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Generalized evolution of linear bias: A tool to test gravity
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We derive an exact analytical solution for the redshift evolution of linear and scale-independent bias, by
solving a second-order differential equation based on linear perturbation theory. This bias evolution model
is applicable to all different types of dark energy and modified gravity models. We propose that the
combination of the current bias evolution model with data on the bias of extragalactic mass tracers could
provide an efficient way to discriminate between geometrical dark energy models and dark energy models

that adhere to general relativity.
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L. INTRODUCTION

It is well known that the large-scale clustering pattern of
different extragalactic mass tracers (galaxies, clusters, etc.)
trace the underlying dark matter distribution in a biased
manner [1,2]. Such a biasing is assumed to be statistical in
nature; with galaxies and clusters being identified as high
peaks of an underlying, initially Gaussian, random density
field. The linear and scale-independent bias factor, b, is
thus defined as the ratio of the mass-tracer overdensity to
that of the underlying mass overdensity, or equivalently as
the ratio of the square root of the mass-tracer 2-point
correlation function to that of the underlying mass corre-
lation function. Furthermore, the redshift evolution of bias,
b(z), is very important in order to relate observations with
models of structure formation and has been shown to be a
monotonically increasing function of redshift.

There are two basic families of analytic bias evolution
models. The first, called the galaxy merging bias model,
utilizes the halo mass function and is based on the Press-
Schechter [3] formalism, the peak-background split [2],
and the spherical collapse model [4]. Many studies have
compared the prediction of the merging bias model with
numerical simulations, and beyond an overall good agree-
ment, differences have been found in the details of the halo
bias. These differences have lead to modifications of the
original model to include the effects of ellipsoidal collapse
[5] and to either provide new fitting bias model parameters
[6], or new forms of the bias model fitting function [7]

*svasil@academyofathens.gr
"mplionis @astro.noa.gr

1550-7998/2011/83(12)/123525(6)

123525-1

PACS numbers: 98.80.—k, 95.35.+d, 98.65.Dx, 98.80.Bp

or even a non-Markovian extension of the excursion set
theory [8].

The second family of bias evolution models assumes a
continuous mass-tracer fluctuation field, proportional to
that of the underlying mass, and the tracers act as “test
particles.” In this context, the hydrodynamic equations of
motion and linear perturbation theory are used. This family
of models can be divided into two subfamilies:

(a) The so-called galaxy-conserving bias model uses
the continuity equation and the assumption that
tracers and underline mass share the same velocity
field [9—12]. Then the bias evolution is given as the
solution of a first order differential equation, and
Tegmark and Peebles [11] derived: b(z) =
1+ (bg — 1)/D(z), with b is the bias factor at the
present time and D(z) the growing mode of density
perturbations. However, this bias model suffers from
two fundamental problems: the unbiased problem
i.e., the fact that an unbiased set of tracers at the
current epoch remains always unbiased in the past,
and the low redshift problem i.e., the fact that this
model represents correctly the bias evolution only at
relatively low redshifts z = 0.5 [13]. Note that the
authors of [14] have extended this model to also
include an evolving mass-tracer population in a
ACDM cosmology.

(b) A model which is based on the basic equation for the
evolution of linear density perturbations, and on the
assumption of linear and scale-independent bias,
which are used to derive a second-order differential
equation for the bias, the approximate solution of
which provides the evolution of bias (see [15,16]).
The provided solution applies to cosmological
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models, within the framework of general relativity,
with a constant in time dark energy equation of state
parameter (i.e., quintessence or phantom).

In this article, we extend the original Basilakos and
Plionis [15] bias evolution model to provide an exact
solution valid for all dark energy and modified gravity
cosmologies. This implies that the current bias evolution
model can be used to put constraints on dark energy models
as well as to investigate possible departures from general
relativity.

II. THE EVOLUTION OF THE
LINEAR GROWTH FACTOR

In this section, we discuss the basic equation which
governs the behavior of the matter perturbations on sub-
horizon scales and within the framework of any dark
energy (hereafter DE) model, including those of modified
gravity (“‘geometrical dark energy’). For these cases, a full
analytical description can be introduced by considering an
extended Poisson equation together with the Euler and
continuity equations. Consequently, the evolution equation
of the matter fluctuations, for models where the DE fluid
has a vanishing anisotropic stress and the matter fluid is not
coupled to other matter species (see [17-23]), is given by

8m T 2HS, — 471G pndm = 0, (2.1)
where p,, is the matter density and G;(f) = Gy Y(7), with
Gy denoting Newton’s gravitational constant.

