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We derive and analyze Noether charges associated with the diffeomorphism invariance for the con-

strained SOð2; 3Þ BF theory. This result generalizes the Wald approach to the case of the first order gravity

with a negative cosmological constant, the Holst modification, and topological terms (Nieh-Yan, Euler,

and Pontryagin). We show that differentiability of the action is automatically implemented by the structure

of the constrained BF model. Finally, we calculate the AdS–Schwarzschild black hole entropy from the

Noether charge and we find that it does not depend on the Immirzi parameter.
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I. INTRODUCTION

The Wilsonian perspective is a powerful guiding princi-
ple in constructing theories with the given field content and
symmetries. It tells that one should include in the action all
terms that can be constructed from the fields and are
compatible with the symmetries of the theory. In the con-
text of first order gravity we have to work with two fields,
tetrad ea and connection !ab, and two symmetries, local
Lorentz invariance and spacetime diffeomorphisms. If we
implement the diffeomorphism invariance, assuming that
the action of gravity is written as a four-form polynomial
constructed from the tetrad and the connection, the list of
possible terms turns out to be rather short and includes

(i) Palatini Lagrangian

L P ¼ Rab ^ ec ^ ed�abcd; (1.1)

(ii) Cosmological term

L C ¼ ea ^ eb ^ ec ^ ed�abcd; (1.2)

(iii) Holst term [1]

H4 ¼ Rab ^ ea ^ eb; (1.3)

(iv) Pontryagin, Euler and Nieh-Yan topological terms

P4 ¼ Rab ^ Rab; E4 ¼ Rab ^ Rcd�abcd;

NY4 ¼ Ta ^ Ta � Rab ^ ea ^ eb;
(1.4)

where Rab is the curvature of !ab and Ta is torsion.
Each of these terms comes with its own coupling con-

stant. One could ask if there is an additional principle that
could be used to reduce the number of independent pa-
rameters of the theory. As it turns out, this can be achieved
in the framework of the formulation of gravity as a con-
strained BF theory.

This approach has its roots in MacDowell-Mansouri
[2,3] and Plebanski [4–6] theories and was developed in
the series of papers [7–10]. In this formulation we have the
anti-de Sitter algebra soð2; 3Þ-valued1 connection AIJ, with
I, J ¼ 0; . . . ; 4, which can be decomposed into Lorentz
connection !ab and the tetrad (soldering) one-form ea

(a; b ¼ 0; . . . ; 3) as follows:

Aab ¼ !ab; Aa4 ¼ 1

‘
ea: (1.5)

Here ‘ is a length scale necessary for dimensional reason
since the tetrad is dimensionless. As we will see, this scale
is naturally associated with the cosmological constant. The
components of the curvature of connection AIJ are related
to the curvature of Lorentz connection !

FabðAÞ ¼ Rabð!Þ þ 1

‘2
ea ^ eb (1.6)

and the torsion

Fa4 ¼ 1

‘
ðdea þ!a

b ^ ebÞ ¼ 1

‘
Ta: (1.7)

With the help of the second ingredient, the soð2; 3Þ Lie
algebra valued two-form field BIJ, one can write down the
action of the theory as follows:

16�SðA; BÞ ¼
Z

FIJ ^ BIJ � �

2
BIJ ^ BIJ

� �

4
�IJKL4BIJ ^ BKL: (1.8)

After solving B field equations we find

Ba4¼ 1

�
Fa4; Bab¼ 1

2ð�2þ�2Þð��
ab
cd���abcdÞFcd:

(1.9)
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1The de Sitter case soð1; 4Þ can be constructed analogously.
Here we use the anti-de Sitter algebra because it leads to the
asymptotically anti-de Sitter spacetimes.
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Before substituting this result back to the action (1.8), let
us provide the expressions for dimensionless coupling
constants � and � and the scale ‘ in terms of the physical
coupling constants, Newton’s constant G, a negative cos-
mological constant �, and the Immirzi parameter � [11]

� ¼ G�

3

1

ð1þ �2Þ ; � ¼ G�

3

�

ð1þ �2Þ ;

� ¼ �

�
; � ¼ � 3

‘2
:

(1.10)

Substituting (1.9) and (1.10) to the action (1.8) gives

32�GS ¼
Z �

Rab ^ ec ^ ed þ 1

2‘2
ea ^ eb ^ ec ^ ed

�
�abcd

þ 2

�

Z
Rab ^ ea ^ eb þ ‘2

2
E4 � ‘2�P4

þ 2ð�2 þ 1Þ
�

NY4: (1.11)

The first line in (1.11) is the standard first order form of
the general relativity action with the cosmological con-
stant. The third line contains the combination of topologi-
cal invariants and therefore can be written as a total
derivative (see [12]). The middle term is called the Holst
term [1]. Although it is not a total derivative, by the virtue
of the Bianchi identity, it does not influence equations of
motion when torsion vanishes.

