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A model is presented in the philosophy of the ‘‘String Axiverse’’ of [A. Arvanitaki, S. Dimopoulos, S.

Dubovsky, N. Kaloper, and J. March-Russell, Phys. Rev. D 81, 123530 (2010).] that incorporates a

coupling of ultralight axions to their corresponding moduli through the mass term. The light fields roll in

their potentials at late times and contribute to the dark sector energy densities in the cosmological

expansion. The addition of a coupling and extra field greatly enrich the possible phenomenology of the

axiverse. There are a number of interesting phases where the axion and modulus components behave as

dark matter or dark energy and can have considerable and distinct effects on the expansion history of the

universe by modifying the equation of state in the past or causing possible future collapse of the universe.

In future such a coupling may help to alleviate fine tuning problems for cosmological axions. We motivate

and present the model, and briefly explore its cosmological consequences numerically.

DOI: 10.1103/PhysRevD.83.123526 PACS numbers: 98.80.Cq, 14.80.Va

I. INTRODUCTION

A. The mass scale of string axions

It was proposed in [1] that a generic prediction of string
theory is the existence of many light axions. The
Lagrangian of such an axion can be characterized using
two parameters: the symmetry breaking scale, fa (also
referred to as the axion decay constant), and the overall
scale of the potential, �, appearing in the effective four-
dimensional Lagrangian:

L ¼ f2a
2
ð@�Þ2 ��4Uð�Þ (1)

whereUð�Þ is some periodic potential. Bringing the kinetic
term into canonical form we define the field� ¼ fa�, with
Lagrangian

L ¼ 1

2
ð@�Þ2 þ Vaxð�Þ (2)

where Vaxð�Þ is again a periodic potential. Expanding the
potential to quadratic order we find that the mass is given
by

m2
a ¼ �4

f2a
: (3)

Hence, any axion is equivalently parametrized by its mass
and symmetry breaking scale. The authors of [1] then go on
to assert that, because of the scaling of ma and fa with the
parameters in a generic string theory compactification, and
the complexity of such compactifications, one should ex-
pect fa to remain roughly fixed at some high scale
fa � 1016 GeV, whilema should distribute roughly evenly
on a logarithmic mass scale all the way down to the Hubble
scale today of H0 � 10�33 eV.

The argument can be summarized as follows. Axions
arise from the existence of closed cycles in the compact
space: one axion for each. The symmetry breaking scale,

fa, scales inversely with the action, S, due to nonperturba-
tive physics on the corresponding cycle:

fa �
Mpl

S
: (4)

The action then typically scales with the area of the
corresponding cycle, so that across all axions in a given
compactification volume fa will not vary over many orders
of magnitude. The standard arguments then lead to stringy
values of fa � 1016 GeV [2]. The crucial observation that
enables the assertion about the distribution of axion masses
to be made is the exponential dependence of the scale �
on S

�4 ¼ �4e�S (5)

where � is a mass scale: in the axiverse it is the geometric
mean of the supersymmetry (SUSY) breaking scale and the
string/Planck scale. Therefore, as the areas of cycles scale
over the volume of the compact space, and given that even
the simplest compactifications contain hundreds of closed
cycles of different orders, we can expect axion masses to
distribute roughly evenly on a log scale.
It should finally be noted that in the axiverse scenario the

lightest axions are not the standard QCD axion [3]; how-
ever, they do owe their existence to it. String axions can be
removed from the spectrum of light fields by tree level
liftings towards the string/Planck scale; however, if it is to
solve the strong CP problem the QCD axion must escape
such liftings. It would then be considered anomalous if the
QCD axion were the only axion to escape such a lifting and
remain light.

B. String axions as dark matter

Axions and other ultralight scalar fields are well-
motivated candidates to make up a proportion of the dark
matter in our universe [4–6], and have also been motivated
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in many works to solve the problem of dark energy (see, for
example, [7,8]). Studies of the QCD axion [3] (see [9] for a
review of the strong CP problem and the axion as a
possible solution) as a dark matter candidate [10–17] often
depended heavily on the thermal properties of the axion,
particularly its temperature-dependent mass. However, the
thermal properties are specific to the nonperturbative in-
stanton physics of QCD. In contrast, when we study axions
arising in a generic context from string theory [1,2] the
nonperturbative physics of the axion potential could arise
from a variety of sources, and as such it is common to work
with a simplified form of the potential with no temperature
dependence. Therefore, cosmological axions in such a
scenario have relatively simple dynamics: they acquire
some initial conditions through spontaneous symmetry
breaking of the underlying global Peccei-Quinn symmetry
at the scale fa, and the field remains frozen at this value
until the mass (provided by the potential due to nonpertur-
bative physics, which arises at the scale�. In the QCD case
this happens near �QCD) overcomes the Hubble friction, at

which point the axion begins rolling towards and oscillat-
ing about its minimum in the potential. Such fields, which
acquire only small masses due to explicit breaking of a
symmetry caused by nonperturbative effects (instantons
breaking the remaining shift symmetry of the Peccei-
Quinn axion in QCD) are known as pseudo-Nambu-
Goldstone bosons [18], and are the common motivation
for the study of ultralight fields in cosmology.

