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We reconsider the spinfoam dynamics that has been recently introduced, in the generalized Kamiński-

Kisielowski-Lewandowski (KKL) version where the foam is not dual to a triangulation. We study the

Euclidean as well as the Lorentzian case. We show that this theory can still be obtained as a constrained

BF theory satisfying the simplicity constraint, now discretized on a general oriented 2-cell complex. This

constraint implies that boundary states admit a (quantum) geometrical interpretation in terms of

polyhedra, generalizing the tetrahedral geometry of the simplicial case. We also point out that the general

solution to this constraint (imposed weakly) depends on a quantum number rf in addition to those of loop

quantum gravity. We compute the vertex amplitude and recover the KKL amplitude in the Euclidean

theory when rf ¼ 0. We comment on the eventual physical relevance of rf, and the formal way to

eliminate it.
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I. INTRODUCTION

The spinfoam formalism [1–3] offers a formulation of
the dynamics of quantum gravity strictly related to loop
quantum gravity (LQG) [4–6]. The precise relation be-
tween the two approaches is well-understood in three
dimensions [7], and under study in four dimensions [8].

The spinfoam theory introduced in [9,10] can be derived
starting from the Plebanski formulation of general
relativity (GR) [11] (including the Barbero-Immirzi pa-
rameter �), and defined as a BF theory discretized on a
simplicial cellular complex and constrained by the
so-called simplicity constraint. The constraint can be im-
posed using the master-constraint technique [9,12] or,
more simply, using the Gupta-Bleuler procedure, namely,
asking the matrix elements of the constraint to vanish on
physical states [13]. The resulting model has remarkable
properties: (i) the boundary states have a geometrical
interpretation in terms of quantum tetrahedral geometry
[3,14]; (ii) there are strong indications that the semiclassi-
cal behavior of the theory matches classical general rela-
tivity [15–18], thus correcting difficulties of earlier models
[19]; and (iii) the boundary kinematics is strictly related to
that of LQG [9,13].

The relation with LQG, however, is limited by the fact
that the simplicial-spinfoam boundary states include only
4-valent spin networks. This is a drastic reduction of the
LQG state space. In [20], Kamiński, Kisielowski, and
Lewandowski (KKL) have considered a generalization of
the spinfoam formalism to spin networks of arbitrary va-
lence, and have constructed a corresponding vertex ampli-
tude (see Fig. 1). This generalization provides truncated

transition amplitudes between any two LQG states [1], thus
correcting the limitation of the relation between the model
and LQG. This generalization, on the other hand, gives rise
to several questions. The KKL vertex is obtained via a
‘‘natural’’ mathematical generalization of the simplicial
Euclidean vertex amplitude. Is the resulting vertex ampli-
tude still related to constrained BF theory (and therefore to
GR)? In particular, do KKL states satisfy the simplicity
constraint? Can we associate to these states a geometrical
interpretation similar to the one of the simplicial case? Can
the construction be extended to the physically relevant
Lorentzian case?
Here we answer several of these questions. We show that

it is possible to start from a discretization of BF theory on a
general 2-cell complex, and impose the same boundary
constraints that one imposes in the simplicial case (sim-
plicity and closure). Remarkably, on the one hand, they
reduce the BF vertex amplitude to a (generalization of) the
KKL vertex amplitude, in the Euclidean case studied by
KKL. On the other hand, a theorem by Minkowski [21]
guarantees that these constraints are precisely those needed
to equip the classical limit of each truncation of the bound-
ary state space to a finite graph, with a geometrical inter-
pretation, which turns out to be in terms of polyhedra [22].
These results reinforce the overall coherence of the

generalized spinfoam formalism.
Surprisingly, however, the state space defined by impos-

ing the simplicity constraint weakly is larger than the one
of quantum gravity. It includes one additional degree of
freedom, described by a new quantum number rf.

1 The
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1The enlargement is not an effect from the generalization to
arbitrary 2-cell complexes. The Hilbert space is enlarged also in
the simplicial case, compared with the state space defined in [9].
This additional quantum number was first noticed by Sergei
Alexandrov [23].

PHYSICAL REVIEW D 83, 124020 (2011)

1550-7998=2011=83(12)=124020(17) 124020-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.124020


quantum number rf affects nontrivially both the face am-

plitude and the vertex amplitude of the model. The quan-
tum number rf is frozen if in addition to the weak

imposition of the (linear) simplicity constraint, we also
impose strongly a diagonal quadratic constraint. With a
suitable operator ordering of this constraint, the state space
can be reduced back down to the LQG state space.

Does the rf quantum number have physical relevance? If

we take the principle that the quantum theory we are
seeking has the same number of degrees of freedom as
the classical theory, then the answer is negative. This
principle indicates that the appropriate way of imposing
the constraints is the one that gets rid of the extra states.
However, we think it is nevertheless interesting to keep in
mind the existence of these additional solutions to the weak
simplicity constraints. We comment more on this in the
conclusion.

An outline for the article is as follows. In Sec. II, we
review the spinfoam representation of the BF partition
function on a general complex, and we discuss the structure
of the boundary Hilbert space of BF theory. In Sec. III, we
implement the geometric constraint to the BF boundary
Hilbert space. After solving the constraint weakly, two new
boundary Hilbert spaces are constructed for both the
Euclidean and the Lorentzian theory. We also show that
the new boundary Hilbert space carries a representation of
quantum polyhedral geometry. In Sec. IV, we derive the
new spinfoam vertex amplitude and face amplitude from
the new boundary Hilbert space. In Sec. VI, we conclude
and point out the open issues. We assume that the Barbero-
Immirzi parameter � is positive.

II. SPINFOAMREPRESENTATIONOF BF THEORY

We start with a brief review of the construction of the BF
spinfoam partition function and the structure of its bound-
ary Hilbert space [24], which is the starting point of the
definition of the theory. The BF partition function is for-
mally defined by the path integral

ZBF :¼
Z

DADB exp

�
i
Z
M
trðB ^ F½A�Þ

�
; (1)

where B is a 2-form field on the manifoldM, with values in
the Lie algebra g of a groupG, and F is the curvature of the
G-connection A. Here we take the internal gauge group G
to be either G ¼ spinð4Þ (for the Euclidean case) or G ¼
SLð2;CÞ (for the Lorentzian case). A formal integration
over B gives

ZBF ¼
Z

DA
Y
x2M

�ðF½A�Þ; (2)

which is an integration over the flat connections. In order to
make sense of the formal path integral (2), we discretize it.
However, instead of discretizing the path integral on an
oriented 2-complex dual to a simplicial decomposition of
the manifold M as is usually done, we introduce here an
arbitrary oriented 2-complex K (as in [20]) with or with-
out boundary.
We take a combinatorial definition of an oriented

2-complex (see Fig. 2). An oriented 2-complex K :¼
ðVðKÞ; EðKÞ; FðKÞ consists of sets of vertices v 2
VðKÞ, edges e 2 EðKÞ, and faces f 2 FðKÞ, equipped
with a boundary relation @ associating an ordered pair of
vertices ðsðeÞ; tðeÞÞ (‘‘source’’ and ‘‘target’’) to each edge

e, and a finite sequence of edges fe�ekfk gk¼1;...;n to each face

f, with tðekÞ ¼ sðekþ1Þ, tðenÞ ¼ sðe1Þ, and �ef ¼ �1; here

we call e�1 the edge with reversed order of e. We let @f
denote the cyclically ordered set of edges that bound the
face f or (if it is clear from the context) the cyclically
ordered set of vertices that bound the boundary edges of f.
We also write @v to indicate the set of edges bounded by v
and of faces that have v in their boundary. Similarly, we
write @e to indicate the set of the faces bounded by e.
When e 2 @f, we define �ef ¼ 1 if the orientation of e is

consistent with the one induced by the face f and �ef ¼
�1 if it is not.
The boundary graph � ¼ @K is a 1-cell subcomplex of

K. An edge e 2 EðKÞ is an edge of the boundary graph �
if and only if it is contained in only one face, otherwise it is
an internal edge. A vertex v 2 VðKÞ is a vertex of the
boundary graph � if and only if it is contained in exactly
one internal edge ofK, otherwise it is an internal vertex of
K. We assume boundary vertices and boundary edges to
form a graph, which is the boundary of the 2-complex.
We introduce also the notion of the boundary graph �v

of a single vertex v. This is the graph whose nodes are the
edges e in @v and whose links are the faces f in @v. The
boundary relation defining the graph is the relation e 2 @f
and the orientation of the links is the one induced by the
faces. The graph �v can be visualized as the intersection
between the 2-complex and a small sphere surrounding the
vertex.
We discretize the BF partition function on the oriented

2-cell complexK, by replacing the continuous field Awith

FIG. 1 (color online). A generalized spinfoam vertex.
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the assignment of an element of G to each edge. By
convention, ge�1 :¼ g�1

e . Then Eq. (2) becomes

ZBFðKÞ ¼
Z

dge
Y
f

�

�Y
e2@f

g
�ef
e

�
; (3)

where dge is the product over all the edges of the Haar
measure, the product over f is over all the faces ofK, and
the product over e is the product over the edges bounding
the face f of the group element associated to these edges,
ordered by the orientation of the face. This is the partition
function of BF theory.

We now express this partition function as a sum over
representations and intertwiners. For this, it is convenient
to treat the Euclidean and Lorentzian cases separately.

