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In this paper we study the kinetic theory of many-particle astrophysical systems and we present a

consistent version of the collisionless Boltzmann equation in the first post-Newtonian (1PN) approxima-

tion. We argue that the equation presented by Rezania and Sobouti, in Astron. Astrophys. 354, 1110

(2000) is not the correct expression to describe the evolution of a collisionless self-gravitating gas. One of

the reasons that account for the previous statement is that the energy of a free-falling test particle, obeying

the 1PN equations of motion for static gravitational fields, is not a static solution of the mentioned

equation. The same statement holds for the angular momentum, in the case of spherical systems. We

provide the necessary corrections and obtain an equation that is consistent with the corresponding

equations of motion and the 1PN conserved quantities. We suggest some potential relevance for the

study of high-density astrophysical systems and as an application we construct the corrected version of the

post-Newtonian polytropes.
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I. INTRODUCTION

The evolution of self-gravitating systems is a subject
of great interest in astrophysics. From the statistical
standpoint, the most straightforward way to construct
self-consistent stellar systems is by means of finding the
distribution function (DF) for a stellar system with a known
gravitational potential and matter distribution. Since the
mass density is the integration of the distribution function
over the velocity variable in the phase space of the system,
the problem of finding a DF is that of solving an integral
equation (see [1–5] and the references therein). This con-
struction is also the so-called ‘‘from � to f’’ approach for
finding a self-consistent distribution function f [6],
although the opposite procedure is also used sometimes.

Now, in the framework of the general theory of relativity
it is assumed that the DF satisfies the general relativistic
version of the Fokker-Planck equation [7–9] or the colli-
sionless Boltzmann equation (CBE) [10,11]. The former is
devoted to systems in which local gravitational encounters
play an essential role in their evolution whereas the latter is
useful to study systems sufficiently smooth that they may
be considered to be collisionless [6]. One can actually
consider systems in which a number of particle species
can collide and produce different species. This is how the
formation of the light elements in the big bang nucleosyn-
thesis is calculated (see [12] for a review).

However, if we want to study the dynamics of huge
astrophysical ensembles such as galaxies and galaxy clus-
ters, physical collisions between the stars are very rare, and

the effect of gravitational collisions can be neglected for
times far longer than the age of the universe. Those
systems are characterized by a relaxation time, trelax, that
is arbitrarily large in comparison with their crossing time,
tcross, and this means that they can be approximated as a
continuum rather than concentrated into nearly pointlike
stars. The same holds (with some restrictions) in the case of
collisional systems such as globular clusters, neutron stars
and white dwarfs, where the relativistic effects of gravita-
tion become important. Although trelax here is significantly
smaller than the system’s age, the CBE is still valid over
periods of time shorter than trelax or when it is recognized
that the system evolves slowly towards the equilibrium (on
a timescale of the order of trelax). For example, Taruya &
Sakagami showed in [13,14] that the evolution of spheri-
cally symmetric systems in the collisional regime can be
modeled as a sequence of polytropic states (i.e. described
by a DF proportional to E�, which is a static solution of the
CBE), with increasing polytropic index.
There are many systems in astrophysics where

Newtonian gravity is dominant, but general relativistic
gravity plays also an important role in their evolution.
For such systems it would be nice to have an approxima-
tion scheme which gives a Newtonian description in the
lowest order and general relativistic effects as higher-order
perturbations. The post-Newtonian approximation is per-
fectly suited for this purpose. The appropriate scheme that
describes the effects of the first post-Newtonian corrections
on the motion of test particles, was first formulated by
Einstein and Infeld [15–17], then revisited by Weinberg
[18] and it is known as the first post-Newtonian (1PN)
approximation. This approach gives the corrections up to
order �v2=c2, where �v is a typical velocity in the system and
c is the speed of light, and it holds for particles moving

*cesar.agon@nucleares.unam.mx
†jpedraza@physics.utexas.edu
‡javier@ime.unicamp.br

PHYSICAL REVIEW D 83, 123007 (2011)

1550-7998=2011=83(12)=123007(13) 123007-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.123007


nonrelativistically ( �v � c), as in the case of a star moving
around a typical galaxy. Currently, PN approximations to
higher orders have been developed because of the increas-
ing interest around kinematics and associated emission of
gravitational waves by binary pulsars, neutron stars and
black holes. The most promising candidates for detecting
such profiles are LIGO, VIRGO and GEO600 (see [19,20]
for references).