As a cosmological fluid the axions are purely gravita-
tionally coupled: while frozen they behave as a cosmologi-
cal constant, and then make a short transition to oscillatory
behavior before behaving as a pressureless cold dark mat-
ter (CDM) component. The fraction of the total energy
density in axions resulting from this nonthermal produc-
tion depends upon the initial value the field acquires after
symmetry breaking and its distance from the potential
minimum (the misalignment angle), with a negligible ther-
mal component from the (Planck and symmetry breaking
scale-) suppressed couplings of axions to the standard
model via higher-dimensional operators. In such a scenario
the initial misalignment angle therefore often requires
tuning to produce a cosmology consistent with observa-
tions if we assume the existence of an axion with a certain
mass. The tuning may be to small values of the misalign-
ment angle if we wish not to overclose the universe with
heavier axions, or to large values of the misalignment angle
if we would like the dark matter to contain some significant
fraction of ultralight axions [6]. It should be noted, how-
ever, that the measure of fine tuning in such scenarios
depends not only on the potential, which is unknown and
can in some cases be nonperiodic [7] (in which case the
concept of tuning is more ill-defined), but also on the
details of inflationary physics [19–23].

These fine tunings are a problem and a blessing for
ultralight fields. In [6], the ‘‘anthropic boundary’’ for

ultralight axions was discussed. This refers to the region
of axion parameter space where it is no longer possible for
the axions to make up an Oð1Þ fraction of the dark matter,
due to the periodic nature of the field making� ¼ fa� the
maximum possible misalignment. Unless the periodicity is
broken as was done in [7] and assumed in [6], or anhar-
monic effects in the potential are accounted for [14],
ultralight axions cannot make up large enough fractions
of the dark matter to be readily observable, but conse-
quently pose no danger of ‘‘overclosing’’ the universe
and producing a Hubble rate inconsistent with observa-
tions. Part of the motivation for this work is to provide a
mechanism that decouples the axion density somewhat
from its initial misalignment angle via a tracking mecha-
nism [24,25], which may allow for observable densities in
light axions, or to accommodate larger fa for the heavier
axions.
Recently a specific construction in string theory realiz-

ing the ‘‘axiverse’’ of [1] was given [26,27]. The authors of
[26,27] suggested that nonthermal processes are particu-
larly important for the cosmology of such a model. In this
paper I will propose a simple extension of the axiverse that
includes further nonthermal processes that couple the ax-
ion fluid and greatly enrich the phenomenology of axion
dark matter in a way analogous to the enrichment of dark
energy phenomenology arrived at through the study of
coupled quintessence [28]. In this framework the behavior
of the axion dark matter component is no longer a simple
transition, and one hopes to look for novel features in the
late time expansion history of the universe, as has been
done fruitfully in many works on dark energy (see, for
example, [29,30]).
The perturbations of ultralight dark matter axions and

their effect on structure formation has been studied in
many previous works [5,6], the basic result being that the
large Compton wavelength gives rise to a quantum pres-
sure and suppresses structure formation below that scale
[4], in a way largely analogous to the presence of a massive
neutrino [5]. The study of perturbations in this extended
scenario will be left to a future work.

C. Moduli

Moduli are scalar fields in string theory that control the
size and shape of the compact manifold. That there
are many of these and they can contribute significantly to
the cosmological energy density if they are allowed to roll
in their potentials is known as the ‘‘cosmological moduli
problem,’’ and moduli stabilization is an important prob-
lem in string theory, related to the landscape, the existence
of stable vacua, and the cosmological constant problem
(see [31] and references therein). A typical potential for
moduli stabilization in the LARGE volume scenario for a
modulus � is of the parametric form:

Vmodð�Þ ¼ Be�2C� �De�C� (6)
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where B, D and C are for our purposes free parameters,
with the only restriction that for a stabilizing minimum we
have 2B>D. The typical scales of these parameters will
be discussed shortly. We will also add an arbitrary (cos-
mological) constant, � (not to be confused with the scale
of the axion potential), to the potential Vmod to account for
the frozen/vacuum expectation values of other moduli and
standard model fields, the vacuum energy itself, and the
bare gravitational � in Einstein’s equations, thus allowing
for a late time de Sitter expansion and acceptable phe-
nomenology. This is a prescription necessary in most all
moduli stabilization, since the vacuum found is always
anti-de Sitter.

The modulus dynamics are therefore expected to be a
small perturbation about the standard model for dark
energy, similar to models of varying equation of state,
quintessence or early dark energy (EDE) (For a compre-
hensive review of dark energy theory and phenomenology,
see [32].). This prescription, like many cosmological
models, is not answering the cosmological constant prob-
lem, only giving it some alternative phenomenology. The
fate of the universe given this scenario is discussed in
Sec. III.

In the LARGE volume moduli stabilization scenario of
[31,33] the lightest modulus is the volume modulus, which
like the dilaton controls the overall scale of couplings in
the model, but we can expect the presence of many light
moduli. There are moduli corresponding to each closed
cycle in the compact space, and as such there is a modulus
for each axion. In particular there will be a modulus
controlling the area of a cycle and as such

S� �: (7)

The modulus mass scale that leads to rolling in the poten-
tial is often tied to the axion mass, so that the presence of
cosmologically rolling axions suggests the presence of
cosmologically rolling moduli. In this way we extend the
axiverse.