The first order action above can be also written down in a
compact form

Sð!;eÞ¼ 1

16�

Z
M

�
1

4
MabcdFab^Fcd� 1

�‘2
Ta^Ta

�
(1.12)

with

Mab
cd¼

�

ð�2þ�2Þð��
ab
cd��abcdÞ��‘2

G
ð��ab

cd��abcdÞ:
(1.13)

The field equations following from (1.12) read

KabcdFab ^ ec ¼ 0; (1.14)

1

‘2
D!ðKabcdðea ^ ebÞÞ ¼ 0; (1.15)

where the operator K has the form

Kab
cd � � ‘2

G

�
1

�
�ab

cd þ �abcd

�
; (1.16)

and we have introduced AdS curvature F

Fab ¼
�
Rab þ 1

‘2
ea ^ eb

�
: (1.17)

Later we will make use of the fact that this curvature
vanishes for anti-de Sitter spacetime.
It follows from Eq. (1.15) that torsion Ta ¼ D!ea

vanishes (one has to assume that �2 � �1) and thus the
field Eqs. (1.16) are Einstein equations with a negative
cosmological constant in the first order form.
The Immirzi parameter, being the coupling constant

associated with the Holst term, is a mysterious beast.
It was first introduced by Barbero [13] in the context
of Ashtekar variables, parametrizing a family of canoni-
cal transformations on the gravity phase space and
inequivalent quantizations. It was soon realized that
� is explicitly present in the loop quantum gravity
(LQC) formula for area spectrum [11,14]. As a conse-
quence, Immirzi parameter is also present in the formula
for black hole entropy calculated by counting LQG
microstates of isolated horizon [15–19]; for the recent
discussion of the results see [20]. On the other hand, as it
was said above, the inclusion of the Holst term does not
lead to any modifications of classical field equations of
gravity and therefore is seemingly completely irrelevant
classically.
However, it is well known that black hole entropy

can be computed [21,22] in a class of diffeomorphism
invariant theories as a Noether charge associated with a
timelike Killing vector with a vanishing norm at the
horizon.
A natural question arises: if we calculate the black hole

entropy following the Wald and Iyer recipe in the theory of
gravity with Holst term, will we reproduce the loop quan-
tum gravity result? This is the main problem we would like
to address in this paper.
The BF formulation of gravity is a very convenient

starting point in this context. First, it naturally leads to
the emergence of the Holst term. Second, the analysis of
the boundary terms is particularly simple in this case. As
we will see below, in this formulation the problem of
notorious counterterms, that usually has to be added to
the action in order to make it differentiable and finite, is
automatically taken care of. Last, but not least, the
calculation of Noether charges in this formulation is
much simpler than in the case of the standard first order
gravity.
The plan of this paper is as follows. In the next section

we will show that in a black hole, asymptotically anti-
de Sitter spacetime, the action (1.8) is differentiable. This
remarkable fact can be understood in the complementary
first order gravity formulation as being due to the presence
of the topological invariants with the right coefficients. In
Sec. III, returning to the constrained BF theory, we will
construct the Noether charges following the construction of
Wald and Iyer [21,22]. Next, in Sec. IV we make use of
these expressions to calculate entropy of the
Schwarzschild–AdS black hole. The final section will be
devoted to discussion and conclusions.
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II. BOUNDARIES AND DIFFERENTIABILITY

When spacetime has boundaries we must make sure that
the action (1.8) is differentiable and the variational princi-
ple is well defined.2 The differentiability of the action
means essentially that the values of the fields and the
form of variations are chosen in such a way that the
boundary contribution to the variation of the action van-
ishes. Investigating this we will see how powerful is the BF
formulation outlined in the previous section. In what fol-
lows we will restrict ourselves to the black hole spacetimes
with the anti-de Sitter asymptotic; therefore, we will have
to do with a manifold with the boundary at infinity, where
the gravitational field satisfies Fab ¼ 0 [cf. (1.17)], and the
inner black hole boundary, where we assume that the
variation of connection vanishes �!ab ¼ 0. This latter
condition is imposed because fixing connection at the
horizon means fixing the black hole temperature, and
therefore this boundary condition is essentially equivalent
to imposing the zeroth law of black hole mechanics.