The first attempt to derive a kinetic equation in the 1PN
approximation was done a few years ago by Rezania and
Sobouti [21], finding some relevant solutions. They tried to
obtain the post-Newtonian version of the Liouville’s equa-
tion for a gas of identical collisionless particles and, as an
application, they constructed the 1PN version of the clas-
sical polytropes [1]. Strictly speaking, this equation should
be called the collisionless Boltzmann equation since the
one attributed to Liouville refers to an N-particle equation.
However, both equations can be shown to coincide in the
case N � 1 and when the N-body distribution function is
separable (see for example [6]).

The authors started from the general relativistic kinetic
equation

LUf ¼
�
U� @

@x�
� �i

��U
�U� @

@Ui

�
fðx�;UiÞ ¼ 0; (1)

where ðx�;UiÞ is the set of configuration and four-velocity
coordinates, �i

�� are the Christoffel’s symbols, LU is the

Liouville’s operator, and fðx�;UiÞ is the one-particle DF.
Then, using the fact that the four-velocity of the particle
satisfies the relation

g��U
�U� ¼ �c2; (2)

they performed an expansion ofLU up to the order ð �v=cÞ2,
where �v is the typical Newtonian speed. The resulting post-
Newtonian approximation of (1) was:

@f

@t
þ vi @f

@xi
� @�

@xi
@f

@vi �
1

c2

�
ð4�þ v2Þ@�

@xi

� vivj @�

@xj
� vi @�

@t
þ @c

@xi

þ
�
@�i

@xj
� @�j

@xi

�
vj þ @�i

@t

�
@f

@vi ¼ 0; (3)

where� is the Newtonian gravitational potential, c and �i

are the post-Newtonian potentials and f is now interpreted
as a DF depending on the spatial coordinates x, the
Newtonian velocity v, and the time t.

As was pointed out by the authors, one can verify that
the above equation admits the static solution (@�=@t ¼
@c =@t ¼ 0 and �i ¼ 0)

E� ¼ 1

2
v2 þ�þ ð2�2 þ c Þ=c2; (4)

which could be interpreted as the 1PN generalization of the
classical energy. Moreover, for the case of spherically

symmetric systems, there appear three additional integrals
of Eq. (3):

l�i ¼ "ijkx
jvkð1��=c2Þ; (5)

which could also be considered as post-Newtonian exten-
sions of the classical angular momenta. Thus, DFs depend-
ing on the integrals (4) and (5) would represent the 1PN
statistical description of spherically symmetric systems in
equilibrium.
However, we can verify that the ‘‘energy’’ given by (4) is

not an integral of the 1PN equations of motion for a static
source of gravitation [18]

dv

dt
¼�r

�
�þ2�2þc

c2

�
þ4v

c2
ðv �r�Þ�v2

c2
r�: (6)

Moreover, if we assume spherical symmetry for the fields
� and c , we can also verify that the ‘‘angular momentum’’
(5) is not an integral of motion of the above equation.
These statements imply that there is not any correspon-
dence between the microscopic description of motion
given by (6) and the macroscopic (statistical) description
involved in (3). Since the former has been demonstrated to
be correct (see [15–20,22] for references), we can establish
that the Eq. (3) does not provide an appropriate statistical
description for the evolution of a collisionless gas of self-
gravitating particles. Then, it is necessary to derive a
corrected version of this relation. Such version must admit
as a static solution, the correct expression for the energy at
1PN order (see Sec. II):

E ¼ v2

2
þ�þ 3v4

8c2
� 3v2�

2c2
þ �2

2c2
þ c

c2
; (7)

and, in the spherically symmetric case, the 1PN general-
ization of the angular momentum:

li ¼ "ijkx
jvk

�
1� 3�

c2
þ v2

2c2

�
: (8)

In Sec. III we show a detailed derivation of the corrected
version of the CBE in the 1PN approximation. The final
result reads
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@xi

��
@f

@vi ¼ 0: (9)

We can verify that the energy, given by (7), is a static
solution of (9), as well as the 1PN angular momentum
(8), for the spherically symmetric case. It is worth pointing
out that the corrections introduced above should be taken
into account in the analysis of [23,24], since they used
some of the results of [21].
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The rest of the paper is organized as follows. In Sec. II
we start by deriving the post-Newtonian integrals of mo-
tion corresponding to static and spherically symmetric
gravitational field. Then, in Sec. III, we show a detailed
obtention of (9), and we rewrite it in a number of ways
(38)–(40) in order to shed some light on its physical mean-
ing. Finally, in Sec. IV, we construct the corrected version
of the post-Newtonian polytropes. To do so, we employ the
‘‘f to �’’ approach. We start with a DF that is just a
generalization of the classical one and then we integrate
over the phase space in order to obtain the different com-
ponents of the stress tensor. Then we use the field equations
to recover the Newtonian and post-Newtonian potentials,
and we use them to study the main properties of the
models.

