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On large scales, comparable to the horizon, the observable clustering properties of galaxies are affected

by various general relativistic effects. To calculate these effects one needs to consistently solve for the

metric, densities, and velocities in a specific coordinate system or gauge. The method of choice for

simulating large-scale structure is numerical N-body simulations which are performed in the Newtonian

limit. Even though one might worry that the use of the Newtonian approximation would make it

impossible to use these simulations to compute properties on very large scales, we show that the

simulations are still solving the dynamics correctly even for long modes and we give formulas to obtain

the position of particles in the conformal Newtonian gauge given the positions computed in the simulation.

We also give formulas to convert from the output coordinates of N-body simulations to the observable

coordinates of the particles.
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I. INTRODUCTION

The study of the fluctuations in the distribution of matter
in the Universe and its evolution through cosmic history
has become one of the major tools in cosmology. The
properties and time evolution of the large-scale structure
depend on the cosmological parameters and on the initial
conditions for the hot big bang. Many of the parameters
of the currently favored cosmological model have been
determined by matching the observed properties of the
distribution of mass through cosmic history with the model
calculations.

Galaxies serve as tracers of the underlying matter dis-
tribution. Significant efforts have been made to understand
their connection [1–4] and to generate estimates for cos-
mological parameters from the recovered matter power
spectrum [5]. In the last decades, redshift surveys such as
the Sloan Digital Sky Survey (SDSS) [6] and the Two-
degree Field Galaxy Redshift Survey (2dFGRS) [7] have
resulted in detailed maps of the large-scale distribution of
galaxies across very large volumes. The future promises
even larger surveys as a result of efforts to improve mea-
sures of the so-called baryon acoustic oscillation signal in
the clustering of matter to further constrain the properties
of the dark energy [8,9]. Surveys are beginning to probe
scales comparable to the horizon at the redshift of the
galaxies being observed.

Until recently, predictions for observables in galaxy
surveys had been done entirely in the Newtonian limit.
Matsubara [10] included gravitational lensing effects on
the correlation functions of galaxies and quasars as applied
to SDSS. More recently, Yoo et al. [11] and Yoo [12] made
a more detailed treatment of general relativistic effects.
These become relevant as the scales probed by the survey

approach the horizon scale. The overdensity in the galaxy
distribution �obs is given by

�obs¼ bð�m�3�zÞþAþ2Dþðvi�BiÞeiþEije
iej
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where H is the Hubble constant; �z, �r, and �DL are the
fluctuations in the redshift, distance along the line of sight,
and luminosity distance relative to the unperturbed uni-
verse; � is the lensing convergence; p gives the slope of the
galaxy luminosity function; b is the bias; ei the direction of
propagation of the photon; and A, Bi, D and Eij are metric

components,

ds2 ¼ �a2ð1þ 2AÞd�2 � 2a2Bid�dx
i

þ a2½ð1þ 2DÞ �gij þ 2Eij�dxidxj; (2)

with �gij the metric tensor for three-space in a homogeneous

universe and � ¼ R
dt=aðtÞ is the conformal time in terms

of the scale factor. These formulas exhibit many of the
relativistic effects that are common in calculation of the
anisotropies in the cosmic microwave background (CMB).
For example the observed redshift of a source is given by

1þ zobs ¼
�
ao
as

��
1þ ½ðvi � BiÞei � A�so

�
Z rs

0
dr½ðA0 �D0Þ � ðBijj þ E0

ijÞeiej�
�
; (3)

where the prime indicates the derivative with respect to
conformal time, the vertical bar is the covariant derivative
with respect to �gij, rs ¼ rðzsÞ is the comoving line of sight

distance to the source galaxies at zs, vie
i is the line of sight

peculiar velocity, and ao and as are the values of the scale*nchisari@astro.princeton.edu
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factor at the time of observation and light-emission, re-
spectively. The first square bracket represents the redshift-
space distortion by peculiar velocities, frame dragging, and
gravitational redshift, respectively. The first round bracket
in the integral also represents the gravitational redshift,
arising from the net difference in gravitational potential
due to its time evolution for the duration of photon propa-
gation, and this effect is referred to as the integrated Sachs-
Wolfe (ISW) effect in the CMB literature. The last terms in
the integral represent the tidal effect from the frame
dragging and the ISW effect from the time evolution of
the primordial gravity waves.

