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According to the no-hair theorem, astrophysical black holes are uniquely characterized by their masses

and spins and are described by the Kerr metric. Several parametric deviations from the Kerr metric have

been suggested to study observational signatures in both the electromagnetic and gravitational-wave

spectra that differ from the expected Kerr signals. Because of the no-hair theorem, however, such

spacetimes cannot be regular everywhere outside the event horizons, if they are solutions to the

Einstein field equations; they are often characterized by naked singularities or closed timelike loops in

the regions of the spacetime that are accessible to an external observer. For observational tests of the no-

hair theorem that involve phenomena in the vicinity of the circular photon orbit or the innermost stable

circular orbit around a black hole, these pathologies limit the applicability of the metrics only to compact

objects that do not spin rapidly. In this paper, we construct a Kerr-like metric which depends on a set of

free parameters in addition to its mass and spin and which is regular everywhere outside of the event

horizon. We derive expressions for the energy and angular momentum of a particle on a circular equatorial

orbit around the black hole and compute the locations of the innermost stable circular orbit and the

circular photon orbit. We demonstrate that these orbits change significantly for even moderate deviations

from the Kerr metric. The properties of our metric make it an ideally suited spacetime to carry out strong-

field tests of the no-hair theorem in the electromagnetic spectrum using the properties of accretion flows

around astrophysical black holes of arbitrary spin.
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I. INTRODUCTION

The no-hair theorem encapsulates the remarkable prop-
erty of general-relativistic black holes that these objects are
fully and uniquely characterized by their masses and spins
and are described by the Kerr metric. According to the
no-hair theorem, the Kerr metric is the only stationary,
axisymmetric, asymptotically flat vacuum spacetime in
general relativity that has an event horizon but no closed
timelike curves outside of the horizon [1,2]. Mass M and
spin J are the first two (Geroch-Hansen) multipole mo-
ments of the Kerr spacetime, and all higher order moments
can be expressed in terms of these two moments. The
multipole moments consist of a set of mass multipole
moments Ml, which vanish if l is odd, and a set of current
multipole moments Sl, which vanish if l is even. The no-
hair theorem can then be expressed by the relation [3]

Ml þ iSl ¼ MðiaÞl; (1)

where a � J=M is the spin parameter.
Despite a wealth of observational evidence for the ex-

istence of astrophysical black holes (see discussion in, e.g.,
[4]), a definite proof is still lacking. Several potential tests
of the no-hair theorem have been suggested using obser-
vations of gravitational waves from extreme mass-ratio
inspirals [5–10] and observations in the electromagnetic
spectrum of accreting black holes [11–14], of stars on an
orbit around Sagittarius A* [15,16], and of pulsar black-
hole binaries [17]. For recent reviews, see [18].

Observational tests of this kind require a framework that
is based on spacetimes that deviate from the Kerr metric by
one or more parameters (e.g., [7–9,19,20]). These space-
times have a modified multipole structure that is given by a
relation of the form [7,8]

Ml þ iSl ¼ MðiaÞl þ �Ml þ i�Sl (2)

with deviations �Ml and �Sl.
Parametric deviations of the form (2) harbor a compact

object that is a general-relativistic black hole only if all
corrections �Ml and �Sl are equal to zero. Within general
relativity, measuring these parametric deviations consti-
tutes a null test that investigates the nature of compact
objects [7,21]. General relativity, however, has been mar-
ginally tested in the regime of strong gravitational fields
(e.g., [22]), and astrophysical black holes might not be
Kerr black holes as predicted by the no-hair theorem [11]
(see, also, [23,24]).
Because of the no-hair theorem, all parametric devia-

tions of the Kerr metric within general relativity have to
violate at least one of the prerequisites of this theorem.
Consequently, these spacetimes contain either singularities
or regions with closed timelike curves outside of the event
horizon. The degree to which these pathologies affect
different proposed tests of the no-hair theorem depends
on the intended application. For all the currently proposed
metrics that deviate from the Kerr solution, pathologies
appear very close to the corresponding Kerr event horizon
[25]. As a result, they do not hamper tests of the no-hair
theorem that involve the orbits of objects at large distances
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from the horizons, as is the case, e.g., for test with extreme
mass-ratio inspirals [6] or observations of stars and pulsars
around black holes [15,17]. These pathologies, however,
become prohibitive in cases of tests that involve observa-
tions of the images of the inner accretion flows [11,12] or
of X-ray observations of quasiperiodic oscillations, of
fluorescent iron lines, or of the continuum spectra of
accretion disks [11,13].