Consider the variation of the action (1.8) keeping only
the terms that contribute to the boundary integral

16��SðA; BÞ ¼
Z
M
�FIJ ^ BIJ þ . . .

¼
Z
M
d�AIJ ^ BIJ þ . . .

¼
Z
@M

�AIJ ^ BIJ þ bulk terms; (2.1)

with @M ¼ ðR� @�1Þ [ ðR� @�HÞ.
There are two contributions to the integral at infinity,

proportional to Ba4 and Bab. The first vanishes because Ba4

is proportional to torsion which vanishes by the field
equations, and the second is zero because Bab � Fab,
which vanishes by the virtue of asymptotic condition.

Similarly, at the black hole horizon the term �Aa4 ^ Ba4

is proportional to torsion and therefore zero, while the term
�Aab ^ Bab vanishes because we choose the boundary
condition �!ab ¼ 0 there, as discussed above. Therefore,
remarkably, we find that the BF action is differentiable
without any need of adding counterterms.

To understand how this result comes about, let us notice
that the action (1.8) written in the components has the
form3

½ðPalatiniþ�Þ þ ‘2Euler� � �½Holstþ ‘2Pontryagin�:
It can be checked that these are exactly the combinations
needed to cancel out the boundary terms at infinity result-
ing from varying the Palatini and Holst actions. To see this,

consider the first combination above. Take an arbitrary
variation of the Palatini action, to wit

�ðPalatiniþ�Þ¼
Z
M
ðf:e:Þa�eaþðf:e:Þab�!abþ

Z
@M

�;

(2.2)

where (f.e.) denotes field (Einstein and torsion) equations,
while

� ¼ 1

32�G
�abcd�!

ab ^ ec ^ ed: (2.3)

Let us now turn to the Euler term. As it is well known

E4 ¼ 32��ðMÞ þ 2
Z
@M

fCS3; (2.4)

where �ðMÞ is the Euler characteristics of the manifold M

and fCS3 is the Chern–Simons three-form for the Lorentz
gauge algebra. The Euler characteristics is a fixed number
and its variation vanishes; the variation of Chern–Simons
form is

�fCS3 ¼ �abcd�!
ab ^ Rcd: (2.5)

It can be now checked directly that the terms (2.3) and (2.5)
are being combined to give �!ab ^ Fcd�abcd, which is zero
by the virtue of the asymptotic condition at infinity, and by
boundary condition at the horizon. The Holst term and the
Pontryagin counterterm can be analyzed similarly.

III. NOETHER CHARGES AND ENTROPY

Now knowing that the action (1.8) is differentiable we
can turn to the discussion of the Noether charges associated
with its symmetries. In our derivation below we will follow
the procedure proposed in the papers [21,22]. Let us start
with an arbitrary variation of the action (1.8)

16��S ¼
Z �

�BIJ ^
�
FIJ � �BIJ � �

2
BKL�IJKL4

�

þ �AIJ ^ ðDABIJÞ þ dðBIJ ^ �AIJÞ
�
:

The expressions proportional to the variations of BIJ and
AIJ in the bulk are field equations, while the last term is the
total derivative of the three-form symplectic potential:

� ¼ BIJ ^ �AIJ: (3.1)

For an arbitrary diffeomorphism generated by a smooth
vector field �	, one can derive the conserved Noether
current three-form J given by

J½�� ¼ �½
;L�
� � I�L;

J½�� ¼ BIJ ^ L�AIJ � I�L;
(3.2)

whereL is the Lagrangian, L� denotes the Lie derivative in

the direction �, and contraction I� (acting on a p-form�) is
defined to be

2Usually one also assumes that the action should be finite for
physically reasonable asymptotic conditions for the fields at
infinity, so as to make the path integral meaningful. We will
not investigate this issue in detail here.

