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I. INTRODUCTION

The classical no-hair conjecture for black holes states
that any gravitational collapse reaches a final stationary
state characterized only by a small number of parameters.
A part of this conjecture has been proven rigorously by
taking different matter fields, known as the no-hair theorem
(see e.g. [1–3]) and deals with the uniqueness of stationary
black hole solutions characterized only by mass, angular
momentum, and charges corresponding to long range
gauge fields such as the electromagnetic field. Any non-
trivial field configuration other than the long range gauge
fields present at the exterior of a stationary black hole is
known as ‘‘hair.’’ In particular, it has been shown that
static, spherically symmetric black holes do not support
hair corresponding to scalars in convex potentials, Proca-
massive vector fields [4], or even gauge fields correspond-
ing to the Abelian Higgs model [5,6].

All the above proofs assume the spacetime to be asymp-
totically flat, i.e., one can reach spacelike infinity so that
sufficiently rapid fall-off conditions on the matter fields
can be imposed there. But recent observations [7,8] suggest
that there is a strong possibility that our universe is en-
dowed with a small but positive cosmological constant �.
It is generally expected that, in that case, the spacetime in
its stationary state should have an outer or cosmological
Killing horizon [9]. The cosmological Killing horizon acts
in general as a causal boundary (see e.g. [10]) so that no
physical observer can communicate beyond this horizon
along a future directed path. If there is a black hole, the
black hole event horizon will be located inside the cosmo-
logical horizon and the spacetime is then known as a de
Sitter black hole spacetime. The observed value of the� is
very small, of the order of 10�52 m�2, and the known exact
solutions [11] for a small � suggest that the cosmological
horizon has a length scale �Oð 1ffiffiffi

�
p Þ which is of course

large, but not infinite. Since no physical observer can
communicate beyond the cosmological horizon, in a de
Sitter black hole spacetime the cosmological horizon acts
as a natural boundary. So, in the most general case, one
cannot assume any precise asymptotic form in the vicinity

of the cosmological horizon, and hence, one cannot set
Tab ¼ 0 over that horizon. Therefore, the extension of the
no-hair theorems for de Sitter black holes are expected to
be different from the � � 0 cases.
In particular, a lot of progress has been made in this topic

for static de Sitter black holes. Price’s theorem, which can
be regarded as a perturbative no-hair theorem [12] was
proved in [13] for a Schwarzschild-de Sitter background
by taking massless perturbations. In [14], all the known
black hole no-hair theorems were extended for a general
static de Sitter black hole spacetime. The exceptionwas that
a charged solution corresponding to the false vacuum of the
complex scalar of the Abelian Higgs model was obtained,
which has no� � 0 analogue. In fact, this charged solution
suggests that even though � is very small, the existence of
the cosmological horizon, because of the nontrivial bound-
ary conditions, may change local physics considerably.
It is thus an interesting task to generalize the no-hair

theorems for a stationary de Sitter black hole. For an
asymptotically flat spacetime, the no-hair proofs for a
rotating black hole for scalar and Proca fields were first
given in [15], assuming time reversal symmetry of the
matter equations. For a discussion on the 2þ 1 dimen-
sional no-hair theorem, see [16]. See also [17] for a scalar
no-hair theorem in stationary asymptotically flat space-
times with nonminimally coupled scalar fields. In the
following we shall give a proof of the no-hair theorems
for scalar and Proca-massive vector fields for a de Sitter
black hole spacetime. Our method will be considerably
different from that of [15].
This paper is organized as follows. In the next section,

we outline all the necessary assumptions and the geomet-
rical set up we work in. In Sec. III, we give the proof of the
no-hair theorems for the scalar and Proca fields. Finally, we
discuss our results. We set c ¼ 1 ¼ G throughout.

