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The use of a running coupling constant in renormalizable theories is well known, but the implementa-

tion of this idea for effective field theories with a dimensional coupling constant is, in general, less useful.

Nevertheless, there are multiple attempts to define running couplings, including the effects of gravity, with

varying conclusions. We sort through many of the issues involved, most particularly the idea of operator

mixing and also the kinematics of crossing, using calculations in Yukawa and ��4 theories as illustrative

examples. We remain in the perturbative regime. In some theories with a high permutation symmetry, such

as ��4, a reasonable running coupling can be defined. However, in most cases, such as Yukawa and gauge

theories, a running coupling fails to correctly account for the energy dependence of the interaction

strength. As a by-product we also contrast on-shell and off-shell renormalization schemes and show that

operators which are normally discarded, such as those that vanish by the equations of motion, are required

for off-shell renormalization of effective field theories. Our results suggest that the inclusion of gravity in

the running of couplings is not useful or universal in the description of physical processes.
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I. INTRODUCTION

Quantum corrections to scattering processes include a
kinematic dependence on the energy scale of the process.
In renormalizable theories, the idea of a running coupling
constant absorbs a dominant and universal set of quantum
corrections into a well-defined logarithmic function of the
energy, making this the appropriate expansion parameter in
perturbation theory. Physical processes at a given energy
scale are best expressed in terms of the running coupling
constant defined at that scale.

Quantum corrections due to the gravitational interaction
to various processes are also calculable using effective field
theory methods [1]. Because the gravitational coupling
carries a dimension, the quantum corrections to a matrix
element M carry a power-law dependence on the energy
scale

M � a½gþ bg�2q2 þ cg�2q2 logð�q2Þ þ . . .�; (1)

where g generically denotes a coupling constant or combi-
nations of constants and

�2 ¼ 32�GNewton ¼ 1

M2
P

; (2)

with G being Newton’s constant and MP ¼
the Planck mass. Following the success of running cou-
plings in other contexts, it is tempting to try to also absorb
some of the gravitational corrections into a running cou-
pling constant gðq2Þ. We note many such attempts [2–15].

It is by now well known that the application of the
renormalization group to effective field theories such as
gravity does not lead to a traditional running coupling
constant. In his influential paper on effective field theory
[16], Weinberg showed that the content of the renormal-
ization group in these theories is to relate the highest
powers of q2 logð�q2=�2Þ to each other. This behavior
has been explored subsequently in more detail [17–21].
This is due to the power counting relations of effective field
theory which tell us that loop processes generate higher
order operators that involve more powers of the derivatives
and/or fields. Because of the increasing powers of q2 in the
factors of q2nlognð�q2=�2Þ, this does not lead to a renor-
malization of the leading coupling constant, but rather the
higher order couplings are renormalized. In addition, the
logarithms enter differently in different processes or even
in two form factors for the same process [21].1

Therefore, attempts to define a running coupling neces-
sarily involve definitions which fall outside of the usual
renormalization group. They tend to involve attempts to
identify a typical q2 in an amplitude with a renormalization
scale2 M2, absorbing the higher order q2 effects into the
coupling constant
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1Because the coefficients of the higher order operators are the
ones that absorb the divergences of the effective theory, they do
have a dependence on the scale � that occurs in dimensional
regularization, but this dependence does not induce a running in
the original lower order couplings.

2In this paper we will use the notation E or M for various
definitions of the renormalization scale and reserve � for the
scale that arises in dimensional regularization through the factor
�4�d in front of dimensionally regularized loop integrals.
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gðM2Þ ¼ gþ bg�2M2 þ cg�2M2 logðM2Þ: (3)

It is worth exploring whether such a definition can make
sense in physical processes.

This procedure is also outside of the usual effective field
theory methods. One applies effective field theory as a low
energy expansion about zero energy. Higher order energy
dependence is associatedwith operators that are higher order
in the energy expansion3 and does not renormalize the low
order operators of the theory. A coupling constant definition
such as Eq. (3) attempts to define the theory around the high
energy renormalization scaleM. In this case, success could
be achieved if the definition correctly captures the effects of
the loop corrections at this energy scale.

Some potential pitfalls are visible in this strategy.
(i) One is that in the effective field theory context,

higher momentum dependence is associated with
new operators carrying extra derivatives, not the
original operator carrying the coupling g. This brings
in the need for operator mixing, as renormalization
conditions at a given scale can involve a mixture of a
set of operators.

(ii) However, even if one can define a running coupling
using some combination of the relevant operators,
there is the question of universality. That is, one has
to assess whether the operator mixing is the same
for all processes. It is possible that a definition that
is useful for one reaction may be deleterious when
used in another reaction.

(iii) In addition, there is a problem of kinematics and
crossing, in that the energy variable q2 can take on
different values and even different signs in different
contexts. For example, in spacelike versus timelike
reactions, q2 changes sign, so that a running cou-
pling that decreases with energy for a spacelike
process will increase with energy if that same reac-
tion is crossed into the timelike regime. Crossing
will turn out to be a major obstacle in the Yukawa
and gauge theory cases.

In this paper we will explore these issues using calcula-
tions of the gravitational corrections to ��4 and Yukawa
theories. We use these theories as test cases in order to avoid
the irrelevant complications of gauge invariance. However,
the general lessons of our results will apply to other theories
also.Wewill find that, outside of some special cases, the idea
of the gravitational contribution to the running of a coupling
constant is not a useful idea in the perturbative regime.

II. PREVIEW OF KEY ISSUES

Let us first review various ways of calculating the run-
ning coupling in renormalizable theories.

