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To have the correct picture of a black hole as a whole, it is of crucial importance to understand its

interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole

solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another.

A proposal that has been around for sometime is to replace the singular region of the spacetime by a region

containing some form of matter or false vacuum configuration that can also cohabit with the black hole

interior. Black holes without singularities are called regular black holes. In the present work, regular black

hole solutions are found within general relativity coupled to Maxwell’s electromagnetism and charged

matter. We show that there are objects which correspond to regular charged black holes, whose interior

region is de Sitter, whose exterior region is Reissner-Nordström, and the boundary between both regions is

made of an electrically charged spherically symmetric coat. There are several types of solutions: regular

nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike

matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged

stars with a timelike matter boundary. The main physical and geometrical properties of such charged

regular solutions are analyzed.
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I. INTRODUCTION

A. Solutions of Einstein’s equation and black holes

Finding solutions of Einstein’s equation is an important
branch of general relativity. The equation takes the form,
G�� ¼ 8����, where G�� is the Einstein tensor, con-

structed from second derivatives of the metric tensor g��,

��� is the stress-energy tensor of the matter and fields,�, �

are spacetime indices �, � ¼ 0, 1, 2, 3, and G ¼ 1, c ¼ 1.
Arbitrarily chosen spacetimes with the corresponding met-
rics g�� usually give rise to an Einstein tensor, which in

turn corresponds to an unphysical stress tensor, i.e., to
matter which is of no interest. Thus, finding solutions of
Einstein’s equation is in general a nontrivial task. The
efforts to overtake the difficulties are displayed in the exact
solutions book [1], where several methods of solving
Einstein’s equation are given. To facilitate the work, in-
stead of having a continuous solution throughout space-
time, one can find solutions for two regions, an interior
region and an exterior region, and then match these regions
through a smooth junction, a boundary surface [2]. One can
also opt for a more drastic junction between both regions
where a surface layer, i.e., a thin shell, is needed [2].
Usually, the junctions, or solderings, are through timelike

surfaces, as in a surface of a star. One can also extend the
formalism of [2] to spacelike surfaces. For a lightlike
surface (also called a null surface), a special formalism
can be developed, as in [3].
A well-known vacuum (��� ¼ 0) solution of Einstein’s

equation is the Schwarzschild black hole. This spherically
symmetric solution has an event horizon at a coordinate
radius rh ¼ 2m, wherem is the mass of the black hole (see,
e.g., [4]). In its full form, the solution represents a worm-
hole, with its two phases, the white hole and the black hole,
both phases harboring singularities and connecting two
asymptotically flat universes [4]. In its amputated form,
the solution can represent a black hole shielding a singu-
larity and with one asymptotically flat region, the black
hole being formed from the collapse of a star or some other
lump of matter (see, e.g., [4]). When, besides a massm, one
includes electrical charge q, the Reissner-Nordström solu-
tion is obtained (see, e.g., [4]). The inclusion of angular
momentum J gives the Kerr solution, and the inclusion of
the three parameters ðm; J; qÞ is the Kerr-Newman solu-
tion, yielding the Kerr-Newman family of black holes
within general relativity (see [4] and also [5]).
The outside of a black hole is visible. Nowadays, potent

telescopes and detectors watch with ease what is going on
in jets and phenomena powered out by black holes.
Moreover, the outside of a black hole is well known
classically (see, e.g., [6]). Thus, from the outside, there is
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astrophysical evidence and theoretical consistency, within
the classical framework of general relativity, for the exis-
tence of black holes. Quantically, however, black holes still
pose problems for the outside. These problems are related
to the Hawking radiation and the Bekenstein-Hawking
entropy (see, e.g., [7]). Although their solution is not in
hand, the quantum outside problems are well posed and
delineated.

The inside of a black hole, on the other hand, is another
story; it is not known at all. By definition, the black hole
inside is hidden; it encloses a mysterious unknown. The
understanding of the inside of a black hole is one of
the outstanding problems in gravitational theory. The
Schwarzschild solution describes the black hole inside as
an ever moving spacetime that ends on an all encompass-
ing spacelike singularity. The Reissner-Nordström solution
also has an ever moving inward spacetime that, instead,
ends on a Cauchy horizon, which can then be cruised into a
region where a singularity can be seen but avoided. The
Kerr and the Kerr-Newman solutions have analogous prop-
erties to the Reissner-Nordström solution. The event hori-
zon thus, for this class of black hole solutions, harbors a
singularity. What is a singularity? The singularity theorems
[8–11] do not tell what a singularity is. Through the
imposition of some precise physical conditions, the theo-
rems only prove generically that singularities are inevi-
table. But, those precise physical conditions might not be
upheld in the situations they are to be used, turning the
theorems useless in such circumstances. The existence of a
singularity, by its very definition, means spacetime ceases
to exist signaling a failure of the physical laws. So, if
physical laws do exist at those extreme conditions, singu-
larities should be substituted by some other object in a
more encompassing theory. The extreme conditions, in one
form or another, that may exist at a singularity, imply that
one should resort to quantum gravity. Singularities are
certainly objects to be resolved in the realm of quantum
gravity [12].

Since there is no definite quantum gravity yet, a line of
work to understand the inside of a black hole and resolve
its singularity is to study classical or semiclassical black
holes, with regular, i.e., nonsingular properties. These type
of black holes can be motivated by quantum arguments. In
this way, there has been a trend to invent regular black hole
solutions with special matter cores that would substitute
the true singularities of the Schwarzschild, Reissner-
Nordström, Kerr, and Kerr-Newman black holes.

B. Early considerations

Indeed, Sakharov [13] and Gliner [14], in 1966, pro-
posed that singularities, such as cosmological singularities,
could be avoided by matter at superhigh densities with an
inflationary equation of state, i.e., with a de Sitter core, in
which the equation of state between the pressure p and the
energy density �matter is p ¼ ��matter, or, equivalently, the

matter stress-energy tensor T�� takes a lambda term or

false vacuum form T�� ¼ �g��,� being the cosmological

constant. This led to the idea that a spacetime filled with
false vacuum inside a black hole horizon could provide a
description of the final state of gravitational collapse.
Furthermore, Zel’dovich [15] proposed afterwards that
such a T�� could arise naturally as a result of vacuum

polarization processes in gravitational interactions. These
considerations may indicate that an unlimited increase of
spacetime curvature during a collapse process can lead to
the halt of the collapse itself if quantum fluctuations domi-
nate the process, putting ultimately an upper bound to the
value of the curvature and obliging the formation of a
central core.