II. THE GEOMETRICAL SET UP

In this section, we outline the particular geometrical set
up we need to describe our spacetime. More details can be
found in [9].
We consider a (3þ 1)-dimensional stationary axisym-

metric spacetime with two commuting Killing fields
f�a;�ag,
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rða�bÞ ¼ 0 ¼ rða�bÞ; (1)

½�;��a ¼ 0: (2)

�a is locally timelike with norm �a�a ¼ ��2 and gener-
ates the stationarity, whereas �a is locally spacelike with
closed orbits and norm �a�a ¼ f2 and generates the
axisymmetry. We assume that the spacetime satisfies
Einstein’s equations. We take the connection ra to be
torsion-free, i.e., for any differentiable function gðXÞ, we
have r½arb�gðXÞ ¼ 0.

We can specify a basis f�a;�a;�a; �ag for this space-
time, where f�a; �ag are spacelike basis vectors orthogonal
to both �a and �a. We assume that the 2 surfaces spanned
by f�a; �ag form integral submanifolds. In other words,
f�a; �ag form the basis of a Lie algebra. We note that this
assumption is valid for known stationary axisymmetric
spacetimes.

A stationary axisymmetric spacetime with a black hole
is, in general, rotating. In that case, �a is not orthogonal to
�a, and the basis f�a;�a;�a; �ag is not orthogonal. So, in
particular, there is no family of spacelike hypersurfaces
which is both tangent to �a and orthogonal to �a. Let us
first construct a family of spacelike hypersurfaces tangent
to �a. We define �a as

�a ¼ �a � 1

f2
ð�b�

bÞ�a � �a þ ��a; (3)

so that we have �a�
a ¼ 0 everywhere. We note that

�a�
a ¼ �ð�2 þ �2f2Þ; (4)

so that �a is timelike when �2 ¼ ð�2 þ �2f2Þ> 0. The
basis f�a;�a;�a; �ag is now an orthogonal basis for the
spacetime. We also have

rða�bÞ ¼ �arb�þ�bra�: (5)

Our assumption that f�a; �ag span an integral
2-submanifold implies that �a satisfies the Frobenius con-
dition of hypersurface orthogonality [9]

�½arb�c� ¼ 0: (6)

Thus, �a is orthogonal to the spacelike f�a;�a; �ag hyper-
surfaces, say �.

How do we define the horizons of our spacetime? It is
known that in a rotating black hole spacetime, �a becomes
spacelike within the ergosphere [18], so for such space-
times �2 ¼ 0 does not in general define a horizon. It was
shown in [9], by considering the null geodesic congruence
over a �2 ¼ 0 surface, that the vector field �a coincides
with a null Killing field over that surface. Thus, a �2 ¼ 0
surface is essentially a Killing or true horizon.
Accordingly, we define the black hole event horizon and
the cosmological event horizon to be the two �2 ¼ 0
surfaces. An example of this is the Kerr-Newman-de
Sitter spacetime [10].

We assume that no naked curvature singularity exists
anywhere in our region of interest, i.e., anywhere between
the two horizons. The Einstein equation Gab þ�gab ¼
Tab then implies that the invariants constructed from the
energy-momentum tensor Tab are bounded over or every-
where in the region between the two horizons. Apart from
this regularity, we also assume that the horizons are
‘‘closed’’ surfaces.
The usual projector or the induced metric over the space-

like hypersurfaces � is defined as

ha
b ¼ 	a

b þ ��2�a�
b: (7)

Let Da be the induced connection over � defined via the
projector asDa :¼ ha

brb. Then we can project the deriva-
tive of a tensor Ta1a2���

b1b2��� over � as

Da
~Ta1a2...

b1b2... :¼ ha
bha1

c1 . . . hb1d1 . . .rbTc1c2...
d1d2...;

(8)

where ~T is the projection of T over �, given by
~Ta1a2���

b1b2��� :¼ ha1
c1 � � � hb1d1 � � �Tc1c2���

d1d2���. It is easy

to verify that the induced connection Da over � defined
in Eq. (8) satisfies the Leibniz rule and is compatible with
the induced metric hab.
It will be useful to note here that if a function c has a

vanishing Lie derivative with respect to �, that is if
L�c ¼ 0, we can use the torsion-free condition to write