At the most physical level, one can calculate any given
physical process, including quantum corrections, and iden-
tify the large logarithms that can be absorbed into the
running coupling. However, the use of physical processes
can sometimes be complicated by the presence of imagi-
nary parts to the amplitudes and by not being sure what
parts of the quantum corrections are universal enough to be
absorbed in the coupling constant.
To address these issues, one can alternatively define the

coupling by renormalizing at an unphysical Euclidean
point p2 ¼ �M2, avoiding the cuts and poles of the physi-
cal amplitudes. When the kinematic behavior of the run-
ning coupling is logarithmic, the continuation back to
physical processes in Minkowski space is straightforward.
A third method of great practical utility is to study the

divergences of the coupling constant. In dimensional regu-
larization, the 1=� divergences are always accompanied by
log�, where a factor of �� is introduced to keep the
dimensionality of loop integrals unchanged. By dimen-
sional analysis then, if the only large scale in the theory
is the renormalization scale M, the log� dependence
always tracks the logM dependence. The 1=� behavior is
obviously universal, since it goes into the renormalization
of the coupling constant, and the accompanying logM is
also universal and can be readily incorporated into the
running coupling constant gðMÞ. This is powerfully ex-
ploited in renormalization group arguments to show that
this running coupling is the appropriate coupling for all
processes at this scale.
If we look at the nature of the gravitational corrections,

we see some crucial differences. The well-known presence
of divergences in gravitational loops is not itself a signifi-
cant issue, but the nature of the renormalization procedure
dealing with them is important. Because the gravitational
coupling carries inverse mass dimensions, the divergences
go into the renormalization of new operators that carry
extra derivatives. For example, we discuss the Yukawa
couplings of a scalar � and fermion c , for which the
lowest order operator has the form

LY ¼ �g� �c c : (4)

At low energy, the divergences go into the renormalization
of the coefficient of a higher order operator such as

Og3 ¼ g3�@� �c @�c (5)

or, as we discuss below, into higher dimension four-
fermion operators. Following the 1=� behavior of the loops
will not capture the renormalization of the original
operator.
Even if we give up this useful technique, we can still

study the energy dependence of physical processes or
consider the strength of the interaction at a Euclidean point
p2 ¼ �M2. It is clear that this will then involve a linear
combination of the initial operator plus the higher order
operators. This is what we mean by operator mixing.

3If particle masses are considered, there is some renormaliza-
tion of low order operators; however, we consider massless
theories in this paper.
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A rule for such a procedure can always be developed to
define a coupling at a given energy, and this will yield a
given definition of a running coupling that includes power-
law running. But the question then is whether this defini-
tion is useful. To be useful, it should be in some sense
universal, so that it applies to other reactions also, and it
should encapsulate at least some of the large corrections
to physics processes. The presence of multiple operators
in the effective field theory basis argues against
universality—different operators contribute differently
from process to process. And power-law kinematics also
argues against utility, because as mentioned previously, a
kinematic variable that is positive in one reaction is nega-
tive in a related reaction. A coupling that minimizes the
energy dependence of one process will increase the energy
dependence of the related process.4

It is possible that this procedure can still work. In ��4

theory wewill see that physical processes regularly involve
a mixture of spacelike and timelike subdiagrams, because
of the permutation symmetry of the original interaction. In
this case, we will be able to define a reasonable running
coupling with power-law running, subject to only modest
ambiguities due to the renormalization scheme.

However, in most theories we find that the power-law
running is not a useful concept. In the perturbative regime,
these theories are better described by an operator basis with
coupling constants that do not run or mix.

III. GRAVITATIONAL CORRECTIONS
TO ��4 INTERACTION

In this section we will explore the various ways of
defining a running coupling in ��4 theory. This effort is
reasonably successful, and provides an illustration of what
power-law running could look like. The feature that is most
important in this construction is the mix of spacelike and
timelike diagrams, with a high permutation symmetry.

We consider a massless real scalar � with a ��4 inter-
action, coupled minimally to gravity. The Lagrangian reads

ffiffiffiffiffiffiffi�g
p

L¼ 2

�2

ffiffiffiffiffiffiffi�g
p

Rþ ffiffiffiffiffiffiffi�g
p �

1

2
g��@��@��� �

4!
�4

�
; (6)

where �2 ¼ 32�GNewton, g
�� is the metric tensor, R is the

Ricci scalar, and � is the scalar self-coupling.
Temporarily ignoring the gravitational interaction, the

one-loop scattering amplitude in this theory is derived from
Figs. 1(a) and 1(b), and has the form

�iM¼�i�þ 3i�2

32�2

�
2

�
þ log4���

�

� i�2

2ð4�Þ2
�
log

��s

�2

�
þ log

��t

�2

�
þ log

��u

�2

��
; (7)

where � ¼ 4� d and � is the bare coupling constant; the
channels s, t, and u are defined as usual, s ¼ ðp1 þ p2Þ2,
t ¼ ðp1 � p3Þ2, u ¼ ðp2 � p3Þ2. In order to use the on-
shell process to define a running coupling, we can choose
to measure the renormalized coupling at the point s ¼ 2E2,
t ¼ u ¼ �E2. This lets us define the effective coupling
constant �ðEÞ as

�i�ðEÞ ¼ �i�þ 3i�2

32�2

�
2

�
þ log4�� �

�

� i�2

2ð4�Þ2
�
log

�
2E2

�2

�
þ 2 log

�
E2

�2

��
(8)

such that the on-shell perturbative scattering amplitude
becomes

�iM ¼ �i�ðEÞ � i�2ðEÞ
2ð4�Þ2

�
log

�
s

2E2

�
þ log

��t

E2

�

þ log

��u

E2

�
þ i�

�
: (9)

For all s, t, u of order E2, all the logarithms are small.
The potentially large logs have been absorbed into �ðEÞ.
The quantum corrections proportional to �2 vanish at the
renormalization point and are small throughout the physi-
cal region. The 	 function is calculated from

	ð�Þ � E
@�ðEÞ
@E

¼ 3�2

16�2
: (10)

It is often common to renormalize a symmetric
off-shell Euclidean point. In this case we treat all lines as
incoming and choose kinematics p2

i ¼ �M2, s ¼ t ¼ u ¼
�4M2=3. This allows a definition

FIG. 1. The contributing diagrams to the running of the scalar
coupling constant �.

4Note that the sign of the momentum is not an issue with a
running coupling with logarithmic behavior, logð�jq2jÞ ¼
logðjq2jÞ þ i�. The magnitude of the logarithm is universally
present in both spacelike and timelike processes, while the
imaginary part is part of the residual quantum correction.
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�i�ðMÞ ¼ �i�þ 3i�2

32�2

�
2

�
þ log4�� �

�

� 3i�2

2ð4�Þ2 log

�
4M2

3�2

�
; (11)

with a similar expansion of the matrix element, and related
beta function. Finally, we note how the beta function can be
read off from the coefficient of the 1=�, since it is intrinsi-
cally connected to the log� in the scattering amplitude.