C. The Bardeen regular black hole

Bardeen, in 1968 [16], realized concretely the idea of a
central matter core, by proposing a solution of Einstein’s
equation in which there is a black hole with horizons but
without a singularity, the first regular black hole. The
matter field content was a kind of magnetic matter field,
yielding a modification of the Reissner-Nordström metric.
But near the center, the solution tended to a de Sitter core
solution. All the subsequent regular black hole solutions
are based on Bardeen’s proposal, although there has been a
tremendous development on the implementation and on the
analysis of the properties of regular black hole solutions.

D. Other regular black holes

A useful way to classify the regular black hole solutions
is through the type of junctions needed. If there is no
junction, the solution is a continuous solution throughout
spacetime. If there are two simple regions, the solutions
have boundary surfaces joining the two regions. In more
drastic cases, the solutions have surface layers, i.e., thin
shells joining the two regions.

1. Solutions with continuous fields

Based on a previous work on how to avoid cosmological
singularities [17], Dymnikova proposed, in 1992, [18] a
black hole model in which the core is de Sitter and gives
way in a smooth manner into a Schwarzschild solution,
with Cauchy and event horizons somewhere in between.
Several subsequent works developing this idea followed
[19–25]; see also [26]. Next, Ayón-Beato and Garcı́a in-
voked nonlinear fields and sources to generate from first
principles the Bardeen model as a nonlinear magnetic
monopole [27], and also found a four parameter solution
[28]. In addition, they also attempted to derive regular
black holes from nonlinear electric fields [29]; see also
[30,31], and see [32] for the extremal limit of the solutions.
Bronnikov and collaborators also produced several regular
black holes in which the source are fields permeating the
whole spacetime, the core is an expanding universe with
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de Sitter asymptotics and the exterior outer region tends to
Schwarzschild [33–35]. In [36], a development along the
same lines can be found. Regular black holes in quadratic
gravity have also been discussed [37].

2. Solutions with boundary surfaces

Another useful way to construct regular black holes is by
filling the inner space with matter up to a certain surface
and then make a smooth junction, through a boundary
surface, to the Schwarzschild solution as was done in
[38–40], and in a more general setting in [41]. In the
junction to the Schwarzschild case, this junction is made
through a spacelike surface, rather than an usual timelike
surface. This means that, for some parametrization, the
junction exists at a single instant of time. Regular black
holes in which the boundary surface is lightlike or timelike
have not been found in the literature.

3. Solutions with boundary layers, i.e., thin shells

Finally, it is possible and also of interest to make the
transition from an inner de Sitter core to an outer
Schwarzschild, Reissner-Nordström, or other chosen
spacetime, through surface layers, or thin shells. Regular
black holes with thin shells of spacelike, lightlike, and
timelike character have been found.

Spacelike thin shells.—Following Zel’dovich’s idea
[15], Markov [42] suggested a concrete upper bound for
the curvature, of the order of the Planck curvature. After
the Planck curvature bound is achieved, it is suggested that
the matter turns into a de Sitter phase. The transition is
made through a spacelike thin shell. This was developed in
[43,44]; see also [45–47].

In addition, in [48] the fitting of closed and open sections
of de Sitter space into a Schwarzschild solution was con-
sidered, where special care was taken in the analysis of the
intrinsic properties of the spacelike surface layer of constant
curvature joining the two spacetimes; see, also, [49] for a
general discussion including the Kerr-Newman metric.

Lightlike thin shells.—Even before Dymnikova [18] de-
veloped her regular black hole with smooth features,
Gonzalez-Diaz, in 1981, [50] took interest in finding a
regular black hole. He tried a solution by direct matching
of de Sitter spacetime with the Schwarzschild solution on
the horizon, a null surface. Shen and Zhu reanalyzed
later this soldering of de Sitter spacetime with the
Schwarzschild solution [51], while Shen and Tan, in
1989, [52] generalized the Gonzalez-Diaz idea to d dimen-
sions. It was later argued in [53] that a Schwarzschild type
matching can also be achieved within a more general
parametrization of the static metric by two different func-
tions due to the jump of the product gttgrr. However, Grøn
and Soleng [54,55] showed that the direct matching onto
Schwarzschild at the horizon contained in [50] is incorrect.
Poisson and Israel [56] reinforced once again that no direct
matching, of the type done in [50–52], is possible; de Sitter

spacetime cannot be soldered directly to an exterior
Schwarzschild vacuum, since the junction conditions
would be violated. It is necessary to put a thin shell of
noninflationary material at a junction outside the event
horizon. In [57], it was shown that the more general
tentative matching proposed in [53] is also not possible
(see in addition [58] for no-go theorems).
Additional tries of the same type of matching, now

extending to the Reissner-Nordström spacetime, were
performed in 1985 by Shen and Zhu in [59,60]. By includ-
ing charge, the matching problems occurring in a
Schwarzschild matching may be avoided. In 1991,
Barrabès and Israel [61] gave an example where there is
the possibility of joining correctly at a null surface and
gave interesting examples of a lightlike thin shell matching
at the Cauchy horizon (see, also, [3] for null matching); see
also [44].
Timelike thin shells.—In the context of regular black

holes with boundary layers, timelike matching is not found
in the literature. So, it is of interest to study regular black
hole solutions in such a case. Regular black holes either
with a charged (usually magnetic) core or with a de Sitter
core are known, but with electric charge and a de Sitter
core together, as found here, seem to have not been ex-
plored. We put the electric charge on a thin shell at the
surface of the object, in one instance at the inner horizon, in
all the other instances below the inner horizon.

E. General results on regular black holes

General results on regular black holes, like those related
to the topology and causality of these solutions, were put
forward by Borde in an important development [62,63].
Also, energy conditions and other properties have been
studied [64–66]. The quasilocal energy of regular black
holes has been analyzed in [67]. Entropy and thermo-
dynamics of regular black holes have been studied in
[68,69].

F. Reviews on regular black holes

For a general review on regular black holes, including
black holes with Gaussian sources, see [70], and for a
motivation of these sources as well as a review on non-
commutative black holes, see [71].

G. Connections to other works

An issue connected to regular black holes is quasiblack
holes. Quasiblack holes are objects whose boundary is as
near a horizon as one wants. For the outside, they act as
black holes, although the inside properties are completely
different [72]. Based on a worked by Guilfoyle [73], solu-
tions of quasiblack holes with pressure, i.e., of relativistic
charged spheres as frozen stars, have been found in [74].
These solutions also contain, unexpectedly, regular black
holes, a particular branch of those is referred to below.
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There are some interesting investigations on the dynam-
ics of time-dependent bubbles, in which an observer in the
outer region describes the system as having a horizon and a
black hole, and an observer in the inner region, made of
false vacuum, sees a de Sitter universe [75–77].