�rarac ¼ Dað�Dac Þ: (9)

Next, we note that the subspace spanned by f�a;�a; �ag do
not form a hypersurface. This is because the necessary and
sufficient condition that an arbitrary subspace of a mani-
fold forms an integral submanifold or a hypersurface is that
the basis vectors of that subspace span a Lie algebra (see,
e.g., [18] and references therein). It is easy to verify using
the definition of �a in Eq. (3) that the basis vectors
f�a;�a; �ag do not span a Lie algebra. This implies that
we cannot write a condition like �½arb�c� ¼ 0 [9].

However, according to our assumptions, there are inte-
gral spacelike 2-submanifolds orthogonal to both �a and
�a, and spanned by f�a; �ag. Then over these 2-manifolds
��, we must have

�½aDb�c� ¼ 0: (10)

Using the projector defined in Eq. (7), we write the Killing
equation for �a over � as

Dða�bÞ ¼ 0: (11)

We now solve Eqs. (10) and (11) to find the expression for
Da�b and using the projector (7) rewrite it in terms of the
full spacetime connection ra
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ra�b ¼ 1

f
½�braf��arbf�

þ f2

2�2
½�bra�� �arb��: (12)

Also, we note that since f�a; �ag span integral 2-surfaces
��, and �a and�a are orthogonal, we can project spacetime

tensors over �� via the projector

�a
b ¼ 	a

b þ ��2�a�
b � f�2�a�

b: (13)

We can also define the induced connection �Da on
�� using

the projector �a
b.

We will assume that any matter field also obeys the
symmetry of the spacetime. In other words, if X is a matter
field, or a component of a matter field, we must have

L�X ¼ 0 ¼ L�X: (14)

We note that Eq. (14) need not hold if X is a gauge field.
We are now ready to prove the no-hair theorems.

III. NO-HAIR THEOREMS FOR SCALAR AND
PROCA FIELDS

We start with the simplest case, that of a scalar field c
moving in a potential Vðc Þ satisfying the equation of
motion

rarac ¼ V0ðc Þ; (15)

where the ‘‘prime’’ denotes differentiation with respect to
c and any mass term is included in Vðc Þ. Since we are
assuming stationarity and axisymmetry, we must have
L�c ¼ 0 ¼ L�c , as we mentioned earlier. Since �a ¼
�a þ ��a, it follows that L�c ¼ 0. Then, using Eq. (9),

we find that Eq. (15) takes the following form over the
�-orthogonal hypersurface �,

Dað�Dac Þ ¼ �V0ðc Þ: (16)

We now multiply Eq. (16) by V 0ðc Þ and integrate by parts
to have

Z
@�

�V 0ðc ÞnaDac þ
Z
�
�½V00ðc ÞðDac ÞðDac Þ

þ V 02ðc Þ� ¼ 0; (17)

where @� are spacelike closed 2-surfaces located at the
boundaries of�, i.e., the horizons and na is a unit spacelike
vector normal to these 2-surfaces.

According to our assumption, there is no naked curva-
ture singularity anywhere between the horizons, including
the horizons. This implies that the invariants of the
energy-momentum tensor is bounded on the horizons.
Since racrac appears in the trace of the energy-
momentum tensor, it follows that this quantity is bounded
on the horizons. On the other hand, L�c ¼ 0 implies

that rac ¼ Dac , while the inequality ðDac �
naðnbDbc ÞÞ2 � 0 implies jnaDac j2 � ðDac ÞðDac Þ.
Therefore, the quantity naDac also remains bounded
over the horizons. Then, since � ¼ 0 over the horizons,
the surface integrals in Eq. (17) vanish.
Since the inner product in the � integral of Eq. (17) is