The complete set of formulas needed to predict the
observed clustering properties of galaxies on very large
scales can be found in Yoo et al. [11]. It is clear that the
calculation requires consistently solving the general rela-
tivity dynamics in a particular coordinate system or gauge.
On the other hand N-body simulations are the method of
choice to compute predictions for the large-scale distribu-
tion of galaxies but these simulations are done in the
Newtonian limit. It is appropriate to ask how the output
of simulations can be used to compute the different terms
in Eq. (1) and even whether this can be done at all, given
that the simulations are run using Newtonian dynamics.

The drive on the observational side to map larger and
larger volumes of the Universe and the exponential in-
crease in computer power have also resulted in numerical
simulations of ever increasing size. Typical cosmological
simulations evolve the particles starting at z� 100, when
the size of the horizon is�1:5 Gpc. Box sizes vary and can
be as large as �0:5–3 Gpc comoving and the number of
particles is of order �109–1010. Examples of some of the
biggest simulations to date are the Millennium Simulation
[13] run in a box of comoving size 500h�1 Mpc, the
Marenostrum Numerical Cosmology Project [14], and the
Hubble Volume project [15] run in a box of 3000�
3000� 30 Mpc. Further examples are found in Colberg
et al. [16], Park et al. [17], and recently in Cai et al. [18]
Some of these simulations are started at an initial time
when the horizon actually lies within the box. Clearly, we
need a way to match cosmological N-body simulations
with the general relativistic variables in Eq. (1).

In addition to asking how to use the outputs of numerical
simulations to compute the various terms in Eq. (1) one
may wonder if numerical simulations are solving the cor-
rect dynamical equations. We might suspect that the
Newtonian simulations are working in the so-called con-
formal Newtonian gauge, in which the line element is
given by

ds2¼a2ð�Þ½�ð1þ2�NÞd�2þð1�2�NÞ�ijdx
idxj� (4)

in the absence of anisotropic stress and where �N coin-
cides with the Newtonian potential only on small scales. In
fact, the analogue of the Poisson equation in the conformal
Newtonian gauge reads

r2�N � 3H ð�0
N þH�NÞ ¼ 4�Ga2��N (5)

and thus differs from the standard Poisson equation on
large scales. Here, H ¼ a0=a is the conformal Hubble
parameter.
From Eq. (5), it might appear that simulations are not

solving correctly for the gravitational potential for scales
comparable to or larger than the horizon. Previous work on
this subject has focused on comparing the general relativity
equations to the Newtonian equations up to some given
order in perturbation theory [19]. We will show in this
work that a more direct approach is possible. We will
analyze the situation in detail and conclude that N-body
simulations are solving for the potential correctly but that
the location of the particles needs to be corrected if it is to
be interpreted as the particle coordinates in the conformal
Newtonian gauge. Finally we will give formulas to recover
observable coordinates directly in terms of the output of
N-body simulations.

II. EVOLUTION EQUATIONS

As structure in the Universe develops, the density con-
trast becomes larger and larger, exceeding unity at the so-
called nonlinear scale. Properly modeling this process on
small scales, of order the nonlinear scale or smaller, re-
quires numerical simulations. However, because the pri-
mordial curvature fluctuations, the seeds for structure
formation, are so small, the nonlinear scale is significantly
smaller than the horizon. As a result perturbations in the
spacetime remain very small, of order 10�5 or smaller.1

Thus, to study structure formation we need only con-
sider small perturbations to the Friedmann-Robertson-
Walker (FRW) metric and we can stay at linear order on
those perturbations. In this paper we choose to work in the
conformal Newtonian gauge with the line element given by

ds2 ¼ a2ð�Þ½�ð1þ 2c NÞd�2 þ ð1� 2�NÞ�ijdx
idxj�;

(6)

where c N represents the Newtonian potential and �N the
Newtonian curvature.
We stress that we are assuming that metric perturbations

are small but we are not treating the density perturbations
using perturbation theory. The structure formation process
also results in peculiar velocities for the particles. Because
the nonlinear scale is well inside the horizon, these peculiar
velocities are small, much smaller than the speed of light.
In fact at the nonlinear scale peculiar velocities are of order
the Hubble velocity for points separated by a distance of
order the nonlinear scale. As a result the kinetic energies of
particles do not source gravity in an appreciable way.