For the latter tests and for moderately spinning black
holes, the singularities or closed timelike loops appear far
inside the location of the photon orbit and the location of
the innermost stable circular orbit (ISCO), both of which
dominate the observational characteristics of black holes.
These pathologies can, therefore, be handled by imposing
an artificial cutoff with an inflow boundary condition at
some radius in the exterior spacetime, between the location
of the pathologies and the location of the photon orbit or
ISCO. For rapidly spinning black holes, however, the
radius of the ISCO becomes comparable to the radius of
the horizon and imposing such an artificial cutoff is no
longer possible. This limits the applicability of current
parametric deviations of the Kerr metric for several obser-
vational tests of the no-hair theorem in the electromagnetic
spectrum to only moderately spinning black holes [25].

Performing tests of the no-hair theorem with observa-
tions of phenomena that occur in the vicinity of the circular
photon orbit or the ISCO around a black hole requires that
we use a metric that is free of such pathologies for arbitrary
values of the spin. However, finding a metric of this kind is
a highly nontrivial task. Introducing small parametric de-
viations to individual elements of the metric in an arbitrary
manner routinely leads to the pathologies discussed above.
In order for such a spacetime to describe a black hole, it can
no longer be a solution of the Einstein equations, because
otherwise it would render the no-hair theorem false. To
date, however, black-hole metrics for theories that obey the
Einstein equivalence principle [26] are only known for
static black holes (e.g., [27,28]), for slowly rotating black
holes with parity violations [23], or in Einstein-dilaton-
Gauss-Bonnet gravity [29].

In this paper, we construct such a Kerr-like black-hole
metric which suffers from no pathologies up to the maxi-
mum value of the spin and which contains a set of parame-
ters that measure potential deviations from the Kerr metric
in the strong-field regime. In order to achieve this in a
regular manner, we start by introducing a parametric devia-
tion to the Schwarzschild metric, following Ref. [27]. We
then apply the Newman-Janis algorithm [30], as in Ref. [8],
in order to generate a metric for a spinning black hole.

We take special care to retain several properties that
make the Kerr metric unique in performing ray-tracing
calculations in general relativity. Our metric shares the
same nonzero metric elements with the Kerr solution,
which allows for a straightforward implementation for
calculations of ray tracing with existing geodesic

algorithms and an intuitive interpretation of observables.
We likewise obtain constraints for some of the parameters
of our metric from observational limits on modifications of
general relativity in the weak-field regime as well as from
the requirements of asymptotic flatness.
For the particular case of only one deviation parameter,

we show that our metric is regular everywhere outside the
horizon for the entire range of allowable spins up to a
maximum value, which depends on the deviation. It can,
therefore, be used to study astrophysical phenomena arbi-
trarily close to the event horizon and to test the no-hair
theorem in the electromagnetic spectrum even with rapidly
spinning black holes. We also derive expressions for the
energy and angular momentum of a particle on a circular
equatorial orbit around the central black hole and compute
the locations of the innermost stable circular orbit (ISCO)
and the circular photon orbit as a function of spin and the
deviation parameter.
In Sec. II, we construct our new metric. We constrain the

set of free parameters in Sec. III and analyze the properties
of our metric in Sec. IV. We summarize our conclusions in
Sec. V.

II. CONSTRUCTION OFA
KERR-LIKE BLACK-HOLE METRIC

In this section, we construct a new class of Kerr-like
black-hole metrics which describe a stationary, axisym-
metric, and asymptotically flat vacuum spacetime. In ad-
dition to the mass and spin of the black hole, this spacetime
depends on a set of parameters that measure potential
deviations from the Kerr metric. Our spacetime reduces
smoothly to the Kerr metric if the deviations are dialed
to zero.
Our starting point is a Schwarzschild-like metric with

the line element [27]

ds2 ¼ �f½1þ hðrÞ�dt2 þ f�1½1þ hðrÞ�dr2
þ r2ðd�2 þ sin2�d�2Þ (3)

in Schwarzschild coordinates ðt; r; �; �Þ, where M is the
mass of the central object and

f � 1� 2M

r
: (4)

A metric of this form is both stationary and spherically
symmetric and reduces to the Schwarzschild metric in the
case hðrÞ ¼ 0. As in [27], we do not modify the angular
part of the metric for simplicity and in order to retain
spherical symmetry. Unlike [8,9], since we are interested
in constructing a black-hole spacetime that is free of
pathologies outside of the event horizon, we do not require
our metric to be a vacuum solution of the Einstein equa-
tions. Similarly, we do not require full integrability of
geodesic motion in our metric (unlike [20]). While
this property is critical for the design of waveforms for
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observations in the gravitational-wave spectrum, it may
only simplify ray-tracing calculations for applications in
the electromagnetic spectrum, but it is not a necessity.