spacelike, it immediately follows that no nontrivial solu-
tion exists for c over � for a convex potential, i.e., if
V00ðc Þ> 0 for all values of c . So, for a convex Vðc Þ, the
scalar field c is a constant located at the minimum of the
potential Vðc Þ. Then, L�c ¼ 0 ensures that we have

the same trivial solution throughout the spacetime. This
is the standard no-hair result for a scalar field.
For Vðc Þ ¼ 0, we multiply Eq. (16) by c and integrate

by parts over � to get an equation similar to Eq. (17),
Assuming that c is measurable, i.e. bounded, over the
horizon [4,15], gives the no-hair result.
The no-hair statement need not hold in other kinds of

potentials. For static spherically symmetric spacetimes,
scalar hair may be present for nonconvex potentials, such
as the double well potential Vðc Þ ¼ �

4 ðc 2 � v2Þ2, which
gives an unstable solution [19]. Another example is that of
a conformal scalar c coupled to gravity by a term Vðc Þ ¼
1
12Rc

2. The scalar field action is invariant under a confor-

mal transformation in this theory. So, by appropriately
choosing the conformal factor of the transformation, we
can make c or naDac diverge at @� without causing a
curvature singularity. Then, the @� integral can be non-
zero, which allows a nontrivial configuration of c on �. In
fact, static spherically symmetric solutions with conformal
scalar hair with�> 0 are known [20]. It is likely that these
exceptions will also be present for stationary axisymmetric
spacetimes.
Next, we consider the Proca-massive Lagrangian for the

vector field

L ¼ � 1

4
FabF

ab � 1

2
m2AbA

b; (18)

where Fab ¼ raAb �rbAa. We shall see below that prov-
ing a no-hair statement in this case is quite a bit more
complicated than in the case of a scalar field. The equation
of motion for Ab is

raF
ab �m2Ab ¼ 0: (19)

The procedure, as for the scalar field, will be to construct a
positive definite quadratic with a vanishing integral on �.
Let us start by defining the potential c and the ‘‘electric’’
field ea

c ¼ ��1�aA
a; ea ¼ ��1�bF

ab: (20)

The vanishing of the Lie derivatives of c and ea, along the
Killing fields �a and �a, imply

L �c ¼ 0; L�e
a ¼ ��aebrb�: (21)
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Then, using Eqs. (6)–(8), it is easy to obtain the following
projected equations over �

Dað�c Þ ¼ �ea þL�Aa; Dae
a ¼ m2c : (22)

We now multiply the second of the Eqs. (22) with �c , use
the first of the Eqs. (22) and integrate by parts over� to get

Z
@�

�c naea þ
Z
�
½�ðeaea þm2c 2Þ þ eaðL�AaÞ� ¼ 0:

(23)

Using the fact that L�Aa ¼ 0 ¼ L�Aa, we have L�Aa ¼
ðAb�

bÞra�. The terms c 2 and e2a appear in the invariants
of the energy-momentum tensor which are bounded over
the horizons. This implies that the surface integrals vanish,
giving us the following � integral

Z
�
½�ðeaea þm2c 2Þ þ ðAb�

bÞeara�� ¼ 0: (24)

We note that for m ¼ 0 the Lagrangian (18) is invariant
under a local gauge symmetry A ! Aþ dg, where g is any
differentiable function. Then, for m ¼ 0, the components
of A are not physical and need not be bounded on the
horizon. Then we can always choose c such that the
surface integrand in Eq. (23) becomes unbounded and
hence the surface integral becomes nonzero.

By Eq. (20), ea�a ¼ 0 and hence ea is a spacelike vector
field. Also, �> 0 between the two horizons and vanishes
on the horizons. So all but the last term in Eq. (24) are
positive definite. Nor can we set the last term to zero, since
�a is not a Killing field. Thus the no-hair conjecture for the
Proca field cannot be proven from Eq. (24) alone, and we
need to take a more careful look at the rest of the equations
of motion.