1On sufficiently small scales baryons can collapse to form
relativistic objects such as neutron stars or black holes around
which the spacetime metric fluctuations are large. This has
negligible effects on the length scales considered in this paper.
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Note that we are considering perturbations around the
FRW metric so at lowest order the source for the gravita-
tional potentials in �� as opposed to the full �. The kinetic
energy corrections are of order �v2. It is still true that
�v2 � �� on every scale. Thus it is safe to ignore the
peculiar motions as a source of gravity. These terms are of
course also neglected in numerical simulations run using
the Newtonian approximation, but this is a negligible
source of error. Including these terms is necessary if one
wants to study the backreaction of cosmological perturba-
tions on to the expansion of the Universe [20], but we are
not interested in this problem here.

In the standard Newtonian approximation terms of order
�� are also dropped as sources of gravity. This requires a
little bit more thought in our case. Again at lowest order the
source of gravity is �� but this is no longer much larger
than �� on sufficiently large scales. Thus we need to keep
this term. However it is only ��� that needs to be kept as of
course �� � ��� on all scales. We will now summarize
the evolution equations under these approximations.

A. Einstein equations

In the conformal Newtonian gauge the Einstein equa-
tions G�� ¼ 8�GT�� are reduced to

r2�N � 3H ð�0
N þH c NÞ ¼ �4�Ga2ðT0

0 � �T0
0Þ; (7)

½�0
N þH c N�;i ¼ 4�Ga2T0

i ; (8)

�00
N þH ð2�0

N þ c 0
NÞ þ ðH 2 þ 2H 0Þc N

� 2

3
r2ð�N � c NÞ ¼ 4�Ga2

3
ðTi

i � �Ti
iÞ; (9)

@i@j

�
ð�N � c NÞ;ij � 1

3
�ijr2ð�N � c NÞ

�

¼ 8�Ga2@i@j

�
Ti
j �

1

3
�i
jT

k
k

�
; (10)

where, i indicates derivatives with respect to the i coordi-
nate and the background Friedmann equation for a flat
Universe with cosmological constant � has been sub-
tracted,

3H 2

2a2
¼ �4�G �T0

0 þ
�

2
;

H 2 þ 2H 0 ¼ � 8�Ga2

3
�Ti
i: (11)

B. Application to nonrelativistic particles

As we mentioned when studying structure formation,
we are primarily interested in nonrelativistic matter.
Equation (10) for i � j implies that the anisotropic stress
is of order �v2 and thus negligible in our approximation.
As a result �N ¼ c N . The gravitational potential satisfies

r2�N � 3H ð�0
N þH�NÞ ¼ �4�Ga2ðT0

0 � �T0
0Þ: (12)

The energy-momentum tensor for a set of cold dark matter
particles with mass ma [21] is given by

T�� ¼ ð�gÞ�1=2
X
a

ma

u
�
a u�a
u0a

�Dð ~x� ~xaÞ; (13)

where u
�
a is the comoving velocity of the particles,

dx�=d�, and g is the determinant of the metric. To linear
order in the metric and to second order in the three-
velocities, vi, this is given by u0a ¼ a�1ð1� c N þ v2

a=2Þ
and uia ¼ a�1vi

a. The 00 component of the stress-energy
tensor is related to the density of particles and, because
metric perturbations are small, we can expand in powers
of �N and remain at linear order. To order v2

a, the 00
component is

T0
0 ¼ �a�3

X
a

mað1þ 3�N þ v2
aÞ�Dð ~x� ~xað�ÞÞ: (14)

As discussed we will neglect the v2 term but need to keep
the �N as �N �� is not negligible on large scales. We obtain

T0
0 ¼ �a�3ð1þ 3�NÞ

X
a

ma�Dð ~x� ~xað�ÞÞ; (15)

where only the �N �� piece of the term proportional to �N

ever makes any difference. Replacing in Eq. (12),

r2�N � 3H ð�0
N þH�NÞ þ 3

2
H 2

¼ 4�Ga2�ð1þ 3�NÞ þ�a2

2
; (16)

where �ð ~x; �Þ ¼ a�3
P

ama�Dð ~x� ~xað�ÞÞ is the density
obtained by naively counting particles in cells at each
time step. Given the positions of the particles, Eq. (16)
can be solved to obtain the Newtonian potential.
The positions and velocities of the particles are

advanced using the geodesic equation,

d2 ~xa
d�2

þ ðH � 3�0
NÞ

d~xa
d�

¼ �r�Nð ~xaÞ: (17)

Notice that the term 3�0
Nd~xa=d� is always negligible.