3The prefactor � results from combining the original Holst
term with torsionless part of Nieh-Yan term.
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I��p ¼ 1

ðp� 1Þ!�
	�	�1...�p�1dx�

1 ^ � � � ^ dx�
p�1

:

By direct calculation we find

16�J½�� ¼
�
FIJ � �BIJ � �

2
BKL�IJKL4

�
^ I�BIJ

þ I�AIJ ^ ðDABIJÞ þ dðBIJ ^ I�AIJÞ:
When field equations are satisfied, this current is an exact
differential of a two-form and thus we can write down the
associated charge to be

Q½�� ¼ 1

16�

Z
@�

BIJI�AIJ; (3.3)

which, after substituting the solution of the B field equa-
tions takes the form

Q ¼ 1

16�

Z
@�

�
1

2
Mab

cdFabI�!
cd � 2

�‘2
TaI�e

a

�
; (3.4)

where @� is a spatial section of the manifold.
One can check that the expression for the Noether

charge (3.4) agrees with the one that can be obtained
from the first order action (1.12), as it should. It is also
worth noticing that the Noether charge can be expressed
compactly as

Q ¼ 1

16�

Z
@�

�L
�FIJ I�A

IJ:

Turning back to the formula (3.4) and taking torsion
Ta ¼ 0, we can express the charge in the final form

Q½�� ¼ ‘2

32�G

Z
@�

I�!abð�abcdFcd
jk � 2�Fab

jk Þdxj ^ dxk:

(3.5)

This generalizes the result of [21–25] to the case of first
order gravity with Immirzi parameter.

Having the general expression for the charge, we can
now turn to finding the formula for the entropy. According
to [21,22] the black hole entropy S is proportional to the
value of the Noether charge (3.5) calculated at the black
hole horizon and associated with a timelike Killing vector
@=@t, which vanishes at the horizon @�H

Q

�
@

@t

���������@�H

¼ �

2�
Entropy; (3.6)

where � is the surface gravity. The question we would like
to address here is how the presence of the Immirzi parame-
ter influences the resulting expression for entropy. In this
paper we will investigate only the case of the AdS–
Schwarzschild black hole, leaving other examples of the
asymptotically anti-de Sitter black hole spacetimes to the
forthcoming publication.

To calculate the value of the Noether charges (3.5) for
the Schwarzschild–AdS spacetime, let us first fix the met-
ric to be

ds2 ¼ �fðrÞ2dt2 þ fðrÞ�2dr2 þ r2ðd2 þ sin2d’2Þ
(3.7)

with

fðrÞ2 ¼
�
1� 2GM

r
þ r2

‘2

�
: (3.8)

It can be checked that for the case of the metric (3.7), the
surface gravity � defined by the equation

I�!
ab�b ¼ ��a (3.9)

is given by

� ¼ !01
t

��������rH

¼
�
1

2

@fðrÞ2
@r

���������rH

; T ¼ �

2�
: (3.10)

The charge associated with the timelike Killing vector
� � @=@t equals

Q½��¼ 4‘2

32�G

Z
@�

!01
t ð�0123F23

jk ��Fjk01Þdxj^dxk

¼ 4‘2

32�G

Z
@�

�
1

2

@fðrÞ2
@r

��
1þ r2

‘2
�fðrÞ2

�
sind^d’:

(3.11)

Notice that this expression does not depend of the Immirzi
parameter; the �-dependent terms in (3.5) have just
dropped out.
The value of this charge calculated at the boundary at

infinity gives

Q½��1 ¼ lim
r!1

1

4�

Z
@�

�
Mþ ‘2GM2

r3

�
sind ^ d’ ¼ M

(3.12)

as it should be [23,24].
The charge calculated at the Schwarzschild–AdS black

hole horizon equals

Q½��H¼ �‘2

8�G

�
1þr2H

‘2

�Z
@�

sind^d’¼ �

2�

4�ðr2Hþ‘2Þ
4G

;

(3.13)

where � is the surface gravity defined by Eq. (3.10). The
horizon radius rH is the largest real solution of the third
order equation

r3=‘2 þ r� 2GM ¼ 0;

which allows us to rewrite the expression (3.13) as

Q½��H ¼ �
M‘2

rH
: (3.14)

From (3.13), it is straightforward to see that the black hole
entropy yields the form

S ¼ A

4G
þ 4�‘2

4G
: (3.15)
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The first term is the standard Bekenstein–Hawking area
law, while the second is just a constant, which does not
alter the first law of thermodynamics. In the first order
formalism, its presence can be regarded as the price that
has to be paid for the regularization at infinity and the
presence of the Euler term in the action. The appearance of
the additive constant in the expression for the black hole
has been discussed in the context of Lovelock and Gauss-
Bonet gravity theories e.g. in [26,27]. It is worth mention-
ing that our model avoids the problem of the negative
entropy [28].