Let us first project Eq. (19) over�. Let ab and fab be the
� projections of Ab and Fab defined via the projector as
ab :¼ hb

aAa; fab :¼ ha
chb

dFcd. It is easy to see that

ha
chb

dFcd ¼ Daab �Dbaa: (25)

We now multiply Eq. (19) by the projector to write

�hbcraF
ac ¼ m2�ab: (26)

To relate Eq. (26) to the induced connection Da and the
projected tensor fab, we consider the expressionDað�fabÞ.
Using the definition of the projector, we can write

Dað�fabÞ ¼ hbeh
f
arfð�FaeÞ

¼ hberað�FaeÞ þ ��2hbe�a�
frfð�FaeÞ:

(27)

The orthogonality of �a and �a and Eq. (5) imply
L�� ¼ 0. Also, since �a and �a are Killing fields, we

have L�F
ab ¼ 0 ¼ L�F

ab. Then, Eq. (27) becomes

Dað�fabÞ ¼ �hberaF
ae þ ��1�ah

b
e

� ½Fcerc�
a þ Facrc�

e � ðFcerc�Þ�a

� ðFacrc�Þ�e� þ hbeF
aera�: (28)

On the other hand, from Eqs. (5) and (6) we have

ra�b ¼ ��1ð�bra�� �arb�Þ
þ 1

2
ð�arb�þ�bra�Þ: (29)

We substitute this expression into Eq. (28). Then, using
�a�a ¼ 0 and the definition for the electric field ea, we
find that Eq. (28) reduces to

Dað�fabÞ ¼ �hberaF
ae þ 1

2
ðecrc�Þ�b: (30)

Thus, Eq. (26) becomes

Dað�fabÞ ¼ m2�ab þ 1

2
ðecrc�Þ�b: (31)

If we multiply both sides of Eq. (31) by ab and integrate
it over �, we again end up with an integral which, like
Eq. (24), is not guaranteed to be positive definite.
In order to simplify the situation, we now further project

Eq. (31) over the spacelike 2-submanifolds orthogonal to
both �a and �a, which we have assumed to exist. We use
the projector �a

b defined in Eq. (13) and follow the
same procedure as before. Since �a is a Killing field,
L�fab ¼ 0 ¼ L�ab and we simply have, after a little

computation,

�Daðf� �fabÞ ¼ m2f� �ab; (32)

where the ‘‘bar’’ denotes the respective fields after projec-
tion onto these spacelike 2-submanifolds. Contracting both
sides of Eq. (32) by �ab, integrating by parts and, using the
same boundedness arguments over the horizons as before,
we have

Z
��
�fð �fab �fab þm2 �ab �abÞ ¼ 0: (33)

Since the 2-submanifolds are spacelike, the integrand in
Eq. (33) is positive definite. This yields �fab ¼ 0 ¼ �ab
everywhere over the 2-submanifolds. Also, it is easy to
check usingL� �ab ¼ 0 ¼ L�

�fab andL� �ab ¼ 0 ¼ L�
�fab

that L� �ab ¼ 0 ¼ L�
�fab. This implies that �fab ¼ 0 ¼ �ab

throughout the manifold.
It follows that Ab is of the form

Ab ¼ �1ðxÞ�b þ�2ðxÞ�b: (34)

The commutativity of the two Killing fields �a and �a

implies that L�� ¼ 0 ¼ L��. Also, we recall that since

Aa is a physical matter field, its Lie derivatives vanish
along �a and �a. Then it is easy to verify from Eq. (34)
that L�Ab ¼ 0 implies L��1 ¼ 0 ¼ L��2; and

L�Ab ¼ ðAa�
aÞra� implies that L��1 ¼ 0 ¼ L��2.
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With the ansatz (34), the Proca Lagrangian (18)
becomes

L¼1

2
ð�ra�1þ2�1ra�Þ2�1

2
ðfrac 2þ2�2rafÞ2

þf2�2ðrac 1Þðra�Þþf4�2
2

2�2
ðra�Þðra�Þ

þ2f2

�
�1�2ðra�Þðra�Þþm2

2
ð�2�2

1�f2�2
2Þ: (35)