III. INITIAL CONDITIONS

In addition to the evolution equations we need to find the
initial conditions. This can be done at early enough time
using linear theory. We define a growth function for the
potential such that in the linear regime

�N ¼ b�ð�Þ�in
N: (18)

Given that the spatial components of the stress tensor for
the dark matter are negligibly small, the gravitational
potential in the matter era satisfies

�00
N þ 3H�0

N ¼ 0: (19)
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The solutions to Eq. (19) are well known [22], giving a
constant and a decaying solution for the potential in the
linear regime, which in terms of Eq. (18) is

b� ¼ C1 þ C2

�5
; (20)

where C1 and C2 are constants. The decaying mode is
absolutely negligible at the times of interest and without
loss of generality we choose C1 ¼ 1.

We can replace the right-hand side of the geodesic
equation (17) by the solution of the potential in the linear
regime,

d2 ~xa
d�2

þH
d~xa
d�

¼ �r�in
N: (21)

In a matter-dominated regime the homogeneous solutions
to Eq. (21) are given by a constant vector and a decaying
solution,

~xh ¼ ~B1�
�1 þ ~B2: (22)

For the particular solution, we choose an ansatz ~xp ¼
b�ð�Þ ~c 1ð ~xinÞ, as it is usually done in the Zel’dovich ap-
proximation [23]. The labeling of b�ð�Þ as such will
become clear by the end of this section. The equation to
be solved is

ðb00� þHb0�Þ ~c 1ð ~xinÞ ¼ �r�in
N: (23)

The right-hand side of Eq. (23) is independent of time,
which implies that b00� þHb0� ¼ constant. The actual

value of the constant is arbitrary, since it can be absorbed

in ~c 1ð ~xinÞ. Thus, b� / �2. (Adding a constant to this
solution would not modify the subsequent steps of our
paper and is only linked to the choice of initial time.) If
we equate the factors that depend on the coordinates,
~c 1ð ~xinÞ / �r�in

N .
To give the complete solution for the position of the

particles we separate the constant vector ~B2 in two com-

ponents, ~B2 ¼ ~xin þ �x
!

inð ~xinÞ, where ~xin are the positions
of the particles if they started out distributed uniformly in a
mesh. We discard the decaying term and give the position
of the particles as a function of time in the linear regime,

~xa ¼ ~xin þ �x
!

inð ~xinÞ þ b�ð�Þ ~c 1ð ~xinÞ: (24)

To find the value of �x
!

inð ~xinÞ, we resort to the Poisson
equation (16). We can evolve �ð ~x; �Þ by means of a trans-
formation of coordinates from the initial particle density,

�ð ~x; �Þ ¼ ��

a3k @~x
@~xin

k ; (25)

where k @~x
@~xin

k is the Jacobian of the transformation and �� is

the initial uniform background density. The transformation

of coordinates is given by Eq. (24), where �x
!
, b�ð�Þ, and

~c 1 are unknowns. Since the perturbations are initially
small, the density evolves as

� ¼ ��

a3
ð1�r � �x!in � b�ð�Þr � ~c 1Þ: (26)

We can define contributions to the density perturbation �
as related to the displacement fields by

�in ¼ �r � �x!in; (27)

�Z ¼ �b�ð�Þr � ~c 1: (28)

The physical meaning of b�ð�Þ now becomes clear, as it is
identified with the growth function of density perturba-
tions. Indeed, as we expect in the matter-dominated
regime, we obtained that b�ð�Þ / að�Þ / �2.
To determine �in, we replace Eqs. (26)–(28) in Eq. (16)

to obtain

r2�N � 3H 2�N ¼ 3

2
H 2ð3�N þ �in þ �ZÞ: (29)

At the initial time the first term in the left-hand side cancels
with the rightmost term in the right-hand side of Eq. (29).
We can solve for �in from the remaining terms,

�in ¼ �r � �x!in ¼ �5�in
N: (30)

In terms of their Fourier components, while �in
k / �in

N;k,

the Zel’dovich component dependency is �Z /
k2H�2�in

N;k Well inside the horizon, in the limit k� � 1,

�in becomes negligible as compared to �Z, the Newtonian
density perturbation. When k� � 1 then j�in

k j � j�Z
k j and

as anticipated we cannot neglect this term.