The displacement of moduli from their stabilized values
(vacuum destabilization) by astrophysical processes is not
a new idea: it has been exploited before in chameleon
models (where destabilization is attained via coupling to
density) and other similar scenarios (see, for example
[34–37]). The variant on the scenario that is proposed
here is as follows. The lightest axions and moduli have
masses below the Hubble scale and are stabilized by
Hubble friction, contributing to an effective cosmological
constant. The heaviest moduli are stabilized by potentials
of the form Eq. (6), which includes the moduli for standard
model couplings [38]. There are then cosmological axions
that roll in their potentials at late time and contribute to the
dark matter density and perturbations in a distinct way
from standard CDM. As such, some moduli may also roll
in their potentials on cosmological time scales, which will
lead to a rolling of the scale of the axion potential and

consequently a rolling of the axion mass. It is this feature of
coupling that we hope to exploit in looking for novel
features in the cosmological expansion rate and equation
of state in the dark sector. It is worth stressing again that
cosmologically rolling moduli are not general, but we
explore the phenomenology of allowing such a scenario
for some of the moduli.
A final word of warning should be made about the

addition of cosmologically relevant scalars to any model.
Without a symmetry, such as the axion shift symmetry,
which forbids scalar couplings directly to such terms as
F��F

�� (although they might be induced at loop order like

the axion-photon coupling), scalars will always appear
multiplying such terms and if they are light will induce
long range, gravitational strength ‘‘fifth forces.’’ This prob-
lem is generic to scalar quintessence models, though often
ignored. The chameleon models are geared towards solv-
ing this problem [39]. This work will not address such fifth
force constraints, but they should be borne in mind when
making any detailed analysis, and will also be the subject
of future investigation.

D. Comments

In this model we are working in the Leibnizian/
Panglossian philosophy of the authors of [1] to use the
vastness of the string landscape to look for general prop-
erties exploitable for cosmological phenomenology, i.e.,
realistic string compactifications and scenarios for the
moduli are complicated and varied but have many general
and model independent features [33]. In the literature there
has been a long standing link between string theory and
inflation physics (see [40] and references therein). In par-
ticular it was the aim of [40] to connect inflationary ob-
servables to topological properties of the compact space;
this is analogous to ‘‘cohomologies from cosmology’’ in
[1]. However, in the simplest axiverse scenario for dark
matter axions there are two parameters per axion that can
be constrained using cosmology: the axion mass, ma, and
the axion fraction, f ¼ �a=�m. The fraction f is deter-
mined by the initial misalignment angle and tells us noth-
ing about the compact space or vacuum, so any
cosmological bounds based on the expansion rate or for-
mation of structure can only limit the contribution from a
given axion or number of axions of given masses rather
than place definite constraints on the number and size of
closed cycles that determine the masses. There could be
many light axions of many masses but if their contribution
to the energy density is too small then we will not observe
them [41]. An observation of the effects of a number of
axions, modulo a prior on the potential and degree of fine
tuning, may also hope to place bounds on their common
axion decay constant, fa. Assumptions about inflation can
also bound fa, as discussed in [19–23], and vice versa an
assumed ultralight axion boundsHI from considerations of
isocurvature perturbations, as discussed in [17].
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Considering axions and moduli in the landscape and
whether they survive to be observed is closely linked to
the question of SUSY breaking, and is discussed in [47].
We will discuss it no further here, except to stress again
that issues of naturalness and fine tuning within the land-
scape will not concern us here: we simply motivate a
theoretically plausible, phenomenologically viable, and
observationally testable scenario.

Extending the axiverse scenario as proposed here gives
much greater scope for direct connections between late
time cosmology and beyond the standard model/string
physics, akin to those already fruitfully explored in infla-
tionary physics, but distinct from those connections al-
ready explored in tackling the dark matter problem with
weakly interacting massive particles in the context of
supersymmetric extensions of the standard model (the
MSSM and its progeny), or in directly addressing the
cosmological constant problem. However, as phenomenol-
ogists we must be careful about any statements we make
about fundamental physics based on any results obtained
using our models. In a parametrized phenomenological
model such as the one proposed here, the parameters
should be taken as just that: it is only in the context of a
full string model such as those in [2,26,31,40] (with all the
assumptions that go into constructing such a model) that
the parameters take on their physical high energy physics
meanings.

II. THE MODEL: COUPLED AXIONS IN THE
DARK SECTOR

A. Equations of motion

The coupled axion-modulus Lagrangian takes the fol-
lowing form:

L ¼ 1

2
ð@�Þ2 þ 1

2
ð@�Þ2 � Vð�;�Þ

Vð�;�Þ ¼ Be�2C� �De�C� þ 1

2
e� ~C�M2�2

(8)

where � is the axion, � is the modulus, B, D are
dimension-four parameters for the modulus potential, C
is related to the overall volume of the compact space in

string units, ~C is related to the instanton action, M2 ¼
�4=f2a and we make the simplifying assumption to work
with only the mass term for the axion. In the interests of

economy of parameters we will often take ~C ¼ C. Also,

when C � ~C the problem of minimizing the potential
becomes much less tractable generically, and for specific

values of C, ~C many minima appear (e.g., 19 minima with

C ¼ 10, ~C ¼ 1), which is related to the emergence of the
landscape in string theory and the analysis of which is
beyond the scope of this work.