For those cosmological models which adhere to general
relativity, [Y(¢) = 1, G = Gy], the above equation re-
duces to the usual time evolution equation for the mass
density contrast [24], while in the case of modified gravity
models (see [17,21-23]), we have Go; # Gy [or Y () #
1]. In this context, 8,,(r) « D(z), where D(z) is the linear
growing mode (usually scaled to unity at the present time).
Changing variables from ¢ to a, Eq. (2.1) becomes

d*s dépy
M + A(a) — — B(a)b,, = 0, 2.2
o A~ B, @2)
where
dlnE 3 30
Ala) = + - d Bla)=—2_Y 2.3
@ =g+ 5 ad B =3 odv@ 23)

with (), being the density parameter at the present time
and E(a) = H(a)/H, is the normalized Hubble function.
Useful expressions of the growth factor have been given
by [24] for the ACDM cosmology. Several works have also
derived the growth factor for w(z) = const DE models (see
[25-27]), and for the braneworld cosmology [17]. Also
Linder and Cahn [21] derived similar expressions for geo-
metrical dark energy models in which the Ricci scalar
varies with time, as well as for models with a time-varying
equation of state, while for the scalar tensor and f(R)
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models the growth factors are provided by Gannouji
et al. [23] and Tsujikawa et al. [22].

III. THE GENERAL EVOLUTION OF BIAS

In Basilakos and Plionis [15], we assumed that for the
evolution of the linear bias, the effects of nonlinear gravity
and hydrodynamics (merging, feedback mechanisms, etc.)
can be ignored (see [10,11]). Then, using linear perturba-
tion theory in the context of general relativity [Y () = 1,
G.s = Gy] we obtained a second-order differential equa-
tion that describes the evolution of the linear bias factor, b,
between the background matter and the mass-tracer
fluctuation field:

§Om +2(8p + H8y)y + 4G egyp, 8y =0, (3.1)

where y = b — 1. Below, we will prove that the above
expression is valid for any cosmological model' including
those of modified gravity, with G = GyY(¢). Since we
also make the same assumption, as in our original formu-
lation, that the tracers and the underlying mass distribution
share the same velocity field and thus the same gravity
field, the above equation is valid also for cosmological
models with a modified theory of gravity. Using the latter
we have

6m+Vu=0 and &, + Vu=0, (3.2)

from which we obtain

S5y — 6, =0. (3.3)
Now since we assume linear biasing, we have &, = bd,,,
and using y=5b—1, we get that d(y8,)/dt=0.
Differentiating the latter twice, we then get y8,,, + 2y8,, +
yé, = 0. Solving for yé,,, using the fact that ys,, =
—vé,, and Eq. (2.1) we finally obtain Eq. (3.1).

Transforming Eq. (3.1) from ¢ to a, we simply derive the
evolution equation of the function y(a) [where y(a) =
b(a) — 1], which has some similarity with the form of
Eq. (2.2) as expected. Indeed this is

d*y 2f(a)] dy _
1 + [A(a) + , ]% + B(a)y = 0,

(3.4)

where f(a) is the growth rate of clustering, a parametriza-
tion of the linear matter perturbations, given by

(3.5)

where Q,,(a) = Q,,a”3/E*(a) and v is the growth index,
originally introduced by Wang and Steinhardt [26].

"The current theoretical approach does not treat the possibility
of having interactions in the dark sector. Also discussions
beyond the linear biasing regime can be found in [28] (and
references therein).
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Integrating Eq. (3.5) we obtain the growth factor for any
type of dark energy:

D(a) = aefg(dx/x)[ﬂ;ﬁ(x)*l]‘ (3.6)

In Basilakos and Plionis [15], we have provided an
approximate solution of Eq. (3.1), using f(z) ~ 1 (which
is valid at relatively large redshifts), but only in the frame-
work of general relativity, i.e., Y(f) = 1, which contains a
quintessence (or phantom) dark energy. Here our aim is to
provide a full analytical solution for all possible dark
energy cosmologies that have appeared in the literature,
such as a cosmological constant A (vacuum), time-varying
w(t) cosmologies, quintessence, k-essence, quartessence,
vector fields, phantom, modifications of gravity, Chaplygin
gas, and so on.