We choose the function hðrÞ to be of the form

hðrÞ � X1
k¼0

�k

�
M

r

�
k
: (5)

The Kerr metric can be obtained from the Schwarzschild
metric by the Newman-Janis algorithm [30], which is
based on a complex coordinate transformation. Through
this procedure the effect of rotation can be incorporated
into a static spacetime in a natural way. In the following,
we apply the Newman-Janis algorithm to the
Schwarzschild-like metric given by Eq. (3) in order to
construct a Kerr-like metric that depends on the mass M,
spin a, and the set of parameters �k.

First we perform a transformation to Eddington-
Finkelstein coordinates choosing a set of new coordinates
ðu0; r0; �0; �0Þ, where

u0 ¼ t� r� 2M ln

�
r� 2M

2M

�
; (6)

r0 ¼ r; �0 ¼ �; �0 ¼ �; (7)

which yields a metric ~g�� of the form

ds2 ¼ �f½1þ hðrÞ�du2 � 2½1þ hðrÞ�dudr
þ r2ðd�2 þ sin2�d�2Þ: (8)

In expression (8) we have dropped the primes for brevity.
We express the metric ~g�� given by Eq. (8) in contra-

variant form in the Newman-Penrose formalism [31]

~g�� ¼ �l�n� � l�n� þm� �m� þm� �m� (9)

using a complex null tetrad

Z�
s ¼ ðl�; n�;m�; �m�Þ; s ¼ 1; 2; 3; 4 (10)

with legs

l� ¼ ��
r ; (11)

n� ¼ 1

1þ hðrÞ
�
��
u � 1

2

�
1� 2M

r

�
��
r

�
; (12)

m� ¼ 1ffiffiffi
2

p
r

�
��
� þ i

sin�
��
�

�
; (13)

�m� ¼ 1ffiffiffi
2

p
r

�
��
� � i

sin�
��
�

�
: (14)

This tetrad is orthonormal obeying the conditions

l�m
� ¼ l� �m� ¼ n�m

� ¼ n� �m� ¼ 0; (15)

l�l
� ¼ n�n

� ¼ m�m
� ¼ �m� �m� ¼ 0; (16)

l�n
� ¼ �1; m� �m� ¼ 1: (17)

Now we allow for the radius r to take on complex values
and rewrite the legs of the null tetrad in the form

l� ¼ ��
r ; (18)

n� ¼ 1

1þ hðr; �rÞ
�
��
u � 1

2

�
1�M

r
�M

�r

�
��
r

�
; (19)

m� ¼ 1ffiffiffi
2

p
r

�
�
�
� þ i

sin�
�
�
�

�
; (20)

�m� ¼ 1ffiffiffi
2

p
�r

�
�
�
� � i

sin�
�
�
�

�
; (21)

where an overbar denotes complex conjugation and

hðr; �rÞ � X1
k¼0

�
�2k þ �2kþ1

M

2

�
1

r
þ 1

�r

���
M2

r�r

�
k
: (22)

Next we perform a complex coordinate transformation
defining a new set of coordinates ðu0; r0; �0; �0Þ by the
relations

u0 ¼ u� ia cos�; (23)

r0 ¼ rþ ia cos�; (24)

�0 ¼ �; �0 ¼ �: (25)

We transform the tetrad in the usual way

Z0�
s ¼ @x0�

@x�
Z�
s ; (26)

and obtain

l� ¼ �
�
r ; (27)

n� ¼ 1

1þ hðr; �rÞ
�
��
u � 1

2

�
1� 2Mr

�

�
��
r

�
; (28)

m� ¼ 1ffiffiffi
2

p
r

�
ia sin�ð��

u � ��
r Þ þ ��

� þ i

sin�
��
�

�
; (29)

�m� ¼ 1ffiffiffi
2

p
�r

�
�ia sin�ð��

t � ��
r Þ þ ��

� � i

sin�
��
�

�
; (30)

where

� � r2 þ a2cos2�; (31)

hðr; �Þ � X1
k¼0

�
�2k þ �2kþ1

Mr

�

��
M2

�

�
k
; (32)

and, again, we have dropped the primes.
From these expressions, we recover the contravariant

metric with the use of Eq. (9) and perform a transformation
to coordinates ðt0; r0; �0; �0Þ given by the implicit relations
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du ¼ dt0 þ r02 þ a2

�0 dr0; (33)

r ¼ r0; � ¼ �0; (34)

d� ¼ d�0 � a

�0 dr
0; (35)

where

� � r2 � 2Mrþ a2: (36)

In the case that the function hðr; �Þ vanishes, the metric
derived in this fashion is the usual Kerr metric in Boyer-
Lindquist coordinates with massM and spin a. For nonzero
values of the function hðr; �Þ, however, the resulting metric
contains the off-diagonal element

~g r� ¼ a�sin2�

�
hðr; �Þ (37)

in addition to the usual frame-dragging element ~gt�.

