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We construct static multicenter solutions of phantom Einstein-Maxwell-dilaton theory from null

geodesics of the target space, leading to regular black holes without spatial symmetry for certain discrete

values of the dilaton coupling constant. We also discuss the three-dimensional gravitating sigma models

obtained by reduction of phantom Einstein-Maxwell, phantom Kaluza-Klein and phantom Einstein-

Maxwell-dilaton-axion theories. In each case, we generate by group transformations phantom charged

black hole solutions from a neutral seed.
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I. INTRODUCTION

Phantom gravitating field theories are theories where
one or more of the matter fields appear in the action with
a kinetic term of the ‘‘wrong sign’’, so that they are coupled
repulsively to gravity. This implies the violation of the null
energy condition pþ � � 0. At the quantum level, such
hypothetical fields could form a ‘‘ghost condensate’’
vacuum, which would lead to modifications of gravity in
the infrared limit [1]. Present observational evidence can-
not rule out this possibility, and even under certain
conditions it seems to favor a phantom scenario. For ex-
ample, the seven-year WMAP results, combined with
BAO and H0 data, indicate that, imposing a constant
equation of state parameter ! ¼ p=�, it comes out
that ! ¼ �1:10� 0:14 for a flat universe, and ! ¼
�1:44� 0:27 for a nonflat universe [2]. Ghost condensate
models may also lead to a singularity-free primordial
scenario generating a perturbation spectrum in agreement
with the present observations [3].

The presence of phantom fields in the action results in
interesting new possibilities for stationary solutions, such
as wormhole solutions in the case of a phantom scalar field
[4], zero-mass black holes [5], and cold black holes with a
multiply degenerate horizon and an infinite horizon area
[6,7]. The static, spherically symmetric black hole solu-
tions to Einstein-Maxwell-dilaton (EMD) theory with
phantom Maxwell and/or dilaton field were systematically
investigated in [8]. Nine classes of asymptotically flat
phantom black holes, as well as two classes of nonasymp-
totically flat phantom black holes, were found, and their
causal structure was analyzed, leading to a rich variety of
16 different types of causal structures.

The purpose of the present work is to go beyond the
static spherically symmetric approach of [8] by using non-
linear sigma-model techniques. Dimensional reduction of a
sector of four- or higher-dimensional gravitating field theo-
ries to three dimensions leads to a gravitating sigma model
(see e.g. [9,10]). Besides providing a path (essentially
equivalent to that followed in [8]) to the construction of
static spherically symmetric solutions as target space (or
potential space) geodesics, the sigma-model approach can
be used to generate new solutions in two ways. First,
solutions without spatial symmetry, also called multicen-
ter, or Bogomolny’i-Prasad-Sommerfield (BPS), solutions
generalizing the static Majumdar-Papapetrou solutions of
Einstein-Maxwell (EM) theory [11] and their stationary
counterpart [12] can be constructed from null geodesics of
the target space [13,14]. Second, in special cases the target
space is a symmetric space, or coset, leading to the possi-
bility of generating new solutions, e.g., stationary axisym-
metric solutions, by applying group transformations to the
coset representative of a seed solution.
In the present paper, we shall follow the two approaches

just described. In the next section, we consider the target
space for static solutions of phantom EMD, and show that
the null geodesics of this target space lead, for certain
discrete values of the dilaton coupling constant, to regular
multicenter black hole solutions. In Sec. III we review
the sigma model for stationary Einstein-Maxwell theory,
and construct the sigma model for stationary phantom
Einstein-Maxwell (E �M) theory. We then consider in
Sec. IV the sigma model for five-dimensional Einstein
theory with two timelike Killing vectors, which is equiva-
lent to stationary phantom EMD theory for the special

value � ¼ � ffiffiffi
3

p
of the dilaton coupling constant. We apply

the matrix method to generate a phantom charged rotating
black hole solution from the Kerr solution. In Sec. V, we
first review and derive the properties of the cosets for
Einstein-Maxwell-dilaton-axion (EMDA) and its phantom
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counterpart (E �MDA), and again apply the sigma-model
approach to generate a charged rotating black hole solution
of E �MDA. The last section contains our conclusions.

II. STATIC PHANTOM EMD:
MULTICENTER SOLUTIONS

We consider the string-inspired action

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p ½R� 2�1g
��@��@��

þ �2e
2��F��F

���; (2.1)

which describes Einstein-Maxwell-dilaton gravity, with �
the real dilaton-Maxwell coupling constant, and �1, �2 the
dilaton-gravity and Maxwell-gravity coupling constants.
Normal EMD corresponds to �2 ¼ �1 ¼ þ1, while phan-
tom couplings of the Maxwell field F ¼ dA or/and dilaton
field � are obtained for �2 ¼ �1 or/and �1 ¼ �1. For
short, we call the corresponding theories, which include
E �MD (�1 ¼ þ1, �2 ¼ �1), EM �D (�1 ¼ �1, �2 ¼ �1)
and EMD (�1 ¼ �1, �2 ¼ �1), phantom EMD.

EMD and its phantom derivatives are invariant under an
electric-magnetic duality exchanging electric and mag-
netic fields and simultaneously reversing the sign of the
dilaton field. For this reason, we can restrict the investiga-
tion of static solutions to the purely electric case, and
parametrize the spacetime metric and the electric field by

ds2 ¼ fdt2 � f�1hijdx
idxj; Fi0 ¼ 1ffiffiffi

2
p @i� (2.2)

(i ¼ 1, 2, 3). Then, the original four-dimensional EMD
equations can be reduced to a three-dimensional problem
deriving from the gravitating sigma-model action [15]

S3 ¼
Z

d3x
ffiffiffi
h

p ½RðhÞ �GABðXÞ@iXA@jX
Bhij�; (2.3)

where RðhÞ is the Ricci scalar constructed from the
3-dimensional metric hij, and GABðXÞ is the target space

metric, with X1 ¼ f, X2 ¼ �, X3 ¼ �,

dl2 ¼ GABdX
AdXB ¼ df2

2f2
� �2

f
e2��d�2 þ 2�1d�

2:

(2.4)

The field equations derived from (2.3) are

RijðhÞ ¼ GAB@iX
A@jX

B; (2.5)

@i

� ffiffiffi
h

p
hijGAB@jX

B

�
¼ 1

2
@AGBC@iX

B@jX
Chij

ffiffiffi
h

p
; (2.6)