Inserting now y(a) = g(a)/D(a) into Eq. (3.4) and using
simultaneously Eq. (2.2) and the second equality of
Eq. (3.5), we obtain

8 4 A ) 3.7)
da®
That is, the general solution of the latter equation is
da
=C +GC | ——, 3.8
g(a) 1 zfa3E(a) (3.8)

where C; and C, are the integration constants. Utilizing
nowa=(1+z2)"" b=y+1=1(g/D)+ 1, by = b(0),
and Eq. (3.8), we finally obtain the functional form that
provides the evolution of linear bias for all possible types
of DE models, including those of modified gravity, as

_ by — 1 J(2)
b(z) =1+ ) + C, DR’ 3.9)
where
2 (1 + x)dx
J) = [ S (3.10)

Because different halo masses result in different values of
by, one should expect that the constants of integration
Cy = by — 1 and C, should be functions of the mass of
dark matter halos (see [16]), assuming that the extragalac-
tic mass tracers are hosted by a dark matter halo of a given
mass. Note that an extension of our model for the case of an
evolving mass-tracer population (i.e., including the effects
of halo merging) is provided in the Appendix.

Finally, comparing our solution of Eq. (3.9) with that of
the usual galaxy-conserving bias evolution model, b(z) =
1+ (by — 1)/D(z), it becomes evident that the Ilatter
misses one of the two components of the full solution.
Furthermore, our full solution does not suffer from the
unbiased and the low redshift problems, but more impor-
tantly, the dependence of our bias evolution model on the
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different cosmologies enters through the different behavior
of D(a), which is affected by y [see Eq. (3.6)], and of
E(a) = H(a)/H,.

It is interesting to mention that measuring the growth
index could provide an efficient way to discriminate be-
tween modified gravity models and DE models which
adhere to general relativity. Indeed it was theoretically
shown that for DE models inside general relativity the
growth index 7y is well fitted by ygr = 6/11 (see
[21,29]). Notice, that in the case of the braneworld model
of Dvali, Gabadadze, and Porrati [30] (hereafter DGP) we
have v = 11/16 (see also [21]). Indeed, it has been pro-
posed (see [31]) that an efficient avenue to constrain the y
parameter is by determining observationally the redshift-
dependent linear growth of perturbations. Alternatively
other methods have been proposed in the literature, such
as redshift space distortions in the galaxy power spectrum
and the growth rate of massive galaxy clusters (see for
example [32] and references therein). It is interesting to
mention here that the above methods also assume a linear
and scale-independent bias.

An alternative approach is to use the current generalized
bias evolution, cosmology and y dependent, relation and
high-quality observational bias data to test gravity. Of
course, the observational bias data are derived for a par-
ticular cosmological model, but it is an easy task to scale
them to each tested model in a consistent manner. Note,
that such data are already available in the literature for the
case of optical quasistellar objects[33]. If the derived value
of y shows scale or time dependence or it is inconsistent
with ygr = 6/11, then this will be a hint that the nature of
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FIG. 1 (color online). The bias z evolution for different flat
cosmological models (top) and their fractional difference with
respect to the ACDM model (bottom). The models shown are
CPL (solid line) with w(a) = wy + w;(1 —a) and y = 0.55,
concordance ACDM (dashed line), and DGP (dotted-dashed
line) with w(a) = —[1 + Q,,(a)]"" and y = 0.68. Note that
we use Q,, = 0.27, (wg, w;) = (—0.93, —0.38) [35], by = 1.1
and C, = 0.45. Finally, we also plot (dotted line) the bias
evolution for C, = 0, which corresponds to that of [11].
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dark energy reflects in the physics of gravity. Such an
analysis is in progress and will be published elsewhere.

In order to visualize the redshift and y dependence of
our bias model, we compare in Fig. 1 a few flat cosmo-
logical models in which we impose Q,, = 0.27, by = 1.1,
and C, = 0.45. In particular we consider the following
cases:

(a) the CPL parametrization [34] with y = 0.55 (solid

line),

(b) the concordance ACDM (y = 0.55, dashed line),

and

(c) the DGP with y = 0.68 (dotted-dashed line).

The dotted line shows the bias evolution of the Tegmark
and Peebles [11] model, which is also described by our bias
model in the limit of C, = 0. In the lower panel of Fig. 1
we show the fractional difference of the model bias with
respect to that of the ACDM.

IV. CONCLUSIONS

In this work we provide a general bias evolution model,
based on linear perturbation theory, which is valid for all
possible noninteracting dark energy models, including
those of modified gravity. Thus the current generalization
of the bias evolution model can be viewed as a necessary
step and an ideal tool to test the validity of general rela-
tivity on cosmological scales.