II. INTEGRALS OF MOTION IN THE
1PN APROXIMATION

We start by showing a detailed derivation of the first
integral of motion, i.e. the energy, for a free-falling test
particle in the presence of static gravitational fields
(@�=@t ¼ @c =@t ¼ 0 and �i ¼ 0), in the 1PN approxi-
mation. In order to do this we consider the Lagrangian
corresponding to the free-falling motion,

2L ¼ g��U
�U�; (10)

where g�� is the metric tensor. We shall adopt the follow-

ing conventions:

x�¼ðct;xiÞ; U�¼@x�

@�
¼@x0

@�

@x�

@x0
¼U0V�; (11)

and

@x0

@�
¼ U0;

@x�

@x0
¼ V� ¼ ð1; vi=cÞ; (12)

where � denotes the particle’s proper time, Greek indices
range from 0 to 3 and Latin indices range from 1 to 3.

At 1PN order, the line element ds2 ¼ g��dx
�dx�, can

be written in terms of the Newtonian potential � and post-
Newtonian potentials c and �i defined as in [18]

ds2 ¼ �
�
1þ 2�

c2
þ 2ð�2 þ c Þ

c4

�
c2dt2 þ 2

�
�i

c3

�
cdtdxi

þ
�
1� 2�

c2

�
�ijdx

idxj: (13)

Then, for the case of static configurations, the post-
Newtonian Lagrangian (10) reduces to

2L ¼ �
�
1þ 2�

c2
þ 2ð�2 þ c Þ

c4

�
c2 _t2 þ

�
1� 2�

c2

�
_xi _xj�ij;

(14)

where the upper dot denotes derivation with respect to �.
It is possible to verify that, upon the application of the
variational principle, the corresponding Euler-Lagrange

equations lead to the 1PN equations of motion showed
in (6). Since this Lagrangian is time-independent, the
energy

E ¼ �@L

@ _t
(15)

is the first integral of motion. Our goal is to compute this
quantity up to order c�2. By taking the derivative of the
Lagrangian with respect to _t we obtain then

E ¼
�
1þ 2�

c2
þ 2ð�2 þ c Þ

c4

�
c2 _t: (16)

Now we have to write _t in terms of the spatial coordinates.
In order to do this, first remember that _t ¼ U0=c. The
quantity U0 can be computed by means of Eq. (2) in 1PN
approximation,

�
�
1þ 2�

c2
þ 2ð�2 þ c Þ

c4

�
ðU0Þ2

þ
�
1� 2�

c2

�
v2

c2
ðU0Þ2 ¼ �c2; (17)

and after some calculations we can find, up to order c�4,

U0

c
¼ 1þ v2

2c2
� �

c2
þ 3v4

8c4
� 5v2�

2c4
þ �2

2c4
� c

c4
¼ _t:

(18)

Finally, by introducing the above relation in (16) we obtain
the energy at order c�2:

E ¼ v2

2
þ�þ 3v4

8c2
� 3v2�

2c2
þ �2

2c2
þ c

c2
: (19)

Note that we have suppressed the constant term c2, which
is meaningless for our purposes. By taking the total de-
rivative of (19) with respect to t, and using the 1PN
equations of motion (6), we can indeed prove that E is a
conserved quantity at order c�2. It turns out that this
quantity is also a static solution of the corrected CBE (9),
which can be proved by simple inspection (see Sec. IV,
Eq. (41)).
Using the 1PN equations of motion we can also rewrite

the Lagrangian (14), up to a total derivative, as

~L ¼ v2

2
��� �2

2c2
� 3�v2

2c2
þ v4

8c2
� c

c2
; (20)

which in fact agrees with the Lagrangian presented in [18].
Now, if we assume spherical symmetry, the fields � and c

will depend on the spatial coordinates only through r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1Þ2 þ ðx2Þ2 þ ðx3Þ2p
and, in this case, the Lagrangian

has two cyclic coordinates 	 and ’ given by

tan’ ¼ x2=x1; (21)

cos	 ¼ x3½ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2��1=2: (22)
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This fact enable us to find that the three quantities

li ¼ "ijkx
jvk

�
1� 3�

c2
þ v2

2c2

�
; (23)

are also integrals of motion and to interpret them as the
post-Newtonian generalization of the angular momenta.
For axial symmetry, of course, it is straightforward to
show that only the z-component of the angular momentum
is conserved.