(@A � @=@XA). If now we assume that the coordinates
X � Xð�Þ depend on a single potential function �ðxiÞ,
we have the freedom to choose the potential � to be
harmonic (r2

h� ¼ 0) [10], reducing thus (2.5) and (2.6) to

RijðhÞ ¼ dl2

d�2
@i�@j�; (2.7)

d

d�

�
GAB

dXB

d�

�
¼ 1

2
@AGBC

dXB

d�

dXC

d�
: (2.8)

Equations (2.8) are the geodesic equations for the target
space (2.4). Null geodesics

GAB
_XA _XB ¼ 0 ðdl2 ¼ 0Þ (2.9)

(with _� d=d�) lead to a Ricci-flat, hence flat, reduced
3-space of metric hij [13,14]. In that case, the Laplacianr2

h

becomes a linear operator, so that an arbitrary number of
harmonic functions may be superposed, leading to a multi-
center solution

�ð~rÞ ¼ X
i

ci
j~r� ~rij (2.10)

(up to an additive constant).
The null geodesic condition (2.9) can be interpreted as

the condition for the balance between attractive and repul-
sive forces acting on the ‘‘particles’’ located at the centers
~r ¼ ~ri. Defining the mass M, electric charge Q and dila-
tonic charge D of an individual particle from the asymp-
totic behavior (in the gauge �ð1Þ ¼ 0)

f� 1� 2M

r
; �� ffiffiffi

2
p Q

r
; ��D

r
; ðr ! 1Þ;

(2.11)

with � ¼ c=r, we see that the null geodesic condition (2.9)
for the metric (2.4) translates into the condition

M2 � �2Q
2 þ �1D

2 ¼ 0: (2.12)

In the case of EMD (which generalizes the Einstein-
Maxwell case), the repulsive electrostatic force balances
the attractive gravitational and dilatonic forces. However
balance can also be achieved in the phantom cases of
EM �D (repulsive electrostatic and dilatonic forces) or EMD
(repulsive dilatonic force, the electrostatic force being
attractive), but not of E �MD (all the forces are attractive).
The geodesics for the metric (2.4) are obtained by solv-

ing the coupled system of equations

f €f� _f2 ¼ �2fe
2�� _�2; (2.13)

ðf�1e2�� _�Þ: ¼ 0; (2.14)

2f €� ¼ ��1�2�e
2�� _�2: (2.15)

To separate this system, we introduce the auxiliary
function

! ¼ 1

2
lnf� ��: (2.16)

Equation (2.14) may be integrated to
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_� ¼ ffiffiffi
2

p
qe2!; (2.17)

with q an integration constant. Replacing this in the two
other geodesic equations leads to the decoupled system

€� ¼ ��1�2�q
2e2!; (2.18)

€! ¼ �2�þq2e2!; (2.19)

with

�þ � 1þ �1�
2: (2.20)

An obvious first integral of this system is

� _!þ �1�þ _� ¼ k; (2.21)

with k a second integration constant. Equation (2.19) may
also be first integrated to

_! 2 ¼ �2�þq2e2! þ a2; (2.22)

with a2 a third integration constant. Finally, the null
geodesic equation gives

ð _!þ � _�Þ2 � �2q
2e2! þ �1

_�2 ¼ 0: (2.23)

In the generic case �þ � 0, inserting (2.21) and (2.22)
into (2.23) leads to the constraint between the integration
constants

a2 þ �1k
2 ¼ 0: (2.24)

In the special case �þ ¼ 0, meaning�1 ¼ �1 and �2 ¼ 1,
the comparison of (2.21) and (2.22) shows that the con-
straint (2.24) must again be satisfied.

To analyze the null geodesic solutions, we shall make
use of the results of [8]. The static, spherically symmetric
metric ansatz used in [8] is

ds2 ¼ e2ð!þ��Þdt2 � e�2ð!þ��Þðe4Jdu2 þ e2Jd�2Þ:
(2.25)

The reduced spatial metric in (2.25) is Euclidean,
ds23 ¼ dr2 þ r2d�2, if u is harmonic, u ¼ r�1, and if

J ¼ � lnjuj corresponding to b ¼ 0 in Eq. (2.18) of [8].
Our master Eq. (2.22) thus coincides with the master
equation 2.14 of [8] with the variable u � �, while our
constraint (2.24) coincides with the constraint (2.22) of [8]
with b ¼ 0. We shall only discuss here the various solu-
tions which lead to regular (multi)-black holes.
Generically, the various centers ~r ¼ ~ri of (2.10) will cor-
respond to horizons� ! �1 (however there may be other
horizons, see below), spacelike infinity r ! 1 correspond-
ing to � ¼ 0. We also expect that the solutions will be
generically singular unless all the ci in (2.10) are of the
same sign, which we will assume positive, thus restricting
the domain of � to � � 0 (this is opposite to the sign

convention used in [8]). The solutions can be classified
according to the range of a2 and the sign of �q ¼ �2�þq2.

(1) a2 > 0, �q < 0.

e�2! ¼ j �qj
a2

cosh2½að�0 � �Þ�; (2.26)

with �0 an integration constant. The metric function
f is related to this by the relation (valid whenever
�þ � 0)

f ¼ cðe�2!e�2�1�k�Þ�1=�þ : (2.27)

Here a is real, so �1 ¼ �1 and k ¼ �jaj from
(2.24). We find that near a horizon

f / exp½�2jaj�=ð1� �Þ�; (2.28)

which is a nonanalytic function of r (� ¼ r�1). So
we discard this singular solution.

(2) a2 > 0, �q ¼ 0.

! ¼ að�0 � �Þ; (2.29)

This can be divided into two subcases. For �þ � 0
(q2 ¼ 0), f is given exactly by (2.28) (with jaj
replaced by a), leading again to a singular horizon.
For �þ ¼ 0, we find

lnf ¼ �2q
2

2a2
e2að�0��Þ � a�þ const; (2.30)

also leading to a singular horizon.
(3) a2 > 0, �q > 0.

e�2! ¼ �q

a2
sinh2½að�0 � �Þ�: (2.31)

Now, besides the singular horizon at � ! �1,
there is also (if �0 > 0) a horizon at � ¼ �0 if
�þ < 0. The metric can be extended à la Kruskal
across this horizon if the metric function (2.27) is an
analytic function of �0 � �, which is the case only
if �þ ¼ �2=p (p positive integer). The values of
the coupling constants allowing such regular multi-
center solutions are thus

�2 ¼ pþ 2

p
; �1 ¼ �1; �2 ¼ �1;

(2.32)

corresponding to EMD. The explicit solution is
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ds2¼
�
sinh½að�0��Þ�e�j�ja�

sinha�0

�
p
dt2

�
�
sinh½að�0��Þ�e�j�ja�

sinha�0

��p
d~x2;