We now turn to the comparable definitions of the run-
ning coupling with the inclusion of gravitational correc-
tions. We employ two different methods. In all methods,
we use the dimensional regularization scheme to regularize
our integrals. First, we define the running coupling con-
stant as an effective coupling for scattering processes. In
the second method we use an off-shell procedure to calcu-
late the 	 function. These will yield similar results.

A. Gravitational corrections in on-shell
scattering processes

Let us now include gravity. To find the graviton propa-
gator one perturbs the metric tensor about the flat back-
ground g�� ¼ 
�� þ �h��, where h�� are the spacetime

fluctuations. Then, one expands R in terms of h�� and

writes R in the form h��O
��;��h��. To simplify the cal-

culations, we fix the gauge freedom by employing the
harmonic gauge @�h�� � @�h


=2 ¼ 0. Finally, one

obtains the graviton propagator

D��;��ðq2Þ¼ i
�1

2
��
��þ 1
2
��
��þ 1

2
��
��

q2
: (12)

We will first explore an on-shell renormalization
scheme. We consider the different diagrams contributing
to the on-shell scattering process �þ� ! �þ�. In
addition to the quantum scalar corrections to the s, t, and
u channels [Fig. 1(b)], we include the gravitational correc-
tions to the wave function and vertex, as shown in
Figs. 1(c)–1(f). The gravitational wave-function renormal-
ization and diagram (e) vanish for massless particles. Also,
diagram (d) does not contribute to the vertex corrections in
the dimensional regularization scheme. Hence, we are left
only with diagram (f),

AðfÞ ¼ � i�2�

2ð4�Þ2
�
s log

��s

�2

�
þ t log

��t

�2

�
þu log

��u

�2

��

þ i�2�

2ð4�Þ2 ½s
2CðsÞþ t2CðtÞþu2CðuÞ�; (13)

where � is introduced in the scalar vertex as �4�d��4=4!
for the purpose of dimensional regularization. The function
CðxÞ is given by the integral

CðxÞ ¼
Z 1

0

Z 1

0
dwd�

1

w�ð1� �Þx : (14)

These integrals are IR divergent which makes their inclu-
sion problematic in calculating the scattering amplitudes.
In principle, one needs to include, as well, the scalar
masses and the contribution from soft gravitons that poten-
tially will remove the IR divergence. We do not follow this
procedure here. Instead, we choose to ignore altogether the
contributions from CðxÞ. Another procedure that avoids
these divergences will be followed in the next sections,
where we perform all the calculations off shell.
Note that there is no UV divergence in the above on-

shell scattering amplitude. This is a special feature of �4

theory which arises from the permutation symmetry of the
Feynman diagrams. While individual diagrams are of
course divergent, the divergent pieces sum to

Mdiv � ��2 1

�
ðsþ tþ uÞ: (15)

However, this sums to zero since we have

sþ tþ u ¼ 0 (16)

when evaluated on shell.5 Note also the related feature that,
despite the apparent presence of � in the scattering ampli-
tude Eq. (13), this amplitude is in fact independent of �
because of the on-shell identity Eq. (16).
A related unique feature for this theory is that the higher

order operator vanishes by the equations of motion or,
equivalently, can be removed by a field redefinition. The
higher order operator that is generated by one-loop gravi-
tational corrections is

L�1
� ��1�

2@��@��: (17)

This would generate a matrix element proportional to
sþ tþ u, which, as we have seen, vanishes. By integrat-
ing it by parts it can be seen to be equivalent to the operator
�3h�, which vanishes by the equation of motion. Such
operators can be removed from the operator basis in favor
of other local operators. In this case we can see this by
performing the field redefinition

�0 ¼ �� �1

3
�3; (18)

which removes the term L�1
and, to first order in �1,

generates the operator ���1�
6, which comes from the

expansion of the original �4 interaction. In dimensional
regularization this�6 operator does not mix with�4 at one
loop since the massless tadpole loop integral vanishes.
Therefore, for on-shell renormalization we do not need to
consider operator mixing at this order. We will, however,
return to this issue in the next section.
Now, we choose to renormalize (13) at the physical point

s ¼ 2E2, t ¼ u ¼ �E2, and then define the effective cou-
pling constant �ðEÞ as

5If we had used massive scalars, we would obtain UV poles
�m2ð1=�� logðp2=�2Þ þ finiteÞ.
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�i�ðEÞ ¼�i�� 3i�2

2ð4�Þ2 log
�
E2

�2

�
� i logð2Þ�2�

ð4�Þ2 E2; (19)

where the second term is the quantum scalar correction,
and we have omitted an imaginary phase. Now the full
amplitude is given by

AðfÞ ¼ �i�ðEÞ � i�2ðEÞ
2ð4�Þ2

�
log

�
s

2E2

�
þ log

��t

E2

�

þ log

��u

E2

�
þ i�

�
� i�2�ðEÞ

2ð4�Þ2
�
s log

��s

2E2

�

þ t log

��t

E2

�
þ u log

��u

E2

��

þ i�2�ðEÞ
2ð4�Þ2 ½s2CðsÞ þ t2CðtÞ þ u2CðuÞ�: (20)

This has been a useful definition, as the hard quantum
corrections for the gravitation loops vanish at the renor-
malization point and stay small in the physical region.

Using this definition, the 	 function reads

	ð�Þ � E
@�ðEÞ
@E

¼ 3�2

16�2
þ logð2Þ�2�

8�2
E2: (21)

Under this procedure, the gravitational corrections do not
tend towards an asymptotically free theory while in the
perturbative region.