A. Spin(4) BF theory

Consider the Euclidean case G ¼ spinð4Þ. The delta
function on spinð4Þ can be expanded in irreducible repre-
sentations

�ðUÞ ¼ X
�

dimð�Þ��ðUÞ; (4)

where � ¼ ðjþ; j�Þ labels the unitary irreducible represen-
tation of spin(4), dimð�Þ ¼ ð2jþ þ 1Þð2j� þ 1Þ is the di-
mension of the representation space, and �� is the

character of the representation �. Irreducible representa-
tions can also be conveniently labeled with the two half-
integers k ¼ jþ þ j� and p ¼ jþ � j�.

Expanding the delta function in representations, (2)
becomes

ZBFðKÞ ¼
Z

dge
Y
f

�X
�

dimð�Þ��ðUfÞ
�

¼ X
�f

Z
dge

Y
f

dimð�fÞ��f ðUfÞ: (5)

This is the expression for the spinfoam amplitude in the
group element basis. Let us now translate this into the more
common representations-intertwiners basis.
This can be obtained by performing the integrals, pre-

cisely as in the simplicial case. We have one integration per
edge, of the form

KM;N ¼
Z

dge
Y
f2@e

�
�f

MfNf
ðg�efe Þ; (6)

where ��
MNðgÞ is the matrix element of the spin(4) repre-

sentation �; M ¼ Mf1 ; . . . ;Mfn is a multi-index; and the

product is over the n faces bounded by e (including re-
peated faces). In the case where K is dual to a simplicial
complex, n ¼ 4. One may immediately see thatKM;N is the

operator in the tensor product ðNfout
�fÞ � ðNfin

�y
f Þ of the

�f representation spaces (where fin are the faces with

the same orientation as e and fout are the faces with
opposite orientation) that projects on its invariant subspace

H e ¼ Inv

��O
fout

�f

�
�
�O

fin

�y
f

��
: (7)

Let I label an orthonormal basis in H e. (These are called
intertwiners.) Then

KM;N ¼ X
I

IMIyN: (8)

For each internal edge e, the two intertwiners are associ-
ated to the two vertices bounding the edge (see Fig. 3), in
the sense that their indices are contracted with the other
intertwiners at the same vertex. The result of the integra-
tion is therefore

ZBFðKÞ ¼ X
�f

Y
f

dimð�fÞ
X
Ie

Y
v

Avð�f; IeÞ: (9)

Here the sum over Ie is over the assignment of one inter-
twiner to each edge e ofK. The product over v is over the
vertices of K. The vertex amplitude Avð�f; IeÞ is defined
as follows. Say at the vertex v 2 VðKÞ there are n
outgoing edges eout and m incoming edges ein. Then

FIG. 3. Assign Ie to the begin point and assign Iye to the end
point of an internal edge e.

FIG. 2 (color online). An oriented 2-cell complex K :¼
ðFðKÞ; EðKÞ; VðKÞÞ, where FðKÞ ¼ ff1; � � � ; f6g, EðKÞ ¼
fe1; � � � ; e19g, VðKÞ ¼ fv1; � � � ; v14g. v1 is an internal vertex,
and e1, e2, e3, e4 are internal edges, while all other edges and
vertices belong to the boundary graph � ¼ @K.
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Avð�f; IeÞ :¼ tr

�O
eout

Ieout
O
ein

Iyein
�
: (10)

The trace in Eq. (10) is precisely the spinfoam trace defined
in [20]. The contractions between the intertwiners in the
spinfoam trace could be described as follows: for each
edge e each index Mi is associated with a face f bounded
by the edge e. The trace is defined by contracting the two
indices associated with the same face of the two inter-
twiners corresponding to the two edges bounding f. This
can be easily seen to give the character �� of (5). In the
special case when the complex K is dual to a simplicial
complex, there are five internal edges joining at v and each
pair of edges determines a 2-face; the spinfoam trace is
nothing but the spin(4) 15-j symbol.

Alternatively, the BF partition function can also be ex-
pressed in the form [20]

ZBFðKÞ ¼ X
�f

Y
f

dimð�fÞtr
0
@ O

e2EðKÞ
Pe

1
A; (11)

where Pe :¼
P

Ie
Ie � Iye is understood as the projection

operator projecting from the product of the representations
on the 2-faces bounded by e to its invariant subspace. And
the index contractions in trð�e2EðKÞPeÞ are the contrac-

tions between intertwiners, as above.
Most gravitational spinfoam theories, constructed as

constrained BF, have this same structure (11).

B. SLð2;CÞ BF theory

Let now G ¼ SLð2;CÞ. The derivation of the spinfoam
representation of SLð2;CÞ is as above, with a few differ-
ences. SLð2;CÞ unitary irreducible representations (irreps)
(in the principle series) can be labeled by the same quan-
tum numbers ðk; pÞ as the SOð4Þ ones, but now p is a real
number [25]. The unitary irreps of SLð2;CÞ are infinite-
dimensional and can be decomposed into an infinite direct
sum of SUð2Þ irreps, i.e.

Vðk;pÞ ¼ M1
j¼k

Vðk;pÞ
j ; (12)

where Vðk;pÞ
j � Vj is the carrier space of the spinj repre-

sentation of SUð2Þ. This decomposition provides a conve-

nient basis jj; m> in Vðk;pÞ, obtained diagonalizing L2 and
Lz of SUð2Þ. In this basis, for g 2 SLð2;CÞ, we write the

representation matrices on Vðk;pÞ as �ðk;pÞ
jm;j0m0 ðgÞ, where j 2

fk; kþ 1; � � � ;1g and m 2 f�j; � � � ; jg. As one might ex-
pect from the fact that p is a continuous label, the repre-

sentation ‘‘matrix element’’�ðk;pÞ
jm;j0m0 is distributional on the

Hilbert space L2½SLð2;CÞ� defined by the Haar measure.
These matrix elements form a generalized orthonormal
basis and define a Fourier-like transform. That is, for any
square integrable function fðgÞ on SLð2;CÞ,

fðgÞ ¼ 1

8�4

X
k

Z þ1

�1
dpðk2 þ p2Þtr½Fðk; pÞ�ðk;pÞðg�1Þ�

Fðk; pÞ ¼
Z
SLð2;CÞ

fðgÞ�ðk;pÞðgÞd�HðgÞ; (13)

which is known as Plancherel theorem [25]. Accordingly,
we have an identity for Fourier decomposition of delta
function on SLð2;CÞ

�ðgÞ ¼ 1

8�4

X
k

Z þ1

�1
tr½�ðk;pÞðgÞ�ðk2 þ p2Þdp (14)

in analogy with Eq. (4). Proceeding as in the Euclidean
case, we find

ZBFðKÞ ¼
Z Y

e

dge
Y
f

�ðUfÞ

¼ X
kf

Z
dpf

Y
f

ðk2f þ p2
fÞ

�
Z

dge
Y
f

tr½�ðkf;pfÞðUfÞ�: (15)

As in the Euclidean case, each ge integral is of the form

Kjm;j0m0 ¼
Z

dge
Y
f2@e

�
ðkf;pfÞ
jfmf;j

0
f
m0

f
ðg�efe Þ: (16)

Formally, this is still a projector on the invariant compo-
nent of the tensor product of n irreducibles. However, since
now one of the two Casimirs has continuous spectrum p,
then the trivial representation p ¼ k ¼ 0 is not a proper
subspace of the tensor product, but only a generalized
subspace. This does not forbid us from introducing an
orthonormal basis of intertwiners I in this subspace, as
we did in the Euclidean case, and writing

Kjm;j0m0 ¼ X
I

IjmI
y
j0m0 (17)

but we have to remember that the intertwiners are gener-
alized vectors. Using this, we can formulate the spinfoam
representation of SLð2;CÞ BF theory in the same way as
we did for spin(4) theory.
(i) The Fourier decomposition of the SLð2;CÞ delta

function assigns an SLð2;CÞ irrep labeled by
ðkf; pfÞ to each face f.

(ii) Equation (16) assigns an SLð2;CÞ intertwiner Ie to
each source of each edge e, and a dual intertwiner
Iey to its target.

(iii) At each vertex v with n outgoing edges
eout1 ; � � � ; eoutn and m incoming edges ein1 ; � � � ; einm,
the intertwiners Ie

out
and Ie

iny are contracting on
their j, m and j0, m0 indices, according to how the
faces neighboring the vertex are bounded by the
edges. The result of this contraction gives the spin-
foam vertex amplitude
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Avððk; pÞf; IeÞ :¼ tr

��O
eout

Ie

�
�
�O

ein

Iye
��
: (18)

(iv) Finally the partition function of SLð2;CÞ BF theory
is

ZBF ¼
X
kfIe

Z
dpf

Y
f

ðk2f þ p2
fÞ
Y
v

Avððk; pÞf; IeÞ:

(19)

This expression, however, is ill defined, due to the fact that
the intertwiners are generalized vectors, and the trace (18)
may diverge. This issue is addressed and answered in [26],
where it is shown that the source of the divergence is a
redundant integral over SLð2;CÞ in the definition of Av.
Then one can regularize Av by removing one SLð2;CÞ
integration per each vertex. The resulting amplitude is
proven in [26] to be finite, except for some particular
pathological vertices, which we exclude here for simplic-
ity. In what follows we always assume that the vertex
amplitude is so regularized that the redundant integral is
removed.