Related to the inside of a black hole, it has been shown
that, under perturbations, an instability of the internal
Cauchy horizon occurs, and a spacelike or null true singu-
larity emerges inside a charged Reissner-Nordström black
hole. This phenomenon is called mass inflation, as it shows
an exponential growth of the local mass function [78].

Black holes, and, in particular, charged black holes,
singular or regular, as elementary charged particles is an
issue in itself that we will delve into in another work.

H. Layout of the paper

The present paper is organized as follows. In Sec. II, we
lay out some properties of cold charged fluids in general
relativity. In Sec. II A, the basic equations describing a
charged fluid are written. Spherically symmetric equations
are then set up in Sec. II B. Then, in Sec. III, regular
charged black hole solutions are presented. In Sec. III A,
we give the ansätze used, such as the one that describes the
matter fluid by a false vacuum term. Section III B is
devoted to present the regular charged black hole solutions,
to the study of the main properties of these black holes, and
to comment on the relation of the present solutions to other
regular black hole solutions found in the literature and to
some of the solutions of Guilfoyle. In Sec. IV, we conclude.

II. CHARGED FLUIDS

A. Basic equations

The cold charged fluids considered in the present work
are described by the Einstein-Maxwell equations with
matter, which can be written as

G�� ¼ 8����; (1)

r�F
�� ¼ 4�J�; (2)

where Greek indices �, �, etc., run from 0 to 3, 0 corre-
sponding to a timelike coordinate t. G�� ¼ R�� � 1

2g��R

is the Einstein tensor, with R�� being the Ricci tensor, g��

the metric, and R the Ricci scalar. We put both the speed of
light c and the gravitational constant G equal to unity
throughout. The tensor ��� is the energy-momentum

tensor, which here can be decomposed into two parts,
E�� and T��,

��� ¼ ðT�� þ E��Þ: (3)

E�� is the electromagnetic energy-momentum tensor,

which can be written in the form

E�� ¼ 1

4�

�
F�

�F�� � 1

4
g��F��F

��

�
; (4)

where the Maxwell tensor is

F�� ¼ r�A� �r�A�; (5)

r� representing the covariant derivative, and A� the

electromagnetic gauge field. In addition,

J� ¼ �eU� (6)

is the current density, with �e and U� being, respectively,

the electric charge density and the fluid four velocity. T��

is the material energy-momentum tensor, which, for the
purpose of the present work, is taken in the form of an
isotropic fluid

T�� ¼ ð�m þ pÞU�U� þ pg��; (7)

where �m is the fluid matter-energy density, and p is the
isotropic fluid pressure.

B. Spherical equations: general analysis

We particularize here the study to spherically symmetric
systems, where the charged fluid distribution is bounded by
a spherical surface S, whose exterior region can be de-
scribed by the electrovacuum Reissner-Nordström metric.
We then assume that the spacetime inside S is static and
spherically symmetric, so that the metric is conveniently
written in a Schwarzschild-like form, namely,

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2ðd�2 þ sin2d�2Þ; (8)

where r is the usual radial coordinate, A and B are func-
tions which depend upon r only, and d�2 þ sin2d�2 is the
metric of the unit sphere, with � and � being the spherical
angles. The gauge field A� assumes the form

A� ¼ ��ðrÞ	t
�; (9)

where �ðrÞ is the electric potential, and here 	 is the
Kronecker delta. The four velocity U� in turn is

U� ¼ �
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
	t
�: (10)

Define r0 as the radius of the spherical surface S.
Consider the region r < r0. This region is filled with
matter, i.e., filled with a static charged perfect fluid distri-
bution with spherical symmetry. Then, the relevant
Einstein-Maxwell field equations for the metric (8) can
be found. To find the set of basic equations, we note that
the tt and rr components of the Einstein equation (1)
furnish the following relations:

B0ðrÞ
BðrÞ þ A0ðrÞ

AðrÞ ¼ 8�rAðrÞ½�mðrÞ þ pðrÞ�; (11)

ðrA�1ðrÞÞ0 ¼ 1� 8�r2
�
�mðrÞ þQ2ðrÞ

8�r4

�
; (12)

where a prime denotes the derivative with respect to the
radial coordinate r. The only nonzero component of the
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Maxwell equation (2) furnishes

QðrÞ ¼ 4�
Z r

0
�eðrÞ

ffiffiffiffiffiffiffiffiffi
AðrÞp

r2dr ¼ r2�0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAðrÞp ; (13)

where an integration constant was set to zero. QðrÞ is the
total electric charge inside the surface of radius r.
The conservation equations r�T

�� ¼ 0, together with
the Maxwell equation, give

2p0ðrÞ þ B0ðrÞ
BðrÞ ½�mðrÞ þ pðrÞ� � 2

�0ðrÞ�eðrÞffiffiffiffiffiffiffiffiffi
BðrÞp ¼ 0; (14)

which is the only nonidentically zero component of the
conservation equations. The other nonzero component of
the Einstein-Maxwell equations give an additional relation,
which is not independent of the above set of equations.
Hence, considering that Eq. (13) gives �ðrÞ in terms of
�eðrÞ, we are left with a system of three differential equa-
tions, Eqs. (11), (12), and (14), for the five unknowns AðrÞ,
BðrÞ, �mðrÞ, pðrÞ, and �eðrÞ. Below we study a particular
choice of relations to fix the 2 degrees of freedom and show
that with an appropriately chosen equation of state
p ¼ fð�mÞ and further assumptions on the functions
�mðrÞ and �eðrÞ, one can find regular black hole solutions.
For r � r0, we assume an electrovacuum. Then the metric
and the electric potential for r > r0 are given by the

Reissner-Nordström solution, BðrÞ ¼ A�1ðrÞ ¼ 1� 2m

r
þ

q2

r2
, �ðrÞ ¼ q

r
þ�0, �0 being an arbitrary constant which

defines the zero of the electric potential, and that, in the
exterior Reissner-Nordström region of the spacetimes as
we consider here, can be set to zero. The parametersm and
q are the mass and charge of the Reissner-Nordström
solution, respectively. The matching of the interior and
exterior solutions at r0 will then have to be made.

III. ELECTRIFIED FALSE VACUUM SOLUTIONS:
REGULAR CHARGED BLACK HOLES

A. Simplifying assumptions

In order for the energy-momentum tensor to satisfy the
false vacuum condition, the energy density and pressure of
the fluid (7) must obey the following relation

�mðrÞ þ pðrÞ ¼ 0; (15)

valid for all r. Indeed, in the true vacuum, for r � r0, the
condition is trivially obeyed, since�mðrÞ ¼ 0 andpðrÞ ¼ 0.
In the matter, r < r0, the above equation, Eq. (15), is
equivalent to a� term, and can be interpreted as represent-
ing a false vacuum condition. Indeed, a false vacuum is

usually given in the formTt
t ¼ Tr

r andT
�
� ¼ T�

� , the same as

Eq. (15). The ansatz (15) can be interpreted as an equation
of state, and supplies a constraint among the five unknown
quantities of the problem.