The quantities (19) and (23) are not static solutions of
the Eq. (3), obtained in [21], but they will be integrals of
the corrected 1PN CBE, as expected. The derivation of
such equation will be the aim of the next section.

III. DERIVATION OF THE CBE IN THE 1PN
APPROXIMATION

In order to obtain a post-Newtonian approximation of
Eq. (1), it is convenient to change from ðx�;UiÞ to ðx�; viÞ.
In other words, we use a transformation of the form

ðx�;UiÞ ! ðx�; viðx�;UiÞÞ; (24)

so that the distribution function becomes

fðx�;UiÞ ¼ fðx�; viðx�;UiÞÞ: (25)

The explicit dependence of vi ¼ viðx�;UiÞ can be inferred
from (2) and the fact thatUi ¼ U0vi=c (see (11) and (12)).
This allows us to write

viðx�;UiÞ ¼ cUi

U0ðx�;UiÞ : (26)

To simplify the calculation we will first use the variable
V� ¼ ð1; vi=cÞ and then we will come back to vi. The
partial derivatives of f transform as�

@f

@x�

�
Ui

¼
�
@f

@x�

�
Vi
þ

�
@f

@Vj

�
x�

�
@Vj

@x�

�
Ui�

@f

@Ui

�
x�

¼
�
@f

@Vj

�
x�

�
@Vj

@Ui

�
x�
;

(27)

where the subscript at the bottom of the various derivatives
indicates the quantity that is constant when f is differ-
entiated. According to the above relations, Eq. (1) is re-
written as

LUf ¼ U0V�

��
@f

@x�

�
Vi
þ

�
@f

@Vj

�
x�

�
@Vj

@x�

�
Ui

�

� �i
��U

02V�V�

��
@f

@Vj

�
x�

�
@Vj

@Ui

�
x�

�
¼ 0; (28)

where �
@Vj

@x�

�
Ui

¼ � Uj

U02

�
@U0

@x�

�
Ui
; (29)

�
@Vj

@Ui

�
x�

¼ �ij

U0
� Uj

U02

�
@U0

@Ui

�
x�
: (30)

The terms ð@U0=@x�ÞUi and ð@U0=@UiÞx� can be obtained
by differentiating Eq. (2). The result is�

@U0

@x�

�
Ui

¼ �U02

2Q

@g
�
@x�

V
V�; and (31)

�
@U0

@Ui

�
x�

¼ �U0

Q
ðgi0V0 þ gikV

kÞ; (32)

where

Q ¼ U0ðg00 þ g0lV
lÞ: (33)

Thus, the required derivatives in Eq. (28) are�
@Vj

@x�

�
Ui

¼ U0

2Q
Vj

@g
�
@x�

V
V�; (34)

�
@Vj

@Ui

�
x�
¼Vj

Q
ðg0iþgikV

kÞ; for i� j;

¼� 1

Q

�
c2U0�2 þX

k�i

Vkðg0kþgklV
lÞ
�
for i¼ j;

(35)

(note that ð@Vj=@x�ÞUi differs from the expression shown
in [21] by a sign). After some calculations (see
Appendix A) one can verify that, up to order c�2, the
Liouville’s operator in Eq. (28) can be expressed as

Lv ¼ Lcl þLpn

¼ @

@t
þ vi @

@xi
� @�

@xi
@

@vi þ
1

c2

�
v2

2
��

�

�
�
@

@t
þ vi @

@xi

�
þ 1

c2

�
4vivj @�

@xj
�

�
3v2

2
þ 3�

�

� @�

@xi
þ 3vi @�

@t
� @c

@xi
� @�i

@t

� vj

�
@�i

@xj
� @�j

@xi

��
@

@vi ; (36)

whereLcl is the classical Liouville operator [the first three
terms of the right-hand side (rhs)] and Lpn is the corre-
sponding post-Newtonian correction (all terms multiplied
by 1=c2). Then, Eq. (28) now reads

ðLcl þLpnÞfðx; v; tÞ ¼ 0: (37)

Thus we conclude that the CBE in the 1PN approximation
can be split into a Newtonian contribution and a post-
Newtonian one, as was obtained by [21], but now with
the corrected version for the operator Lpn.
Similar to the classical case, the 1PN Eq. (36) can be

expressed in various ways (see Appendix B), each of which
is useful in different contexts. First, as a vanishing total
derivative,
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df

dt
¼ 0; (38)

meaning that the flow through phase space of the proba-
bility fluid, (as seen by an observer moving with the
particle) is incompressible [6]. Second, in terms of
Poisson brackets,