C. Boundary Hilbert space

Let us rewrite the partition function (3) in a slightly
different form. Split each edge e bounded by the vertices
v and v0 into two half-edges (ev) and (ev0), and associate a
group element gev to each half-edge (oriented toward the
vertex). Then replace each integral dge with the two in-
tegrals dgev, dgev0 . This gives

ZBFðKÞ ¼
Z

dgev
Y
f

�

�Y
e2@g

ðg�1
ev gev0 Þ�ef

�
; (20)

where there is one integration per each couple vertex/
adjacent-edge. Next, let v be a vertex in the boundary of
the face f. For each such couple fv, introduce a group
variable gfv. Then (20) can be rewritten in the form

ZBFðKÞ ¼
Z

dgfvdgev
Y
f

�

� Y
v2@f

gfv

�Y
fv

�ðg�1
fv gevg

�1
e0vÞ;

(21)

where e and e0 are the two edges in the boundary of f that
meet at v, ordered by the orientation of f. This can be
rewritten in the form

ZBFðKÞ ¼
Z

dgfv
Y
f

�

� Y
v2@f

gfv

�Y
v

AvðgfvÞ; (22)

where the vertex amplitude AvðgfÞ is defined by

AvðgfÞ ¼
Z Y

e2@v

dge
Y
f2@v

�ðgefgfg�1
e0
f
Þ (23)

and is a function of one group element for each face in the
boundary of v. Here the integral is over one group element
per each edge in the boundary of the vertex v and, as
before, e and e0 are the two edges in the boundary of f
that meet at v. This is a rewriting of the connection
representation of spinfoam models, in terms of group
elements and wedges [27], and is called the ‘‘holonomy’’
form of the partition function in [28].
Let jFvj be the number of links f of the graph �v,

namely, the number of faces f in @v. The vertex amplitude
(23) is a function in

H �v
¼ L2½GjF�j�: (24)

We call this the (nongauge-invariant) boundary Hilbert
space of the vertex v. It is easy to see that the vertex
amplitude (23) is an element of this space. More precisely,
it is an element of the (possibly generalized) subspace

K�v
¼ L2½GjF�j=GjE�j�; (25)

where jE�j is the number of nodes of �v, namely, the

number of edges in @v. This subspace is spanned by the
gauge-invariant states

c ðgeÞ ¼ c ð�sege�teÞ; (26)

where � 2 G and se and te are the source and target of e.
A moment of reflection shows also that (10) and (18) are

simply the amplitude (23) expressed in the standard spin
network basis of K�v

. Let us now study the boundary

space H �v
in more detail. (It is convenient to consider

the non-gauge-invariant Hilbert space H �v
, besides the

gauge-invariant one because the expressions of geometric
constraints will not be gauge invariant, thus they can only
be represented as operators on H �v

.)

The natural derivative operator defined on the Hilbert
space L2½G� is the left invariant derivative that generates
the right G action,

JIJc ðgÞ ¼ d

d�
c ðe�TIJ

gÞj�¼0; (27)

where TIJ (I; J ¼ 0; � � � ; 3) is a standard Lie algebra gen-
erator of LieðGÞ.
Fix an SUð2Þ subgroup of G, and choose a basis in

LieðGÞ such that the direction I ¼ 0 is preserved by
SUð2Þ. Then we can split the six generators TIJ of
LieðGÞ into three rotation generators and three boost gen-
erators, resulting from the choice of canonical embedding
of the rotation SUð2Þ group into G, and thus basically
corresponding to the time gauge for the embedding vector.
Accordingly, we define (i; j; k ¼ 1; 2; 3)

Li :¼ 1

2
�ijkJ

jk; Ki :¼ J0i; (28)

which have the standard commutation relations

½Li; Lj� ¼ �ijkL
k; (29)
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½Ki; Kj� ¼ s�ijkL
k; (30)

½Ki; Lj� ¼ �ijkK
k; (31)

where s ¼ þ1 for spinð4Þ and s ¼ �1 for SLð2;CÞ.
We denote by JIJf the left invariant derivative operator

acting on the variable gf of c ðgfÞ 2 H �v
. Notice that the

right invariant vector field

RIJc ðgÞ ¼ d

d�
c ðge�TIJ Þj�¼0 (32)

satisfies RIJc ðgÞ ¼ JIJc ðg�1Þ. Therefore

JIJ
f�1 ¼ RIJ

f : (33)

The bivector operators JIJf have a physical interpretation in

terms of the BF theory we started from. They are the
quantum operators that quantize the discretized version
of the 2-form field BIJ, restricted to a three-dimensional
boundary. The reason for this is as follows: classically the
Hamiltonian analysis of BF theory can be carried out [29].
The resulting nonvanishing Poisson bracket reads

f�abcBabIJðxÞ; AKL
d ðx0Þg ¼ �c

d�
K
½I�

L
J��

3ðx; x0Þ; (34)

where a; b; c ¼ 1; 2; 3, x and x0 belong to a three-
dimensional spatial manifold S. These canonical conjugate
variables can be discretized in analogy with Hamiltonian
lattice gauge theory. Given a graph � imbedded in S, there
exists a 2-cell complex dual to the graph �, such that given
a link f in the graph there is a unique 2-face Sf dual to the

link f. This 2-cell complex defines a polyhedral decom-
position of the spatial manifold 	. With this setting, we
associate a group variable gf 2 G to each link f, and

associate a Lie algebra variable BIJ
f to each Sf (the Lie

algebra variables are also labeled by f because of the one-
to-one correspondence between links and 2-faces). The
Poisson algebra of these discretized variables has the fol-
lowing standard expression:

fgf; gf0 g ¼ 0

fBIJ
f ; gf0 g ¼ �ff0T

IJgf

fBIJ
f ; B

KL
f0 g ¼ �ff0f

IJ;KL
MNB

MN
f ;

(35)

where fIJ;KLMN denotes the structure constant of LieðGÞ.
In our case, if we consider our boundary graph �v and
abstractly define the above Poisson algebra on �v, we find
that the bivector operator JIJf for each oriented link f (as a

right invariant vector) is the quantum operator representing
the Lie algebra variable BIJ

f (up to �iℏ), because of the

commutation relation between JIJf and gf on the boundary

Hilbert space.

III. BOUNDARY QUANTUM GEOMETRY

We now consider a modification of BF theory. The
modification is obtained by restricting the boundary space
H �v

by imposing a certain constraint. Let us first define

this constraint and then discuss the consequences and the
motivation of imposing it.

A. Geometric constraints

Consider a vertex v and its boundary graph �v. For each
link f, consider the Lie algebra element � given by

Bf ¼ ��f þ
1

�
�f; (36)

where the star indicates the Hodge dual in the Lie algebra.
Consider a node e of the boundary graph �v, and let f 2
@e be all oriented away from e. Then define
1. Simplicity constraint: there exists a unit vector ðneÞI

for each e such that, for all f 2 @e

ðneÞI��IJ
f ¼ 0: (37)

2. Closure constraint:X
f2@e

�IJ
f ¼ 0: (38)

These are the two constraints on which we focus. The main
motivation for considering these constraints is the fact that
the action of general relativity in the Holst formulation can
be written in the form

SGR½e;!� ¼
Z

B ^ F½!�; (39)

where ! is an SLð2;CÞ connection,

B ¼ ��þ 1

�
� (40)

and

�IJ ¼ eI ^ eJ; (41)

where eI is the tetrad 1-form. The restriction �IJ
f jB of � to

any spacelike boundary B satisfies the conditions

nI�
IJjB ¼ 0; (42)

where nI is the normal to the boundary and

d� ¼ 0: (43)

Equations (36)–(38) can be seen as a discrete consequence
of Eqs. (40), (42), and (43). Here, however, we take the
discretized Eqs. (36)–(38), as our starting point, and study
their consequences. A full discussion on the relation of
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these equations with continuum general relativity will be
considered elsewhere.2

The key consequences of these constraints is that they
allow � to determine a classical polyhedral geometry at
each node e of the boundary graph �v (see also [22]). The
following is a straightforward application of Minkowski’s
theorem [21]

Proposition III.1.—Given an F-valent node e in �v, let
F bivectors �f satisfy (37) and (38). Then there exists a

(possibly degenerate) flat convex polyhedron in R3 with F
faces, whose face area bivectors coincide with �IJ

f . The

resulting polyhedron is unique up to rotation and
translation.

Proof.—Without loss of generality, we fix the unit vector
ðneÞI ¼ ð1; 0; 0; 0Þ (we call this the time-gauge). The sim-
plicity constraint Eq. (37) reduces to

�0i
f ¼ 0: (44)

Hence the surviving components of�IJ
f are �ij

f . We denote

these nonvanishing components simply by �i
f ¼ 1

2 �
i
jkB

jk

or ~�f, in terms of which the closure constraint (38) readsX
f

~�f ¼ 0: (45)

Consider ~�f as vectors in R
3. Call j�fj the length of the

3-vector ~�f, and let ~nf :¼ ~�f=j�fj. We first suppose the

unit vectors ~nf are noncoplanar. Then we recall

Minkowski’s theorem [21], which states that whenever
there are F noncoplanar unit 3-vectors ~nf and F positive

numbers Af satisfying the conditionX
f

Af ~nf ¼ 0; (46)

then there exists a convex polyhedron in R3, whose faces
have outward normals ~nf and areas Af. And the resulting

polyhedron is unique up to rotation and translation.3

When we apply Minkowski’s theorem to our case, we
see that the existence of the unit 3-vectors ~nf and the

lengths j�fj, as well as the closure constraint Eq. (45),

together imply that there is a convex polyhedron in R3,
unique up to translation and rotation, such that each ~nf is

an outward normal of a face and each j�fj is an area of a

face. Such a polyhedron can be concretely constructed via
the Lasserre reconstruction algorithm [32]. Let ei be the

natural triad in R3, then the 3-vector ~�f can be expressed

as an oriented area,

�ij
f ¼

Z
f
ei ^ ej: (47)

Finally, the case of coplanar unit 3-vectors ~nf can be

obtained as a limit of the noncoplanar case, yielding de-
generate polyhedra.
This geometrical interpretation equips the variables e

and f with a further new meaning: they represent, respec-
tively, polyhedra in a four-dimensional space and faces of
these polyhedra. See Table I.
The geometrical interpretation in terms of tetrahedra

(and now polyhedra) has raised a lively discussion and it
is sometimes unpalatable to the more canonical-oriented
part of the community. Part of this discussion is based on
misunderstanding. The precise claim here is that if we take
the Hilbert space of the theory and we truncate it to a finite
graph (so that the observable algebra is also truncated),
then the truncated Hilbert space (with its observable alge-
bra) has a classical limit, and this classical limit can be
naturally interpreted as describing a collection of polyhe-
dra. This is well consistent with classical general relativity,
because classical general relativity as well admits trunca-
tions where the geometry is discretized. Notice also the
analogy with standard quantum field theory: Fock space
describes a quantized field, while its truncation to the
n-particle subspace describes discrete particles.
Let us now see how the constraints translate on the

variable B given in (36). We have easily:
Simplicity constraint:

CJ
f ¼ nI

�
�BIJ

f � s

�
BIJ
f

�
¼ 0: (48)

Closure constraint:

TABLE I. The different geometrical interpretations of the labels e and f.