However, since we have just three equations relating the
five unknowns, we need another input. Such a degree of
freedom is related to the charge density and in order to
close the system usually the function �eðrÞ, or QðrÞ if one
prefers, is furnished by making an additional hypothesis. In
the present case, one of the simplest ansatz one can make is
through the following equation:

8��mðrÞ þQ2ðrÞ
r4

¼ 3

R2
; (16)

for r � r0, and where R is a constant to be determined.
This resembles the Schwarzschild assumption of constant
energy density for the first interior solution found within
general relativity (see, e.g., [1]). In the present case, the
energy density includes not only the energy density due
to the mass distribution, but it also bears the electromag-
netic energy density carried by the electric field and rep-

resented by the term
Q2ðrÞ
8�r4

. Now, after the assumption (15),

Eqs. (14) and (13) give

p0ðrÞ ¼ �0ðrÞ�eðrÞffiffiffiffiffiffiffiffiffi
BðrÞp ¼ QQ0

4�r4
: (17)

This means that the pressure gradient p0ðrÞ is proportional
to the charge density. Finally, with condition (15), it is
obtained from Eq. (11) that the metric coefficients are
related by AðrÞBðrÞ ¼ constant. This constant can be set
to unity by a reparametrization of the coordinate t. Then,

BðrÞ ¼ A�1ðrÞ; (18)

and we can now complete the process of integration of the
full set of equations.

B. Electrified de Sitter false vacuum solutions:
Regular charged black holes

1. Finding the solutions

Bearing in mind that for r > r0 it is a true electrovacuum
solution and thus the Reissner-Nordström solution,
and using the ansätze (15) and (16), Eqs. (11) and (12)
integrate to

BðrÞ ¼ A�1ðrÞ ¼
�
1� r2

R2 ; r � r0;

1� 2m
r þ q2

r2
; r � r0;

(19)

where an integration constant was set to zero to avoid a
spacetime singularity at r ¼ 0. By joining the interior and
the exterior metrics at r ¼ r0, i.e., by equating the metric
coefficients [functions BðrÞ and AðrÞ, see Appendix A] in
Eq. (19) with the coefficients of the exterior Reissner-
Nordström metric, the constant R in Eq. (19) is found in
terms of the parameters r0, m, and q, through the equation

1

R2
¼ 1

r30

�
2m� q2

r0

�
: (20)
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From the above set of equations, we can infer several
things. From Eq. (19), one can infer that

r0 � R; (21)

otherwise one would have three zeros, i.e., three horizons,
for the metric corresponding to (19), an odd number of
horizons, and this is not possible for regular black holes
(as well as for the electrovacuum ones in general relativity)
in asymptotically flat spacetimes. For r0 � R, one can also

infer from Eq. (20) that 1� 2m
r0
þ q2

r2
0

� 0, which means that

either r0 is inside or on the inner, or Cauchy, horizon r�, or
r0 is outside or on the outer, event, horizon rþ. Since we
want black holes, we search for solutions in which r0 � r�,
but the procedure dictates what kind of solutions there are.

Our choices (15) and (16) for r � r0 can now be written
for �mðrÞ and pðrÞ in terms of the electric charge QðrÞ,
namely,

8��mðrÞ ¼ 3

R2
�Q2ðrÞ

r4
; (22)

8�pðrÞ ¼ � 3

R2
þQ2ðrÞ

r4
: (23)

Now, using Eqs. (22) and (23), as well as Eq. (17), we can
determine QðrÞ. The result isQðrÞ ¼ 0 in the region where
there is matter, where p � 0, r < r0. And Q

0ðrÞ ¼ 0 in the
electrovacuum region, where p ¼ 0, r � r0. With this, one
can build a solution where QðrÞ is a step function, more
precisely, it may be represented by the step Heaviside theta
function

QðrÞ ¼
(
0; r < r0;

q; r � r0:
(24)

In such a case, the charge density is proportional to a Dirac
delta function, the charge �eðrÞ is spread at the surface
r ¼ r0. Furthermore, one gets p0ðrÞ ¼ 0 everywhere
throughout the spacetime, except at r ¼ r0, where it is
the product of the Heaviside theta, or step, function by
the Dirac delta function.

The electric potential �ðrÞ is obtained from Eqs. (13)
and (24), and may be written as

�ðrÞ ¼
(� q

r0
; r � r0;

� q
r ; r � r0:

(25)

As it is known, the exterior geometry, i.e., for r > r0,
depends on �0ðr0Þ only through the total charge q ¼
Qðr0Þ, i.e., in that region, the only important quantity is
the value of the electric field on the surface r ¼ r0, as
expected.

Now, we present other important relations between the
parameters. At r0, Eqs. (22) and (23) turn into

8��mðr0Þ ¼ 3

R2
� q2

r40
; (26)

8�pðr0Þ ¼ � 3

R2
þ q2

r40
: (27)

Using the appropriate soldering conditions [2], one should
have pðr0Þ ¼ 0 at r0 (see also Appendix A). From Eq. (27),
this means

Rq ¼ ffiffiffi
3

p
r20; (28)

where we assumed q > 0 without loss of generality. This
also means from Eq. (26) that �mðr0Þ ¼ 0. Using Eq. (28)
in Eq. (20), we find

mr0 ¼ 2
3q

2: (29)

Interestingly, in the case R ¼ r0, putting the results of
Eqs. (28) and (29) into the horizon equation [i.e., the radii
for which AðrÞ ¼ 0], the boundary surface r ¼ r0 coin-
cides with the inner horizon, i.e., the Cauchy horizon r�.
For all the other cases, r0 is inside r�. The event horizon
rþ, if there is one, is then always outside the matter. One
can also check that the second fundamental form is con-
tinuous at r0. This is equivalent to B0ðrÞ being continuous
at r� (see Appendix A). It is easy to verify that this is true
for the values given in Eqs. (28) and (29) and only for these
values. In fact, as we show in Appendix A, the condition of
zero pressure at the surface r ¼ r0 implies that the metric
fields gttðrÞ ¼ BðrÞ and grr ¼ 1=BðrÞ are C1 functions at
the boundary, which means that the Israel junction
conditions [2] are satisfied, even in the case r0 is a lightlike
surface.
Note also that when there is no charge, there is no black

hole since for q ¼ 0 one has r0 ¼ 0 and m ¼ 0, leaving a
Minkowski vacuum spacetime. Thus, the limit of zero
charge is not a regular Schwarzschild black hole, but rather
a Minkowski spacetime. This is in tune with the claims of
Grøn and Soleng [54,55] and Poisson and Israel [56] that
one cannot have pure de Sitter joined at the event horizon
rþ to a Schwarzschild vacuum spacetime. However, as we
show here, one can have pure de Sitter plus a charged shell
joined to Reissner-Nordström vacuum spacetime.