B. Off-shell renormalization

In this section, we provide another method to calculate
the 	 function by using an off-shell renormalization point.
In renormalizable theories, going off shell provides no
essential complication, because we know all the operators
that can be renormalized. It actually provides a simplifica-
tion, as we can choose a convenient symmetric point and,
in the Euclidean region, can avoid poles and cuts.
However, in our case, the off-shell point brings in a poten-
tial complication, as new divergences appear and the
higher order operator of Eq. (17) now gives a nonvanishing
matrix element. These two issues are related, as the diver-
gence is absorbed in the coefficient of the higher order
operator. Thus we have operator mixing appearing at the
off-shell point, while it did not appear on shell. However,
by dealing with this feature we can still obtain results
similar to the on-shell running coupling.

In this method we compute the scattering amplitude
using off-shell momenta. In this case, the diagrams of
Fig. 1 generate the operator O�1

¼ ��1�
2@��@��=8.

The scattering amplitude is given by

A¼�i��i�1

4

X
i

p2
i þ

3i�2

2ð4�Þ2
�
2

�
þ log4���

�

þi�2�ðsþtþuÞ
2ð4�Þ2

�
2

�
þ log4���

�

� i�2

2ð4�Þ2
�
log

��s

�2

�
þ log

��t

�2

�
þ log

��u

�2

��

� i�2�

2ð4�Þ2
�
slog

��s

�2

�
þtlog

��t

�2

�
þulog

��u

�2

��
þZ;

where

Z ¼ i�2�

4ð4�Þ2 ½ðs
2 � ðp2

1 þ p2
2ÞsÞCðp2

1; p
2
2; sÞ

þ ðt2 � ðp2
1 þ p2

3ÞtÞCðp2
1; p

2
3; tÞ

þ ðu2 � ðp2
2 þ p2

3ÞuÞCðp2
2; p

2
3; uÞ

þ ðs2 � ðp2
3 þ p2

4ÞsÞCðp2
3; p

2
4; sÞ

þ ðu2 � ðp2
1 þ p2

4ÞuÞCðp2
1; p

2
4; uÞ

þ ðt2 � ðp2
2 þ p2

4ÞtÞCðp2
2; p

2
4; tÞ�; (22)

and, for example,

Cðp2
1; p

2
2; sÞ

¼
Z 1

0

Z 1

0

dwd�

ð1� wÞðp2
1ð1� �Þ þ p2

2�Þ þ w�ð1� �Þs :

(23)

We then compute the scattering amplitude at the Euclidean
momenta p2

1 ¼ p2
2 ¼ p2

3 ¼ p2
4 ¼ �M2 and s ¼ t ¼ u ¼

�4M2=3. Hence, we find

A¼�i�þ iM2�1

þ 3i�2

2ð4�Þ2
�
2

�
þ log4���� log

�
4M2

3�2

��

þ i�2�M2

ð4�Þ2
�
�4

�
�2log4�þ2�þ2log

�
4M2

3�2

�
þ�

�
;

(24)

where � ¼ �ið4�Þ2Z=�2�M2 is some numerical coeffi-
cient whose value does not affect the 	 function,

� ¼ 4
Z 1

0
d�

log½4�ð1� �Þ=3�
�3þ 4�� 4�2

� 2:83: (25)

In order to deal with the issue of operator mixing, we
need to choose appropriate renormalization conditions.
Now, we define effective couplings �ðMÞ and �1ðMÞ such
that the scattering amplitude is given by

A ¼ �i�ðMÞ þ iM2�1ðMÞ: (26)

For the higher order operator we define
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@A
@M2

¼ i�1ðMÞ: (27)

Because �1 is generated through loops and is higher order
in the energy expansion, we treat it as a quantity of order �2

or ��2. This allows us then to neglect any feedback from
�1 into the original coupling �. Such feedback would occur
from further loops and would be of higher order �1��
Oð�3Þ or �1�

2 �Oð�2�2Þ, both of which we drop.
Using these definitions, the divergence �1=� is

absorbed as usual in �, and the new divergence �ðsþ tþ
uÞ=� is absorbed into �1. We then solve the system (26) and
(27) simultaneously to find

�ðM2Þ ¼ �þ 3�2

2ð4�Þ2
�
�1� log4�þ �þ log

�
4M2

3�2

��

þ 2�2�M2

ð4�Þ2 ;

�1ðM2Þ ¼ �1 � 3�2

2ð4�Þ2M2
þ 2�2�

ð4�Þ2
�
1� log4�þ �

þ �

2
þ logð4=3Þ þ log

�
M2

�2

��
: (28)

Finally, the 	 functions of � and �1 read

	ð�Þ � M
@�ðMÞ
@M

¼ 3�2

ð4�Þ2 þ
�2�

4�2
M2;

	ð�1Þ � M
@�1ðMÞ
@M

¼ 3�2

ð4�Þ2M2
þ �2�

4�2
:

(29)

C. Lessons from �4 theory

We have used two different methods to define the run-
ning coupling. Both on-shell and off-shell Euclidean meth-
ods yielded similar results. The higher order operator in
this situation vanishes for on-shell matrix elements, so that
the on-shell method did not require any operator mixing
and resulted in a finite amplitude. However, we needed this
unphysical operator and operator mixing in order to ac-
complish the renormalization when working off shell. Of
course when we continue and apply this operator to a
physical process it will again vanish. The slight differences
in the beta functions can be accommodated by a scheme-
dependent renormalization scale.

In renormalizable theories, we also know that the run-
ning coupling will be the one relevant for loop diagrams at
a given energy as well. One way to show this is to use
renormalization group arguments. However, we also know
this from the structure of Feynman diagrams. While loop
momenta run over all energies, in dimensional regulariza-
tion the loop integrals are dominated by the overall energy
scale of the problem, aside from infrared and collinear
regions that can be dealt with using other means. This
feature also makes sense given the progress in constructing

loop results from unitarity cuts, which use the physical on-
shell amplitudes.
We have not used this running coupling in a calculation

involving higher orders in the loop expansion, although we
expect that this coupling remains an acceptable one. As
mentioned in the Introduction, in this case the renormal-
ization group does not dictate the utility of the running
coupling. However, it seems likely that this coupling will
appear in higher order processes. Because of the simplicity
of this theory, the�4 interaction is the only one involved in
higher order interactions. Within dimensional regulariza-
tion for processes at an energy E, the only relevant mo-
mentum scale in loops is again the energy E because the
particles are massless. Dispersive techniques will use the
on-shell amplitude, and hence will involve the coupling
that we defined initially. Wick rotation of Feynman ampli-
tudes would transform amplitudes to Euclidean momenta,
where we found a similar result.
We conclude that this definition of a running coupling is

a useful one in�4 theory at one-loop order and may also be
useful at higher order in perturbative calculations.