In order to eliminate the element ~gr�, we apply another

transformation to new coordinates ðt0; r0; �0; �0Þ given by
the implicit relations

dt ¼ dt0 þ Fðr0; �0Þdr0; (38)

r ¼ r0; (39)

� ¼ �0; (40)

d� ¼ d�0 þGðr0; �0Þdr0 (41)

with the functions

Fðr0; �0Þ � � ~gr�
~gtt

�
~gt�
~gtt

� ~g��

~gt�

��1
; (42)

Gðr0; �0Þ � ~gr�
~gt�

�
~gt�
~gtt

� ~g��

~gt�

��1
: (43)

Finally (dropping the primes), we arrive at the following
metric g�� given by the line element

ds2¼�½1þhðr;�Þ�
�
1�2Mr

�

�
dt2�4aMrsin2�

�

�½1þhðr;�Þ�dtd�þ �½1þhðr;�Þ�
�þa2sin2�hðr;�Þdr

2

þ�d�2þ
�
sin2�

�
r2þa2þ2a2Mrsin2�

�

�

þhðr;�Þa
2ð�þ2MrÞsin4�

�

�
d�2; (44)

which reduces to the Kerr metric in Boyer-Lindquist coor-
dinates in the case hðr; �Þ ¼ 0 and to the generalized
Schwarzschild metric given by Eq. (3) if a ¼ 0.

The metric g�� that we have constructed in this manner

is both stationary and axisymmetric. As we will argue in
the following, the nontrivial dependence of our metric on
the function hðr; �Þ ensures the preservation of the proper-
ties of the Kerr metric that are critical for observational
tests of the no-hair theorem. In general relativity, the
Einstein tensor of our metric is nonzero unless hðr; �Þ
vanishes. Therefore, we regard our metric as a vacuum
spacetime of an appropriately chosen set of field equations
which are unknown but different from the Einstein equa-
tions for nonzero hðr; �Þ. For observational tests of the no-
hair theorem in the electromagnetic spectrum, the field
equations are not needed explicitly [32], and we only
require a spacetime and the validity of the Einstein equiva-
lence principle (c.f., [26]), which governs the motion of
particles in that spacetime.
We justify the nature of our metric in Sec. IV, where we

show that its properties are very similar to the ones of the
Kerr metric. In particular, we compute the location of the
event horizon. The requirement of asymptotic flatness
imposes restrictions on the function hðr; �Þ, which we
will address in the next section.

III. CONSTRAINTS ON THE FUNCTION hðr; �Þ
In this section, we constrain the form of the function

hðr; �Þ given by Eq. (32) by the requirements that the
metric g�� given by Eq. (44) is asymptotically flat and

consistent with observational weak-field constraints on
deviations from the Kerr metric. The resulting metric,
then, is suitable for the exploration of the strong-field
regime in the vicinity of black holes.
In Newtonian gravity and at a large distance from the

source, the potential of an extended body approaches that
of a spherical body of equal mass. Similarly, in general
relativity, stationary and asymptotically flat spacetimes are
Schwarzschild-like in the limit of large radii in an appro-
priately chosen coordinate system, i.e., they fall off as 1=r
or faster [33]. In that particular gauge, such metrics are of
the asymptotic form (e.g., [34])

ds2¼�
�
1�2M

r
þOðr�2Þ

�
dt2�

�
4a

r
sin2�þOðr�2Þ

�
dtd�

þ½1þOðr�1Þ�½dr2þr2d�2�; (45)

where we used the notation

d�2 ¼ d�2 þ sin2�d�2: (46)

Asymptotically flat spacetimes with a slower falloff in-
volve gravitational radiation [35] and, thus, cannot be
stationary.
A similar argument must hold for more general space-

times that are not necessarily a solution of the Einstein
equations. For r � M and r � a, our metric given by
Eq. (44) has the asymptotic form
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ds2 � �
�
1� 2M

r
þ hðrÞ

�
dt2 � 4a½1þ hðrÞ�

r
sin2�dtd�

þ
�
1þ 2M

r
þ hðrÞ

�
dr2 þ r2d�; (47)

where hðrÞ is given by Eq. (5). Therefore, the function hðrÞ
must be of orderOð1=rnÞwith n � 2, and we conclude that
�0 ¼ �1 ¼ 0.