Finally, we can obtain �x
!

in by inverting Eq. (27) in
Fourier space,

�x
!

in ¼ �
Z d3k

ð2�Þ3
i ~k

k2
�in
k e

i ~k� ~xin : (31)

In summary, to perform a cosmological simulation we
need to evolve the position and velocities of particles using
Eq. (17) and compute the potential using Eqs. (7) and (15).
At the initial time the cold dark matter particles need to be
displaced by an amount given in Eq. (31).

IV. COMPARISON TO NEWTONIAN
COSMOLOGICAL SIMULATIONS

Now that we have a consistent set of equations to solve
we can compare them to those used in cosmological simu-
lations to determine whether these simulations can be used
to study very long wavelength modes or if they require
some change.
Cosmological Newtonian simulations solve for the

potential by means of the Poisson equation
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r2�sim ¼ 4�Ga2
��

a3
�sim (32)

and move particles according to Newton’s law expressed in
comoving coordinates,

d2 ~xa
d�2

þH
d~xa
d�

¼ �r�sim: (33)

This evolution equation is identical to the geodesic equa-
tion (17) if the gravitational potential were computed
correctly (as mentioned before, the term / 3�0

N is negli-
gible for modes both large and small compared to Hubble).
Thus if the gravitational potential is correct the particle
positions are updated properly.

It is important to determine if there are corrections to the
gravitational potential that become important on large
scales. The density that sources the Poisson equation in
simulations is directly computed by counting particles in
cells,

�simð ~x; �Þ ¼ ���sim ¼ a�3
X
a

ma�Dð ~x� ~xað�ÞÞ: (34)

Even if the particle positions had been computed correctly,
this ‘‘simulation density’’ differs from the density in the
conformal Newtonian gauge by a factor (1þ 3�N).

Finally in standard cosmological simulation the particles
are initially displaced making use of the Zel’dovich ap-
proximation, which in the Newtonian case takes the form

~xa ¼ ~xin þ b�ð�Þ ~c 1ð ~xinÞ: (35)

This differs from the displacements we calculated in the

previous section—it is missing the �x
!

in.
Thus at first sight it appears that the gravitational poten-

tial is not computed using the correct equation, that the
density contrast is missing a term, and that the initial
displacement of the particles is incorrect. We will now
show that in fact all these different ‘‘missing terms’’ cancel
each other so that the gravitational potential is computed
correctly. As a result, particle positions are also updated
correctly.

Let us look at the situation more carefully. For com-
pleteness let us also include a cosmological constant and
start by restricting ourselves to the linear regime as in any
event the effects we are considering are only relevant on
very large scales. The relativistic Poisson equation reads

r2�N � 3H ð�0
N þH�NÞ

¼ 3

2
H 2ð1þ!Þ½3ð�N � 	inÞ þ �Z�; (36)

where we have introduced the equation of state parameter

! ¼ �p= �� and we have written �r � �x!in ¼ �in � �3	in.
Notice that 3=2H 2ð1þ!Þ ¼ 4�G ��dm with ��dm the
mean density for the matter. The terms in brackets on the
right-hand side correspond to the density contrast

calculated in the Newtonian simulations (�Z) and the two
missing corrections, the one proportional to �N and the
one coming from the missing initial displacements (	in).
It is useful to consider the comoving curvature 	 ,

defined as

	 ¼ 2

3

H�1�0
N þ�N

1þ!
þ�N: (37)

It is well known that this comoving curvature remains
constant in time on large scales. For completeness we spell
out the derivation in the Appendix. Note that 	in defined
above is nothing other than the initial value for this variable
	 . In the case of a perfect fluid 	 is constant on all scales
larger than the sound horizon, or k2c2s � H 2. In general
what plays the role of c2s is just the typical velocity disper-
sion that relates the magnitude of the spatial components of
the energy-momentum tensor to the density. In our case, it
is the velocity dispersion of the dark matter particles
induced by the growth of perturbations and thus 	 remains
constant all the way to the nonlinear scale.
The relativistic corrections to the Newtonian Poisson

equation, r2�N ¼ 3=2H 2ð1þ!Þ�Z, are evidenced
from subtracting this expression from Eq. (36). Notice
that the difference between the relativistic terms in the
right- and left-hand sides of the Poisson equation is nothing
other than