IV. GRAVITATIONAL CORRECTIONS TO
YUKAWA INTERACTIONS

In this section we follow the same lines above to
calculate the 	 function of Yukawa interactions. Here the
basic vertex cannot be defined with all legs on shell. Much
as in gauge theory, on-shell renormalization requires a
scattering amplitude with two vertices (the equivalent of
Coulomb scattering in QED). However, the off-shell
function vertex can be defined at an unphysical kinematic
point. We again explore both on-shell and off-shell
renormalization.
If we define the original Yukawa coupling constant by

the Lagrangian

LY ¼ �� �c c ; (30)

then we are looking for a running coupling of the form

�ðMÞ ¼ �þ a��2M2 (31)

for some constant a, when implemented with a renormal-
ization scheme defined at the scaleM. It will be possible to
make such a definition.
However, we will also find that any such definition does

not correctly capture the loop effects of the quantum
corrections in all relevant processes. Let us highlight the
main issue here before providing the explicit demonstra-
tion. Consider two physical processes involving the
Yukawa couplings such as f �f ! f �f and ff ! ff which
proceed through the exchange of the scalar field. These of
course are related by crossing, with the momentum
squared, q2, changing from positive for the timelike
process to negative for the spacelike process. When calcu-
lated explicitly, the loop effects from the vertex
function in these scattering processes will depend on the
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variable q2. In this case the loop corrected matrix element
will have the form

M�
�
�ðMÞ 1

q2
�ðMÞ þ loops

�

�
�
ð�2 þ 2a�2�2M2 þ 2a0�2�2q2Þ 1

q2

�
; (32)

where a0 is a number that emerges from the loop calcu-
lation. The problem is that even if the definition of the
running coupling is chosen in such a way as to capture the
main quantum corrections for one process, say f �f ! f �f, it
will have the opposite effect in the crossed process. No
definition of a running coupling can summarize the quan-
tum corrections in both processes because the quantum
effects go in different directions in the two cases. If they
make the matrix element smaller in one channel, which
naively looks like asymptotic freedom, they make the
amplitude larger in the other process, which does not
look like asymptotic freedom for the coupling.

On the other hand, operator mixing with a higher di-
mension operator does correctly describe the quantum
effects in both channels. Because the factors of q2 cancel
in the loop effects

ð2a0�2�2q2Þ 1
q2

¼ 2a0�2�2; (33)

these effects are described by a contact operator

a0�2�2 �c c �c c : (34)

This works for both processes, as the answer is indepen-
dent of the sign of q2.

A. Operator mixing

Gravitational corrections to the vertex (as shown in
Fig. 2) will generally generate the higher order operators.
A convenient basis for our calculation can be chosen to be

O1 ¼ �@� �c���@�c ;

O2 ¼ �ð �c @2c þ @2 �c c Þ;
O3 ¼ �@� �c @�c ;

(35)

and includes their respective coupling constants

L h:o: ¼ g1O1 þ g2O2 þ g3O3: (36)

Despite appearances, all three of these can be shown to
vanish by the equation of motion. ForO1 this follows from
relating the operator to

O4 ¼ �@� �c����@�c ; (37)

which clearly vanishes by the Dirac equation, and then
using the identity

���� ¼ g�� � i���; (38)

which follows from expressing the left-hand side in terms
of commutators and anticommutators. This turnsO4 into a
combination of other operators,

O4 ¼ O3 � iO1: (39)

In addition, O3 can be seen to vanish through equations of
motion through integration by parts. Here we define

O5 ¼ ð@2�Þ �c c ; (40)

and we find that

O5 ¼ 2O3 þO2: (41)

However, a little more care is needed in this discussion
because all legs of this three-point vertex cannot be on shell
at the same time. It is easy to see that an operator such as
O3 can lead to a nonvanishing matrix element in a physical
process, such as f �f ! f �f, where the scalar field is off
shell. However, this matrix element is a constant indepen-
dent of momentum, and is equivalent to a local four-
fermion operator. This means that we need to introduce
another set of operators which are used for on-shell pro-
cesses, instead of the operators Oi which vanish by the
equations of motion. These are

Q1 ¼ �c c �c c ;

Q2 ¼ �c���c �c���c ;

Q3 ¼ �@�� �c @�c :

(42)

Direct calculation usingOi in tree-level physical processes
shows that their effects are equivalent to contact operators
such as theQi listed above. Equivalently, one can use field
redefinitions to remove the Oi operators, and these can
generate the contact operators.
If we define the couplings of operators of Eq. (42) by qi,

we will see that the qi will be infinitely renormalized by
loop processes, and hence they are needed in the descrip-
tion of the on-shell renormalization.

FIG. 2. Gravitational corrections to the vertex in Yukawa
theory.
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B. Off-shell renormalization

We first consider the vertex function directly and the
quantum corrections to it as shown in Fig. 2. Because we
need to treat this vertex off shell, we will need to include
the unphysical operators that vanish by the equations of
motion Oi. We will see that it is possible to extract the
effects of each of the three operators, using a set of renor-
malization conditions. Our treatment is relatively brief, as
the methods are similar to the off-shell renormalization of
�4 theory.

In this method we use the Euclidean momenta p2
1 ¼

p2
2 ¼ ��1M

2 and p1 � p2 ¼ ��2M
2, where p1 and p2 are

the fermions’ momenta, and �1 and �2 are arbitrary posi-
tive parameters. Unlike the case of ��4 theory, where we
average over the different scattering channels, the loop
results in the case of Yukawa theory will generally depend
on the kinematics of the problem. In the following we
parametrize this dependence using the parameter 
. For
the timelike energy variable q2 we have 
 ¼ 1, while for
spacelike q2 we have 
 ¼ �1, where q ¼ p1 þ 
p2.