2-complex K Boundary graph �v Boundary three-dimensional geometry

e edge node polyhedron

f face link face of polyhedron

2The Plebanski simplicity constraint implies the constraints
given here. However the reverse is not true in general, unless
‘‘shape-matching’’ conditions [22] are imposed on each face
shared by two polyhedra. We do not demand such shape-
matching conditions here. There is some evidence from the
large-j behavior of the generalized spinfoam model that non-
shape-matching amplitudes are suppressed in the large-j asymp-
totic [30,31].

3Imagine the polyhedron immersed in a homogeneous fluid.
Equation (46) multiplied by the pressure is the sum of the
pressure forces acting on the faces, which obviously vanishes.
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GIJ
e ¼ X

f2e

BIJ
f ¼ 0; (49)

where s ¼ þ1 for spinð4Þ and s ¼ �1 for SLð2;CÞ.
Consider a single polyhedron e, with the time-gauge

ðneÞI ¼ ð1; 0; 0; 0Þ, and introduce the rotation Lj
f
:¼#

1
2 �

j
klB

kl
f and boost Kj

f
:¼ B0j

f components of BIJ
f . Then

the simplicity constraint (48) becomes simply

~Kf ¼ s� ~Lf: (50)

The rotation generators are proportional to the boost gen-
erators. The closure constraint (49) can be written asX

f2@e

~Lf ¼ 0 (51a)

and
X
f2@e

~Kf ¼ 0; (51b)

where Eq. (51b) is redundant, by Eq. (50).
Let us now move to the quantum theory and impose the

two constraints (50) and (51a) weakly [9,13] on the quan-
tum states. This gives

Simplicity constraint:

hc ; ~Kfc
0i ¼ s�hc ; ~Lfc

0i: (52)

Closure constraint:X
f2@e

hc ; ~Lfc
0i ¼ 0

X
f2@e

hc ; ~Kfc
0i ¼ 0: (53)

These equations give a subspace H E
�v

(respectively H L
�v

in the Lorentzian case) of the boundary Hilbert spaceH �v

of BF theory, where the constraints hold weakly. That is,
we defineH E

�v
as the subspace where these equations hold

for any two states c and c 0 in a dense domain, for all
nodes s of �v. We do not mean H E

�v
is selected as the

maximal weak solution to the geometric constraints; in
fact, it may not be.

B. New boundary Hilbert space: Euclidean theory

Let us now construct H E
�v
. Here we first define H E

�v

and then prove that it solves the geometric constraint. We
begin with some preliminaries on the structure of the BF
boundary Hilbert space. In the Euclidean theory, this space
has the following decomposition:

H �v
¼ O

f

L2½spinð4Þ� ¼ O
f

�M
�f

V�f
� V�

�f

�
; (54)

where V� denote the representation space for the spin(4)

irrep � and V�
� is the representation space for the spin(4)

adjoint irrep ��. For each face f, V�f
and V�

�f
transform in

a gauge transformation (26) under the action of �sf �tf ,

where sf and tf are the initial and final points of the link f.

By regrouping all representation spaces that transform

under the action of the same �e, namely, by regrouping
the representation spaces associated to the same vertex e of
�v we can rewrite the decomposition in the form

H �v
¼ M

f�fg

O
e

O
f2@e

Vðe;fÞ
�f

; (55)

where

V
ðsf;fÞ
�f

:¼ V�f
V
ðtffÞ
�f

:¼ V�
�f
: (56)

Therefore the sum over colorings �f associates a represen-

tation space O
f2@e

Vðe;fÞ
�f

(57)

to each vertex e. This space can be seen as the quantization
of the shapes of a polyhedron with faces having fixed areas,
determined by the coloring �f [22].

Since spinð4Þ � SUð2Þþ � SUð2Þ�, a unitary irrep of
spinð4Þ is given by a tensor product of two SUð2Þ irreps.
V� ¼ Vjþ � Vj� with spins jþ and j�. We can characterize

� by � ¼ ðp; kÞ, where
p ¼ jþ þ j�; k ¼ jþ � j�: (58)

The SUð2Þ� subgroups of spinð4Þ are its canonical self-

dual and antiself-dual components, generated by ~L� ~K,
and should not be confused with the (noncanonical) SUð2Þ
subgroup generated by ~L, used to pick a time-gauge. If we
decompose V� ¼ Vp;k in irreducibles of SUð2Þ, we have

Vp;k ¼ Vjþ � Vj� ¼ Mp
j¼jkj

Vp;k
j : (59)

We now define H E
�v
. In the representation space Vp;k,

pick the Vp;k
j subspace (in the decomposition above),

where j is defined by

p ¼ jþ r; (60)

k ¼ �j� r: (61)

By doing so, we obtain the subspace V�jþr;j�r
j in each Vp;k.

By restricting in this manner all the V�f
subspaces in (54)

we obtain a subspace of H �v
. We define the non-gauge-

invariant new boundary space to be this subspace. That isM
fjf;rfg

O
e

O
f2e

ðVjfþrf;�jf�rf
jf

Þðe;fÞ; (62)

where the sum is over non-negative half-integers jf and rf.

The possible coloring in H E
�v

are labeled by the two non-

negative half-integer quantum numbers jf and rf. The

quantum number jf characterizes the SUð2Þ spin of the

representation and is easily identified with the correspond-
ing LQG quantum number which is associated to each link
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of the graph. rf is a new quantum number, also associated

to each link of the graph.
Notice also that (60) restricts also the possible values of

j and r to those for which p ¼ �jþ r is half-integer. This
awkward feature of the Euclidean case disappears in the
Lorentzian theory.

We can translate all this in terms of the ðjþ; j�Þ notation.
This gives

jþ ¼ 1þ �

2
j and j� ¼ 1� �

2
jþ r (63)

and the modified �-simplicity relation 4

ð1� �Þjþ ¼ ð1þ �Þðj� � rÞ: (67)

Next, we define the gauge-invariant new boundary
space. Consider the diagonal actions of h 2 SUð2Þ on
each product representation space, Eq. (57), at each e.

We denote the invariant subspaces under this action by

I
fjfg
e ¼ InvSUð2Þ

�O
f2e

ðVjfþrf;�jf�rf
jf

Þðe;fÞ
�
: (68)

The gauge-invariant new boundary Hilbert space is defined
by

H E
�v

:¼ M
fjf;rfg

O
e

I
fjfg
e : (69)

An orthonormal basis in H E
�v

can be constructed as

follows. Given a polyhedron e with F faces, we assign at

e an F-valent SUð2Þ intertwiner iA1���AF
e associated with F

SUð2Þ irreps jf, f ¼ 1; � � �F. An orthonormal basis is then

defined by the following functions on ½spinð4Þ�jEð�vÞj:

TE
�v;jf;rf;ie

ðgfÞ ¼
Y
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ �Þjf þ 1�½ð1� �Þjf þ 2rf þ 1�

q Y
e

�
iAe1���AeF
e

Y
f2e

C
mþ

ef
m�

ef

Ae1

�

�Y
f

½�nþefnþe0f�n�efn�e0f �Y
ðe;fÞ

½Dðð1þ�Þ=2Þjf
mþ

ef
nþ
ef

ðgþefÞDðð1��Þ=2Þjfþrf
m�

ef
n�
ef

ðg�efÞ�: (70)

Here gef ¼ ðgþef; g�efÞ 2 spinð4Þ, DjðgÞ is the representa-
tion matrix of the SUð2Þ irrep j, and C

mþ
ef
m�

ef

Aef
denotes the

Clebsch-Gordan coefficient (Af ¼ �kf; � � � ; kf)
�
1þ �

2
jf;

1� �

2
jf þ rf; jf; Aef

����������������1þ �

2
jf;m

þ
ef;

1� �

2
jf þ ref; m

�
ef

�
: (71)

�
n�
ef
n�
e0f are the unique 2-valent SUð2Þ intertwiners with

representations jþf ¼ 1þ�
2 jf and j

� ¼ 1��
2 jf þ rf, respec-

tively. Thus TE
ð�v;jf;rf;ieÞ is essentially a function over gf ¼

gefgfe0 . Note that if we ask the quantum numbers rf to be
some fixed integers, then the spin-network functions
TE
ð�v;jf;rf;ieÞ can be equivalently considered as SUð2Þ spin-

network functions, thus the boundary Hilbert space is

spanned by SUð2Þ spin-networks, as in the case of LQG
kinematical Hilbert space.
We are now ready to prove our first main result.
Theorem III.2.—The Hilbert space H E