In this work we will only be concerned with the
homogeneous background fields, so will use the notation

� � �0 ¼ �0ð�Þ, where � is conformal time, and simi-
larly for the modulus.
The energy momentum tensor and equations of motion

for the coupled system follow in the usual way from the
Lagrangian. For a homogeneous Friedmann-Robertson-
Walker metric, with scale factor a, in conformal time:

€�þ2H _�þe�C��
4

f2a
a2�¼0

€�þ2H _��Ca2ð2Be�2C��De�C�Þ¼1

2
C
�4

f2a
a2e�C��2

(9)

where over dots denote derivatives with respect to confor-
mal time, and H ¼ _a=a. The energy momentum tensor
for the combined axion-modulus system has the form of a
perfect fluid with energy density � and pressure P: T0

0 ¼
��, Ti

j ¼ P	i
j. This gives:

� ¼ a�2

2
ð _�2 þ _�2Þ þ Vð�;�Þ

P ¼ a�2

2
ð _�2 þ _�2Þ � Vð�;�Þ

(10)

Because of the coupling, only these combined quantities
obey the conservation equation _� ¼ �3H ð�þ PÞ.
The form of the potential suggests a natural splitting of

this into components due to the axion, subscript �, and
modulus, subscript �:

�� ¼ a�2

2
_�2 þ 1

2
e� ~C�M2�2

P� ¼ a�2

2
_�2 � 1

2
e� ~C�M2�2

�� ¼ a�2
2

_�2 þ Be�2C� �De�C�

P� ¼ a�2
2

_�2 � Be�2C� þDe�C�

(11)

though in certain cases this distinction should be looked at
more carefully [48].
With these definitions we will investigate the scalings of

the energy density for axion and modulus components, and
also the combined system. It is not only the scaling of the
energy density that effects the cosmological expansion
history: we will also investigate the equation of state, given
by wi ¼ Pi=�i for components i ¼ ax;mod; axþ
mod; tot, which will effect the expansion rate in the usual
way [49,50].
The Friedmann equation is:

H 2 ¼ 8�G

3
a2�: (12)
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In addition to the axion-modulus system of Eq. (10) we
will consider components of the energy density coming
from radiation, �
, CDM, �c, and a cosmological constant,

��, all of which will redshift in the usual way. This now
completes the description of the system.

B. The scales of parameters

This model is to be understood phenomenologically, and
thus all the parameters will be taken as free when searching
for interesting cosmological features, however it will be
useful to have some idea of the natural scales in relation to
the units used in numerical solution of the equations. First,
we scale the reduced Planck mass, 8�G ¼ 1

M2
pl

, out of the

Friedmann equation by rescaling the fields to be in Planck
units: � ! �=Mpl, � ! �=Mpl, and absorbing factors of

M2
pl into B, D and the densities of the standard �CDM

components. Next we change time variables to work in
units of H0: � ! H0�. This can be divided through the
equations of motion and absorbed into the parameters and
densities, so that the densities are now: � ! �=ðH2

0M
2
plÞ,

and �iðaÞ=3 ¼ �iðaÞ. Finally we express all the parame-
ters in the potential in Planck units, natural for a string-
inspired model, as X ! Mx

plX, with X the parameter and x

its mass dimension. Thus, finally we have:

B !
�M2

pl

H2
0

�
B

D !
�M2

pl

H2
0

�
D

M2 !
�
Mpl

f2a

��M2
pl

H2
0

�
�M2

�M ¼ 1�MSUSY=Mpl

2

All the parameters on the left-hand side are now dimen-
sionless, and it is these that will be used when quoting
results.

Using M2
pl=H

2
0 � 10120, fa � 1016 GeV, and TeV scale

SUSY implying �M � 1 gives an idea for the approximately
natural scales of all the parameters:

B� 10120 D� 10120 M� 1062

For the fields, a large value of �> 1 will be trans-
planckian, and any value �>�ðfa=MplÞ will represent a
departure from the periodic nature of the axion, whereas �
is an area/volume, so a large value in Planck units is not
problematic, and is in fact what one expects in a LARGE
volume scenario for moduli stabilization. The initial con-
ditions on the fields are free parameters in the model: �
representing a position in the landscape, and � being
selected by spontaneous symmetry breaking. The flatness

condition fixes the density in the axion-modulus system.
Choosing the densities in � and standard CDM to be close
to their observed values allows the axion-modulus system
to be set as subdominant. Thus, for now we ignore the
question of fixing the initial conditions so as to obtainH0 at
its observed value, since the subdominant components will
not cause much variation away from this (H0 ¼ 1 in our
units). The appropriate initial conditions for a universe
containing a significant fraction in an axion-modulus com-
ponent will be the subject of future work.

We expect the dimensionless parametersC and ~C to both
be Oð1Þ.