In addition to the vertex diagrams shown in Fig. 2, we
need to calculate the self-energy diagrams of Fig. 3. The
self-energies and vertex corrections acquire logarithmic
dependence of the form logð�1M

2=�2Þ and logðð
�2 þ
�1ÞM2=�2Þ. We immediately see that only �1 ¼ 0 or �1 ¼
�
�2 are problematic, and hence we avoid these values in
the following analysis. We find that the total scattering
amplitude, apart from finite pieces that do not affect the
	 functions, is given by

A¼�igþiM2ð2�1g2þ
�2g3Þþ
g1p1�p2��
��

� g�2

8ð4�Þ2
�
� 
�1

�1�
�2

S1þ �2

�1�
�2

S2

�
p1�p2��

��

þ 5ig3

2ð4�Þ2S1� ig�2

4ð4�Þ2 ð�1þ
�2ÞM2S2

þ ig�2

4ð4�Þ2 ð�1þ2
�2ÞM2S1; (43)

where

S1 ¼
�
2

�
� �þ log4�� log

�
�1M

2

�2

��
;

S2 ¼
�
2

�
� �þ log4�� log

�
2ð�1 þ 
�2ÞM2

�2

��
:

(44)

In order to accomplish the renormalization we will
define a set of renormalization conditions. We use the
kinematic and Dirac structure to isolate the relevant terms.
The overall amplitude is defined as

A ¼ �igðMÞ þ iM2ð2�1g2ðMÞ þ 
�2g3ðMÞÞ
þ 
g1ðMÞp1�p2��

��: (45)

By inspection, we find, apart from a trivial additive
constant,

g1ðMÞ ¼ g1 � g�2

8ð4�Þ2 log

�
M2

�2

�
; (46)

where we have absorbed the pole �p1�p2��
��=� in g1.

We can also define g2ðMÞ and g3ðMÞ through the
definitions

@A
@ð�1M

2Þ ¼ 2ig2ðMÞ; @A
@ð�2M

2Þ ¼ i
g3ðMÞ: (47)

Hence, solving (45) and (47) we find, apart from trivial
additive constants,

gðMÞ ¼ gþ 5g3

2ð4�Þ2 log

�
�1M

2

�2

�
� 
�2g�

2

4ð4�Þ2 M2;

g2ðMÞ ¼ g2 � 5

4

g3

ð4�Þ2�1M
2
;

g3ðMÞ ¼ g3 þ g�2

ð4�Þ2
�
� 1

4
log

�
2ð�1 þ 
�2ÞM2

�2

�

þ 1

2
log

�
�1M

2

�2

��
; (48)

where the pole �1=� is absorbed in g, the pole �M2=� is
absorbed in g3, and g2 does not get any pole contribution.

6

Finally, the 	 functions read

	ðgÞ ¼ 5g3

ð4�Þ2 �

�2g�

2

2ð4�Þ2 M2; 	ðg1Þ ¼ � g�2

4ð4�Þ2 ;

	ðg2Þ ¼ 5g3

2ð4�Þ2�1M
2
; 	ðg3Þ ¼ �g�2

2ð4�Þ2 : (49)

Hence, we see the gravitational correction of 	ðgÞ depends
on the kinematics through the parameter 
. Thus, there is
no universal definition of the 	 function.
It is very important to note that our procedure, and

specifically our renormalization conditions Eq. (47), is an
attempt to absorb the quantum effects of higher dimensional

FIG. 3. The diagrams contributing to the self-energies of
(a) fermions and (b) bosons.

6This can be seen by taking the derivative of (43) with respect
to �1M

2.
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operators into the running of a lower dimensional coupling.
Our procedure shows that any attempt to do sowill lead to a
nonuniversality of the 	 function. This is contrary to what
one would do in effective field theory calculations with a
renormalization at zero energy. In this procedure the leading
coupling constant does not get quantum corrections, but
rather the higher order couplings are renormalized. Had we
followed this latter procedure, we would not find any run-
ning of g due to gravitational effects.

C. On-shell renormalization

Finally, we turn to the renormalization of the Yukawa
coupling through an on-shell process. Similarly to the on-
shell renormalization of the gauge couplings in QED, we
consider the one-loop corrections to a scattering process
such as fþ f ! fþ f or fþ �f ! fþ �f. For clarity in
separating the crossed channels, we will, in this section,
refer to two flavors of fermions, fa and fb, so that we will
compare fa þ fb ! fa þ fb or fa þ �fa ! fb þ �fb,
where the former has only a t-channel exchange and the
latter only an s-channel exchange. Because these processes
are on shell, we can drop the operators Oi associated with
the vertex itself, but must include the four-fermion opera-
tors Q1 and Q2 associated with the four-fermion process.

The key diagrams occur via the exchange of a scalar
boson and so include the vertex correction on either side of
the diagram, as in Fig. 4. This set is analogous to the set of
diagrams considered for the running coupling in renorma-
lizable theories. The process also includes a set of other
diagrams, shown in Fig. 5. While we have calculated the
divergences in these diagrams and verified that they can be
absorbed in the coefficients of the four-fermion operators
Qi, we do not include them in the definition of the running
coupling.

For this calculation we can use our previous results with
the on-shell condition �1 ¼ 0. We find that the gravita-
tional correction to the self-energies vanishes as it goes as

��2p2
i ¼ 0. For the on-shell process �ff ! �ff we find that

the matrix element including gravitational corrections is
given by

� iM ¼ Aon shell�a

i

ðp1 þ 
p2Þ2
Aon shell�b; (50)

where

Aon shell�a ¼�iga � i
ga�
2

ð4�Þ2
�
�3

8
S2 þ 1

2
S1 � 3

16

�
p1 �p2;

(51)

and

S1¼
�
2

�
��þ log4�� log

�m2
c

�2

��
;

S2ðp1 �p2Þ¼
�
2

�
��þ log4�� log

��2
p1 �p2

�2

��
: (52)

In the above analysis we have restored the fermion mass in
order to avoid an IR singularity in the logarithm. Notice
that the result (51) can be obtained from (43) by setting
�1 ¼ 0 everywhere except inside the logarithm where it is
replaced by the fermion mass, and replacing M2 ! �M2,
i.e. working with physical rather than Euclidean momenta.
Hence,

� iMðp1 � p2 ¼ �2M
2Þ

¼ � igagb
2
�2M

2
þ

�
igagb�

2

2ð4�Þ2
�
3

8
S2ð�2M

2Þ � 1

2
S1 þ 3

16

�

þ ða $ bÞ
�
; (53)

and we have used p1 � p2 ¼ �2M
2.

