as in classical electro-
dynamics, and there is also the second maximum due to the
influence of the black hole, as depicted in Fig. 3. Although
for 
0þ ¼ 0 an axially symmetric distribution is obtained,
so only one maximum is present in this case. In the general
case the first maximum lies at � ¼ 0 and the second at
� ¼ �, i.e., on the opposite the side of the black hole in the
original spacetime. The second maximum can be under-
stood using the membrane paradigm [10] (alternatively by
discussing the boundary conditions at the horizon [11]).
Interpreting the horizon as a conducting sphere, a polar-
ization is to be expected due to the field of the test charge.
This will lead to a fictitious charge density at the horizon,
cf. [27], as follows:

	H� ¼ e1
Mð1þ �2�Þ � 2ðr0 �MÞ��
8�r0ðr0 �Mð1þ ��ÞÞ2

;

�� ¼ � cos
 cos
0þ þ sin
 sin
0þ cos’;
(37)

where the upper sign denotes the induced charge density
for the charge e1 at fr0; 
0þ; 0g and the lower for the charge
e1 at fr0; �� 
0þ; 0g. In the following we discuss only the
þ case, the other one follows from the reflection symme-
try. Assuming e1 > 0, the area of the conducting sphere
characterized by

r0 � ðr20 � 2Mr0Þ1=2 � Mð1þ �þÞ
� r0 þ ðr20 � 2Mr0Þ1=2 (38)

is negatively charged. The opening angle �crit as seen from
the test charge e1 for this area was described in [28]. There
it was also discussed, that the field lines emanating from
fr0; 
0�; 0g with an angle � � �crit are bent toward the
horizon and cross it eventually. Field lines starting at
�> �crit are first bent toward the horizon due to the
opposite sign of its charge density and then bent away
because of the change of sign in the polarization density.
This leads to an increase/decrease of the tangential/normal
components of the electric field in the disk close to the axis
of the black hole facing e1. On the other side of the black
hole the normal/tangential components of the electric field
in the disk are increased/decreased. Thus, in general, two
maxima for the charge density are obtained on opposite
sides of the axis. For the dipole density also two maxima
are to be expected but both are lying on the side of the
black hole facing e1.
The surface charge current in � behaves for R ! 1 like

sTðeMoÞðR;�Þ � e1ðz0 þ ð2M� r0þÞ cos
0þÞ
2�R3

: (39)

The fall off is sufficiently fast to permit the definition of the
total charge which can of course be read off from the
unchanged asymptotic behavior of the field and thus is still
e1. Having fixed r0þ, the parameter z0 can be used to slow
down the decrease of the charge density as can be seen
from (39), but since the total charge must remain the same,
the charge gets only ‘‘smeared out.’’
Dipole disk.—To obtain continuous normal components

of the Maxwell tensor one has to choose e1 ¼ �e2; the
surface current is given by (17) and (36). Again, the surface
current allows two interpretations: the distribution is static
or it consists of two counterrotating streams. The same
parameters arise here as in the last case and the generic
behavior for some specific values is depicted in Fig. 4. The
two maxima can again be understood on the grounds of the
membrane paradigm as described above. The asymptotic
behavior of the dipole density is

sTðeDiÞðR;�Þ � � e1
2�R

: (40)
FIG. 3. The time component of the surface current saðeMoÞ
(i.e., the charge density) endowed with electric charges for the
parameters r0þ ¼ 5:1M, 
0þ ¼ 0:7�, z0 ¼ 1:7M.
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The relation between a monopole distribution and a
dipole distribution is illustrated in the following.8 Let us
consider the electric 4-potential and the jumps in the
tangential components of the Maxwell tensor as produced
from the jumps in the normal components of the dual of the
Maxwell tensor, i.e., of a magnetic charge density. If we
remove the � distribution terms of the field, we obtain a

field which is generated by a magnetic current which
satisfies

sTðmMoÞ ¼ 0;

sRðmMoÞ ¼ ��ð3ÞTR�sðeDiÞT;�;

s�ðmMoÞ ¼ �ð3ÞTR�sðeDiÞT;R:

(41)

As stated in Sec. II B, for the general case, it is obvious
here that the continuity equation is also satisfied for the
magnetic surface current. The magnetic charge density of
this current is vanishing which can be interpreted as two
currents with opposite charges, one of them at rest, for
example. Since the field falls off sufficiently fast and no
total charge is present this is the sole source of the field.
It is again clear from the symmetry of the Maxwell

equations that the calculations of this section can be re-
peated for a magnetic point charge in order to obtain a
magnetic charge density or a magnetic dipole density.
From our analysis it follows that similarly we could

endow disks with test charges and dipoles which produce
Kerr spacetimes [29].
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We thank Tomáš Ledvinka for helpful discussions. J. B.
acknowledges partial support from Grant No. GAČR 202/
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NORMAN GÜRLEBECK et al. PHYSICAL REVIEW D 83, 124023 (2011)

124023-10

http://dx.doi.org/10.1088/0264-9381/23/10/R01
http://dx.doi.org/10.1088/0264-9381/23/10/R01
http://arXiv.org/abs/1105.1934v1
http://dx.doi.org/10.1007/BF01587004
http://dx.doi.org/10.1007/BF00766421
http://dx.doi.org/10.1007/BF00766421
http://dx.doi.org/10.1103/PhysRevD.47.4334
http://dx.doi.org/10.1103/PhysRevD.47.4334
http://dx.doi.org/10.1063/1.1665681
http://dx.doi.org/10.1007/BF02710419
http://dx.doi.org/10.1007/BF02721742
http://dx.doi.org/10.1007/BF02721742
http://dx.doi.org/10.1103/PhysRevD.43.1129
http://dx.doi.org/10.1088/0305-4470/9/7/010
http://dx.doi.org/10.1103/PhysRevD.8.3259
http://dx.doi.org/10.1103/PhysRevD.8.3259
http://dx.doi.org/10.1103/PhysRevLett.71.1669
http://dx.doi.org/10.1103/PhysRevLett.71.1669