C. Comments

At this stage some comments on the system of equations
in relation to other models in the literature will be useful.
A brief comparison will be made to three models:
[8,48,51], stating the main similarities and differences.
The take-home message, though, will be that these models,
while interesting, are connected to very different sources of
new physics. They are for the most part motivated by
scalar-tensor theories modifying the gravity sector to ad-
dress the dark energy problem, while the model presented
here is firmly cast in the context of HEP, strings, and the
landscape, with dark matter candidates and modifications
to the dark energy sector a by-product useful for
phenomenology.
In [51], the scalar field analogous to our modulus is

coupled nonminimally to gravity via the term �2R, and
has its own scalar potential. The field is also used to Higgs
the Dirac dark matter particle via a Yukawa coupling
�c fð�Þc , thus introducing a �-dependent mass to the
dark matter. However, no explanation for this coupling is
given in terms of fundamental particle physics (general
couplings of this form can, however, be constructed in
scalar-tensor theories by transforming between the Jordan
and Einstein frames: see for example [52]). Assuming they
have a standard neutralino dark matter particle, then the
scalar field will be a Higgs of some supersymmetric ex-
tension to the standard model and one may worry about
effects both on the freeze-out mechanism for the neutra-
lino, or on other effects where the true Higgs rolls and
causes mass changes in the standard model particles. This
model building issue aside, the authors go on to explore the
effects of different potentials and coupling terms that allow
matching to the standard cosmology.
There are some important distinctions between the

model of [51] and the one presented here, the first being
that the axion-modulus model makes no change in the
gravity sector, and as such the FRW equations take their
standard form, though [51] can be brought into standard
form via a conformal transformation: this is the usual
degeneracy of modified gravity theories to scalar field
theories of dark energy (again, see [52]). Second, the
dark matter sector in [51] is, apart from the coupling,
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assumed standard, whereas the axiverse model is motivated
by nonstandard dark matter components. Finally, many
scalar potentials and couplings are explored in [51] within
a general framework, whereas in the axion-modulus model
the forms are essentially fixed via the motivation in string
theory, and would be formally fixed in any specific string
realization of the model. The motivation of [51] is to
explore late time dynamics of dark energy; the motivation
here is to investigate dynamics in the matter sector and
finds dark energy dynamics as a by-product. Thus both
models explore the same idea of dark sector couplings and
nonstandard dynamics, the model of [51] being more phe-
nomenologically general for cosmologists and dark energy
phenomenologists, the model here being more theoreti-
cally and phenomenologically general from a HEP point
of view.

Coupling axions and moduli bears much similarity to
‘‘axion-dilaton cosmology’’ [8,53]. In these models the
axion has no potential of its own but is coupled in its
kinetic term to the dilaton after a conformal transformation
renders the gravity sector standard: L � � 1

2 e
��ð@�Þ2,

where � is the dilaton, and � the axion. The dilaton
potential is then also exponential �e���, appearing on
the cosmological constant term after the conformal trans-
formation. This model is then entirely constrained with
only two free parameters. The dynamics in the scalar field
sector consists of the existence of attractors bringing the
equation of state periodically into accelerating phases, with
possibly observable consequences as explored in [29]. The
highly constrained axion-dilaton model should serve as a
useful heuristic guide when thinking about the coupled
scalar field dynamics of the axion-modulus model, the
important differences being that axion-modulus model
has an axion mass term with a coupling on it, but standard
kinetic term, and the potential for the modulus has a finite
field, negative potential minimum, in contrast to the dila-
ton. We will expect this to make quantitative and qualita-
tive changes to the equation of state evolution.

Finally, the model of [48] bears the most resemblance to
the axion-modulus model with the mapping of axion � to
‘‘geon’’ �, and modulus � to ‘‘cosmon’’ ’, the only
important difference being that the modulus potential has
a minimum, while the cosmon potential, being a dilaton,
does not. The analysis of [48] will accordingly be very
useful for helping us understand the axion-modulus sys-
tem. However, I choose to include a standard cosmological
constant as well as the modulus, for the place-holding
reasons mentioned in Sec. I, and consider this good prac-
tice. Whether or not � can be removed from the axion-
modulus system, with all the dark energy given from the
scalar fields, will be the subject of future work, and if
possible may have important consequences in relation to
string theory. I also choose to include a standard dark
matter component because we know that if ultralight scalar
fields rolling on the time scales of interest here and in [48]

suppress structure formation according to their fraction
[5,6], then, just like massive neutrinos, they cannot make
up all of the dark matter, as is assumed in [48].
This concludes the discussion of the model.

III. RESULTS

A. Example cosmology 1

This first example is concerned with parameter values
close to those considered natural in Sec. II. The evolution
of the various components of the density � obtained from
numerically integrating the equations of motion are plotted
as a function of scale factor a in Fig. 1, with the associated
�’s plotted in Fig. 2 for parameter values:
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20

FIG. 1 (color online). Densities as a function of scale factor for
the parameters of Eq. (13). Notice the tracking dynamics of the
axion-modulus system between 10�6 & a & 10�1, when
the modulus gains positive energy density, and the end of this
tracking at a * 10�1 caused when the axion field begins oscil-
lations and the axion density makes its standard transition to
CDM-like behavior.
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FIG. 2 (color online). Fraction of the critical density, �, as a
function of scale factor for the parameters of Eq. (13).
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M ¼ 1062 B ¼ 10120 D ¼ 10119