A0¼"

ffiffiffiffi
p

2

r
sinha�

sinh½að�0��Þ� ;

�¼ 1

2�

�
ðpþ2Þln

�
sinh½að�0��Þ�

sinha�0

�
�pj�ja�

�
;

(2.33)

where " ¼ �1, and we have normalized � byX
i

ci ¼ 1: (2.34)

The total mass, electric charge and dilatonic charge

M ¼ pa

2
ðcotha�0 � j�jÞ;

Q ¼ "

ffiffiffiffi
p

2

r
a

sinha�0

;

D ¼ �pa

2
signð�Þðj�j cotha�0 � 1Þ

(2.35)

are related by the balance condition

M2 þQ2 ¼ D2: (2.36)

Note that in this case the singular centers ~r ¼ ~ri
(� ! þ1) are hidden behind the horizon (of
order p) � ¼ �0, and that the number of connected
components of this horizon may be smaller than
the number of the centers. As discussed in
Subsection IV.C, case (3.b) of [8], where the
Penrose diagrams for the one-center case are given,
for the up sign in (2.33) the central singularities are
spacelike for p odd or timelike for p even, while for
the down sign in (2.33) they are null. The area of
each horizon component is infinite, so that these
multicenter black holes have a vanishing tempera-
ture, i.e., are cold black holes [6,7].

(4) a2 ¼ 0, �q > 0.

e�2! ¼ �qð�0 � �Þ2; (2.37)

leading to

f / j�0 � �j�2=�þ : (2.38)

We must distinguish between three subcases accord-
ing to the value of �0:
�) �0 > 0. As in the preceding case, � ¼ �0 is a
regular horizon of order p if �þ ¼ �2=p (implying
�1 < 0 and �2 < 0 so that this case corresponds
again to EMD), i.e. for the values of the coupling
constants given in (2.32). The explicit solution is

ds2 ¼
�
1� 2M

p
�

�
p
dt2 �

�
1� 2M

p
�

��p
d ~x2;

A0 ¼ "

ffiffiffiffi
2

p

s
M�

1� 2M�=p
;

� ¼ pþ 2

2�
ln

�
1� 2M

p
�

�
;

(2.39)

with � again normalized by (2.34), and
�0 ¼ p=ð2MÞ. The total mass M, electric charge

Q ¼ "ð2=pÞ1=2M and dilatonic charge D ¼ ��M
are again related by the balance condition (2.36),
and the horizon area is again infinite. The global
structure in the one-center case is discussed in
Subsection IV.D, case (2) of [8].
	) �0 < 0. Then the various centers ~r ¼ ~ri
each correspond to a connected component of the
event horizon � ! 1, which is regular of order p if
�þ ¼ 2=p, implying �2 > 0. This can occur either
for �1 ¼ þ1, i.e. for normal EMD (the correspond-
ing multicenter solutions have been discussed in
[16,17]), or for �1 ¼ �1 (EM �D), i.e. if1

�2 ¼ p� 2

p
; �1 ¼ �1; �2 ¼ þ1;

(2.40)

with p � 2. The explicit solution is

ds2 ¼
�
1þ 2M

p
�

��p
dt2 �

�
1þ 2M

p
�

�
p
d ~x2;

A0 ¼ "

ffiffiffiffi
2

p

s
M�

1þ 2M�=p
;

� ¼ �p� 2

2�
ln

�
1þ 2M

p
�

�
:

(2.41)

with � normalized by (2.34), and �0 ¼ �p=ð2MÞ.
The total electric charge and dilatonic charge are

again Q ¼ "ð2=pÞ1=2M and D ¼ ��M, but the
balance condition now reads

M2 ¼ Q2 þD2: (2.42)

For p ¼ 2 (� ¼ 0), we recover the Majumdar-
Papapetrou multi-black holes of Einstein-Maxwell
theory. For p > 2, the horizon area is again infinite.
The global structure in the one-center case is dis-
cussed in Subsection IV.D, case (1) of [8].

) �0 ¼ 0. Again the horizon � ¼ �0 is regular
for the values of the coupling constants (2.40),

however f / ��2=�þ does not go to a constant at
spacelike infinity (� ! 0), so that the metric is

1For �1 ¼ þ1, the relation �2 ¼ ðp� 2Þ=p means that the
solution can be lifted to a solution of the EM equations in a
higher (pþ 2)-dimensional space [18]. Such a lift is not possible
for �1 ¼ �1.
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nonasymptotically flat. While regular nonasymp-
totically flat black hole solutions of EMD are known
to exist in the normal case [17], it is easy to show
that in the present case the Ricci scalar diverges at
spatial infinity, so that these solutions do not corre-
spond to regular black holes.2

(5) a2 < 0, �q > 0. In this case, �1 > 0 from (2.24),
so that �þ is positive definite, and �q > 0 implies
�2 > 0, corresponding to normal (nonphantom)
EMD [16,17].

III. STATIONARY E �M THEORY

Now we generalize our investigations to the case of
stationary phantom EMD, i.e., we drop the restrictive
assumption of staticity. As shown in [15], the target spaces
for stationary normal EMD reduced to three dimensions
are symmetric spaces in only two cases: � ¼ 0, and

� ¼ � ffiffiffi
3

p
. The third case � ¼ �1 also leads to a symmet-

ric space after enlarging the theory to EMDA [19]. In the
following we shall consider the corresponding phantom
cases, which lead to symmetric spaces only for �1 ¼ þ1
(which will allow us to simplify the notation and write �
instead of �2). We first discuss the case � ¼ 0.

Let us first briefly recall the standard procedure [10] for
reducing the four-dimensional Einstein-Maxwell theory
deriving from the action

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p ½Rþ F��F
���; (3.1)

to an effective three-dimensional gravitating sigma-model
theory. Assuming the existence of a timelike Killing vector
@t, the metric may be parametrized by

ds2 ¼ fðdt�!idx
iÞ2 � f�1hijdx

idxj; (3.2)

where f, !i, and the reduced spatial metric hij depend

only on the three space coordinates xi (i ¼ 1, 2, 3).
The stationary Maxwell tensor field may be split into
electric and magnetic components deriving from two
three-dimensional scalar potentials � (electric) and u
(magnetic) according to

Fi0 ¼ @i�; Fij ¼ fh�1=2"ijk@ku; (3.3)

("ijk is the totally antisymmetric symbol, with "123 ¼ 1).
Finally, solving the mixed Gi

0 ¼ 0 Einstein equations en-

ables us to trade the three-dimensional vector !i for the
three-dimensional scalar twist potential � such that

@i� ¼ �f2h�1=2hij"
jkl@k!l þ 2ðu@i�� �@iuÞ: (3.4)