�v
solves the geo-

metric constraint (52) and (53), with s ¼ 1.
Proof.—The closure constraint (53) follows immedi-

ately since the states in H E
�v

are invariant under the

diagonal SUð2Þ gauge transformation ðgþef; g�efÞ �
ðhegþef; heg�efÞ at each e (the constraint is even solved

strongly). The nontrivial proof is for the simplicity con-
straint (52). Define the self-dual/antiself-dual operators

~J �
f
:¼ 1

2
ð ~Lf � ~KfÞ; (72)

then (52) reads

ð1� �Þhc ; ~Jþf c 0iE � ð1þ �Þhf; ~J�c c 0i ¼ 0: (73)

The operators ~J�f on L2ðspinð4ÞÞ act on individual Vðe;fÞ
�f

(see e.g. Sec. 32.2 of [4]). Therefore we only need to show

that in each Clebsch-Gordan subspace V�¼ðjþ;j�Þ
j , with

jþ 	 1þ�
2 and j� 	 1��

2 kþ r, the following relation holds

for all pairs �, � of vectors:

ð1� �Þh�j ~Jþj�i � ð1þ �Þh�j ~J�j�i ¼ 0; (74)

where hji is the Hermitian inner product on the spinð4Þ irrep
V�¼ðjþ;j�Þ.
To evaluate these matrix elements, we use the explicit

representation of the vectors as multispinors. The vectors

4The spinð4Þ irreps for a given Barbero-Immirzi parameter �,
should be such that

r ¼ ð1þ �Þj� � ð1� �Þjþ
1þ �

(64)

is a non-negative integer, and satisfy

0 
 r 
 jþ þ j� � jjþ � j�j (65)

implying

j1� �j
1þ �

jþ 
 j� 
 jþ or jþ 
 j� 
 3þ �

1þ �
jþ: (66)
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in the SUð2Þ irrep Vj can be represented as totally sym-

metric spinorial tensors with 2j spinor indices. The gen-
erators of SUð2Þ are then Pauli matrices 	A

i B acting on
each index, followed by a sum. A state j�i in H j in the

Clebsch-Gordan subspace Vjþ;j�
j � Vjþ � Vj� can be ex-

pressed by (Ai; Bi ¼ 1; 2)

�A1...A2jþ ;B1...B2j� ¼�A1B1 ...�ArBr
Arþ1...A2jþ ;Brþ1...B2j� ; (75)

with complete symmetrization of all ðA1; . . .A2jþÞ indices
understood and the same for the ðB1; . . . ; B2j�Þ indices. The
action of ~J� on the state � in (75), can then be computed
explicitly, giving

J�i�ðA1...A2jþÞðB1...B2j� Þ ¼ X2j�
p¼1

	
Bp

i ~Bp
�ðA1...A2jþÞðB1... ~Bp...B2j� Þ

¼ Xr
p¼1

	
Bp

i ~Bp
�A1B1 . . . �Ap

~Bp . . . �ArBr
ðArþ1...:A2jþBrþ1...B2j�Þ

þ X2j�
p¼rþ1

	
Bp

i ~Bp
�A1B1 . . . �ArBr
ðArþ1...A2jþBrþ1... ~Bp...B2j�Þ

¼ � Xr
p¼1

	
Ap

i ~Ap
�A1B1 . . . �

~ApBp . . . �ArBr
ðArþ1...A2jþBrþ1...B2j�Þ

þ X2j�
p¼rþ1

	
Bp

i ~Bp
�A1B1 . . . �ArBr
ðArþ1...A2jþBrþ1... ~Bp...B2j�Þ; (76)

where in the third step, we use the identity 	B
i ~B

�A
~B ¼ �	A

i ~A
�
~AB coming from the SLð2;CÞ invariance of �AB. Then the

matrix elements of ~J� are

h�jJ�ij�i ¼ � Xr
p¼1

	
Ap

i ~Ap
�ðA1...Ap...A2jþ ÞðB1...B2j� Þ�

ðA1... ~Ap...A2jþ ÞðB1...B2j� Þ

þ X2j�
p¼rþ1

	
Bp

i ~Bp
�A1B1

. . . �ArBr
c ðArþ1...A2jþBrþ1...Bp...B2j�Þ�A1B1 . . . �ArBr
ðArþ1...A2jþBrþ1... ~Bp...B2j�Þ

¼ ð�rÞ	A2jþ
i ~A2jþ

�ðA1...A2jþÞðB1...B2j� Þ�
ðA1... ~A2jþ ÞðB1...B2j� Þ

þ ð2j� � rÞ	A2jþ
i ~A2jþ

�A1B1
. . . �ArBr

c ðArþ1...A2jþBrþ1...B2j� Þ�A1B1 . . . �ArBr
ðArþ1... ~A2jþBrþ1...B2j�Þ

¼ 2ðj� � rÞ	A2jþ
i ~A2jþ

�ðA1...A2jþÞðB1...B2j�Þ�
ðA1... ~A2jþÞðB1...B2j� Þ: (77)

Similarly,

h�jJþij�i ¼ 2jþ	
A2jþ
i ~A2jþ

�ðA1...A2jþÞðB1...B2j� Þ�
ðA1... ~A2jþ ÞðB1...B2j� Þ: (78)

Then Eq. (74) follows immediately

ð1� �Þh�jJðþÞij�i � ð1þ �Þh�jJð�Þij�i
¼ 2½ð1� �Þjþ � ð1þ �Þðj� � rÞ�	A2jþ

i ~A2jþ
�ðA1...A2jþÞðB1...B2j�Þ�

ðA1... ~A2jþÞðB1...B2j�Þ ¼ 0; (79)

which proves the simplicity constraint, Eq. (52).
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C. New boundary Hilbert space: Lorentzian theory

Now we turn to the case of G ¼ SLð2;CÞ. In this case
the decomposition of the Hilbert space reads

H �v
¼ O

f

L2ðSLð2;CÞ; d�HÞ

¼ O
f

M
kf¼N=2

Z �

R
dpfðp2

f þ k2fÞVðkf;pfÞ � V�
ðkf;pfÞ;

(80)

where kf are still non-negative half-integers but pf 2 R is

now a real number. Here
R� denotes a direct integral

decomposition [33] (see also chapter 30 of [4]). Vðk;pÞ
denotes the unitary irrep of SLð2;CÞ in the principal series,
and V�

ðk;pÞ denotes the adjoint irrep. We can then proceed as

in the Euclidean theory. The BF boundary Hilbert space
reads

H �v
¼M

fkfg

Y
f

Z �

R
dpf

Y
f

ðp2
fþk2fÞ

O
e

O
f2e

Vðe;fÞ
ðkf;pfÞ: (81)

The representation space Vðk;pÞ is infinite-dimensional and

can be decomposed into SUð2Þ irreps (irreps of the sub-

group generated by ~L), i.e.

Vðk;pÞ ¼
M1
j¼k

Vk;p
j : (82)

This time we introduce the two parameters j and r by

p ¼ �j
jþ 1

j� r
; (83)

k ¼ j� r; (84)

and we define the new boundary space by restricting each

Vðk;pÞ to its V
k;p
j subspace satisfying (83). This time p does

not need to be a half-integer, therefore (83) can be solved
for any j. The new quantum numbers associated to each
face are jf and rf, each being a non-negative half-integer.

As before, we consider the diagonal SUð2Þ action at each
e for all he 2 SUð2Þ. The invariant subspace under this
action is

I
jf
e ¼ InvSUð2Þ

�O
f2e

ðVðð�jfðjfþ1ÞÞ=ðjf�rfÞÞ;jf�rf Þðe;fÞ
�
: (85)

The new boundary Hilbert space is defined by a product of
these invariant subspaces over all the polyhedra e, followed
by a sum over all the possible jf and rf,

H L
�v

:¼ M
frf;jfg

O
e

I
jf
e ; (86)

where jf and kf are non-negative half-integers with con-

straints jf 
 rf. H L
�v

is a direct sum over a set of sub-

spaces contained in the fiber Hilbert spaces of H �v
[see

Eq. (80))] and thus has well-defined inner product.
An orthonormal basis is constructed as follows.

Consider the oriented boundary graph �v. Given an
F-valent vertex/polyhedron e, we assign it an intertwiner

iA1���AF
e associated with F spins jf, f ¼ 1; � � � ; F

ie 2 Inv

2
64 O

ðe;fÞ!
outgoing

Vjf

O
ðe;fÞ!

incoming

V�
jf

3
75: (87)

An orthogonal basis in H L
�v

is given by the following

functions (distributions) on SLð2;CÞ:

TL
ð�v;jf;rf;ieÞðgfÞ¼

Y
e

iAe1���AeF
e

� Y
ðe;e0Þ

�
ðð�jfðjfþ1ÞÞ=ðjf�rfÞ;jf�rfÞ
jfAef;jfAe0f

ðgfÞ; (88)

where�ðp;kÞ denotes the representation matrix in SLð2;CÞ
irrep labeled by ðp; kÞ. All the Aef indices of the represen-

tation matrices are contracted with the Aef indices of the

intertwiners.
The new boundary Hilbert space H L

�v
is not a subspace

of the BF boundary Hilbert spaceH �v
, because TL

ð�v;jf;rf;ieÞ
are constructed by �ðk;pÞ which are distributions. In order
to check the geometric constraints, Eqs. (52) and (53) on
H L

�v
, we have to compute the (dual) action of the bivector

operator on the distributions TL
ð�v;jf;kf;ieÞ. Fortunately the

Hilbert space L2ðSLð2;CÞÞ has the structure of direct in-
tegral decomposition [see Eq. (80)]. Then the (dual) action

of the bivector operators ~̂K and ~̂L gives the actions of Lie

algebra generators ~L and ~K on each fiber Hilbert space
Vðk;pÞ.
We are now ready to prove our second main result
Theorem III.3.—The Hilbert space H L

�v
solves the geo-

metric constraint (52) and (53) with s ¼ �1.
Proof.—Closure constraint follows immediately and

strongly by the diagonal SUð2Þ invariance at each polyhe-

dron e. We only need to consider a single irrep Vðk;pÞ (p ¼
�jðjþ1Þ

k ) because ~L and ~K leave it invariant and different

ðp; kÞ’s label orthogonal subspaces in H L
�v
.