C ¼ ~C ¼ 10 �i ¼ 1 �i ¼ 25

�� ¼ 0:7 �c ¼ 0:2 �
 ¼ 8� 10�5:

(13)

In Fig. 1 there are a number of qualitative features
worthy of comment. First, the logarithmic scale prevents
us from showing the small negative energy density asso-
ciated with the modulus at early and late times, we only
see it emerge onto the plot between scale factors 10�6 &
a & 10�1 as it enters an attractor scaling solution. During
this time the modulus is displaced from its initial value and
its equation of state becomes kinetic-dominated, w ¼ 1,
the additional energy density being kinetic, as demon-
strated in Fig. 3. This transit causes a corresponding evo-
lution of the axion mass, as demonstrated in Fig. 4. It also
induces a tracking behavior in the axion density while the
modulus is rolling. The axion field then begins its usual

oscillatory behavior and the axion behaves as dark matter
for a * 10�1.
The effects of this are best viewed in terms of the

equations of state for the combined systems. The axion
equation of state, wax, and the axion-modulus equation of
state, waxþmod, are shown in Fig. 5. The axion equation of
state differs from the usual case of a quick transition
between w ¼ �1, and oscillations averaging to w ¼ 0. It
is in the combined equation of state that we see tracking
behavior as w tries to follow the equation of state of the
dominant component, before the axion oscillations begin,
which are the cosmic trigger event that destroys tracking
and restabilizes the modulus (in this context, stabilization
is defined by wmod ! �1). Once the axion field begins
oscillations it causes the equation of state to oscillate and
the axion pressure averages to zero, i.e., the axion behaves
as pressureless dark matter. The final cosmology today at
a ¼ 1 has a negligible negative component of energy
density in the frozen modulus, while an ultralight dark
matter axion makes up a fraction of the critical density of
order that in radiation.
The resulting behavior of the total equation of state for

all fluids is plotted in Fig. 6, where we see that it develops a
kink around scale factor a ’ 10�5 away from its usual
�CDM evolution through matter-radiation equality,
caused by the presence of a significant component of the
fractional density due to the axion-modulus system at this
time, as demonstrated in Fig. 2. This is EDE-like behavior,
although the equation of state is not dragged low enough to
cause an early period of acceleration.
Having identified the main features of cosmology in this

example, we now turn to briefly assess the dependency of
these features on the parameters. A full description of the
system in this way with its various degeneracies will
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FIG. 3 (color online). Evolution of the modulus equation of
statew as a function of scale factor for the parameters of Eq. (13).
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FIG. 4 (color online). Evolution of the axion mass as a func-
tion of scale factor for the parameters of Eq. (13). Compare this
to Fig. 3: the rolling occurs while wmod ¼ 1 and the modulus has
kinetic energy.
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FIG. 5 (color online). Evolution of the axion and combined
axion-modulus equation of state w as a function of scale factor
for the parameters of Eq. (13). Notice the tracking behavior of
the combined equation of state, and the end of this when axion
field oscillations cause oscillations in the pressure, averaging
to zero.
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require analyzing it as a system of autonomous equations
in the phase plane and the identification of the fixed points
[25,28], which is left for a future work.

Decreasing the axion initial value, �i, can cause a

significant change in the modulus behavior. With C ¼ ~C
the condition for the modulus to have a finite real minimum
is given by

2D>M2�2:

For the values used in Eq. (13) this can only occur as the
axion decays, and the� ¼ 0minimum is at � ¼ 0:3. Now,
the dependence on axion initial condition can be most
easily seen by plotting the potential Vð�;�Þ. In Fig. 7
the potential is plotted for � in the range f�1; 1g, while
in Fig. 8 it is plotted with� in the range f�0:01; 0:01g. We
see that, for small amplitude axion oscillations the expo-
nential descent into the modulus minimum for � ¼ 0
shows up strongly, whereas this feature is hidden when

the oscillations of the axion have a larger amplitude. We
can similarly remove the axion from the spectrum almost

entirely by increasing ~C by an order of magnitude, making
the axion effectively massless and allowing the modulus to
rapidly reach its minimum.
Thus it is the axion oscillations which here stabilize the

modulus away from its true minimum (as is visible com-
paring Figs. 1 and 3). If the modulus falls into this mini-
mum then a large negative potential is generated causing
the universe to collapse [54]. That this occurs prior to
a ¼ 1 for a small axion initial field value corresponding
to reasonable initial misalignment �i ¼ 1 (not shown)
rules out these particular parameters, and will require
tuning in these models to avoid it. This decay and collapse
may occur in the future as the amplitude of axion
oscillations decays [6] for any model that looks viable
today, and the parameters can then be used to estimate
the lifetime of the universe [55]. The analysis of a collaps-
ing universe in this model will be the subject of future
work. Some further comments on entry into a collapsing
phase will be made in Sec. III B.

Even a sight decrease in ~C to 8 or 9 also has a dramatic
effect on the potential, allowing for the appearance of new
minima as the axion field oscillates about zero, and theM2

and D terms in the potential play off against one another.
These new minima are sharp and highly localized in field
space. Entry into them occurs as the modulus grows
through its tracking solution and axion oscillations decay.
A brief dip through them leads to a short period of negative
potential domination, which the Friedmann equation is
incapable of dealing with, and as such the analysis of this
region of parameter space is left for a future work.