The remaining Einstein-Maxwell equations then reduce to
the following three-dimensional Ernst equations [20]

fr2E ¼ rE � ðrE þ 2 �crc Þ;
fr2c ¼ rc � ðrE þ 2 �crc Þ;

f2RijðhÞ ¼ Re

�
1

2
E;ði �E;jÞ þ2c E;ði �c ;jÞ �2Ec ;ði �c ;jÞ

�
;

(3.5)

where the complex Ernst potentials are defined by

E ¼ fþ i�� �c c ; c ¼ �þ iu; (3.6)

and the dot product and covariant derivative r are defined
in terms of the spatial metric hij. The gravitating sigma-

model Eq. (3.5) are invariant under an eight-parameter
group SUð2; 1Þ of transformations acting on the target
space coordinates E and c and leaving invariant the spatial
metric hij. The action of this group may be linearized by

introducing the complex Kinnersley potentials [21] (U, V,
W), related to the Ernst potentials by

E ¼ U�W

UþW
; c ¼ V

UþW
: (3.7)

This parametrization is only apparently redundant, the
Kinnersley potentials being defined by (3.7) up to a com-
plex local rescaling �ð ~xÞ ! �ð ~xÞ�ð ~xÞ (�ð ~xÞ 2 C) of the
‘‘spinor’’� ¼ ðU;V;WÞ, allowing, e.g., to fix the value of
the norm k � k2¼ jUj2 þ jVj2 � jWj2. The gravistatic
potential f is simply related to the Kinnersley potentials by

f ¼ ReE þ �c c ¼ jUj2 þ jVj2 � jWj2
jUþWj2 : (3.8)

Now, consider the general action

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p ½Rþ �F��F
���; (3.9)

which describes the Einstein-Maxwell theory if � ¼ þ1,
and the Einstein-anti-Maxwell theory if � ¼ �1. The
reduction of the stationary Einstein-anti-Maxwell theory
to an effective three-dimensional gravitating sigma model
closely parallels that of the Einstein-Maxwell theory, so
that it is sufficient to identify the equations where the
sign of � (or, in other words, the sign of the gravitational
constant) comes in. The definition (3.4) of the twist poten-
tial becomes

@i� ¼ �f2h�1=2hij"
jkl@k!l þ 2�ðu@i�� �@iuÞ; (3.10)

and the definition of the generalized Ernst potentials

E ¼ fþ i�� � �c c ; c ¼ �þ iu; (3.11)

leads to the generalized Ernst equations2This point was overlooked in [8].
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fr2E ¼ rE � ðrE þ 2� �crc Þ;
fr2c ¼ rc � ðrE þ 2� �crc Þ;

f2RijðhÞ ¼ Re

�
1

2
E;ði �E;jÞ þ2�c E;ði �c ;jÞ �2�Ec ;ði �c ;jÞ

�
:

(3.12)

These equations may also be obtained from the Eqs. (3.5)
by replacing E with �E and f with �f, suggesting
the definition of the generalized Kinnersley potentials
(U, V, W)

E ¼ �
U�W

UþW
; c ¼ V

UþW
; (3.13)

in terms of which we express the scalar function f as

f ¼ �
jUj2 þ jVj2 � jWj2

jUþWj2 : (3.14)

Using (3.13) and (3.14) in Eqs. (3.12), the latter, once
written in terms of (U, V, W), take the same form as
Eqs. (3.5) do when they are expressed in terms of the
previously defined Kinnersley potentials in (3.7). Thus,
Eqs. (3.12) remain invariant when acted upon by
SUð2; 1Þ, which keeps the norm jUj2 þ jVj2 � jWj2 invari-
ant so that the sign of f is also invariant. Then, using the
third line in (3.12) one concludes that the spatial metric hij
is also invariant.

Asymptotically flat field configurations are such that, up
to a gauge transformation, fð1Þ ¼ 1 with the three other
scalar potentials �, � and u vanishing at spatial infinity,
leading, from the third Eq. (3.12), to an asymptotically
flat reduced spatial metric hij. Thus, at spatial infinity

(j ~xj ! 1), the spinor ��ð1Þ representing any asymptoti-

cally flat solution is of the form

�þð1Þ ¼ ð1; 0; 0Þ ð� ¼ þ1Þ; (3.15)

��ð1Þ ¼ ð0; 0; 1Þ ð� ¼ �1Þ: (3.16)

The asymptotic behavior (3.15) is preserved, up to a
complex rescaling, by the transformations of the sub-
group Uð1; 1Þ mixing V and W on the one hand, by the
transformations of the subgroup Uð1Þ changing the phase
of U on the other hand, and more generally by the product
of two such transformations up to a complex rescaling,
i.e. by the transformations of the isotropy subgroup
Hþ ¼ S½Uð1; 1Þ 	Uð1Þ� 
 SUð2; 1Þ. The coset space
for stationary Einstein-Maxwell theory (� ¼ þ1) is thus
SUð2; 1Þ=S½Uð1; 1Þ 	Uð1Þ� [9]. Similarly, the asymptotic
behavior (3.16) is preserved (up to a rescaling) by the Uð2Þ
transformations mixing U and V on the one hand, and by
the Uð1Þ transformations acting on W on the other hand,
generating the isotropy subgroup H� ¼ S½Uð2Þ 	Uð1Þ�.
So the coset space for stationary Einstein-anti-Maxwell
theory (� ¼ �1) is SUð2; 1Þ=S½Uð2Þ 	Uð1Þ�.

A simple application is the generation of static phantom
charged black holes from the Schwarzschild solution f0 ¼
1� 2M0=r. The spinor representing the Schwarzschild
solution is (up to a rescaling)

� 0 ¼ ðM0; 0; r�M0Þ: (3.17)

Acting on this by SOð2Þ transformations parametrized by
an angle � leads to

� ¼ ðM0 cos�;M0 sin�; r�M0Þ; (3.18)

which corresponds to the phantom Reissner-Nordström
solution [5]

ds2 ¼
�
1� rþ

�r

��
1� r�

�r

�
dt2

�
�
1� rþ

�r

��1
�
1� r�

�r

��1
d�r2 � �r2d�2;

c ¼ Q

�r
; (3.19)

with �r ¼ r þ r�, rþ ¼ M0ð1 þ cos�Þ, r� ¼
�M0ð1� cos�Þ, Q ¼ M0 sin�. The black hole mass
M ¼ ðrþ þ r�Þ=2 ¼ M0 cos� vanishes for � ¼ =2.3

Then the black hole mass becomes negative, until the
limiting value M ¼ �M0 is attained, corresponding (not
surprisingly) to the singular Schwarzschild solution with
negative mass.