@f

@t
þ ff;Hg ¼ 0; (39)

where H is the 1PN Hamiltonian. Since all integrals of
motion must commute with H, it implies that Jeans theo-
rem [25] is also valid at 1PN order, i.e. that any static
solution of the CBE depends only on the integrals of
motion of the system, and that any function of the integrals
yields a static solution of the CBE. And third, as a con-
tinuity equation,

@f

@t
þ @

@w
ðf _wÞ ¼ 0; (40)

where the setw ¼ ðq;pÞ is an arbitrary system of canonical
coordinates. This equation states that the probability is
conserved in phase space and, upon the appropriate inte-
gration over the momentum space, leads to the conserva-
tion laws in configuration space, i.e. the conservation of the
energy-momentum tensor at 1PN order. We will refrain
from writing out these results here, since they are not
particularly illuminating.

IV. STATIC SOLUTIONS OF THE POST-
NEWTONIAN CBE

For systems in static equilibrium f does not depend
explicitly on time and the post-Newtonian potential �i

vanishes. In consequence, Eq. (9) reduces to:��
1þ v2

2c2
� �

c2

�
vi @

@xi
�

�
1þ 3

2

v2

c2
þ 3�

c2

�
@�

@xi
@

@vi

þ 4vivj

c2
@�

@xi
@

@vj �
1

c2
@c

@xi
@

@vi

�
fðx; vÞ ¼ 0: (41)

Since the energy (Eq. (7)) is an integral of motion of the
system, we say that any ergodic DF fðEÞ satisfies (41), due
to Jeans theorem.

On the other hand, the gravitational fields � and c are
related to the matter-energy distribution through the
Einstein equations which, in the 1PN approximation, can
be written as [18]

r2� ¼ 4�G0T00; r2c ¼ 4�Gc2ð2T00 þ2 TiiÞ:
(42)

Here, the convention used is

T�� ¼ 0T�� þ 1T�� þ 2T�� þ . . . (43)

so that the symbol NT�� refers the ��-component, of
order ð �v=cÞN , in the expansion of the energy-momentum

tensor. In particular, 0T00 is the density of rest-mass, 2T00 is
the nonrelativistic part of the energy density and 2Tii

(summation over i) is the classical kinetic energy density.
Now, in general, the energy-momentum tensor is related

to the DF through the equation

T��ðxÞ ¼ 1

c

Z U�U�

U0
fðx;UiÞ ffiffiffiffiffiffiffi�g

p
d3U; (44)

so that relations (41) and (42) form a set of self-consistent
equations. For practical purposes it is necessary to expand
(44) at various orders in �v=c so, in order to illustrate this
idea, we are now going to focus in the same special case
used in [21], i.e. the post-Newtonian spherical polytropes.
Needless to say, in the future it would be also interesting
to consider the case of anisotropic systems, or axially
symmetric systems, specially to develop applications for
galactic dynamics.

A. Construction of post-Newtonian polytropes

Now we deal with the 1PN version of polytropic solu-
tions, i.e. systems characterized with DFs of the form

fðEÞ ¼ kn
2�

ð�EÞn�3=2 for E< 0;¼ 0 for E � 0;

(45)

where kn is a real constant and n is the index of the
polytrope. The DF can be split in two parts: a c0 (classical)

contribution fð0Þ and a c�2 (post-Newtonian) contribution

fð2Þ. This is possible because the energy can be written as

E ¼ Ecl þ Epn (46)

where

Ecl ¼ v2

2
þ�; Epn ¼ 3v4

8c2
� 3v2�

2c2
þ �2

2c2
þ c

c2
:

(47)

Since we assume that Ecl � Epn, we can write

f 	 kn
2�

ð�EclÞn�3=2½1þ ðn� 3=2ÞEpn=Ecl�

¼ kn
2�

ð�EclÞn�3=2 � kn
2�

ðn� 3=2ÞEpnð�EclÞn�5=2

¼ fð0Þ þ fð2Þ (48)

In order to obtain T�� at various orders of �v=c, we will
need the expansion of U0 (see Eq. (18)), the expansion of
the determinant of the metric tensor,

ffiffiffiffiffiffiffi�g
p ¼ 1�

2�=c2 þ . . . and also the expansion of d3U, rewritten in
terms of d3v. Remembering that Ui ¼ U0vi=c and using
(18), we have
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@Ui
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� �
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�
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j þ

vivj

c2
; (4)

which means that the Jacobian of the transformation is
j@Ui=@vjj ¼ 1þ 5v2=ð2c2Þ � 3�=c2 þ . . . and, in conse-
quence,

d3U ¼
�
1þ 5v2

2c2
� 3�

c2

�
d3v ¼ 4�

�
1þ 5v2

2c2
� 3�

c2

�
v2dv

(50)