A canonical basis in Vðp;kÞ is obtained diagonalizing the

Casimir operators J � J, �J � J, L � L, and L3. The basis can
be denoted jðp; kÞ; j;mi or simply as jj; mi since we only
consider a single irrep. On this canonical basis, the gen-
erators act in the following way [34]:
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L3jj;mi¼mjj;mi;
Lþjj;mi¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmþ1Þðj�mÞ

q
jj;mþ1i;

L�jj;mi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj�mþ1Þ

q
jj;m�1i;

K3jj;mi¼��ðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2�m2

q
jj�1;mi��ðjÞmjj;mi

þ�ðjþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ1Þ2�m2

q
jjþ1;mi;

Kþjj;mi¼��ðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðj�m�1Þ

q
jj�1;mþ1i

��ðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðjþmþ1Þ

q
jj;mþ1i

��ðjþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmþ1Þðjþmþ2Þ

q
jjþ1;mþ1i;

K�jj;mi¼�ðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðjþm�1Þ

q
jj�1;m�1i

��ðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj�mþ1Þ

q
jj;m�1i

þ�ðjþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mþ1Þðj�mþ2Þ

q
jjþ1;m�1i;

where

L� ¼ L1 � iL2; K� ¼ K1 � iK2 (89)

and

�ðjÞ ¼ i

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2 � k2Þðj2 þ p2Þ

4j2 � 1

s
; �ðjÞ ¼ kp

jðjþ 1Þ : (90)

Using these equations, one can check directly that

hj;m0jðKi þ �ðjÞLiÞjj; mi ¼ 0; (91)

which is nothing but

hj;m0jðKi þ �LiÞjj; mi ¼ 0 (92)

because pk ¼ �jðjþ 1Þ.

D. Quantum polyhedral geometry

In this section we show that the boundary Hilbert space
H E

�v
and H L

�v
carries a representation of quantum poly-

hedral geometry, consistent with the classical polyhedral
geometry that we have discussed in Sec. III A. Recall that
we defined two different bivectors JIJef and �IJ

ef related by

BIJ
f ¼

�
��f þ

1

�
�f

�
IJ

ef
: (93)

Theorem III.1 states that classically the geometric con-
straint of BIJ

f implies that BIJ
f is the area bivector of a

face f of a polyhedron e. On the BF boundary Hilbert
space H �v

the bivector BIJ
f is quantized to be the left

invariant vector field JIJf . Inverting the above equation, we

can write the quantum operator corresponding to � (which
we indicate with the same symbol) as

�IJ
f
:¼ �2

�2 � s

�
�JIJef �

1

�
JIJef

�
: (94)

Give a polyhedron/vertex e of the boundary, if we choose
the unit vector ðneÞI ¼ ð1; 0; 0; 0Þ,5 then the simplicity

constraint implies the vanishing of �0j
f for each face f.

That is, the matrix elements of the operators �0i
f vanish on

H E
�v

and H L
�v
, thus we consider them as vanishing op-

erators on H E
�v

or H L
�v
. The nontrivial operator on H E

�v

and H L
�v

is

�i
f 	

1

2
�ijk�

jk
f ¼ �2

�2 � s

�
K̂i

f �
1

�
L̂i
f

�
: (95)

Because of the quantum simplicity constraint (52), we can

identify K̂i
ef with s� ~Lef on the dense domain of the new

boundary Hilbert space, as far as the matrix elements of the
operators are concerned. Thus, in the sense of their matrix
element

~� f ¼ s� ~Lf: (96)

By the SUð2Þ gauge invariance, thenX
f2@e

�̂f ¼ 0 (97)

(with all f’s oriented out of e.) Consider now a family of
coherent states that makes the spread of these operators
small. These coherent states are then characterized by

expectation values of ~�f that satisfy the equation above.

By Minkowski theorem, they determine a polyhedron e at

each vertex. ~�ef represents the normal to face area of the

polyhedron e, normalized so that its norm is the area of the
face [22]. The area operator for a face f (in units that
8�‘2p ¼ 1 [1]) is then

Âf ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L̂i
efL̂

i
ef

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðjf þ 1Þ

q
: (98)

It is clear that the area operator does not depend on the
orientation of the face. Thus the two areas of the two faces
of the two polyhedra e and e0 that are determined by the
same face f are equal. (Recall that one of the two is
determined by the left invariant vector field J and the other
by the right invariant vector field R, since Rf ¼ Jf�1 .)

At fixed values of the areas, the shapes of the polyhedra
are described by the intertwiner spaces at each e. We recall
that an over-complete basis in these spaces is formed by the
Livine-Speziale coherent intertwiners [10]

5Although it seems the boundary states depend on the normal
vectors to the polyhedra, the partition functions are invariant
under local gauge transformations in the bulk (see [35]). On the
boundary, there exists a manifestly Lorentz covariant formalism,
given by a certain class of ‘‘projected spin networks’’ [36].
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jj ~j; ~ni :¼
Z
SUð2Þ

d�HðgÞ
Y
f�e

Djf ðgÞjjf; nfi: (99)

These can be labeled [16] by the elements
in �fS

2=SLð2;CÞ. Thinking of S2 as the compacted com-

plex plane of zf, a coherent intertwiner is determined by F

quantum area jf and F� 3 complex cross ratios ~Z

Zk ¼ ðzkþ3 � z1Þðz2 � z3Þ
ðzkþ3 � z3Þðz2 � z1Þ ; (100)

which are invariants of SLð2;CÞ. The space of these cross
ratio �fS

2=SLð2;CÞ can be identified [37] with the

Kapovich and Millson phase space SF [38], which is also
the space of shapes of polyhedra at fixed areas jf. Thus, we

can label the coherent intertwiner by k ~j; ~Zi, in variables
that relate directly to the shape of the polyhedron. The
resolution of identity in the intertwiner space can be ex-
pressed as a integral over the Kapovich and Millson phase
space SF, i.e.

1Ið ~jÞ ¼
Z
SF

d�ð ~ZÞk ~j; ~Zih ~j; ~Zk; (101)

where the explicit expression of the measure d�ð ~ZÞ is
given in [16]. Finally the volume operator for a polyhedron
can be defined as in [22], in terms of the classical volume
of a polyhedron and the coherent intertwiner.

Notice that the quantum polyhedral geometry does not
depend on the quantum numbers rf. The quantum numbers

rf do not affect the quantum 3-geometry on the boundary.

IV. AMPLITUDES

A. Vertex amplitude: Euclidean theory

If we take BF theory and restrict all vertex-boundary
spaces to H E

�v
(or H L

�v
) we obtain a new dynamical

model. Here we give explicitly its vertex and face ampli-
tude. Let us start with the Euclidean case. The BF vertex
amplitude can be written in the holonomy representation
(each edge joining at v is uniquely determined by a vertex/
polyhedron e on the boundary) and reads

AvðgfÞ ¼
X
j�
f
;i�e

Y
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþf þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�f þ 1

q

� Avðjþf ; j�f ; iþe ; i�e ÞTBF
�v;j

�
f
;i�e
ðgfÞ: (102)

Here

Avðjþf ; j�f ; iþe ; i�e Þ ¼ tr

�O
e2v

Iye
�
; (103)

where I ¼ ðiþ; i�Þ and we assume the valence of v is n.
TBF
ð�v;j

�
f
;i�e Þ 2 H �v

is a spinð4Þ spin-network function on the
boundary graph �v

TBF
�v;j

�
f
;i�e
ðgfÞ :¼ T�v;j

þ
f
;iþe ðgþf ÞT�v;j

�
f
;i�e ðg�f Þ; (104)

where

T�v;jf;ieðgfÞ ¼
Y
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jf þ 1

q Y
e

½ðieÞfmefg�

� Y
ðe;fÞ

½Djf
mefnef ðgefÞ�

O
f

½�nefne0f �: (105)

The vertex amplitude Eq. (102) is a distribution of the
boundary Hilbert space H �v

, i.e., there is a dense domain

of H �v
spanned by the spin-network functions TBF

ð�v;j
�
f
;i�e Þ,

such that Avðgee0 Þ lives in the algebraic dual of this dense
domain. After imposing the geometric constraint, we re-
strict ourself to the subspace H E

�v
. Such a restriction

results in a (dual) projection of the vertex amplitude Av,
i.e., we obtain

AE
vðgfÞ ¼

X
jf;rf;ie

hT�v;jf;rf;ie ; AviTE
�v;jf;rf;ie

ðgfÞ; (106)

where T�v;jf;rf;ie is a orthonormal basis of H E
�v

[recall

Eq. (70)], and h; i is the inner product of the BF boundary
Hilbert space H �v

. The evaluation of AE
v is straightfor-

ward,

AE
vðgfÞ ¼

X
jf;rf;ie

Y
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþf þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�f þ 1

q

� X
iþe ;i�e

Avðjþf ; j�f ; iþe ; i�e Þ

�Y
e

fie
iþe ;i�e

TE
�v;jf;rf;ie

ðgee0 Þ; (107)

where we write jþ 	 1þ�
2 j and j� 	 1��

2 jþ r and for

each F-valent boundary polyhedron/vertex

fie
iþe ;i�e

¼ iAe1���AeF
e C

mþ
e1m

�
e1

Ae1
� � �Cmþ

eFm
�
eF

AeF
ðiþe Þmþ

e1
���mþ

eF

�ði�e Þm�
e1���m�

eF
: (108)