IV. STATIONARY PHANTOM
KALUZA-KLEIN THEORY

Let us consider the vacuum Einstein-Hilbert action
in 5D

S5 ¼ �
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð5Þg

q
ð5ÞR: (4.1)

The theory may be reduced à la Kaluza-Klein to four
dimensions by assuming the existence of a Killing vector
@5 which may be either spacelike (as usually assumed),
corresponding to � ¼ þ1, or timelike (this is the phantom
case), corresponding to � ¼ �1. The generalized Kaluza-
Klein ansatz

ds2ð5Þ ¼ e2�=
ffiffi
3

p ð4Þg��ðx�Þdx�dx�

� �e�4�=
ffiffi
3

p
ðdx5 þ 2A�dx

�Þ2 (4.2)

leads to the reduced action

S4 ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
½ð4ÞR� 2ð4Þg��@��@��

þ �e�2
ffiffi
3

p
�F��F

���; (4.3)

3The corresponding SOð2Þ transformation is U ¼ �V0,
V ¼ U0. In the EM case, this transformation generates from
the Schwarzschild solution the nonasymptotically flat Bertotti-
Robinson solution [22], which is not possible here.
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for normal (� ¼ þ1), or phantom (� ¼ �1) Einstein-
Maxwell-dilaton (EMD or E �MD) theory [8] with dilaton

coupling constant � ¼ � ffiffiffi
3

p
.

The four-dimensional theory (4.3) may further be re-
duced to three dimensions by assuming stationarity, i.e. the
existence of a second, timelike, Killing vector @0.
Equivalently, we can directly reduce the five-dimensional
theory (4.1) to three dimensions by assuming the existence
of two commuting Killing vectors @0 and @5, with the first
timelike and the second spacelike or timelike according to
the sign of �. We require the reduced three-space to be
topologically Euclidean, so that the signature of the five-
dimensional spacetime metric isþ���� for � ¼ þ1,
andþþ��� for � ¼ �1.4 The five-to-three reduction
is parametrized according to the metric ansatz [23]

ds2ð5Þ ¼ �ab½dxa þ Va
idx

i�½dxb þ Vb
jdx

j�
� ��1hijdx

idxj; (4.4)

where a, b ¼ 0, 5 and � ¼ j det½�ab�j. The 3-vectors Va
i

may be dualized to scalar twist potentials !a via the
relations

!a;i ¼ jhj�1=2�hil�ab"
jklVb

j;k: (4.5)

The remaining field equations derived from (4.1) may be
written as the three-dimensional sigma-model system [23]

RijðhÞ ¼ 1

4
tr½��1@i��

�1@j��; (4.6)

rið��1@i�Þ ¼ 0; (4.7)

where � is the 3	 3 symmetric and unimodular Maison
matrix defined (in block form) by

� ¼ �þ ��1!!T ��1!
��1!T ��1

� �
: (4.8)

The field Eqs. (4.6) and (4.7) are invariant under an
SLð3;RÞ group of transformations P acting bilinearly on
the matrix �:

�0 ¼ PT�P: (4.9)

For asymptotically flat configurations (�ð1Þ ¼
diagð1;��Þ, !ð1Þ ¼ 0), the matrix � is asymptotic to

�ð1Þ ¼
1 0 0
0 �� 0
0 0 1

2
64

3
75: (4.10)

It follows that the isotropy group at spatial infinity is
Hþ ¼ SOð2; 1Þ for � ¼ þ1, and H� ¼ SOð3Þ for
� ¼ �1. Thus, the coset space for phantom Kaluza-
Klein theory is SLð3;RÞ=SOð3Þ (instead of
SLð3;RÞ=SOð2; 1Þ in the normal case).
To illustrate the applications of this sigma model,

we shall generate from the four-dimensional Kerr metric
embedded in five dimensions (with a timelike fifth
dimension),

ds2ð5Þ ¼
g0
�0

ðdt��0d’Þ2 þ ðdx5Þ2

��0

g0

�
g0
�0

dr2 þ g0d�
2 þ �0sin

2�d’2

�
; (4.11)

where

�0 ¼ r2 � 2M0rþ a20; �0 ¼ r2 þ a20cos
2�; (4.12)

g0 ¼ �0 � 2Mor; �0 ¼ �2a0M0

rsin2�

g0
; (4.13)

a charged rotating black hole solution of the phantom
theory E �MD. The metric (4.11) is of the form (4.4) with
V0

3 ¼ ��0. Using the duality Eq. (4.5), we obtain

!0 ¼ 2a0M0

cos�

�0

; (4.14)

leading to the seed Maison matrix

�0 ¼ g�1
0

ðr� 2M0Þ2 þ a20cos
2� 0 2a0M0 cos�

0 g0 0
2a0M0 cos� 0 �0

2
64

3
75:

(4.15)

Applying to this seed the SOð3Þ group transformation

� ¼ PT�0P; P ¼
cos� � sin� 0
sin� cos� 0
0 0 1

2
64

3
75; (4.16)

we obtain the Maison matrix for the charged solution

�ðrÞ ¼ 1

g0

g0 � 2M0cos
2�ðr� 2M0Þ 2M0 sin� cos�ðr� 2M0Þ 2a0M0 cos� cos�

2M0 sin� cos�ðr� 2M0Þ g0 � 2M0sin
2�ðr� 2M0Þ �2a0M0 sin� cos�

2a0M0 cos� cos� �2a0M0 sin� cos� �0

2
64

3
75: (4.17)

4The phantom (� ¼ �1) Kaluza-Klein theory is a two-time theory. For this reason, we do not require the fifth dimension to be
compact, which would lead unavoidably to closed timelike curves.
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After inverse dualization, this leads to the 5-metric

ds2ð5Þ ¼
�

�0

�2 þ 4Q

�0

r��þ g

�0

�2

� �0

g0

�
g0
�0

dr2 þ g0d�
2 þ�0sin

2�d’2

�
; (4.18)

where

� ¼ �0 � 4�r; g ¼ g0 þ 4�r; (4.19)

� ¼ dx5 � 2JQ

ðM� �Þ
rsin2�

g0
d’;

� ¼ dtþ 2J
rsin2�

g0
d’;

(4.20)

and

M ¼ M0ð1þ cos2�Þ=2; Q ¼ M0 sin� cos�;

J ¼ a0M0 cos�; � ¼ M0sin
2�=2;

(4.21)

are the mass, electric charge, angular momentum and
rescaled dilatonic charge (the usual dilatonic charge is
D ¼ ffiffiffi

3
p

�) defined from the asymptotic behavior of the
charged solution

�ðr ! þ1Þ �
1� 2ðM��Þ

r
2Q
r

2J cos�
r2

2Q
r 1� 4�

r 0
2J cos�

r2
0 1þ 2ðMþ�Þ

r

2
664

3
775:

(4.22)

Note that only three of these charges are independent, as
Q2 ¼ 2�ðM� �Þ, with 0 � � � M. The seed Kerr pa-
rameters may be recovered from these by

M0 ¼ Mþ �; a0 ¼ jJjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � �2

p : (4.23)

The solution (4.18) is the phantom version of Rasheed’s
rotating solution [24] with vanishing magnetic charge
(P ¼ 0), from which it may be obtained by making the
substitution Q2 ! �Q2 and changing the sign of the dila-
tonic charge.