(the rhs of the last equation can be implemented only in the
case of a DF depending on the velocity components

through v ¼ ðviv
iÞ1=2). Putting all of this together, we

can now write T00 and Tii as:

T00 ¼ 4�
Z ve

0
½fð0Þ þ fð2Þ�

�
1þ 3v2

c2
� 6�

c2

�
v2dv (51)

and

Tii ¼ 4�

c2

Z ve

0
½fð0Þ þ fð2Þ�

�
1þ 3v2

c2
� 6�

c2

�
v4dv: (52)

The components T0i ¼ Ti0 vanish because the distribution
of matter is static (see [18]). Here ve denotes the escape
velocity, i.e. the speed at which a particle reaches its
maximum value of energy, E ¼ 0, so that it is confined
to the distribution of matter. Such quantity can be com-
puted from (7) and the result is

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2c2

3
þ 2�þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4 � 12c2�þ 6�2 � 6c

qs

	 ffiffiffiffiffiffiffiffiffiffiffi�2�
p � 1

c2

ffiffiffiffiffiffiffiffiffiffiffi
��3

2

s
þ 1

c2

ffiffiffiffiffiffiffiffiffiffiffi
�c 2

2�

s
: (53)

In order to be consistent with the 1PN approximation, one
can set ve ¼

ffiffiffiffiffiffiffiffiffiffiffi�2�
p

due to the fact that the c-dependent
terms would lead to the apparition of a factor of order

Oðc�6Þ, even in the case when the integrand is fð0Þ.
Introducing this value in (51) and (52), we can obtain
explicitly 0T00, 2T00 and 2Tii (see Appendix C) and, after
some calculations, we obtain

r2� ¼ 
nð��Þn; (54)

r2c ¼ �n
nð��Þn�1c þ �nð��Þnþ1; (55)

where r2 ¼ ð1=r2Þðd=drÞðr2d=drÞ and we have intro-
duced the constants


n ¼ 4
ffiffiffi
2

p
�3=2Gkn

�ðn� 1=2Þ
�ðnþ 1Þ ;

�n ¼ �2
ffiffiffi
2

p
�3=2Gkn

ðn2 � 2n� 63=4Þ�ðn� 1=2Þ
�ðnþ 2Þ :

(56)

The first equation above (54) (which looks like very differ-
ent from the one derived in [21]) is the classical field
equation for the Newtonian polytropes [1] and has simple
exact solutions for the cases n ¼ 0, 1, 5, the latter corre-
sponding to the Plummer’s model [26,27]. For other values
of n, the solution cannot be expressed in terms of elemen-
tary functions [6].

B. Numerical solutions of the field equations

In order to perform the numerical solution of the system
for any n, we implement the following definitions:

~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð��oÞn�1

q
r; Bn ¼ ðn2 � 2n� 63=4Þ�2

o

2ðnþ 1Þc o

;

� ¼ �oX; c ¼ c oY; (57)

where �o and c o are the Newtonian and post-newtonian
gravitational potentials at the center of the configuration,
respectively. Then, relations (54) and (55) become

1

~r2
d

d~r

�
~r2
dX

d~r

�
¼ �Xn; (58)

1

~r2
d

d~r

�
~r2
dY

d~r

�
¼ �nXn�1Y � BnX

nþ1: (59)

Since we assume that the gravitational potentials reach
critical values at the center of the configuration, we have
to impose the initial conditions

Xð0Þ ¼ Yð0Þ ¼ 1; X0ð0Þ ¼ Y0ð0Þ ¼ 0; (60)

where the prime denotes differentiation with respect to the
scaling radius ~r. We use a fourth-order Runge-Kutta
method to find the numerical solutions for different values
of the ratios �o=c

2 and assuming c o 
��2
o. In a neutron

star, for example, �o=c
2 can vary between �1 and �0:1,
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approximately. In Fig. 1 we plot the gravitational potential
energy of a test particle with velocity v ¼ 0 (scaled with
respect to �o), given by

~U ¼ �U=�o ¼ �X� �o

2c2
X2 � c o

c2�o

Y; (61)

for the case of Newtonian polytropes and post-Newtonian
polytropes. We note that for �o=c

2 
�0:02 or smaller,

the post-Newtonian corrections are not significant, while
for values �o=c

2 
�0:2 or larger they become important.