In order to use this result for the renormalization of g, we
define the t-channel process fa þ fb ! fa þ fb with our
kinematic features defined by 
 ¼ �1, �2 ¼ 1=2, q2 ¼
�2p1 � p2 ¼ �M2, defining the matrix element

� iMðfa þ fb ! fa þ fbÞ
¼ ð�igraÞ i

q2
ð�igbÞ þ ða $ bÞ � iq1: (54)

Here we have included only the coefficient of the four-
fermion operator Q1 ¼ �c ac a

�c bc b, as described in
Eq. (42). The other operators are not needed for this
analysis.
We can absorb the pole in (53) �1=�, which is due to

gravitational corrections, into q1 by defining

qr1 ¼ q1 � gagb�
2

ð4�Þ2
�
3

8
S2

�
M2

2

�
� 1

2
S1

�
: (55)

The residual loop effects are contained in the renormalized
value of g, and we find

FIG. 4. Tree diagram for the on-shell scattering processes
involving fermions. The filled circle denotes the set of vertex
renormalization diagrams.

FIG. 5. Box diagrams.
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gri ¼ gi þ 3gi�
2M2

32ð4�Þ2 (56)

for i ¼ a, b.
At this point, one can calculate the gravitational contri-

butions to the 	 function of g and q1 as

	ðgiÞ � M
@gri
@M

¼ 3gi�
2M2

16ð4�Þ2 (57)

and

	ðq1Þ � M
@qr1
@M

¼ 3gagb�
2

4ð4�Þ2 : (58)

D. The problem with the running Yukawa coupling

We have been able to define a coupling constant at the
scale M by direct calculation of the process fa þ fb !
fa þ fb with the scalar exchange in the t channel. It works
as expected when dealing with this process near the renor-
malization point. Explicitly, we see that

� iMðfa þ fb ! fa þ fbÞðq2 �M2Þ
¼ ð�igraðM2ÞÞ i

q2
ð�igrbðM2ÞÞ � iqr1ðM2Þ

� i
3gagb�

2M2

16ð4�Þ2
�

1

jq2j �
1

M2

�
� i

3gagb�
2

8ð4�Þ2 log

�jq2j
M2

�
:

(59)

Here we see that by including some of the loop effects in
the coupling constant at the scale M2, we can do a reason-
able job of capturing the quantum effects in the neighbor-
hood of this point. By construction, the residual quantum
effects vanish if we choose q2 ¼ �M2.

However, now we consider the process fa þ �fa ! fb þ
�fb with the scalar exchange in the s channel, with s ¼
ðp1 þ p2Þ2 > 0; we see that this definition of the
running coupling has the wrong sign to correctly capture
the effect of the quantum loops. Instead of incorporating
the majority of quantum effects at this scale, the running
coupling gets the sign wrong so that the quantum effects
are doubled. Explicitly, we find

� iMðfa þ �fa ! fb þ �fbÞðs�M2Þ
¼ ð�igraðM2ÞÞ i

s
ð�igrbðM2ÞÞ � iqr1ðM2Þ

þ i
3gagb�

2M2

16ð4�Þ2
�
1

s
þ 1

M2

�
� i

3gagb�
2

8ð4�Þ2 log

��s

M2

�
:

(60)

The process of absorbing these �2M2 effects in the cou-
pling constant has not described the kinematic dependence
of the loops in this crossed reaction because the sign of q2

has changed. The residual power-law effects are doubled at

s ¼ M2, while the log effects associated with the running
of q1 behave as expected.
Alternatively, we could have used the process fa þ

�fa ! fb þ �fb as our choice of renormalization procedure.
In this case, the quantum correction and the running of
the coupling g in the beta function Eq. (57) would have the
opposite sign. This definition would work fine for the
s-channel process, but would then fail for the t-channel
reaction.
It is clear that we can have a sensible on-shell renormal-

ization procedure which yields either sign for the running
of the coupling, depending on whether we use the space-
like or timelike reaction. Indeed, there is a multiplicity of
schemes that can generate a wide range of answers. It is
also clear from this that no single scheme (either on shell or
off shell) will be able to correctly categorize the leading
quantum effects in all processes, because the crossed re-
action will have a result of the opposite sign. This is to be
contrasted with the definition of the running coupling in
renormalizable theories, which is universally successful
for all reactions independent of the renormalization
scheme.
The difference comes from the phenomenon of operator

mixing. In the case of renormalizable theories, the quan-
tum effects are renormalizing the original operator.
However, in effective field theories the quantum effects
are associated with an operator of higher dimension. We
can by fiat take some of the higher order effect and build it
into the original coupling—there are many ways to do this.
However, we see that such a construction fails to account
for the quantum effects in related processes in the correct
way.
There is further process dependence that is evident in

our results. If we were to consider a different on-shell
reaction, say �þ c ! �þ c , this would involve the
basic � �c c vertex with a different particle off shell, in
this case the fermion. Our result for the off-shell renormal-
ization shows that this involves a different numerical fac-
tor, and equivalently, the overall process involves different
operators in the Qi basis of Eq. (42). Again we see that
because the loops renormalize higher order operators,
rather than the original operator, they do not lead to a
universal running coupling for all processes.

V. BRIEF COMMENTS ON THE LITERATURE

The study of gravitational corrections to the running of
gauge couplings was started by Robinson and Wilczek [2]
who calculated the one-loop contribution of graviton ex-
change to the	 function of the Yang-Mills theory using the
background field method. Subsequently, a series of authors
[3–5] used a variety of different methods to argue that the
gravitational correction to the running of gauge couplings
actually vanishes. Yet more recently, there have been fur-
ther studies [6–8,10] that again claim nonzero effects for
the running of gauge couplings. Similar discrepancies are
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found in studies of the nongauge interactions of scalars and
fermions [11–15], again using a variety of methods.