The Kaluza-Klein reduction (4.2) of (4.18) leads to the
four-dimensional solution

ds2ð4Þ ¼
g0ffiffiffiffiffiffiffiffiffiffi
�0�

p �
dtþ2J

rsin2�

g0
d’

�
2

�
ffiffiffiffiffiffiffiffiffiffi
�0�

p
g0

�
g0
�0

dr2þg0d�
2þ�0sin

2�d’2

�
; (4.24)

A ¼ Q
r

�

�
dt� J

M� �
sin2�d’

�
; e2�=

ffiffi
3

p
¼

ffiffiffiffiffiffi
�0

�

s
:

(4.25)

which describes an asymptotically flat rotating phantom
dilatonic black hole with electric charge Q and magnetic
dipole moment

� ¼ JQ

M� �
¼ a0M0 sin�: (4.26)

The corresponding gyromagnetic ratio

g ¼ 2M�

QJ
¼ 2þ tan2� (4.27)

is for � � 0 larger than 2. In the static (a0 ¼ 0) case,
the solution (4.24) and (4.25) reduces to the ‘‘cosh’’ solu-

tion of [8] with � ¼ � ffiffiffi
3

p
,

ds2ð4Þ ¼
�
1�rþ

�r

��
1�r�

�r

��1=2
dt2�

�
1�rþ

�r

��1
�
1�r�

�r

�
1=2

	½d�r2þð �r�rþÞð�r�r�Þd�2�;
A0¼Q

�r
; e4�=

ffiffi
3

p
¼1�r�

�r
; (4.28)

where �r ¼ r� 4�, and rþ ¼ 2ðM� �Þ � 0, r� ¼
�4� � 0.
The five-dimensional solution (4.18) or its Kaluza-Klein

reduction (4.24) represent a black hole with the same
horizons

r ¼ rh� � M0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 � a20

q
(4.29)

(if a20 � M2
0) and ring singularity r ¼ 0, cos� ¼ 0 as the

seed Kerr black hole. The four-dimensional metric (4.24) is
also singular on the surfaces �ðr; �Þ ¼ 0,

r ¼ rs�ð�Þ � 2�� ð4�2 � a20cos
2�Þ1=2: (4.30)

The largest value of rsþð�Þ is 4�, so this singularity will be
naked unless

4�<M0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0�a20

q
; or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0�a20

q
>�M0 cosð2�Þ:

(4.31)

This regularity condition is satisfied if either cosð2�Þ> 0,
or if cosð2�Þ< 0 and ja0j< 2jQj. However, at the five-
dimensional level (metric (4.18)), � ¼ 0 is simply the
static limit associated with the time coordinate x5, and is
a mere coordinate singularity. So, in the five-dimensional
setting, the four-dimensional singularity (4.30) is actually a
spurious singularity due to the Kaluza-Klein reduction.
When the charging parameter � takes the value

� ¼ =2, something curious happens. For this value, the
physical charges are

M ¼ �; Q ¼ 0; J ¼ 0 (4.32)

(implying � ¼ g0 and g ¼ �0), so that at first sight the
solution is electrically neutral and static. Actually it is
neither, as the dipole magnetic moment � given by
(4.26) goes to the finite value a0M0 for � ! =2, showing
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that the static (J ¼ 0) four-dimensional metric (4.24) is
generated by the magnetic dipole field

A3 ¼ �a0M0rsin
2�=�: (4.33)

Again, this is just an effect of the Kaluza-Klein reduction.
The five-dimensional metric (4.18) reads, for � ¼ =2,

ds2ð5Þ ¼ dt2 þ g0
�0

ðdx5 þ�0d’Þ2

� �0

g0

�
g0
�0

dr2 þ g0d�
2 þ�0sin

2�d’2

�
; (4.34)

which is just the embedded Kerr metric (4.11) with the time
coordinates t ¼ x0 and x5 exchanged and the angular
momentum flipped. For the intermediate value � ¼ =4
(corresponding to the maximum electric charge Q ¼
M� � ¼ M0=2), we find � ¼ g, so that the reduction of
(4.18) can be indifferently carried out relative to @0 or to
@5, leading to the same reduced four-dimensional fields,
provided the sign of ’ is flipped. For other values of �,
the exchange � ¼ =2� �0,’ ¼ �’0 is equivalent to the
exchange ð�; gÞ ¼ ðg0;�0Þ between the two time coordi-
nates in (4.18), leading to the exchange between the effec-
tive four-dimensional charges

M0 ¼ Mþ 3�

2
; �0 ¼ M� �

2
;

J0 ¼ JQ

M� �
; Q0 ¼ Q:

(4.35)

The reason for this becomes clear if we realize that
the SLð3;RÞ group of transformations (4.9) includes a
GLð2; RÞ subgroup of transformations

P ¼ � 0
0 �j�j�1

� �
(4.36)

where the 2	 2 matrix � defines a coordinate transfor-
mation in the space of the two timelike cyclic coordinates,

x0

x5

� �
¼ �

x00
x05

� �
: (4.37)

The charging transformation (4.16) is such a GLð2; RÞ
transformation. This means that the five-dimensional
‘‘charged’’ black hole metric (4.18) is simply the five-
dimensional (phantom) Kerr black string metric (4.11)
transformed to an unfamiliar coordinate system, while
the four-dimensional charged black hole solution (4.24)
and (4.25) is simply the Kaluza-Klein reduction of the
phantom Kerr black string relative to a linear combination
of the Killing vectors @0 and @5.

V. STATIONARY E �MDA THEORY

Einstein-Maxwell-dilaton-axion theory is a truncation of
the bosonic sector of four-dimensionalN ¼ 4 supergravity,
defined by the action

S ¼ �
Z

dx4
ffiffiffiffiffiffiffi�g

p �
R� 2@��@��� 1

2
e4�@��@

��

þ �e�2�F��F
�� þ �F��

~F��

�
; (5.1)

where � is the pseudoscalar axion, and
~F�� ¼ 1

2E
����F��.