3H ð�0
N þH�NÞ þ 9

2
H 2ð1þ!Þð�N � 	inÞ

¼ 9

2
H 2ð	 � 	inÞ: (38)

Thus the additional terms in the relativistic Poisson
equation cancel each other for modes larger than the non-
linear scale. Furthermore, because the nonlinear scale is
well inside the horizon once the cancellation begins to fail
the additional terms are very small, of order the ratio of the
nonlinear scale to the horizon squared. Thus the gravita-
tional potential in Newtonian simulations coincides with
the one in the conformal Newtonian gauge even on very
large scales and thus the dark matter particles are being
displaced correctly.
We have showed that Newtonian N-body simulations

calculate the correct gravitational potential and displace
the particles correctly. The coordinates of the particles
however are not the coordinates in the conformal
Newtonian gauge as they are missing the initial displace-
ment. Thus the dictionary between conformal Newtonian
gauge variables and numerical simulations is

�N ¼ �sim; (39)

~vN ¼ ~vsim; (40)

~xN ¼ ~xsim þ �x
!

in: (41)
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Notice that the reason why the scheme worked was that
the ‘‘sound horizon’’ scale, the scale out to which 	 was
constant in time, was well inside the horizon. This scale is
nothing other than the scale that dark matter particles can
move since the time of the big bang as a result of the
peculiar velocities they have. Because the dark matter
particles are nonrelativistic this distance is well inside
the horizon and the mistakes are negligible. Of course a
simulation based on Newtonian physics could not work if
particles are moving at an appreciable fraction of the
speed of light. In general if there is an additional relativ-
istic component the Newtonian simulations would not be
computing things properly. The cosmological constant did
not cause any problem because even though it is in some
sense relativistic it is homogeneous so it does not con-
tribute to the perturbation of the stress tensor. Thus as
long as one is modeling nonrelativistic components or a
relativistic component that does not cluster one is safe
using the Newtonian approximation. Such a Newtonian
approximation would not work, for example, during the
radiation era where the effective sound speed of the
dominant component of the energy density is very close
to the speed of light.

V. THE COMOVING GAUGE

For completeness we will now show that Eq. (12) can be
written making apparent gauge transformations between
the comoving and the conformal Newtonian gauge.

In Eq. (36), the factor ��
a3
�Z is the density perturbation in

Newtonian simulations. The expression in brackets is the
conformal Newtonian gauge density perturbation. Indeed
rearranging the terms we have

r2�N � 3H ð�0
N þH�NÞ

¼ 4�Ga2
�
��

a3
�Z þ 3ð�N � 	inÞ�ð1þ!Þ

�
: (42)

As long as 	 is constant, we can recognize in the right-hand
side the gauge transformation for the density perturbation
between the comoving and the conformal Newtonian
gauge,

��N ¼ ��C þ 3ð�N � 	Þ�ð1þ!Þ: (43)

This is a well-known relation [24] and in this context it
implies that the density perturbation that Newtonian simu-
lations are obtaining is the one in the comoving gauge.

VI. OBSERVABLE COORDINATES

In an inhomogeneous universe, the observed positions of
the particles in the simulation are modified due to effects
such as the Sachs-Wolfe effect, gravitational lensing, and
peculiar velocities. The net result is that photons from a
source follow a path that is perturbed with respect to the
light cone of an observer in a homogeneous universe.

Consider a comoving observer in an inhomogeneous uni-
verse with a velocity given by u� ¼ ðð1� c NÞ=a; vi=aÞ.
The direction of observation is n̂, defined by ð
; ’Þ in
spherical coordinates, but due to the perturbations to the
photon path, the direction toward the point reached by the
photon geodesic is actually ŝ, corresponding to (
þ �
,
’þ �’). We now take a particle with coordinates ~xað�Þ
(already taking into account the correction �x

!
in) and we

want to knowwhere it crosses the path of the photons going
toward the observer.
Our aim in this section is to correct the positions of the

particles in the simulation according to the perturbations in
the light cone and to obtain their ‘‘observable’’ coordi-
nates. A given particle will be observed when it intersects
the light cone of the observer at a certain ~�. The unper-
turbed photon path in parametrized by rð�Þ ¼ �0 � � and
constant angular coordinates that coincide with 
að~�Þ,
’að~�Þ. The intersection will occur when [10,12]

rað~�Þ ¼ �0 � ~�þ 2
Z ~�

�0

�Nd�; (44)


að~�Þ ¼ 
þ �
 ¼ 
� 2
Z rð~�Þ

0
d�

rð~�Þ � �

rð~�Þ�
@�N

@

; (45)