The equations of motion for the two degrees of freedom�1

and �2 are then

rað�2ra�1Þ � 2�ðra�Þðra�1Þ þ rað2�c 1ra�Þ
� 4�1ðra�Þðra�Þ þ raðf2�2ra�Þ

� 2f2

�
�2ðra�Þðra�Þ �m2�2�1 ¼ 0; (36)

and

raðf2ra�2Þ�2fðrafÞðra�2Þþrað2fc 2rafÞ

�4�2ðrafÞðrafÞþf4�2

�2
ðra�Þðra�Þ

þ2f2

�
�1ðra�Þðra�Þþf2ðra�1Þðra�Þ�m2f2�2¼0:

(37)

Let us now project Eqs. (36) and (37) over � and
form quadratic integrals as before. Since L��1 ¼ 0 ¼
L��2, the fact that ra is torsion-free implies that

L�ðra�1Þ ¼ 0 ¼ L�ðra�2Þ. It is straightforward to

calculate similarly that L�ðra�Þ ¼ L�ðrafÞ ¼
L�ðra�Þ ¼ 0. So the 1-forms ðra�;ra�;rafÞ are space-
like. We can now project Eqs. (36) and (37) over � to get

Dað�3Da�1Þ � 2�2ðDa�ÞðDa�1Þ þDað2�2�1D
a�Þ

� 4��1ðDa�ÞðDa�Þ þDað�f2�2D
a�Þ

� 2f2�2ðDa�ÞðDa�Þ �m2�3�1 ¼ 0; (38)

and

Daðf2�Da�2Þ � 2�fðDafÞðDa�2Þ þDað2�fc 2D
afÞ

� 4��2ðDafÞðDafÞ þ f4�2

�
ðDa�ÞðDa�Þ

þ 2f2�1ðDa�ÞðDa�Þ þ �f2ðDa�1ÞðDa�Þ
�m2�f2�2 ¼ 0: (39)

We now multiply Eq. (38) by �1 and Eq. (39) by �2; add
them and integrate by parts. The surface integrals do not
survive because �1 and �2 and their derivatives are
bounded on @�, and we have

Z
�
�½ð�Da�1þ2�1Da�Þ2þðfDa�2þ2�2DafÞ2

�f4�2
2

�2
ðDa�ÞðDa�Þþm2ð�2�2

1þf2�2
2Þ�¼0: (40)

This is clearly not positive definite due to the presence of
the third term. We can naively interpret that term as the
centrifugal effect on the field due to the rotation of the
spacetime. We now investigate whether the rotation can
actually be so large that the integrand in Eq. (40) becomes
negative.
Let us consider the Killing identity for �b

rbrb�a ¼ �Ra
b�b: (41)

Contracting Eq. (41) by �a and using Eq. (12), we get

rbrbf2¼
�
4ðrafÞðrafÞ� f4

�2
ðra�Þðra�Þ�2Rab�

a�b

�
:

(42)

We now project Eq. (42) onto �, multiply by �2
2 and

integrate by parts to get

Z
�
�½4f�2ðDa�2ÞðDafÞ þ 4�2

2ðDafÞðDafÞ

��2
2f

4

�2
ðDa�ÞðDa�Þ � 2�2

2Rab�
a�b� ¼ 0: (43)

Subtracting Eq. (43) from Eq. (40), we now have

Z
�
�½ð�Da�1 þ 2�1Da�Þ2 þ f2ðDa�2ÞðDa�2Þ
þ 2�2

2Rab�
a�b þm2ð�2�2

1 þ f2�2
2Þ� ¼ 0: (44)

So, the no-hair result �1 ¼ 0 ¼ �2 will follow from
Eq. (44) if Rab�

a�b � 0. We have assumed that the space-
time satisfies Einstein’s equations, so in particular

Rab�
a�b ¼

�
Tab � 1

2
Tgab

�
�a�b þ�f2: (45)