5 The sign � ¼ þ1, corresponding to

normal EMDA, can be changed to � ¼ �1, corres-
ponding to phantom E �MDA, by the formal translation
� ! �þ i=2. Reduction of the stationary theory to
three dimensions is achieved in a manner similar to that
of Einstein-Maxwell theory, with a metric parametrized as
in (3.2), and electric (�), magnetic (u), and twist (�)
potentials defined by

Fi0 ¼ 1ffiffiffi
2

p @i�; � ~Fij þ �e�2�Fij ¼ fffiffiffi
2

p h�1=2"ijk@ku;

(5.2)

@i�þ �@iu� u@i� ¼ �f2h�1=2hij"
jkl@k!l: (5.3)

As shown in [19] (where we replace whenever necessary
e2� by �e2�), this reduction leads to the symmetric target
space metric

dl2¼1

2
f�2df2þ1

2
f�2ðd�þ�du�ud�Þ2��f�1e�2�d�2

��f�1e2�ðdu��d�Þ2þ2d�2þ1

2
e4�d�2; (5.4)

with signature (þþþþ��) in the normal case
� ¼ þ1 and (þþþþþþ) in the phantom case
� ¼ �1 This target space is invariant under a ten-
parameter group Spð4;RÞ of transformations [19].
The symplectic group Spð4;RÞ is the group of real 4	 4

matrices M satisfying

MTJM ¼ J; J ¼ 0 �0

��0 0

� �
; (5.5)

where �0 is the 2	 2 identity matrix. A base of ten trace-
less 4	 4 matrices generating the algebra spð4;RÞ has
been constructed in [19]:

Va ¼ 1

2

0 �a

�a 0

� �
; Wa ¼ 1

2

�a 0
0 ��a

� �
; (5.6)

Ua ¼ 1

2

0 �a

��a 0

� �
; U2 ¼ 1

2

�2 0
0 �2

� �
; (5.7)

(a ¼ 0, 1, 3,�1 ¼ �x,�2 ¼ i�y,�3 ¼ �z with�x,�y,�z

the Pauli matrices). The six generators Va and Wa are
symmetrical, and the four generators Ua and U2 are
antisymmetrical.

5We use the convention E���� � jgj�1=2"����, with
"0123 ¼ �1.
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As also shown in [19], the reduced field equations derive
from the gravitating sigma-model action

S3 ¼
Z

d3x
ffiffiffi
h

p �
RðhÞ þ 1

4
trðrMrM�1Þ

�
; (5.8)

with the symmetrical symplectic matrix representative

M ¼ P�1 P�1Q
QP�1 PþQP�1Q

� �
; (5.9)

where the 2	 2 block matrices P and Q are

P ¼ e�2� fe2� � ��2 ���
��� ��

" #
;

Q ¼ �w� � w
w ��

� �
ðw ¼ u� ��Þ:

(5.10)

The matrix representativeM parametrizes an element of
the coset space Spð4;RÞ=H�, where H� is the isotropy

subgroup that preserves asymptotic behavior. To determine
this subgroup, we consider asymptotically flat solutions for
which fð1Þ ¼ 1 and the five other target space coordinates
go to zero. For normal EMDA (� ¼ þ1), we find from
(5.9) and (5.10) that

Mþð1Þ ¼ �3 0
0 �3

� �
: (5.11)

This remains invariant under the Spð4;RÞ transformations

M0 ¼ PTMP (5.12)

generated by

lie ðHþÞ ¼ ðV1; W1; U0; U3Þ: (5.13)

These matrices generate the uð1; 1Þ algebra with center
U3: ½W1; V1� ¼ U0, ½U0; V1� ¼ W1, ½W1; U0� ¼ V1

and ½V1; U3� ¼ ½W1; U3� ¼ ½U0; U3� ¼ 0. It follows
that the coset for EMDA is Spð4;RÞ=Uð1; 1Þ �
SOð3; 2Þ=ðSOð2; 1Þ 	 SOð2ÞÞ.

For phantom EMDA (� ¼ �1), M�ð1Þ is the 4	 4
identity matrix,

M�ð1Þ ¼ �0 0
0 �0

� �
: (5.14)

This matrix remains invariant under the subgroup gener-
ated by the antisymmetrical matrices

lie ðH�Þ ¼ ðUa;U2Þ: (5.15)

These matrices generate the uð2Þ algebra with center
U0: ½Ui;Uj� ¼ �"ijkUk, ½U0; Ui� ¼ 0, i, j, k ¼ 1, 2, 3

and "123 ¼ þ1. It follows that the coset for E �MDA is
Spð4;RÞ=Uð2Þ � SOð3; 2Þ=ðSOð3Þ 	 SOð2ÞÞ.
A third four-dimensional subgroup of Spð4;RÞ is

GLð2;RÞ. The choice of this as isotropy subgroup leads
to the coset Spð4;RÞ=GLð2;RÞ � SOð3; 2Þ=ðSOð2; 1Þ 	
SOð1; 1ÞÞ [25], which is the coset for Euclidean
EMDA [26].
Let us now, as in the previous section, apply the E �MDA

sigma model to the generation of a charged rotating black
hole solution from the four-dimensional Kerr metric given
by (4.11) (without the fifth dimension). The twist potential
�0 is the opposite of!0 in (4.14), leading to the seed matrix
representative

M0¼g�1
0

�0 0 2a0M0 cos� 0
0 g0 0 0

2a0M0 cos� 0 ðr�2M0Þ2þa20cos
2� 0

0 0 0 g0

2
6664

3
7775:

(5.16)

Applying to this the Spð4;RÞ transformation (5.12) with

P ¼
cos� � sin� 0 0
sin� cos� 0 0
0 0 cos� � sin�
0 0 sin� cos�

2
6664

3
7775; (5.17)

we obtain the matrix representing the charged rotating
solution

M ¼ g�1
0

rðr� 2DÞ þ a20c
2 � ffiffiffi

2
p

Qr 2a0Mc �a0
ffiffiffi
2

p
Qc

� ffiffiffi
2

p
Qr rðr� 2MÞ þ a20c

2 �a0
ffiffiffi
2

p
Qc 2a0Dc

2a0Mc �a0
ffiffiffi
2

p
Qc ðr� 2M0Þðr� 2MÞ þ a20c

2 2M0ðr� 2M0Þ
�a0

ffiffiffi
2

p
Qc 2a0Dc 2M0ðr� 2M0Þ ðr� 2M0Þðr� 2DÞ þ a20c

2

2
6664

3
7775;