2. The final solution in brief

There are four parameters: m, q, r0, and R. From
Eqs. (28) and (29), the de Sitter radius R and the black
hole mass m are fixed, respectively, by

R ¼ ffiffiffi
3

p
r20

1

q
; (30)

assuming positive q, and

m ¼ 2

3r0
q2: (31)

So there are two free parameters, r0 and q, for example.
Fixing q, one can change r0. From Eqs. (21) and (28), one
finds
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r0 �
ffiffiffi
3

p
3

q; (32)

as well as,

m � 2ffiffiffi
3

p q: (33)

To summarize the solution, we display it here in its
entirety. Defining, as usual, the Heaviside � function as
�ðr� r0Þ ¼ 1 when r� r0 � 0, and �ðr� r0Þ ¼ 0 when
r� r0 < 0, and the Dirac delta function as the derivative of
it, 	ðr� r0Þ ¼ ½�ðr� r0Þ�0, where a 0 denotes the radial
derivative, one can write all the functions in succinct form.
The line element is

ds2 ¼ �BðrÞdt2 þ B�1ðrÞdr2 þ r2ðd�2 þ sin2d�2Þ; (34)

where

BðrÞ¼
�
1� r2

R2

�
�ðr0�rÞþ

�
1�2m

r
þq2

r2

�
½1��ðr0�rÞ�;

(35)

where R andm should be thought of as being given in terms
of r0 and q by Eqs. (30) and (31). The electric potential is

�ðrÞ ¼ � q

r0
�ðr0 � rÞ � q

r
½1� �ðr0 � rÞ�: (36)

Also,

QðrÞ ¼ q�ðr� r0Þ; (37)

Q0ðrÞ ¼ q	ðr� r0Þ; (38)

�eðrÞ ¼ q
ffiffiffiffiffiffiffiffiffiffiffi
Bðr0Þ

p
4�r20

	ðr� r0Þ; (39)

�mðrÞ ¼ q2

8�r40
½1� �2ðr� r0Þ��ðr0 � rÞ; (40)

pðrÞ ¼ � q2

8�r40
½1� �2ðr� r0Þ��ðr0 � rÞ; (41)

p0ðrÞ ¼ q2

4�r40
	ðr� r0Þ; (42)

see Appendix B for how to obtain Eq. (42) from Eq. (41).
Using the fact that �2ðr� r0Þ ¼ �ðr� r0Þ (this can only be
used if derivatives are not to be taken), Eqs. (40) and (41)
simplify to 8��mðrÞ ¼ �8�pðrÞ ¼ 3

R2 ½1� �ðr� r0Þ�.
For a range of parameters, the solution represents regu-

lar black holes with a de Sitter core, and an electric energy-
less matter coat at r0, and Reissner-Nordström all the way
up. When there is no charge, there is no regular black hole
since for q ¼ 0 one has r0 ¼ 0 and m ¼ 0, leaving a
Minkowski vacuum spacetime.

3. The solutions and their properties

Since we are not interested in the case q ¼ 0, as it gives
the trivial Minkowski solution, we can parametrize all
quantities in terms of q. Equation (32) tell us that r0 obeys,
r0 � qffiffi

3
p . Thus let us put

r0 ¼ 
q; (43)

for some 
, with 
 � 1=
ffiffiffi
3

p
. Then, Eq. (30) gives

R ¼ ffiffiffi
3

p

2q; (44)

and Eq. (31) furnishes

m ¼ 2

3

q: (45)

Now, we have to compare r0 with r� and rþ. These latter
radii are given by

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

q
: (46)

Putting Eq. (45) into Eq. (46) yields r� as

r� ¼
�
2

3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9
2
� 1

s �
q; (47)

and rþ as

rþ ¼
�
2

3

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

9
2
� 1

s �
q: (48)

A plot of the several radii as a function of 
 ¼ r0=q is
given in Fig. 1.
The solutions can be divided into four classes, which are

listed and briefly discussed in the following. Figure 2 plots
the function BðrÞ and Fig. 3 draws the Carter-Penrose
diagrams for each class. Figures 1–3 help in the explana-
tion of the classes.
Regular nonextremal black holes with a lightlike matter

boundary at the inner horizon.—When 
 ¼ r0=q has its

minimum value r0=q ¼ ffiffiffi
3

p
=3, then the radius r0 of the

matter coincides with the Cauchy horizon r�, so that

r�=q ¼ ffiffiffi
3

p
=3. There is matter up to r�. The event horizon

at rþ is at a larger radius. From Eq. (48) with 
 ¼ ffiffiffi
3

p
=3,

one finds rþ=q ¼ 3r�=q ¼ ffiffiffi
3

p
. This is a solution for a

perfectly regular black hole, Reissner-Nordström outside
the matter. One can also find a relation between the surface
charge density and the horizon radii. From Eq. (39) defin-

ing a proper surface electric charge density as �eðrÞ ¼
�e

ffiffiffiffiffiffiffiffiffi
BðrÞp

	ðr� r0Þ, one finds �e ¼ q
4�r20

¼ 1
4�

3
q . This can

also be put in the form �e ¼ 1
4�

ffiffi
3

p
r�
. Using rþ=q ¼

3r�=q ¼ ffiffiffi
3

p
and squaring the result, one obtains

�2
e ¼ 1

16�2
rþ
r3�
. For this solution, in which R2 ¼ q2=3, one

can show that the surface gravities of the de Sitter horizon
and of the Cauchy Reissner-Nordström horizon are equal.
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The surface pressure and surface energy density are both
zero at r�.

Regular nonextremal black holes with a timelike matter
boundary inside the inner horizon.—For larger r0=q, i.e.,
larger r0, the Cauchy horizon r� grows faster and remains
outside the radius of the matter, r0 < r�. There is matter up
to r0 and then outside the matter stand two horizons. This is
also a solution for a perfectly regular black hole, Reissner-
Nordström outside the matter.