C. Post-Newtonian corrections to the rotation
curves and mass densities

In this subsection we study the fundamental equations
describing the circular motion of test particles, in order to
investigate the corrections introduced by the relativistic
effects on the rotation curves. In spherical coordinates
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FIG. 1. We show the gravitational potential energy ~U (given by Eq. (61)) for Newtonian (continuous line) and post-Newtonian
polytropes with index n ¼ 1; ::; 6. In each illustration we assume c o 
�2

o and choose �o=c
2 equal to �0:02 (dashed line), �0:2

(dotted line) and �0:4 (dash-dotted line).
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ðr; 	; ’Þ, the circular orbits in the equatorial plane can be
obtained from (6), by setting 	 ¼ �=2, @�=@t ¼ 0 and
@�=@’ ¼ @c =@’ ¼ 0. They must satisfy the conditions
_r ¼ _z ¼ 0, €r ¼ €z ¼ 0 and z ¼ 0, so that the equation of
motion reduces to

r _’2

�
1þ r

c2
@�

@r

�
¼ @

@r

�
�þ 2�2 þ c

c2

�
: (62)

This can be used to derive an expression for the circular
velocity v’ ¼ r _’, as a function of the radius r. The result

reads:

v’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
@�

@r

�
1þ 4�

c2
� r

c2
@�

@r

�
þ r

c2
@c

@r

s ��������z¼0
: (63)

Note that in the limit c ! 1, the above expression
reduces to the usual relation derived in Newtonian
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FIG. 2. We show the circular velocity ~Vc for Newtonian (continuous line) and post-Newtonian polytropes with index n ¼ 1; ::; 6.
In each illustration we assume c o 
�2

o and choose �o=c
2 equal to �0:02 (dashed line), �0:2 (dotted line) and �0:4 (dash-dotted

line).
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theory: v’ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R@�=@R

p
. Perhaps the most important dif-

ference between such relation and (63) is that, in the
Newtonian case, the radical is linear in � and its deriva-
tives, whereas in the 1PN case, it depends on nonlinear
terms involving �, c and derivatives. This nonlinear de-
pendence may result significant in some cases and its
effects can be observed in the rotation curves. In Fig. 2
we show the rotation curves corresponding to the 1PN
corrected models. As we can see, in some cases the 1PN

corrections are significant while, in other cases, they are
practically negligible.

Now, in order to examine if the 1PN corrections provide

an adequate physical description for the energy-mass dis-

tribution, we plot the density �. The contribution of 0T00

plus 2T00 (see Appendix C for details) as a function of r is
shown in Fig. 3 (here � is the mass density divided by

kn�
6
o, in each case). We find that � is a positive-valued

function with a maximum in the center and a minimum at
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FIG. 3. We plot the mass density �, scaled with respect kn�
6
o, for Newtonian (continuous line) and post-Newtonian polytropes with

index n ¼ 1; ::; 6. In each illustration we assume c o 
�2
o and choose �o=c

2 equal to �0:02 (dashed line), �0:2 (dotted line) and
�0:4 (dash-dotted line).
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r ! 1, for the following situations: (i) polytropes n ¼
1; . . . ; 6 with �o=c

2 ¼ �0:02; (ii) polytrope n ¼ 6 with

�o=c
2 ¼ �0:2. When such ratio reaches the value �0:4,

the mass density becomes negative for certain values of r,
far from the center (see Fig. 4), thus representing a non-

physical situation with tachyonic matter.

V. CONCLUDING REMARKS

We have obtained the 1PN version of the collisionless
Boltzmann equation for a self-gravitating gas of identical
particles, which is consistent with the microscopic

equations of motion. This can be shown by checking that
the integrals of motion derived from the microscopic dy-
namics are static solutions of (9), in agreement with the
statistical description of the system. Such relation leads to
the equations of the post-Newtonian hydrodynamics, de-
rived previously by Chandrasekar [22], and implies auto-
matically that the macroscopic stress-energy tensor is
conserved if one takes the corresponding integrals over
the phase space.
The interpretation of the CBE derived here follows the

same logical arguments as in the classical case: (i) we can
think of it as a continuity equation of the probability fluid,
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FIG. 4. Details of Fig. 3 for Newtonian (continuous line) and post-Newtonian polytropes with index n ¼ 1; ::; 6. In each illustration
we assume c o 
�2

o and choose �o=c
2 equal to �0:02 (dashed line), �0:2 (dotted line) and �0:4 (dash-dotted line).
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which is just a statement that comes from the probability
conservation in phase space. (ii) The fact that we are
allowed to rewrite it as a vanishing total derivative means
that the flow of this probability fluid, as seen by a comov-
ing observer, is incompressible. (iii) The structure of the
equation in terms of poisson brackets reveals that Jeans
theorem is also valid at 1PN order, i.e. that any static
solution of the CBE depends only on the integrals of
motion of the system, and that any function of the integrals
yields a static solution of the CBE. We suggest some
potential relevance of our findings for the study of nuclear
cores in galactic dynamics and other astrophysical systems
with high enough energy densities such that the relativistic
effects become important.