It is, however, important to spell out clearly which are
the basic assumptions of our model, which are common
also to many bias models in the literature: (a) the mass
tracers and the underline mass share the same velocity/
gravity field, (b) the biasing is linear on the scales of
interest (which does not preclude being scale dependent
on small nonlinear scales), and (c) that each dark matter
halo is populated by one extragalactic mass tracer, which is
an assumption that enters, at the present development of
our model, only in the comparison of our model with
observational bias data and not in the derivation of its
functional form.
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APPENDIX A: BIAS EVOLUTION FOR AN
EVOLVING MASS-TRACER POPULATION

Here we obtain the general linear bias evolution model
assuming that the mass-tracer population evolves with time
according to a (1 + z)” law. We now drop the assumption
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used in Sec. III, that the mass-tracer number density is
conserved in time, by allowing a contribution from the
corresponding interactions among the mass tracers. We
obtain again the corresponding Eq. (3.1), starting from
the continuity equation and introducing an additional
time-dependent term, W(z), which we associate with the
effects of interactions and merging of the mass tracers. We
also make the same assumption, as in our original formu-
lation, that the tracers and the underlying mass distribution
share the same velocity field (or gravity field). Then,

8+ Vu=0 and &,+ Vu+ ¥ =0 (Al
from which we obtain
5y —6,="W. (A2)

Although we do not have a fundamental theory to model
the time-dependent W(¢) function, it appears to depend on
the tracer number density and its logarithmic derivative
as well as on the tracer overdensity: W(r) o« W(7, (1 +
S8y)dInii/dt) (see eq. 10 of [14] and appendix of
Basilakos et al. [16]).

Now, in the context of linear biasing, we have 6, = bé,,
and utilizing b = y + 1, we find that d(yd,,)/dt = —WV.
Differentiating twice the latter we then get 6, + 2y8,, +
Yo, = —W. Solving for y8,,, using the fact that yé,, =
—y6, — V¥ and Eq. (2.1) we arrive at the following
expression:

§8m + 28 + HS)Y + 47Gegprn0pny = —2HY — 'V,
(A3)
which is the corresponding Eq. (3.1) for the case of inter-

actions among the tracers.
Transforming again Eq. (2.1) from 7 to a, we get

dzy 2f(a) dy _
o [A(a) = ]% +Bla)y = F(a), (A4
where
Fla) = — 2W(a) + a(dV/da) ) (A5)

a*D(a)H(a)

Now, following the same notations (y = g/D) as in Sec. I1I
the above differential equation becomes

&g

da® (A0)

d
+ A(0) 28 = F(a).
da
Integrating Eq. (A6) it is straightforward to estimate the
general solution of the bias factor. This is

o) = i+ € [ s

da L N
+ j‘m F(a)a*E(a)da. (A7)
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Using the same conditions with those provided in Sec. III,
the bias evolution in the redshift space takes the form

. b() —1 J(Z) y (Z)
Pl =1+ D(z) G D(z) " Dp(z)’ (A8
where
_ (:(1+x) x F(u)E(u)
yp(Z) - 0 E(x) dx](; W(iu (A9)

Obviously, if the interaction among the tracers is negligible
(W = 0) then Eq. (A8) boils down to Eq. (3.10) as it should.

Now, knowledge of the exact functional form of the
interaction term W(z) would provide the precise redshift
evolution of the bias. As we have analytically proved
in the appendix of Basilakos er al. [16], a reasonable
approach regarding the evolutionary W(z) term is that
W(z) = AHy(1 + z)¥, where v ~ 3. Note that the Hubble
constant has been maintained for mathematical conve-
nience. Inserting the latter equation, a = (1 + z)~! and
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dV/da = —(1 + 7)>d¥/dz into the second term of
Eq. (AS), we derive that

(1 + Z)V+2

F(z) = A(v — Z)W’

(A10)

where A is a positive parameter (to be determined from
observational data in a forthcoming paper). Obviously,
for ¥ > 2 the derived bias evolution becomes stronger
than in the case of no interactions, especially at high
redshifts, which means that due to the merging processes
the halos (of some particular mass) correspond to higher
peaks of the underlying density field with respect to
equal mass halos in the noninteracting case. On the other
hand, the » <2 case corresponds to the destruction of
halos of a particular mass, which results into a lower rate
of bias evolution with respect to the noninteracting case.
Now, for the limiting case with » = 2 we obtain y, = 0,
implying no contribution of the interacting term to the
bias evolution solution, as in the case with ¥ = 0, which
can be interpreted as the case where the destruction and
creation processes are counterbalanced.
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