In the context of the BF construction presented above,
this constant could be understood as an indication that the
vacuum of the constrained BF theory [being the maximally
symmetric spacetime with SOð2; 3Þ symmetry] carries
some entropy. A deeper origin of this entropy remains still
to be understood.

IV. DISCUSSION: WHATABOUT THE
IMMIRZI PARAMETER?

In the previous section we calculated the entropy of the
Schwarzschild–AdS black hole by making use of theWald-
Iyer prescription. Interestingly, the resulting expression
(3.15) does not contain any trace of the Immirzi parameter,
in spite of the fact that this parameter was present in the
Lagrangian of the dynamical theory that we started with.

Before turning to the discussion of this intriguing result,
let us try to trace the reason for the Immirzi parameter
disappearance. Let us consider, for simplicity, the action
without the regularizing Euler and Pontryagin terms, using
just the Palatini and Holst actions. In the case of axisym-
metric stationary spacetime, the charge associated with the
Killing vector @� being either @t or @’ (related to the mass

and angular momentum at infinity) reads

Q½@�� ¼ 1

32�G

Z
@�

!ab
�

�
�abcdðeced’ � ec’e

d
Þ

� 2�

32�G

Z
@�

!ab
� ðeae’b � e’aebÞ

�
: (4.1)

Using the definition of the connection !ab
	 ¼ e�ar	e

b
� ¼

e�að@	eb� � ��
	�e

b
�Þ, we can drastically simplify this for-

mula and for � ¼ t we have

Q½@t�¼ 1

16�G

Z
@�
ð�	�

’�	t���ð�t’��’tÞÞ: (4.2)

Therefore, the Immirzi parameter might be present in the
expression for black hole thermodynamics if

�
Z
@�

@gt’ � 0: (4.3)

Thus, we expect that such a contribution proportional to the
Immirzi parameter can be present in AdS-Taub-NUT
(Newman, Unti, Tamburino) spacetime, and it is going to
be proportional to Taub–NUT ‘‘mass’’ and not to the

Schwarzschild one. We will present the detailed discussion
of several black hole asymptotically AdS spacetimes in a
forthcoming paper.
Let us now return to the problem if and how our ex-

pression for the entropy (3.15) can be reconciled with the
loop quantum gravity calculation [15–17,20] according to
which the black hole entropy computed by counting the
black hole horizon microstates equals

SLQG ¼ �M

�

A

4G
; (4.4)

where �M is a parameter, whose numerical value is be-
tween 0.2 and 0.3, accompanied by higher order correc-
tions; see [20] for a detailed discussion. It is not hard to
understand why � should be explicitly present in this
formula. Indeed the Immirzi parameter defines the size of
the quantum of the area, and therefore it must show up in
the state counting for the black hole horizon. It would have
been for some quite unnatural cancellations to make it
disappear from the entropy formula in the semiclassical
limit of loop quantum gravity. Yet the expression for
entropy presented above (3.15), which holds in the semi-
classical theory, whose quantum counterpart LQG is sup-
posed to be, shows no trace of �.
A possible way to resolve this dilemma, as suggested in

[29], is to notice that the entropy in (4.4) was calculated
using microscopic quantities, while in Eq. (3.15) with the
help of those of effective low energy ones. It follows that
there might be highly nontrivial relations between the area
A and Newton’s constant G of (4.4) and those of (3.15), so
that, when the relations between them are properly under-
stood, and the renormalization effects are taken into ac-
count, the two expressions may turn out to be completely
equivalent.
Another possible way out was proposed recently in [30].

In this paper it was observed that there exists an additional
ambiguity parameter associated with the construction of
the SUð2Þ Chern–Simons theory that describes the micro-
scopic degrees of freedom of the isolated horizon. This
parameter is of the similar nature as the Immirzi one, and
one can adjust the two in such a way, so as to make the final
expression for the black hole entropy having the standard
Bekenstein–Hawking form.
In both cases it remains to be understood in detail how

the proposed mechanisms work. This question is related to
the notorious problem of the semiclassical limit of loop
quantum gravity, and it seems that without controlling this
limit one cannot make any definite conclusions.
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