Regular extremal black holes with a timelike matter
boundary inside the double horizon.—When r0=q ¼ 2=3,
then the Cauchy horizon and the event horizon coincide,
the solution represents an extremal regular black hole.
Since r� ¼ rþ ¼ m ¼ q, we have r0 ¼ 2

3 rþ. The horizon
is now at the furthest coordinate distance from the surface

of the matter at r0. In fact, the horizon is at an infinite
proper distance from the surface of the matter.
Regular overcharged stars with a timelike matter bound-

ary.—For r0=q > 2=3, one gets from Eq. (31) that q > m,
the solution has charge greater than mass. Thus, from
Eq. (46), there are no horizons and therefore no black
holes. An overcharged star, with no horizons, pops up.
The star that was hidden behind a horizon comes into light.
The horizons have disappeared. It is of remark that r0 of the
first star is still smaller than r� of the extremal regular
black hole. Perhaps this is no surprise, as we are familiar
with the fact that the Reissner-Nordström solution has the

0 1 2 3 4 5
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FIG. 2 (color online). A plot of BðrÞ for four different 
 � r0
q :


 ¼ ffiffiffi
3

p
=3 (solid line), 
 ¼ ffiffiffi

3
p

=3þ :1 (dashed line), 
 ¼ 2=3
(dash-dotted line), and 
 ¼ 2=3þ :1 (dotted line).
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FIG. 1 (color online). A plot of the several radii as a function
of 
 ¼ r0=q. The minimum value of 
 is

ffiffiffi
3

p
=3, and the vertical

dashed-dotted line is at 
 ¼ 2=3.

FIG. 3. The Carter-Penrose diagram in the possible four dis-
tinct situations, three for regular black holes and one for a star:
(i) The regular nonextremal black hole with a lightlike matter
boundary, where r0 ¼ r�. (ii) The regular nonextremal black
hole with a timelike matter boundary, where r0 < r�. (iii) The
regular extremal black hole with a timelike matter boundary,
where r0 < r� ¼ rþ. (iv) The regular overcharged star with a
timelike matter boundary, where there is no r�. In all cases, r0
represents the surface matching an interior de Sitter spacetime
region to an exterior Reissner-Nordström region. Note the regu-
lar black hole constraint r0 � r�.
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same feature: when the Reissner-Nordström parameters are
such that m< q, the degenerate horizon rþ ¼ r� disap-
pears and the singularity at r ¼ 0 becomes bare for these
overcharged solutions.

Several other features should be mentioned and
emphasized.

(i) For a range of parameters, the solutions are thus
regular electrically charged black hole solutions. They
are built from false vacuum up to, but not at, r0. The metric
for r < r0 is the de Sitter metric, where the isotropic
pressure is constant (pðrÞ ¼ ��mðrÞ ¼ 3=8�R2), and
goes to zero at r0. Furthermore, since the charge density
�eðrÞ is a Dirac delta function centered in r ¼ r0, the total
charge q is distributed uniformly on the surface r ¼ r0. At
r0, there is thus a thin electrical layer of an energy-less
field, and exterior to it is pure Reissner-Nordström, with
two horizons at r� and rþ. The radius to charge ratio and
mass to charge ratio of the solution are well-defined
quantities.

(ii) From Eq. (45), we see that as r0 increases the massm
decreases. This is due to the fact that the pressure, and thus
the density, both decrease fast as r0 increases.

(iii) The limit of zero charge of these solutions is
a Minkowski spacetime, rather than a Schwarzs-
child spacetime.

(iv) These regular charged black hole solutions have
boundaries which are either timelike or, in one instance,
lightlike. The boundaries for regular black holes found in
the literature are spacelike.

(v) Note that, if the charge q is the elementary charge,
i.e., the electron charge e, then Eq. (32) gives that the
radius r0 of the particle is of the order of the Planck radius
and from Eq. (33) the mass m is of the order of the Planck
mass. The solution could then be a model for a heavy
elementary charged particle.

(vi) Because of the fact that the matter of the regular
black hole is in the inside or at the Cauchy horizon, these
solutions may suffer the mass inflation instability [78].

4. Comments on the regular nonextremal black
hole with a lightlike matter boundary at the

inner horizon r�
Since the regular nonextremal black hole with a lightlike

matter boundary at the inner horizon r� (see Sec. III B 3)
has some history, we comment on it. We start by reviewing
and connecting our solution to other works that also found
this particular solution. Afterwards, we comment that this
particular solution belongs to the Weyl-Guilfoyle class of
solutions.

Other works that also found this particular solution.—
As noticed in [54–58], a direct soldering of a matter solu-
tion onto Schwarzschild through the event horizon is not
possible. Indeed, a simple calculation [56] shows that the
radial pressure pr for a static spherically symmetric junc-
tion at r ¼ r0 is pr ¼ ��m�ðr0 � rÞ þ 1

2�mr0	ðr� r0Þ.

In terms of proper radial distance s, with ds ¼ ffiffiffiffi
A

p
dr

[where A is the metric function defined in (8)], the delta

function is 	ðr� r0Þ ¼
ffiffiffiffi
A

p
	ðsÞ. At the Schwarzschild

event horizon 1=AðrþÞ ¼ 0, and thus the delta function
itself is a singular distribution. Thus, besides being a dis-
tribution, the surface pressure becomes singular when an
event horizon is chosen as the boundary. Therefore, pa-
pers [50–53] must be incorrect. A Schwarzschild event
horizon is then not the place to make a continuation to a
de Sitter phase, whereas other places might give a suitable
continuation. However, when one introduces charge, and
the matter is joined instead to a Reissner-Nordström space-
time, the impossibility of matching at the horizon can be
avoided by making �m ¼ 0 and pr ¼ 0 at the event hori-
zon, as well as at the Cauchy horizon.
(i) The two papers by Shen and Zhu of 1985 on regular

black holes with Reissner-Nordström asymptotics [59,60]
indeed contain, in a hidden manner, the regular nonextre-
mal black hole with a lightlike matter boundary at the inner
horizon r�. Both papers [59,60] have the same content, but
oddly the authors do not self-cite either paper. Paper [60] is
more detailed.
Shen and Zhu’s papers [59,60] give a generalization of

the Gonzalez-Diaz [50] work (see, also, [51,52]), by con-
sidering the case with charge. In this way, they avoid the
matching problem. In [59,60], it is claimed that by taking
the limit of zero charge they recover the Gonzalez-Diaz
[50] solution. This claim seems incorrect since Eq. (34) of
[60] shows that in this limit there is a singularity at r ¼ 0,
and so there is no regular Schwarzschild black hole.
Now, in a particular instance, the solution found in