Limits on the parameter �2 of the next leading-order
term in the function hðrÞ can readily be obtained from the
observational constraints on weak-field deviations from
general relativity in the parameterized post-Newtonian
(PPN) framework [36]. In the PPN approach, the asymp-
totic spacetime is expressed as

ds2 ¼ �AðrÞdt2 þ BðrÞdr2 þ r2d�; (48)

where

AðrÞ ¼ 1� 2M

r
þ 2ð�� �ÞM

2

r2
; (49)

BðrÞ ¼ 1þ 2�
M

r
: (50)

In general relativity, � ¼ � ¼ 1.
From the asymptotic form of the metric given by

Eq. (47), we identify

�2 ¼ 2ð�� 1Þ; � ¼ 1: (51)

The best current PPN contraint on the parameter� is set by
the Lunar Laser Ranging experiment and yields [37]

j�� 1j � 2:3� 10�4; (53)

if the weak equivalence principle is satisfied, which we
assume throughout the paper. Therefore, this limit implies
that

j�2j � 4:6� 10�4: (54)

For the remainder of this paper, we will set �2 ¼ 0 and
explore in some detail metrics with �k ¼ 0 for k > 3.
In this case, the function hðr; �Þ reduces to

hðr; �Þ ¼ �3
M3r

�2
: (55)

The parameter �3 is unconstrained by current observational
tests of general relativity (c.f. [22]). Our metric with this
choice of hðr; �Þ, therefore, allows us to probe the regime
of strong-field gravity in parametric form.

IV. METRIC PROPERTIES

In this section, we analyze some of the properties of the
metric given by Eq. (44), and we choose the function
hðr; �Þ according to Eq. (55) for simplicity. In particular,
we determine the range of the parameters a and �3 for
which our metric describes a black hole. A similar analysis

should be valid for all higher orders in M=r. Unless the
parameter j�3j is very small, we expect potential strong-
field deviations from the Kerr metric to be most easily
detectable at order ðM=rÞ3.

A. Event horizon

First, we calculate the location of the event horizon,
which occurs at the root of the equation

g2t� � gttg�� ¼ 0: (56)

This equation can be rewritten in the form�
1þ �3

M3r

�2

�
w

�
r; �;M;a; �3

�
¼ 0; (57)

where wðr; �;M;a; �3Þ is a function of the radius r and the
angle �, as well as of the massM, spin a, and the parameter
�3. This equation can have more than one root leading to
the presence of both an inner and an outer horizon similar
to the case of the Kerr metric. Since in this paper we are
only concerned with the exterior spacetime, we will refer
hereafter to the outer horizon simply as the event horizon.
In Fig. 1, we plot the event horizon in the xz-plane for

several values of the spin a and the parameter �3. The
horizon is more prolate than the horizon of a Kerr black
hole with the same spin for positive values of the parameter
�3, while it is more oblate for negative values of the
parameter �3. In the case a ¼ M, the event horizon has a
dumbbell shape if �3 ¼ �1 and is not closed if �3 ¼ 1.
In this paper, we are only interested in black holes, i.e.,

in compact objects for which the event horizon is entirely
closed. In the case a ¼ 0, the event horizon is a sphere with

radius rh ¼ 2M, if �3 � �8, or rh ¼ ðj�3jÞ1=3M, if
�3 <�8. For negative values of the parameter �3, the event
horizon is always closed, because the first factor in Eq. (57)
vanishes at some r > 0 for all 0 � � < 	. For positive
values of the parameter �3, the first factor in Eq. (57) is
always positive, while the existence of a root of the func-
tionwðr; �;M;a; �3Þ depends on the value of the parameter
�3. For each value of the spin jaj> 0, there exists a value
of the parameter �3 > 0 such that the event horizon is no
longer closed. A hole appears in the event horizon around
the equatorial plane within the range � ¼ 	=2	 �hole, and
the central object becomes a naked singularity.
In Fig. 2, we delineate the part of the parameter space,

within which the event horizon is closed, and the central
object is a black hole. The solid line marks the upper limit
on the parameter �3 as a function of the spin, for which the
event horizon is still closed. The shaded region corre-
sponds to the excluded part of the parameter space, where
the central object is a naked singularity. In principle, the
parameter space can be expanded to include values of the
parameter j�3j> 10. However, we will not consider this
case here, because this relatively large range of the pa-
rameter �3 should already suffice to study strong-field
deviations from the Kerr metric.
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The Kerr metric describes a black hole only for values of
the spin jaj � M. In the case jaj>M, this spacetime
contains a naked singularity, and causality is violated at
every point in space due to the presence of closed timelike
curves [2,38]. In our metric, the event horizon is not closed

if jaj>M, unless �3 <�16jaj3=3 ffiffiffi
3

p
. In this case, our

metric describes a superspinning black hole (c.f. [39]).
We will not consider this case either, because the Kerr
metric itself is unphysical in this spin range.