B. Example cosmology 2

The purpose of this example is to demonstrate the large
freedom in choosing values for parameters in these models
by producing a similar and viable cosmology to that pre-
sented in Sec. III A, but with parameters many orders of
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FIG. 6 (color online). Evolution of the total equation of state w
as a function of scale factor for the parameters of Eq. (13). Note
the appearance of a feature around a ’ 10�5 that departs from
the standard smooth �CDM evolution. Compare this to Fig. 2,
where an overshoot as the axion-modulus system enters its
tracking solution causes a significant contribution to the critical
density at this scale factor.

FIG. 7 (color online). The potential Vð�;�Þ of Eq. (8), plotted
for � in the range f24; 25g, � in the range f�1; 1g, for the
parameters of Eq. (13).

FIG. 8 (color online). The potential Vð�;�Þ of Eq. (8), plotted
for � in the range f24; 25g, � in the range f�0:01; 0:01g, for the
parameters of Eq. (13).
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magnitude different. This also shows that we expect many
degeneracies in the parameters, with only the ratios of
some being relevant. Specifically, the parameters in this
example are:

M ¼ 103 B ¼ 106 D ¼ 105

C ¼ ~C ¼ 10 �i ¼ 103 �i ¼ 10�5

�� ¼ 0:7 �c ¼ 0:2 �
 ¼ 8� 10�5:

(14)

The evolution of the densities, �’s, equations of state,
axion mass, and the axion field, are shown in Figs. 9–15.

This example shows best the possibility of the axion-
modulus system to display tracking EDE behavior. The
densities of both fields are always positive and show a
scaling with the dominant component of energy density.
While the modulus equation of state is kinetic-dominated
once rolling begins, w ¼ 1, the axion equation of state
remains always potential-dominated, w ¼ �1, and the
axion slowly rolls, never beginning oscillations as the
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FIG. 9 (color online). Densities as a function of scale factor for
the parameters of Eq. (14).
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FIG. 10 (color online). Fraction of the critical density, �, as a
function of scale factor for the parameters of Eq. (14).
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FIG. 12 (color online). Evolution of the axion and combined
axion-modulus equation of state w as a function of scale factor
for the parameters of Eq. (14).
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FIG. 11 (color online). Evolution of the modulus equation of
statew as a function of scale factor for the parameters of Eq. (14).
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FIG. 13 (color online). Evolution of the total equation of state
w as a function of scale factor for the parameters of Eq. (14).
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mass is exponentially damped below the Hubble scale (see
Figs. 14 and 15). Tracking for the combined system thus
persists into the present epoch, and should persist indef-
initely, being absent the trigger event of axion oscillations
to end it. In this case, the splitting of the energy density
between the two components as done in Eq. (11) is not
really so clear and it makes sense to speak more in terms if
the combined axion-modulus system as a quintessence
fluid.

In this example the equation of state for the axion-
modulus system (see Fig. 12) has a novel shape, with no
oscillations, varying through behavior like a cosmological
constant, radiation, matter, and quintessence as it begins
rolling and goes through its various scaling stages. The
total equation of state (Fig. 13) is again marginally per-
turbed by the presence of a significant axion-modulus
component near equality, and the final fractional density
in the axion-modulus system is �axþmod ’ 0:01. Compare
to the previous example: the fractional density in the axion-
modulus system is approximately the same, but makes a

significant contribution at the slightly later time of
a� 10�4, and correspondingly alters the total equation
of state at this time. This demonstrates that there is control
in the parameters over features in the total equation of
state.
Reducing the initial field for the axion in this example

only changes the �’s slightly, as one would expect when
tracking is present, but moves the scale of the kink in wtot

to yet later times (not shown). Increasing M undoes this
change, as we expect since for slowly varying � it is the �
dependence of the potential that counts, andM2�2 is just a
multiplicative factor in the � potential, like B and D. It is
the M2�2 term that is dominant for the parameters in
question and as such the example is similar to the well
studied case of a single scalar field with an exponential
potential.
Further variations now cause qualitative changes in the

cosmology, which are demonstrated in Figs. 16 and 17.
A higher mass M ¼ 108, and lower misalignment angle
�i ¼ 1 (�i ¼ 10�2) destroys the axion tracker and the
axion behaves as standard, oscillating and making up a
subleading fraction of dark matter, with the modulus po-
tential dominated by the axion mass term and thus con-
tributing a positive energy density. However, at later times
the modulus falls into and bounces from its own potential
minimum, eventually dominating with negative potential
and again signalling rapid entry into a phase of cosmic
contraction [54,55]. During this evolution the modulus
equation of state makes a slow oscillation as the field
moves around in its potential and finds the true minimum.
We finally note that contraction cannot be properly

analyzed in the framework presented here, since the
Friedmann equation alone does not allow for it. The frame-
work to use is the Friedmann acceleration equation for €a
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FIG. 15 (color online). Evolution of the axion field as a func-
tion of scale factor for the parameters of Eq. (14).
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FIG. 14 (color online). Evolution of the axion mass as a
function of scale factor for the parameters of Eq. (14).
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FIG. 16 (color online). Densities as a function of scale factor
for the parameters of Eq. (14) but with the change M ! 108,
�i ! 10�2. Notice that the axion field behaves completely as
standard [5,6]. The modulus begins at positive � like behavior,
before a fall into a negative potential-dominated phase, signal-
ling the onset of cosmological collapse.
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[55], but applying that to this system, although simple in
principle, is left for a future work.