[59,60] reduces to the regular nonextremal black hole
with a lightlike matter boundary at the inner horizon r�
found here. Let us see how. They consider two electri-
cal coats, one at rþ, the other at r�, such that �1e ¼
�1e	ðr� rþÞ and �2e ¼ �2e	ðr� r�Þ, their Eqs. (17,
18), respectively. They also find that the mass density in

between r� and rþ is given in their Eq. (28), namely �1o ¼
3
8� ½

rþ�16�2�2
2e
r3�

rþðr2þþrþr�þr2�Þ�, and the mass density between 0 and r�
is de Sitter type. There is an interesting special solution
implicit in this solution. To find it, one abolishes the matter
existent in between r� and rþ. Impose �1e ¼ 0 and �1o ¼
0. From �1e ¼ 0, nothing special comes about, but from
�1o ¼ 0, one finds that �2e ¼ 1

16�2
rþ
r3�
. Then, this solution

is precisely our regular nonextremal black hole with a
lightlike matter boundary at the inner horizon r�, as one
can check (see Sec. III B 3).
(ii) The paper by Barrabès and Israel of 1991 [61] also

finds the regular nonextremal black hole with a lightlike
matter boundary at the inner horizon r�.
The direct matching conditions between an interior

de Sitter region and an exterior Reissner-Nordström re-
gion having a lightlike surface as soldering surface was
indeed considered by Barrabès and Israel [61] (see, also,
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[3]). The authors have noticed that different matching
conditions at a horizon are possible, and have given two
special conditions, the static soldering and the affine
soldering. In general, the soldering can be performed in
anyone of the two horizons, but the surface pressure and
energy density are nonzero. However, the static soldering
offers a special case. When the de Sitter radius R is
related to the charge of the Reissner-Nordström solution
q by R2 ¼ q2=3, then the surface pressure and density are
both zero and the surface gravities of the de Sitter horizon
and of the Cauchy Reissner-Nordström horizon are equal.
Here, of course, the matching happens at the inner hori-
zon. This result agrees with what we have found above,
but in our case, the matching can be done at any surface
r ¼ r0, timelike if r0 < r�, or lightlike if r0 ¼ r�. The
solution is the same as the hidden solution in Shen and
Zhu’s work [59,60], and so the same as our particular
solution.

The solution is in the Weyl-Guilfoyle class of solu-
tions.—Charged star-type solutions found by Guilfoyle
[73] have a plethora of parameters from which one can
choose values. These solutions contain quasiblack hole
solutions as found by Lemos and Zanchin [74] and it seems
they also contain many different regular black holes. Here,
we indicate that in a particular limit of those charged star-
type solutions [73] one obtains the regular nonextremal
black holes with a lightlike matter boundary at the inner
horizon mentioned in Sec. III B 3.

Indeed, taking the parameter A ! 0 in Eq. (25) of [73],
or the limit a ! 1 in [74] as we do here, we find

lima!1
q2

m2
¼ 1

2 ð2þ j r0m � 2j � r0
mÞ r0m . Because of the abso-

lute value j r0m � 2j one concludes, remarkably, there are

two branches,
r0
m

> 2 and
r0
m

< 2. For r0=m > 2, one finds

lima!1
q2

m2
¼ 0, which gives the uncharged Schwarzschild

interior solution, and it is not of our concern here. For

r0=m < 2, one finds lima!1
q2

m2
¼ ð2� r0

mÞ r0m , which is

equivalent to 1� 2m
r0
þ q2

r2
0

¼ 0. This branch is the one that

interests us here, and we take the opportunity to make an
analysis initiated in our previous paper [74] in relation to
this branch. The comments here take over the comments
there. Thus, r0 is at a horizon, and consequently either at
rþ or r�. Under closer scrutiny, one finds that there is a
special regular black hole solution among a maze of regu-
lar black hole solutions, in which r0 ¼ r�, m ¼ 2r0, and

q ¼ ffiffiffi
3

p
r0. This solution, thus, belongs to Guilfoyle’s class

of solutions, i.e., it is a solution of Weyl-Guilfoyle type.
Thus, this particular solution belongs to both Guilfoyle’s
class of solutions and to a particular set of solutions we
have been studying here. The other regular black holes and
stars we have found here are not of the Weyl-Guilfoyle
type.

IV. CONCLUSIONS

Charged regular black holes and overcharged stars as
solutions to certain distributions of spherically symmetric
charged matter have been displayed and studied. The in-
terior distribution of matter is constituted by a de Sitter
perfect fluid with pressure p equal to the negative of the
energy density �m. Thus, the interior can be interpreted as
a false vacuum state. The interior metric is matched into an
exterior Reissner-Nordström electrovacuum region. The
Einstein-Maxwell equations together with the equation of
state p ¼ ��m, imply that the isotropic pressure and the
energy density are constant throughout the spacetime, and
that the electric charge must be located at the boundary of
the fluid distribution. Pressure and energy density both go
to zero at the boundary, and the resulting solutions repre-
sent regular charged black holes. The matter boundary is
timelike, and in a limiting case is lightlike. The boundary
surface is always at a radius smaller or, at most (in the
lightlike case), equal to the inner Reissner-Nordström ho-
rizon. For overcharged matter, a star pops up, and the
horizons evanesce.
If the charge q is the elementary charge e, then the mass

of the solution is of the order of the Planck mass and the
radius is of the order of the Planck radius. The solutions
could then provide a model for a charged elementary
Planckian particle.
Because of the fact that the matter of the regular black

hole is in the inside or at the Cauchy horizon, these
solutions may suffer the mass inflation instability.
In some models, such as in Dymnikova’s, the experi-

mental investigation of physical processes occurring near
the external event horizon could give some information
about processes occurring deeply inside the black hole.
Unfortunately, in our solution near the external event
horizon, there is no way to probe the inside of the black
hole.
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APPENDIX A: THE MATCHING
CONDITIONS ON THE BOUNDARY

We will follow [2] to show that the boundary at r0 is
really a boundary surface. We need to show that the metric,
or first fundamental form, g�� is continuous at the surface,
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g��� ¼ gþ��, or what is the same thing, ds2� ¼ ds2þ. It is
also necessary that the extrinsic curvature, or second fun-
damental form, K�� is continuous, K�

�� ¼ Kþ
��.

For the surface �, defined by r ¼ r0, we adopt the
metric

ds2� ¼ �d�2 þ r20ðd�2 þ sin2d�2Þ; (A1)

with the intrinsic coordinates of � being �a ¼ ð�; �;�Þ,
while the inner and the outer metrics are given receptively
by [see Eqs. (34) and (35)],

ds2� ¼ �
�
1� r2

R2

�
dt2 þ

�
1� r2

R2

��1
dr2

þ r2ðd�2 þ sin2d�2Þ; (A2)

and

ds2þ ¼ �
�
1� 2m

r
þ q2

r2

�
dt2 þ

�
1� 2m

r
þ q2

r

��1
dr2

þ r2ðd�2 þ sin2d�2Þ; (A3)

where we have identified the coordinates ðt; r; �; ’Þ in both
regions of the spacetime.