(5.18)

with c � cos�, and

M ¼ M0cos
2�; Q ¼ ffiffiffi

2
p

M0 sin� cos�; D ¼ M0sin
2� ðM0 ¼ MþD;Q2 ¼ 2MDÞ: (5.19)

The corresponding fields, obtained by identifying (5.9) with (5.18) and performing inverse dualization, are
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ds2 ¼ g0
�

�
dtþ 2J

rsin2�

g0
d’

�
2 � �

g0

�
g0
�0

dr2 þ g0d�
2 þ �0sin

2�d’2

�
;

A ¼ Q
r

�
½dt� a0sin

2�d’�; e2� ¼ �0

�
; � ¼ � 2a0D cos�

�0

; (5.20)

with

� ¼ rðr� 2DÞ þ a20cos
2�; J ¼ a0M: (5.21)

In the static (a0 ¼ 0) case, this solution reduces to the cosh
solution of [8] with � ¼ �1,

ds2 ¼
�
1� rþ

�r

�
dt2

�
�
1� rþ

�r

��1½d�r2 þ ð�r� rþÞð�r� r�Þd�2�;

A0 ¼ Q

�r
; e2� ¼ 1� r�

�r
; (5.22)

with rþ ¼ 2M � 0, r� ¼ �2D � 0, and �r ¼ rþ r�.
The solution (5.20) of phantom EMDA represents a

rotating, electrically charged black hole with mass M,
electric charge Q, dilatonic charge D, angular momentum
J, magnetic dipole charge a0Q, and axionic dipole charge
a0D. It is formally identical to the charged rotating black
hole solution of normal EMDA [27], the only difference
being that the dilatonic charge D is negative in the case of
EMDA (Q2 ¼ �2MD) and positive in the present case of
E �MDA (Q2 ¼ 2MD). A consequence is that (as in the case

of the phantom � ¼ � ffiffiffi
3

p
black hole (4.24)) the outermost

singular surface (�ðr; �Þ ¼ 0),

rsþð�Þ ¼ Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � a20cos

2�
q

(5.23)

may lie (in part) outside the event horizon (4.29). The
largest value of rsþð�Þ is 2D, so this singularity will be
naked unless

2D<M0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0�a20

q
; or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0�a20

q
>�M0 cosð2�Þ:

(5.24)

This is always satisfied if cosð2�Þ> 0 (M>D). In that
case, the spacetime of metric (5.20) is a regular black hole
for ja0j � M0 ¼ MþD, extremality being achieved for
ja0j ¼ MþD. If cosð2�Þ< 0 (M<D), the condition for
black hole regularity is stronger:

ja0j<
ffiffiffi
2

p jQj: (5.25)

In particular, the value � ¼ =2 leads from (5.19) to the
massless, neutral solution

ds2 ¼ dt� g0
�0

dr2 � g0d�
2 ��0sin

2�d’2;

A ¼ 0; e2� ¼ 1þ 2Dr

g0
; � ¼ � 2a0D cos�

�0

;

(5.26)

with a static metric but nonvanishing axionic dipole
charge a0D. This solution is singular (g0 ¼ � vanishes
for r ¼ rsþð�Þ> rhþ), including in the static (a0 ¼ 0)
case.

VI. CONCLUSION

In this paper, we first constructed static multicenter
solutions of phantom EMD. We found that these lead to
regular black holes in two cases. The first case is that of
EMD (phantom Maxwell and dilaton fields), for the dis-
crete values �2 ¼ ðpþ 2Þ=p (p positive integer) of the
dilaton coupling constant. In this case the singular centers
are hidden behind the horizon of order p. The number of
connected components of this horizon may be equal to, or
smaller than, the number n (unrelated to p) of the centers.
In particular, the integration constants can be arranged so
that the solution represents a black hole without spatial
symmetry, with a single horizon component hiding the n
singularities. The second case corresponds to EM �D
(phantom dilaton field), for the discrete values �2 ¼
ðp� 2Þ=p (p > 2 integer). In this case, which generalizes
the Majumdar-Papapetrou multi-black holes of Einstein-
Maxwell theory, each center corresponds to a connected
component of the event horizon. All these multicenter
black holes have an infinite horizon area and vanishing
temperature.
We then considered sigma models for the special

values of the dilatonic coupling constant � ¼ 0, � ¼ �1

and � ¼ � ffiffiffi
3

p
, for which stationary phantom EMD (or

EMDA in the case � ¼ �1) reduced to three dimensions
has a symmetric target space G=H. This occurs only for a
nonphantom (or vanishing) dilaton field, so that these
sigma models do not admit multicenter solutions. In all
cases, the noncompact isotropy subgroup Hþ corresponds
to the normal case and the compact isotropy subgroup H�
corresponds to the phantom case. This can be understood if
one notes that changing the sign of the gravitational cou-
pling constant �2 of the Maxwell field is equivalent to
changing the sign of the spacetime metric. Thus reduction
of the four-dimensional phantom theory relative to a time-
like Killing vector is equivalent to reduction of the normal
theory relative to a spacelike Killing vector, which is well-
known [9] to lead to a compact isotropy subgroup.
We also in each case applied a particular sigma-model

transformation to generate phantom static and rotating
charged solutions from a neutral solution. While the charg-
ing transformation in the normal case belongs to an
SOð1; 1Þ subgroup of Hþ, it belongs in the phantom case
to an SOð2Þ subgroup of H�, resulting in important
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differences between the two cases. For the normal theories,
an infinite SOð1; 1Þ boost leads, in the static case, to an
extreme black hole saturating the lower bound M2 �
Q2=ð1þ �2Þ [16]. For the phantom theories there is, for
�2 � 1, no such lower bound and massless solutions are
possible [5], as obtained here in the cases of E �M and
E �MDA for an SOð2Þ rotation of =2. Moreover, the ex-
treme solution, obtained by a rotation of  in the case of
E �M, or by a rotation of =2 in the cases of phantom
Kaluza-Klein theory or of E �MDA, is singular.

We have seen that, in the case of phantom Kaluza-Klein
theory, the naked singularity of this static extreme solution,
or more generally that of a sector of the family of phantom

rotating charged solutions, becomes a mere coordinate

singularity once the four-dimensional solution is lifted to

five dimensions. By analogy with this, and with similar

mechanisms of higher-dimensional resolution of naked

curvature singularities [18], one can speculate that the

naked singularities of a sector of the family of solutions

(5.20) of E �MDA could be resolved by lifting the theory to

some higher-dimensional theory.
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