IV. CONCLUSIONS

In this paper a model has been proposed that introduces
a coupling between axions and moduli in the string axi-
verse. The coupling is motivated by the observation that
the mechanism causing axion masses to distribute on a
logarithmic scale, and thus for some to exist with masses in
the range 10�20 eV & ma & 10�33 eV, where their cos-
mological dynamics can produce interesting phenomenol-
ogy, is due to an exponential dependence of the mass on the
size of cycles in the compact space. The sizes of these
cycles are controlled by scalar fields called moduli, which
are themselves dynamical. Moduli stabilization is an im-
portant problem in string theory. We investigate the possi-
bility that if there are light axions that roll in their
potentials on time scales of cosmological interest, then
some moduli may also roll in their potentials, given by a
general form for stabilization, and that this vacuum desta-
bilization can be affected in turn by the presence of the
axions.

We then explore the consequences of having one cos-
mologically relevant axion and allowing its counterpart
modulus to also roll. The resulting system, in terms of
the background expansion of the universe, is a simple
one of two coupled scalar fields with a scalar potential
containing a number of free parameters, decoupled from
the other cosmic fluids. The potential causes the fields to
have scaling solutions where the energy density tracks that
of the dominant component. This destabilizes the modulus,
and the resulting evolution causes an evolution of the axion
mass, altering the dynamics from the most simple case of a
single decoupled axion.

The axion-modulus system has a number of different
phases in its evolution, of which we have identified some
which may be of phenomenological interest. A common
feature is that when tracking begins, the fraction of the total
energy density in the axion-modulus system rises to an
appreciable level and causes a nonstandard evolution in the
total equation of state in a manner similar to models of
early dark energy. In the examples considered in this paper
this resulted in a decrease of the equation of state by
Oð10%Þ around the epoch of equality.
The fate of the axion-modulus system, and consequently

the fate of cosmic expansion, then depends on the rate of
decay of the axion mass and the amplitude of axion oscil-
lations. If the axion oscillates and the amplitude of its
oscillations decrease below some critical value then the
modulus falls into its globally stabilizing minimum at
negative potential, which if this potential comes to domi-
nate the energy density will signal the onset of an epoch of
cosmic collapse. If the dynamical axion mass can be
sufficiently damped by the modulus evolution then oscil-
lations cannot begin and the tracking solution remains
stable.
There is also the possibility that a modulus that looks to

have been stabilized at early times might be destabilized
when its counterpart axion begins to roll at late times, and
that this vacuum destabilization may be observable indi-
rectly through its effects on couplings of both gravity and
the standard model, though the viability of this scenario in
a realistic model requires much further attention.
We have shown that these phenomena might be expected

as fairly generic since they are exhibited for values of the
parameters spanning many orders of magnitude. We also
note that in a scenario such as the string axiverse, where
there is a plethora of light fields at the phenomenologists
disposal then it is possible to create cosmologies where
phenomena like those described here may occur at multiple
different epochs in the history and future of the universe,
both by having multiple fields or by the two field dynamics
spiralling towards some attractor and periodically entering
and exiting different regions in phase space.
In the interests of simplicity no attempt was made to

describe a universe where a significant and controllable
fraction of the dark sector energy density is contributed by
the axion-modulus system, except in the case where rapid
decay of the modulus leads to cosmological collapse. This
question of initial conditions will be the subject of a future
work.
Other future work will focus on delineating the regions

of parameter space which give rise to the phenomena
described in this paper and thus allow one to both construct
desirable models for cosmological phenomenology based
in string theory, and also to place limits on the possible
values of parameters in any model of this type, which will
be severely limited by the possibility of cosmological
collapse.

10
−6

10
−5

10
−4

10
−3

10
−2

−3

−2

−1

0

1

2

3

FIG. 17 (color online). Evolution of the modulus equation of
state w as a function of scale factor for the parameters of
Eq. (14), but with the change M ! 108, �i ! 10�2. The track-
ing solution is never quite found, as the equation of state makes a
slow oscillation. Rapid entry of the field into its true negative
potential minimum is shown here by the spike in the equation of
state at a ’ 10�2.
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The coupling induces a tracking of energy densities
in the axion-modulus system, which, just as it does for
quintessence, may be fruitfully used to address problems of
fine tuning, which are of a major concern for high fa
axions. The tracking dynamics may also allow a modulus
which appears naively to be stabilized in some negative
energy density anti-de Sitter minimum to in fact play the
role of a cosmological constant leading to late time de
Sitter expansion, which may contribute in some way to the
solution of the cosmological constant problem in string
theory.

This simple extension of the axiverse has a rich structure
and suggests models which we hope may be of help to both
cosmologists and string theorists, and displays features

which may, when fully investigated, be measured and con-
strained by cosmological experiments, particularly once
the perturbations have been analyzed to allow computation
of effects in the cosmic microwave background and matter
power spectrum.
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