We compute the energy-momentum tensor for the
Lagrangian (18),

Tab ¼ FacFb
c þm2AaAb þLgab; (46)

which yields�
Tab � 1

2
Tgab

�
�a�b ¼

�
1

2
b2a þ 1

2
f2e2a þm2f4�2

2

�
;

(47)

where ba ¼ Fab�
b and ea is the electric field defined in

Eq. (20). It is easy to see that ba�
a ¼ 0, i.e., ba is space-

like. The electric field ea is also spacelike as mentioned
earlier. So, Eq. (47) shows that ðTab � 1

2TgabÞ�a�b � 0

for the Proca field. Putting in all this, we can rewrite
Eq. (44) as
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Z
�
�

�
ð�Da�1 þ 2�1Da�Þ2 þ f2ðDa�2ÞðDa�2Þ

þm2�2�2
1 þ ðm2 þ 2�Þf2�2

2

þ 2�2
2

�
1

2
b2a þ 1

2
f2e2a þm2f4�2

2

��
¼ 0; (48)

which gives �1 ¼ 0 ¼ �2 over �. Since L��1 ¼ 0 ¼
L��2, we have �1 ¼ 0 ¼ �2 throughout the manifold.

This, combined with the previous proof �ab ¼ 0, is the
desired no-hair result for a de Sitter black hole for the
Proca-massive vector field.

Clearly, our proof is also valid for an asymptotically flat
stationary axisymmetric spacetime, � ¼ 0. We have only
to replace the outer boundary or the cosmological horizon
by a 2-sphere at spacelike infinity with a sufficiently rapid
fall-off condition of the fields. Our proof also applies to
asymptotically anti-de Sitter space-time provided we as-
sume m2 � 2j�j in Eq. (48) for the asymptotically AdS
case. This is not a strong assumption—it only means that
the Compton wavelength of the vector field is less than the
cosmological length scale or the AdS radius.

As we have mentioned earlier, the no-hair proof fails for
m ¼ 0, i.e. for the Einstein-Maxwell system, because the
local gauge symmetry implies that Aa is not a physical
field, so need not be bounded on the horizon. The Kerr-
Newmann-de Sitter spacetime is a black hole solution to
the Einstein-Maxwell equations [11].

IV. DISCUSSIONS

To summarize, we have proven the no-hair theorems for
scalar and (Proca) massive vector fields for a stationary

axisymmetric de Sitter black hole spacetime. In compari-
son to the proof in a static spacetime, this proof contains
some additional constraints such as the commutativity of
the two Killing fields �a and �a and the existence of
spacelike 2-submanifolds orthogonal to them. Also, in
order to prove the theorem for the vector field, we had to
assume in Eq. (45) that the spacetime satisfies Einstein’s
equations. For a static spacetime one need not assume that
(see e.g. [14]).
In the static case, it is necessary to assume spherical

symmetry in order to prove the no-hair theorem for the
Abelian Higgs model [6,14]. In fact, if we have cylindri-
cally symmetric matter distribution, we have a cosmic
string piercing the horizons [21–23]. It seems likely that
we will have a stringlike solution for a rotating axisym-
metric de Sitter black hole as well.
As an aside, we note that the no-hair results proven are

not black hole uniqueness theorems. It is known that for
� ¼ 0, the Kerr spacetime is the only asymptotically flat
black hole solution of the vacuum Einstein equations in
4-dimensions (see e.g. [24,25] and references therein).
For �< 0 in 2þ 1 dimensions, a result analogous to
Birkhoff’s theorem was proven for the BTZ black hole
[26]. For �> 0, no proof of uniqueness of black hole
solutions is known [27,28]. However, our results reduce
the Einstein-scalar (in convex potential) and Einstein-
massive vector (with no gauge symmetry) systems to vac-
uum Einstein equations in the presence of a stationary
axisymmetric black hole. So, any proof of uniqueness of
the Kerr-de Sitter black hole, if it exists, will apply to these
systems as well.
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