Analyzing the elements of our metric, we find that
g�� > 0 throughout the spacetime and grr > 0, g�� > 0

outside of the event horizon. Consequently, our (exterior)
spacetime is free of closed timelike curves, and causality
is satisfied.

B. Energy and Axial Angular Momentum
for a Particle on a Circular Equatorial Orbit

Here we derive expressions for the energy E and axial
angular momentum Lz of a particle on a circular equatorial
orbit. Our derivation is similar to the ones in [40] for the
Kerr metric and in [11] for the quasi-Kerr metric.
Since our metric is stationary and axisymmetric, there

exist three integrals of the motion. For a particle with
4-momentum

p
 ¼ �
dx


d�
; (58)

these constants are its rest mass �, energy E ¼ �pt, and
axial angular momentum Lz ¼ p�.

The Kerr metric (in Boyer-Lindquist coordinates) is of
Petrov-type D, which ensures the existence of a fourth
constant of the motion [38]. Our metric in the form given
by Eq. (44) with the function hðr; �Þ chosen according to
Eq. (55) is of Petrov-type I, and the fourth constant is lost.
However, thanks to the reflexion symmetry of our space-
time, equatorial trajectories are fully characterized by the
rest mass, energy, and axial angular momentum alone.
We solve the equation

p
p

 ¼ ��2 (59)

in the equatorial plane for the radial momentum and insert
the constants of the motion. We obtain�
dr

d�

�
2 � RðrÞ

� � 1

grr
ðgttE2 � 2gt�ELz þ g��L2

z þ�2Þ; (60)

where g
� is our metric given by Eqs. (44) and (55).

We solve the system of equations

RðrÞ ¼ 0; (61)

FIG. 2. Maximum values of the parameter �3 versus the spin a,
for which the event horizon is entirely closed. The shaded region
marks the part of the parameter space where the central object is
a naked singularity. Outside of this region, the central object is a
black hole, which is described by its mass M, spin a, and the
parameter �3. The dashed line corresponds to a Kerr black hole.

FIG. 1 (color online). Event horizon of a non-Kerr black hole in the xz-plane for values of the spin (left) a ¼ 0:4M, (middle)
a ¼ 0:7M, and (right) a ¼ 1:0M and several values of the parameter �3. For positive values of the parameter �3, the event horizon has
a more prolate shape than the horizon of a Kerr black hole with the same spin, while for negative values of the parameter �3, the shape
is more oblate. In the case a ¼ M, the event horizon has a dumbbell shape if �3 ¼ �1 and is not closed if �3 ¼ 1.
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d

dr
RðrÞ ¼ 0 (62)

for the energy and axial angular momentum and find the
expressions

E

�
¼ 1

r6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 þ P2

P3

s
; (63)

Lz

�
¼ 	 1

r4P6

ffiffiffiffiffiffi
P3

p
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðr3 þ �3M
3ÞP5

q


 6aMðr3 þ �3M
3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P1 þ P2

p i
: (64)

In these expressions, the upper signs refer to a particle that
corotates with the black hole, while the lower signs refer to
a counterrotating particle. The functions P1 to P6 can be
found in Appendix A.

In the Kerr limit, �3 ! 0, these expressions simplify to
the corresponding ones for the Kerr metric [40]

E

�
¼ r3=2 � 2Mr1=2 	 aM1=2

r3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 � 3Mr1=2 	 2aM1=2

p (65)

and

Lz

�
¼ 	 M1=2ðr2 
 2aM1=2r1=2 þ a2Þ

r3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 � 3Mr1=2 	 2aM1=2

p : (66)

C. Innermost stable circular orbit
and circular photon orbit

From the expressions (63) and (64) for the energy and
axial angular momentum, we derive the locations for the
ISCO and the circular photon orbit. In order to obtain the
ISCO, we numerically solve the equation

dE

dr
¼ 0: (67)

The photon orbit occurs at the radius at which

E

�
! 1;

Lz

�
! 1; (68)

and the denominators in the expressions (63) and (64)
vanish. Compared to the denominator of the energy E=�,
the denominator of the angular momentum Lz contains the
additional factor P6. This factor, however, has no real
roots, and we can determine the radius of the photon orbit
uniquely. Similar calculations have also been performed
by [11,41].