’að~�Þ ¼ ’þ �’

¼ ’� 2
Z rð~�Þ

0
d�

rð~�Þ � �

rð~�Þ�sin2
að~�Þ
@�N

@’
; (46)

where �0 is the conformal time at the origin and the
integrals are taken along the unperturbed light cone
(Born approximation).
The observed redshift of the particle is also different

from the one that we would measure in a homogeneous
universe. The transformation is given by conservation of
energy, Eq. (3). This allows us to write the set of observable
coordinates of the particles as

zobs ¼ að�0Þ
að~�Þ ½1þ VðsÞ � Vð0Þ ��NðsÞ þ�Nð0Þ�

� 2
Z rð~�Þ

0
d�

d�N

d�
� 1; (47)


obs ¼ 
að~�Þ � �
; (48)

’obs ¼ ’að~�Þ � �’; (49)

where V indicates the peculiar velocity projected on n̂. The
terms �Nð0Þ and Vð0Þ produced by the gravitational po-
tential and velocity of the observer contribute to the mono-
pole and dipole anisotropies making these terms in practice
not useful as cosmological probes.

VII. SUMMARY

We have given a dictionary for how to use the outputs of
numerical simulations run using Newtonian dynamics to
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compute the clustering properties of matter even on scales
comparable to the horizon. We have shown that as long as
there is a large separation between the length scale at
which the comoving curvature 	 starts to evolve with
time and the scale of the horizon, the output of calculations
based on Newtonian dynamics can be used even on very
large scales provided one reinterprets the coordinates of the
particles. In standard large-scale structure simulations this
separation of scales results from the fact that the nonlinear
scale is well inside the horizon, but in general it will occur
if all species that cluster are nonrelativistic and the density
perturbations are small. We gave formulas to compute the
coordinates of particles in the conformal Newtonian gauge
given the outputs of a simulation and to correct their
positions to observable coordinates from the same outputs.
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APPENDIX: CONSERVATION OF
THE COMOVING CURVATURE

Consider a cosmological fluid with energy-momentum
tensor

T�

 ¼ ðpþ �Þu�u
 þ p��


; (A1)

a given equation of state, pð�Þ, and speed of sound

c2s ¼ dp
d� . The evolution equation for the potential is given

by replacing in Eq. (10),

�00
N þ 3H�0

N þ ð2H 0 þH 2Þ�N ¼ 4�Ga2�p; (A2)

where �p�i
j ¼ ��Ti

j are the pressure fluctuations. For

adiabatic perturbations �p ¼ c2s��, then

�00
N þ 3H ð1þ c2sÞ�0

N � c2sr2�N

þ ½2H 0 þ ð1þ 3c2sÞH 2��N ¼ 0: (A3)

In Eq. (A3), cs=H is the size of the sound horizon.
Consequently, the term of order c2sk

2, when compared to
terms of order�H 2 or�c2sH 2, is only relevant when the
typical size of the perturbation is smaller than the sound
horizon.
Long wavelength solutions to Eq. (A3), characterized by

kcs� � 1, are easier to address in terms of a conserved
quantity, the comoving curvature 	 , given by [22]

	 ¼ 2

3

H�1�0
N þ�N

1þ!
þ�N: (A4)

Following [22], to prove that the comoving curvature is
conserved we define a new variable

u � exp

�
3

2

Z
ð1þ c2sÞHd�

�
�N: (A5)

The evolution equation obtained for u from Eq. (A3) is
then

u00 � c2sr2u� 
00



u ¼ 0; (A6)

where 
 � 1
a ½23 ð1� H 0

H 2Þ��1=2. In the case of long

wavelength perturbations, the solution to the evolution
equation is

u ¼ A1
þ A2

Z d�


2
; (A7)

where A1 and A2 are constants. It can be shown that

	 ¼ 2

3

ffiffiffiffiffiffiffiffiffiffi
8�G

3

s

2
�
u




�0
(A8)

reduces to the same expression as Eq. (A4) and remains
constant outside of the sound horizon.
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