The variety of answers found using different methods is
itself an indication of the nonuniversality of gravitational
corrections to running couplings. Because of the power
counting for gravitational loop corrections, the true effect
of gravitational loops is to renormalize a higher order
operator and not the original vertex. Of course, in some
schemes with a dimensionful cutoff, there is an additional
renormalization of the original operator by a term that is
quadratic in the cutoff, i.e. �2�2. However, this cutoff
disappears into the renormalization of the charge, and
does not necessarily signal the energy dependence of
physical processes. It is the higher order operators which
provide the physical kinematic variation of various
processes.

In addition, most schemes in the literature do not con-
sider the effects of higher order operators or of process
dependence. By mimicking the effect of higher order op-
erators through a redefinition of the original coupling, one
can create the appearance of a running coupling. But unless
this definition is universally valid, it is not a true running
coupling. Our work shows the limitations of such defini-
tions. Moreover, as we have shown, the operator basis
plays a different role in off-shell methods versus on-shell
methods.

Comments on cutoff regularization

We have performed our calculations using dimensional
regularization. Real physics does not depend on the renor-
malization scheme, so we could obtain equivalent results
in any consistent regularization scheme that respects gen-
eral covariance. However, because the gravitational cou-
pling is dimensionful, the cutoff can appear as a power in
the renormalization procedure, and this can create some
confusion.

Let us review how one would recover the results of
dimensional regularization in situations in which a cutoff
is used. One imagines that the momentum range is divided
into regions above and below an arbitrary cutoff �. The
contribution of the region above the cutoff is of course
unknown, and the effects are contained in the coupling
constant gbareð�Þ which is parametrized by the separation
scale�. The theory below the cutoff is treated as a full field
theory, and the loops are cut off by�. In the case of gravity
this cutoff appears quadratically because of the dimen-
sional gravitational coupling. The bare coupling and the
loop correction are added together to yield the renormal-
ized physical coupling

gphys ¼ gbareð�Þ þ c�2�2 (61)

which, however, is independent of the arbitrary cutoff�. It
is the physical coupling which is equivalent to the coupling
used in a dimensionally regularized scheme. In dimen-
sional regularization, the loop momentum runs over all

energies and there is no need for a separation scale, nor
for a divergence in the renormalization of the original
operator. As expected, physical effects are then the same
with either regularization scheme.
Should one identify the dependence of the bare coupling

gbareð�Þ on the cutoff as the running of the coupling
constant? The answer is clearly negative. That dependence
cancels completely in physical observables. It also is in-
dependent of the kinematic dependence of scattering am-
plitudes so that it does not capture the real quantum effects
of physical processes. This situation is different in the case
of renormalizable field theories. In those cases the depen-
dence on the cutoff is logarithmic, and on dimensional
grounds the kinematic variables also enter into the loga-
rithm, lnð�2=q2Þ. So even though the cutoff cancels in
physical observables, it nevertheless provides a guide to
the kinematic dependence of the quantum corrections. The
counterpart in dimensional regularization is the study of
the 1=� and lnð�2=q2Þ terms which also mirror the kine-
matic dependence of loop effects. The fact that 1=� or
lnð�2Þ goes into the renormalization of the coupling also
leads to the universality of these quantum effects, indepen-
dent of the process being considered.
We see that the quadratic cutoff dependence in gravita-

tional corrections does not signal the appearance of a
running coupling in physical processes. This is why we
focused directly on the kinematic dependence of physical
processes and the influence on a coupling through the
choice of renormalization procedure. This type of behavior
is independent of the regularization scheme.

VI. DISCUSSION

Effective field theory techniques expand a theory about
zero energy, and the renormalization and higher momen-
tum dependence involve the operators that appear at higher
order in the energy expansion. Here the content of the
renormalization group is limited to the description of the
coefficients of the leading logarithmic loop corrections, but
the couplings of the theory do not run with the energy
scale. In contrast, there are many attempts to define run-
ning coupling constants in such theories by renormalizing
the theory at a higher energy scale M. We have explored
this process using off-shell and on-shell renormalization
techniques, and have studied the subsequent utility of a
running coupling in perturbative scattering processes. This
provides a well-defined setting for exploring the nature of
these running couplings.
It is of course possible to define running couplings in

effective theories such as gravity. Indeed, there are a quasi-
infinite number of ways of defining such couplings, so the
question is not whether it can be done but rather whether it
is useful and also to what extent it is universal. The
comparison standard is the definition of running couplings
in renormalizable theories where, despite minor scheme
dependence, the results are highly useful and universal.
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Unfortunately, the corresponding definitions including
gravity are, in general, seen not to be useful or universal
when describing physical reactions. The corrections go
like �2q2, and in physical processes q2 can be either
positive or negative. For theories such as the Yukawa
couplings, it is not possible to define a running coupling
that is appropriate for both spacelike and timelike pro-
cesses. A theory such as �4 is seen to be an exception.
Gauge theories and gravity coupled to matter would be-
have similarly to the Yukawa theory. We stress that this
conclusion is independent of the renormalization scheme.
We have also discussed how regularization with a cutoff
will yield the same results as we have found within dimen-
sional regularization.

Instead, we see that in the perturbative realm the physics
which would be described by a running coupling is ac-
counted for by operator mixing. Higher dimension opera-
tors with derivative coupling appropriately deal with both
spacelike and timelike processes. Our methods are de-
signed to be applied at energies below the Planck scale.
We are not able to draw firm conclusions about the ap-
proach towards the Planck scale because the next order
corrections depend on the coefficients of higher order
operators which we are not able to predict, and which
may be process dependent.

In our studies we also demonstrated how operators
which vanish by field redefinition or by the equations of
motion, such that they would normally be discarded from
the operator basis, are nevertheless required when one
performs the renormalization at an off-shell point. This is
not surprising because the general theorems which dem-
onstrate the irrelevance of such operators only apply on
shell. For this reason the effects of these operators contin-
ues to disappear when applied to physical processes.
However, this points to the need of an expanded operator
basis for field theory methods that involve off-shell
renormalization.
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