In Figs. 3 and 4, we plot, respectively, the ISCO and the
circular photon orbit as a function of the spin for several
values of the parameter �3. The radii of the ISCO and of the
circular photon orbit decrease with increasing values of the
parameter �3. The shaded regions mark the excluded part
of the parameter space in accordance with Fig. 2. A space-
time with an ISCO or photon orbit radius inside the shaded
regions would have an open event horizon. The solid lines

along the boundary of the excluded part correspond to the
locations of the ISCO and the circular photon orbit, re-
spectively, for the range of the parameter 0 � �3 � 10. We
do not calculate the boundary for values of the parameter
j�3j> 10 explicitly and estimate its location in both figures
by a dashed line.
In Fig. 5, we plot contours of constant radius of the ISCO

as a function of spin and the parameter �3. The radius of the
ISCO decreases for increasing values of the spin and the
parameter �3. The shaded region marks the excluded part
of the parameter space. The dashed line corresponds to the
parameter space for a Kerr black hole, which depends only
on the spin.

FIG. 3 (color online). Radius of the ISCO as a function of the
spin a for several values of the parameter �3. The radius of
the ISCO decreases with increasing values of the parameter �3.
The shaded region marks the excluded part of the parameter
space.

FIG. 4 (color online). Radius of the circular photon orbit as a
function of the spin a for several values of the parameter �3. The
radius of the circular photon decreases with increasing values of
the parameter �3. The shaded region marks the excluded part of
the parameter space.
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In the Kerr metric in Boyer-Lindquist coordinates, the
equatorial event horizon, the prograde circular photon
orbit, and the ISCO coincide at maximum spin a ¼ M
even though their proper separation is distinct. For values
of the spin exceeding this upper bound, the central object is
no longer a black hole. In our metric, the upper bound
depends on both the spin and the parameter �3 as we have
already shown in Fig. 2. Along this curve, the equatorial
event horizon and the prograde circular photon orbit merge
within numerical accuracy, while the prograde ISCO is
located at a radius slightly outside of the event horizon.

We illustrate this behavior in Fig. 6, where we plot the
equatorial radius of the event horizon, the circular photon
orbit, and the ISCO as a function of the spin a for a value of

the parameter �3 ¼ 2. At a spin of a � 0:697M, the circu-
lar photon orbit merges with the event horizon at
r � 1:39M, while the ISCO reaches a value of r �
1:60M. For values of the spin larger than the upper bound
a � 0:697M, the event horizon is no longer closed.
In Fig. 7, we plot the radii of the equatorial event horizon

and of the prograde circular photon orbit and ISCO as a
function of the maximum spin. The event horizon and the
circular photon orbit coincide for all values of the maxi-
mum spin reaching the asymptotic value r ¼ 2:0M in the
limit amax ! 0, �3 ! 1. The prograde ISCO at these
values of the spin is located at slightly larger radii and
merges with the event horizon and the circular photon orbit
in the Kerr limit amax ¼ M. For values of the maximum
spin smaller than amax � 0:270M (corresponding to a
value of the parameter �3 � 32), the prograde ISCO is
no longer unique, and a second region of stable circular
orbits occurs between the origin and the ISCO separated by
a gap. This region is bound by both another innermost as
well as an outermost stable orbit (‘‘OSCO’’). This region
lies outside of the parameter space that we consider in this
paper (c.f., Fig. 2). A similar effect in other parametric
spacetimes has also been reported in Refs. [10,13].

V. CONCLUSIONS

Thanks to the no-hair theorem, any parametric deviation
from the Kerr metric in general relativity does not harbor a
black hole and is often plagued with unphysical properties
that have to be excluded by imposing a cutoff near but
outside of the event horizon. Within general relativity, tests
of the no-hair theorem that are based on observational

FIG. 5 (color online). Contours of constant radius of the ISCO
for values of the spin �1 � a=M � 1 and of the parameter
�10 � �3 � 10. The radius of the ISCO decreases for increas-
ing values of the spin and the parameter �3. The shaded region
marks the excluded part of the parameter space. The dashed line
corresponds to the parameter space for a Kerr black hole.

FIG. 6 (color online). Equatorial radius of the event horizon,
the circular photon orbit, and the ISCO as a function of the spin a
for a value of the parameter �3 ¼ 2. The event horizon and the
circular photon orbit coincide at r � 1:39M at a spin of a �
0:697M, while the ISCO reaches a value of r � 1:60M.

FIG. 7 (color online). Radii of the (equatorial) event horizon
and the prograde circular photon orbit and ISCO as a function
maximum spin. The event horizon and the circular photon orbit
coincide for all values of the maximum spin. The prograde ISCO
at these values of the spin is located at slightly larger radii and
merges with the event horizon and the circular photon orbit in
the Kerr limit amax ¼ M. For values of the maximum spin
smaller than (red dot) amax � 0:270M, multiple ISCOs occur
(not shown).
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signals originating from the vicinity of the circular photon
orbit or the ISCO are, therefore, limited to the region
outside of the cutoff, and, so far, it has been unknown
how to include rapidly spinning black holes in such tests
[25].