Let us assume that the boundary surface � is timelike,
which means 1� r20=R

2 > 0 and also 1� 2m=r0 þ
q2=r20 > 0. Hence, we note first that, since the surface �
is spherical and nonlightlike, the radial coordinate r can be
used as the matching parameter along the generators on �,
and so the normal n� to the surface has only the radial

component nr ¼ ffiffiffiffiffiffiffi
grr

p
. Therefore, in the present case, the

extrinsic curvature has the form

K�
ab ¼ �n�r �rð�Þ

��

@x�

@�a

@x�

@�b
; (A4)

where �a are the intrinsic coordinates of the surface. Now,
we analyze the junction at the outer and inner surfaces. The
continuity of the first fundamental form at the boundary
implies that gþtt ¼ g�tt and gþrr ¼ g�rr. These two conditions
are satisfied by the continuity of the line elements given in
Eqs. (A2) and (A3) at r ¼ r0, namely,

1� r20=R
2 ¼ 1� 2m=r0 þ q2=r20; (A5)

which is Eq. (20) and defines R�2 in terms of the parame-
ters r0,m, and q. One then sees that the gþtt and g�tt match at
r ¼ r0, and g

þ
rr and g

�
rr also match, as well as the terms for

the angular part of the metric. Now, at r0 coming from the

interior one finds K�
�� ¼ �n�r �

ð�Þr
tt

dt
d�

dt
d� . By construction,

one has g�tt
dt2

d�2
¼ �1. One also has n�r ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20

R2

q
.

Noting that
dg�tt
dr

¼ �2r0
R2

, one finds �rð�Þ
tt ¼ ð1� r20

R2
Þr0
R2

.

Thus, K�
�� ¼ �r0

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20

R2

s
. Similarly, the extrinsic curva-

ture coming from the exterior Reissner-Nordström

region can also be calculated. One findsKþ
�� ¼ ðm

r20
� q2

r30
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r0
þ q2

r20

s
. So, in order to match Kþ

�� and K�
��, the

parameters R, r0, m, and q must satisfy the relation

r0
R2 ¼ �m

r20
þ q2

r30
: (A6)

This result, together with Eq. (A5), gives

1

R2
¼ 1

3

q2

r40
; (A7)

exactly the result found above [cf. Eq. (28)]. This also
means that the surface pressure vanishes at r0, pðr0Þ ¼ 0.
One can easily check that K�� and K�� also match. So the

metric and the extrinsic curvature are continuous as is
required. The electric potential � is also continuous at
the boundary as it is also required.
Let us assume that the boundary surface � is lightlike

now, which means 1� r20=R
2 ¼ 0 and also 1� 2m=r0 þ

q2=r20 ¼ 0. Then, the normal vector n� is lightlike. The

radial coordinate r cannot be used for the matching in this
case. As is proposed in [3] (see, also, [61] for the original
work), an alternative is using the advanced (retarded) time
u as the soldering parameter, so that we can perform what
Barrabès and Israel [61] call a static soldering. The new
coordinate u is defined by

du ¼ dtþ �
dr�

1� r2

R2

� ; for r < r0; (A8)

du ¼ dtþ �
dr�

1� 2m

r
þ q2

r2

� ; for r > r0; (A9)

where � ¼ �1, and the plus (minus) sign is associated to
the outgoing (ingoing) radial light rays on the cone u ¼
constant. The parameters on � may be chosen as
�a ¼ ð� ¼ u; �; ’Þ [3,61]. The normal to � is therefore

n� ¼ @x�

@u
, and, moreover, since n� is lightlike, an addi-

tional transverse vector N� is needed. This can be chosen

as N� ¼ �
@x�

@r
. Instead of the extrinsic curvature Kab, the

relevant quantity for a lightlike soldering is the transverse
curvature Kab defined by

K ab ¼ �N��
�
��

@x�

@�a

@x�

@�b
: (A10)

Then, the matching of the first fundamental form at r ¼ r0
gives gþuu ¼ g�uu, which results in Eq. (A5), and is accom-
plished as far as that equality holds even in the limit of r0
being a solution of the equations 1� r20=R

2 ¼ 0 and
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1� 2m=r0 þ q2=r20 ¼ 0, which is true in the particular

case we are considering here. Moreover, calculating the
nonzero components of K�

ab, we get

Kþ
uu ¼ �

�
m

r20
� q2

r30

�
; (A11)

Kþ
�� ¼ Kþ

’’sin
�2� ¼ �r0; (A12)

and

K�
uu ¼ ��

r0
R2

; (A13)

K�
�� ¼ K�

’’sin
�2� ¼ �r0; (A14)

where r0 coincides with one of the horizons of the
Reissner-Nordström spacetime. The matching between
the metric coefficients on the horizon r0 is clear. Again,
imposing the continuity of the uu component of transverse
curvature, i.e., equating the relations (A11) and (A13) we
find that they match only in the case R ¼ r0 ¼ r�, r�
being the inner Reissner-Nordström horizon. As a conse-
quence of this matching, the pressure vanishes at the

boundary surface, pðr0Þ ¼ 0. Note that here the lightlike
case can also be analyzed as a limit of the configurations
with a timelike boundary.

APPENDIX B: HOW TO OBTAIN p0

Note that the equation �2ðr� r0Þ ¼ �ðr� r0Þ can only
be used after taking derivatives. Also, the Dirac delta
function is given by 	ðr�r0Þ¼ ½�ðr�r0Þ�0. Thus, in

Eq. (41), the term in front of
q2

r40
differentiates to

½�2ðr � r0Þ�ðr0 � rÞ�0 ¼ 2�ðr � r0Þ	ðr � r0Þ�ðr0 � rÞ �
�2ðr� r0Þ	ðr� r0Þ ¼ 2	ðr� r0Þ � �ðr� r0Þ	ðr� r0Þ ¼
	ðr� r0Þ, where we have used �ðr� r0Þ�ðr0 � rÞ ¼ 1 in
r ¼ r0 and zero otherwise, and �ðr� r0Þ	ðr� r0Þ ¼
	ðr� r0Þ. Now, the term in front of � 3

R2
has derivative

½�ðr0 � rÞ�0 ¼ �	ðr� r0Þ. Thus, the whole term yields

þ 3

R2
	ðr� r0Þ. Since 3

R2
¼ q2

r40
, we have to sum both terms

to give Eq. (42), i.e., p0ðrÞ ¼ q2

4�r4
0

	ðr� r0Þ.
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