Then in the ðjf; rf; ieÞ-spin-network representation, the

vertex amplitude is

AE
vðjf; rf; ieÞ ¼

X
iþe ;i�e

Avðjþf ; j�f ; iþe ; i�e Þ
Y
e

fie
iþe ;i�e

; (109)

which nontrivially depends on the quantum numbers rf via

the definition of j�f .
There is another way to write this vertex amplitude in

ðjf; rf; ieÞ-spin-network representation. Define a map I
frfg
E

from SUð2Þ intertwiners to spinð4Þ intertwiners, depending
on the quantum numbers rf. Given an F-valent SUð2Þ
intertwiner ie with spins k1; � � � ; kF, let
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I
rf
E : ie� I

rf
E ðieÞ¼ iAe1���AeF

e C
nþe1n

�
e1

Ae1
���CnþeFn

�
eF

AeF

Z
dgþdg�

�Y
f2e

Dðð1þ�Þ=2Þjk
mþ

ef
nþ
ef

ðgþÞDðð1��Þ=2Þjfþrf
m�

ef
n�
ef

ðg�Þ:

(110)

Given an edge e 2 EðKÞ, we associate an intertwiner

I
frfg
E ðieÞ to the initial point of the edge e, and a dual

intertwiner I
frfg
E ðieÞy to the final point of e. Then the vertex

amplitude AE
v can be written as a spinfoam trace of the

intertwiners I
frfg
E ðieÞ

AE
vðkf; rf; ieÞ ¼ tr

0
@O

e2v

I
frfg
E ðieÞy

1
A; (111)

where we have again assumed that all the edges joining at v
are oriented toward v.

B. Vertex amplitude: Lorentzian theory

The Lorentzian vertex amplitude can be defined in the
same manner. The SLð2;CÞ BF vertex amplitude is ex-
pressed in the holonomy representation as a distribution,

AvðgfÞ ¼
X
kf;Ie

Z Y
f

dpf

Y
f

ðk2f þ p2
fÞAvðpf; kf; IeÞ

� TBF
�v;ðk;pÞf;ðl;nÞeðgfÞ; (112)

where

Avðpf; kf; IeÞ ¼ tr

�O
e

Iye
�

(113)

and

TBF
�v;pf;kf;Ie

ðgfÞ ¼
Y
e

Ifjefg;fmefg;Ie
Y
f

�
pf;kf
jefmef;je0fme0f

ðgfÞ:

Recall that we always assume the vertex amplitude is
associated with an integrable spin-network graph and
thus is finite after regularization [26].

We can project Av on the new boundary Hilbert space
H L

�v
, in the same way as the Euclidean case,

AL
vðgfÞ ¼

X
jf;rf;ie

Y
f

��2j2fðjf þ 1Þ2
ðjf � rfÞ2

þ ðjf � rfÞ2
�

�hTL
�v;jf;rf;ie

; AviTL
�v;jf;rf;ie

ðgee0 Þ; (114)

where h; i is the inner product on the BF boundary Hilbert
space. The states

TL
�v;jf;rf;ie

ðgfÞ¼
Y
e

iAe1���AeF
e

Y
ðe;e0Þ

�
ðð�jfðjfþ1ÞÞ=ðjf�rfÞÞ;jf�rf
jfAef;jfAe0f

ðgfÞ

form an orthogonal basis in H L
�v
. By using the orthogo-

nality relation

Z
SLð2;CÞ

dg�ðp;kÞ
jm;lnðgÞ�ðp0;k0Þ

j0m0;l0n0 ðgÞ

¼ 1

k2 þ p2
�kk0�ðp� p0Þ�jj0�ll0�mm0�nn0 ; (115)

it is straightforward to show that in the ðjf; rf; ieÞ-spin-
network representation, the resulting vertex amplitude
reads

AL
vðjf; kf; ieÞ ¼ hTL

ð�v;jf;kf;ieÞ; Avi

¼ X
Ie

Av

��
�jfðjf þ 1Þ
jf � rf

; jf � rf

�
; Ie

�Y
e

fieIe ;

(116)

where

fieIe
:¼ i

fAefg
e Ifjfg;fAefgIe

�
�jfðjf þ 1Þ
jf � rf

; jf � rf

�
: (117)

As expected, the vertex amplitude AL
v obtained in this

manner is divergent, and we need a regularization proce-
dure. To this aim, rewrite the vertex amplitude in terms of
spinfoam trace as we did for the Euclidean theory.

We define a formal map I
rf
L from SUð2Þ intertwiners

into SLð2;CÞ intertwiners, depending on the quantum
numbers rf

I
rf
L ðieÞfj0fg;fA0

f
g ¼

Z
dg

Y
f�e

�
ððð�jfðjfþ1ÞÞ=ðjf�rfÞÞ;jf�rfÞ
j0
f
A0
ef
;jfAef

� ðgÞ � ifAefg
e ;

which gives AL
v by a spinfoam trace

AL
vðjf; rf; ieÞ ¼ tr

�O
f2e

I
frfg
L ðief Þy

�
: (118)

To regularize the vertex amplitude AL
v it is sufficient to

remove one of the dg integrations (which is redundant) at
each vertex. With this, the vertex amplitude AL

v is finite.

C. Face amplitude and partition function

It is argued in [39] that the face amplitude of a spinfoam
model is determined by three inputs: (a) the choice of the
boundary Hilbert space, (b) the requirement that the com-
position law holds when gluing two complexesK andK0,
and (c) a particular locality requirement (see [39] for the
details of the three assumptions). These requirements are
implemented if the partition function has the form (22). By
inserting the vertex amplitudes that we have defined into
this expression, we complete the definition of an Euclidean
and a Lorentzian model.
Expanding the delta function in representation, we

obtain
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ZE;LðKÞ ¼ X
jf;rf;ie

Y
f

dE;Lðjf; rfÞ
Y
v

AE;L
v ðjf; rf; ieÞ;

where the Euclidean face amplitude is

dEðjf; rfÞ ¼ ½ð1þ �Þjf þ 1�½ð1� �Þjf þ 2rf þ 1�
(119)

and the Lorentzian one is

dLðjf; rfÞ ¼
�2j2fðjf þ 1Þ2
ðjf � rfÞ2

þ ðjf � rfÞ2; (120)

where the dimension factors AE
f
:¼ ½ð1þ �Þkf þ 1�½ð1�

�Þkf þ 2rf þ 1� and AL
f
:¼ ½k2f þ �2j2fðjf þ 1Þ2=k2f� are

the face amplitudes for the Euclidean and Lorentzian
theories. In the Euclidean case, the face amplitude is differ-
ent from the one obtained in [39] and coincides with the
ones deduced from the BF partition function. In [39] the
face amplitude obtained is the dimension of SUð2Þ unitary
irrep i.e. 2jf þ 1. The origin of the difference is the dif-

ference in the boundary Hilbert space. The one here, H E
�v

or H L
�v
, has an additional degree of freedom with respect

to the space L2ðSUð2ÞLÞ of [39].

V. THE NEW DEGREE OF FREEDOM AND
RELATION TO QUANTUM GR

We have studied the quantum theory following from
imposing the constraints (50) and (51a) weakly, and we
have shown that this leads to a new degree of freedom,
represented by the quantum number rf. Does this degree of

freedom have a physical interpretation relevant for quan-
tum gravity? There are some reasons to suspect a negative
answer. Let us consider the Euclidean theory for simplicity.

First, we have seen that rf does not affect the boundary

geometry. We expect all gravitational degrees of freedom
to be captured by the geometry. Therefore the theory
we have obtained has extra degrees of freedomwith respect
to general relativity. This can also be seen as following. In
the classical theory we have the well known
(‘‘left area ¼ right area’’) relation

j�þj2 ¼ j��j2; (121)

which implies

j1� �jjþ ¼ j1þ �jj�; (122)

which in turns implies rj ¼ 0. This might indicate that the

quantum theory of gravity that has GR as a classical limit is
the one with rj ¼ 0. Alternatively, however, we might

require something weaker; for instance, we can still obtain
states compatible with GR in the classical limit by demand-
ing that

lim
j�!1

r

j�
¼ 0 for 0< �< 1

lim
j�!1

r

j�
¼ 2 for � > 1

(123)

in the large-j asymptotic regime. This would make the
quantum number relevant for the microphysics and not
affecting the classical limit. On the other hand, this choice
is a bit artificial.
Furthermore, in the classical theory the area of a face

can be equally computed in the time-gauge as A4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�fÞIJð�fÞIJ

q
or as A3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
�i

f�
i
f

q
. Classically the two

areas A4 and A3 are equal after the simplicity constraint is
imposed, and they indeed are equal in the large-j limit after
quantization [9]. Let us denote the condition A4 ¼ A3 the
consistency constraint. If we ask A4 and A3 to be equal as
operators in the quantum level on the boundary Hilbert
space (as in the case of [9]), then again this fixes rf.