In this paper, we constructed a Kerr-like metric of a
rapidly spinning black hole, which depends on a set of free
parameters in addition to the mass and spin and which
reduces smoothly to the Kerr metric if all parameters
vanish. We showed that this metric is stationary, axisym-
metric, and asymptotically flat and argued that it describes
a vacuum spacetime for a set of appropriately chosen field
equations. We used the current results from Lunar Laser
Ranging tests of weak-field general relativity to constrain
the set of free parameters.

For the case of one additional parameter, we showed that
our metric is regular and free of unphysical properties
outside of the event horizon and that it can be used to
describe black holes up to the maximum value of the spin
a. For positive values of the free parameter, this upper
bound is a function of the deviation and smaller than the
Kerr value amax ¼ M. Otherwise, the upper bound coin-
cides with the Kerr limit. For values of the spin jaj>M

and of the parameter �3 <�16jaj3=3 ffiffiffi
3

p
, our metric de-

scribes a superspinning black hole.
We calculated expressions for the energy and angular

momentum of a particle on a circular equatorial orbit and
used them to obtain the locations of the ISCO and the
circular photon orbit, respectively. Both radii decrease
with increasing values of the spin and the deviation pa-
rameter. At the maximum value of the spin for a given
value of the deviation, the circular photon orbit merges
with the event horizon within numerical accuracy as in the
Kerr metric, and the ISCO is located slightly outside of the
horizon.
Our metric is, thus, fully applicable in the strong-field

regime arbitrarily close to the event horizon of a black hole
and an ideal spacetime for astrophysical tests of the no-hair
theorem that probe the immediate vicinity of black holes
and that do not rely on the field equations explicitly.
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APPENDIX A: ENERGYAND ANGULAR MOMENTUM
FOR A PARTICLE ON A CIRCULAR EQUATORIAL ORBIT

In this appendix, we give explicit expressions for the functions P1 to P6 that occur in the expressions (63) and (64) for
the energy and axial angular momentum, respectively, of a particle on a circular equatorial orbit:

P1 ¼ a2Mr4ð�3M3 þ r3Þ2f12�3a2M3ð�3M3 þ r3Þ2 � r4½2�3M2r3ð3r2 � 8M2Þ
þ �23M

5ð40M2 � 48Mrþ 15r2Þ þ 4r6ð3r� 5MÞ�g (A1)

P2 ¼ 2f2r4ðr20 
MP4Þ þMr12f2r9ð�12M2 þ 16Mr� 7r2Þ
þ �3M

2ðr� 2MÞ2½�23M6ð5r� 12MÞ � 6�3M
3r3ð5M� 2rÞ � 3r6ð8M� 3rÞ�gg (A2)

P3 ¼ r4ð12�3M4 � 5�3M
3rþ 6Mr3 � 2r4Þ2 � 8a2Mð�3M3 þ r3Þ2ð5�3M3 þ 2r3Þ (A3)

P4 ¼

a2Mð�3M3 þ r3Þ6ð9�23a2M5 þ 16�3M

3r4 � 6�3M
2r5 þ 4r7Þ½a2ð�3M3 þ r3Þ þ r4ðr� 2MÞ�2

q
(A4)

P5¼ð�3M3þr3Þf12�3a6M3ð�3M3�2r3Þ2ð�3M3þr3Þ4þa4r4ð�3M3þr3Þ2ð�40�43M
13þ40�43M

12r�15�43M
11r2

þ128�33M
10r3�296�33M

9r4þ54�33M
8r5�924�23M

7r6þ276�23M
6r7�36�23M

5r8�880�3M
4r9þ304�3M

3r10

�24�3M
2r11�112Mr12þ16r13Þ�2a2r8½48�53M17�12�53M

16r�52�53M
15r2þ3�43M

14r3ð5�3þ88Þ�720�43M
13r4

þ298�43M
12r5�3�33M

11r6ð13�3þ480Þþ516�33M
10r7þ2�33M

9r8�6�23M
8r9ð3�3þ508Þþ2292�23M

7r10

�628�23M
6r11þ12�3M

5r12ð5�3�134Þþ1188�3M
4r13�296�3M

3r14þ24M2r15ð�3�9Þþ120Mr16�16r17�
�r14ð�3M3þ6Mr2�2r3Þ2ð96�23M7�76�23M

6rþ15�23M
5r2þ72�3M

4r3�44�3M
3r4þ6�3M

2r5

þ12Mr6�4r7Þg
4P4½a2ð�3M3�2r3Þ2ð�3M3þr3Þþ6�3M
3r5ð�3M3þ6Mr2�2r3Þ� (A5)

P6 ¼ ��23M
6 � 6�3M

4r2 þ �3M
3r3 � 6Mr5 þ 2r6 (A6)
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