Notice that with an appropriate factor ordering rf could

be fixed, but to a value different from zero. Doing so will
reduce the role of rf from that of a quantum number

(different in each state) to that of a single fixed parameter
in the definition of the theory. The actual value of rf fixed

would depend on how the operators corresponding to A4

and A3 are ordered. In this sense rf is related to the

operator-ordering ambiguities of the consistency con-
straint. Once an order is chosen, there is no more indepen-
dent quantum number rf in the theory. With a suitable

ordering, we can fix rf ¼ 0

For these consideration, it may be reasonable to suspect
that the weak imposition of the constraints (50) and (51a)
alone may in fact be too weak to properly define quantum
general relativity, in the same sense in which the strong
imposition of these constraints in the old Barrett-Crane
model was too strong. There is a simple way out, which
is to impose the (noncommuting) simplicity constraints
weakly, and the diagonal simplicity constraint [for instance
in the form (121)] strongly. With this choice of constraints,
properly ordered, we obtain rf ¼ 0, the boundary space

isometric to the LQG state space in the boundary,6 and
precisely the new models amplitudes. Finally, the gluing
conditions give the SUð2Þ face amplitude. Thus, we re-
cover precisely the quantum gravity theory described for
instance in [1].
Note that one could also take the point of view that the

quantum numbers rf label different possible definitions of

6Note that the boundary space with rf ¼ 0 of Euclidean theory
is only isomorphic to a subspace of the kinematical Hilbert space
H Kin of canonical LQG and cannot completely describe all the
quantum states for the fields on the boundary S, since the spins
in the summation cannot cover all the SUð2Þ spins, for some
values of Barbero-Immirzi parameter �. However, this situation
only appears in the Euclidean theory but disappears in the
Lorentzian theory.
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the spinfoam models. In each of these spinfoam models,
the boundary Hilbert space solves the simplicity constraint
weakly. And for different choices of rf the boundary

Hilbert spaces are isometric to each other.

VI. CONCLUSION AND OUTLOOK

By imposing the simplicity constraints on a quantum BF
theory defined on an arbitrary cellular complex, we have
obtained a theory which: (1) is well defined both in the
Euclidean and the Lorentzian context; (2) generalizes the
existing spinfoam model to general 2-cell complexes,
along the lines suggested by [20]; and (3) has boundary
states that have a natural interpretation in the semiclassical
limit as a polyhedral geometry on the boundary. In par-

ticular, we have shown that the KKL extension of the
spinfoam formalism still satisfies the simplicity conditions
weakly.
The weak simplicity constraint allows a space

larger than the one of LQG to emerge. The physical
interpretation of the additional degree of freedom is un-
clear. It can be eliminated by imposing the noncommuting
simplicity constraints weakly and the diagonal one
strongly.
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[22] E. Bianchi, P. Doná, and S, Speziale, Phys. Rev. D 83,
044035 (2011).

[23] S. Alexandrov (private communication).
[24] H. Ooguri, Mod. Phys. Lett. A 7, 2799 (1992).
[25] W. Ruhl, The Lorentz Group and Harmonic Analysis

(Benjamin, New York, 1970); I.M. Gel’fand, M. I.
Graev, and N.Ya. Vilenkin, Integral Geometry and
Representation Theory Generalized Functions Vol. 5
(Academic, New York, 1966).

[26] J. Baez and J. Barrett, Classical Quantum Gravity 18, 4683
(2001); J. Engle and R. Pereira, Phys. Rev. D 79, 084034
(2009).

YOU DING, MUXIN HAN, AND CARLO ROVELLI PHYSICAL REVIEW D 83, 124020 (2011)

124020-16

http://arXiv.org/abs/1010.1939
http://arXiv.org/abs/1004.1780
http://dx.doi.org/10.1088/0264-9381/20/6/202
http://dx.doi.org/10.1088/0034-4885/64/12/203
http://dx.doi.org/10.1088/0264-9381/15/7/004
http://dx.doi.org/10.1088/0264-9381/15/7/004
http://dx.doi.org/10.1063/1.532254
http://dx.doi.org/10.1063/1.532254
http://dx.doi.org/10.1088/0264-9381/17/16/302
http://dx.doi.org/10.1088/0264-9381/17/16/302
http://dx.doi.org/10.1016/0550-3213(90)90019-A
http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://dx.doi.org/10.1142/S0218271807010894
http://dx.doi.org/10.1088/0264-9381/22/9/017
http://dx.doi.org/10.1088/0264-9381/22/9/017
http://dx.doi.org/10.1088/0264-9381/27/22/225019
http://dx.doi.org/10.1088/0264-9381/27/22/225019
http://dx.doi.org/10.1063/1.3486359
http://dx.doi.org/10.1088/0264-9381/27/21/215009
http://dx.doi.org/10.1088/0264-9381/27/24/245014
http://dx.doi.org/10.1088/0264-9381/27/24/245014
http://dx.doi.org/10.1088/0264-9381/27/24/245015
http://dx.doi.org/10.1088/0264-9381/27/24/245015
http://dx.doi.org/10.1103/PhysRevLett.99.161301
http://dx.doi.org/10.1103/PhysRevLett.99.161301
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://dx.doi.org/10.1209/0295-5075/81/50004
http://dx.doi.org/10.1209/0295-5075/81/50004
http://dx.doi.org/10.1063/1.523215
http://arXiv.org/abs/gr-qc/9804061
http://dx.doi.org/10.1088/0264-9381/16/7/303
http://dx.doi.org/10.1088/0264-9381/23/7/003
http://dx.doi.org/10.1016/j.physletb.2006.03.004
http://dx.doi.org/10.1088/0264-9381/24/10/003
http://dx.doi.org/10.1088/0264-9381/24/10/003
http://dx.doi.org/10.1088/0264-9381/27/17/175009
http://dx.doi.org/10.1088/0264-9381/27/17/175009
http://dx.doi.org/10.1088/0264-9381/27/16/165003
http://dx.doi.org/10.1088/0264-9381/27/16/165003
http://dx.doi.org/10.1088/0264-9381/27/20/205003
http://dx.doi.org/10.1088/0264-9381/27/20/205003
http://dx.doi.org/10.1016/S0550-3213(98)00093-5
http://dx.doi.org/10.1063/1.3244218
http://dx.doi.org/10.1088/0264-9381/27/16/165009
http://dx.doi.org/10.1088/0264-9381/27/16/165009
http://dx.doi.org/10.1063/1.3257109
http://dx.doi.org/10.1063/1.3257109
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.016
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.016
http://dx.doi.org/10.1088/0264-9381/26/21/215001
http://dx.doi.org/10.1103/PhysRevD.82.084035
http://dx.doi.org/10.1103/PhysRevD.82.084035
http://dx.doi.org/10.1088/0264-9381/19/24/315
http://dx.doi.org/10.1088/0264-9381/19/24/315
http://dx.doi.org/10.1088/0264-9381/20/7/303
http://dx.doi.org/10.1088/0264-9381/20/7/307
http://dx.doi.org/10.1088/0264-9381/20/7/307
http://dx.doi.org/10.1103/PhysRevD.76.104012
http://dx.doi.org/10.1103/PhysRevD.76.104012
http://dx.doi.org/10.1088/0264-9381/27/16/165009
http://dx.doi.org/10.1088/0264-9381/27/16/165020
http://dx.doi.org/10.1088/0264-9381/27/16/165020
http://dx.doi.org/10.1103/PhysRevD.83.044035
http://dx.doi.org/10.1103/PhysRevD.83.044035
http://dx.doi.org/10.1142/S0217732392004171
http://dx.doi.org/10.1088/0264-9381/18/21/316
http://dx.doi.org/10.1088/0264-9381/18/21/316
http://dx.doi.org/10.1103/PhysRevD.79.084034
http://dx.doi.org/10.1103/PhysRevD.79.084034


[27] M. P. Reisenberger and C. Rovelli, Classical Quantum
Gravity 18, 121 (2001).

[28] E. Magliaro and C. Perini, arXiv:1010.5227.
[29] E. Buffenoir, M. Henneaux, K. Noui, and Ph. Roche,

Classical Quantum Gravity 21, 5203 (2004).
[30] Y. Ding and M. Han, Large-j Asymptotics of the

Generalized Spinfoam Model (unpublished).
[31] M. Han and T. Thiemann, arXiv:1010.5444.
[32] J. B. Lasserre, J. Optim. Theory Appl. 39, 363 (1983).
[33] I.M. Gelfand and N.Ya. Vilenkin, Applications of

Harmonic Analysis Generalized Functions Vol. 4
(Academic, New York, 1964).

[34] I.M. Gel’fand, R. A. Minlos, and Z.Ya. Shapiro.
Representations of the Rotation and Lorentz Groups and
Their Applications (Pergamon, New York, 1963), p. 187.

[35] C. Rovelli and S. Speziale, Phys. Rev. D 83, 104029
(2011).

[36] E. R. Livine, Classical Quantum Gravity 19, 5525 (2002).
[37] L. Freidel, K. Krasnov, and E. R. Livine, Commun. Math.

Phys. 297, 45 (2010).
[38] M. Kapovich and J. J. Millson, J. Diff. Geom. 44, 479

(1996).
[39] E. Bianchi, D. Regoli, and C. Rovelli, Classical Quantum

Gravity 27, 185009 (2010).

GENERALIZED SPINFOAMS PHYSICAL REVIEW D 83, 124020 (2011)

124020-17

http://dx.doi.org/10.1088/0264-9381/18/1/308
http://dx.doi.org/10.1088/0264-9381/18/1/308
http://arXiv.org/abs/1010.5227
http://dx.doi.org/10.1088/0264-9381/21/22/012
http://arXiv.org/abs/1010.5444
http://dx.doi.org/10.1007/BF00934543
http://dx.doi.org/10.1103/PhysRevD.83.104029
http://dx.doi.org/10.1103/PhysRevD.83.104029
http://dx.doi.org/10.1088/0264-9381/19/21/316
http://dx.doi.org/10.1007/s00220-010-1036-5
http://dx.doi.org/10.1007/s00220-010-1036-5
http://dx.doi.org/10.1088/0264-9381/27/18/185009
http://dx.doi.org/10.1088/0264-9381/27/18/185009