As a first step towards the developing of such astrophys-
ical applications, we considered the case of post-
Newtonian polytropes, thus providing the corrected ver-
sion of the solutions found in [21]. We proceeded to do it
numerically because, even in the Newtonian case, it is not
possible to find analytical solutions for arbitrary polytropic
index. Now, in order to compare the behavior of Newtonian
and 1PN solutions, we chose some values for the dimen-
sionless parameters �o=c

2 and c =�2
o, so that they can be

associated with relativistic stellar systems. For example,
for �o=c

2 ¼ �0:02 and c =�2
o ¼ �1, we found that the

Newtonian and post-Newtonian behavior are very similar,
although some perceptible differences can be seen in the
gravitational energy, rotation curves and mass densities. In
particular, we note that the 1PN corrections to the mass
densities are more significant near the center of the con-
figurations and, in contrast, the 1PN corrections to the
circular velocities are greater far from the center. In gen-
eral, the 1PN values of ~vc are smaller that the Newtonian
values. When we chose �o=c

2 ¼ �0:2 or �o=c
2 ¼ �0:4,

we found that the relativistic contributions are more rele-
vant. However, in some cases the 1PN models are unphys-
ical for these parameters (meaning that the mass density
becomes negative for some values of r), depending on the
polytropic index n. We also note the fact that, the larger are
the corrections to the central mass density, the larger are
the corrections to the circular velocity far from the center.

Last but not least, it is worth pointing out that it is also
possible to derive an exact solution for the case n ¼ 5, i.e.
the 1PN version of Plummer’s model, which is the simplest
polytrope with physical relevance. It will be presented in a
subsequent paper with further applications.
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APPENDIX A: DERIVATION OF RELATION (36)

By introducing (34) and (35) in the Eq. (28), the
Liouville’s operator takes the form

LU ¼ U0V� @

@x�
þ ðU0Þ2V�

2Q

@g
�
@x�

V
V�Vj @

@Vj

� ðU0Þ2
Q

�i
��V

�V�
X
j�i

Vj

Q
ðg0i þ gikV

kÞ @

@Vj

þ ðU0Þ2
Q

�i
��V

�V�

�
c2ðU0Þ�2

þX
k�i

Vkðg0k þ gklV
lÞ
�

@

@Vi : (A1)

The four terms in the rhs, up to order c�2, can be written as

U0V� @

@x�
¼

�
1þ v2

2c2
� �

c2

�
@

@t
þ

�
1þ v2

2c2
� �

c2

�
vi @

@xi
;

(A2)

ðU0Þ2V�

2Q

@g
�
@x�

V
V�Vj @

@Vj

¼ vi

c2
@�

@t

@

@vi þ
vivj

c2
@�

@xi
@

@vj ; (A3)

� ðU0Þ2
Q

�i
��V

�V�
X
j�i

Vj

Q
ðg0i þ gikV

kÞ @

@Vj

¼ vivj

c2
@�

@xi
@

@vj �
ðviÞ2
c2

@�

@xi
@

@vi ; (A4)

ðU0Þ2
Q

�i
��V

�V�

�
c2ðU0Þ�2 þX

k�i

Vkðg0k þ gklV
lÞ
�

@

@Vi

¼ �
�
1þ 3

2

v2

c2
þ 3�

c2

�
@�

@xi
@

@vi þ
ðviÞ2
c2

@�

@xi
@

@vi

þ 2vivj

c2
@�

@xi
@

@vj þ
2vi

c2
@�

@t

@

@vi �
1

c2
@c

@xi
@

@vi

� 1

c2
@�i

@t

@

@vi �
vj

c2

�
@�i

@xj
� @�j

@xi

�
@

@vi : (A5)

In the derivation of (A2)–(A5) we have used the approx-
imations

U0

c
	 1� �

c2
þ v2

2c2
;

ðU0Þ2
cQ

	 �1þ 3�

c2
� v2

2c2
;

c2ðU0Þ�2 ¼ 1þ 2�

c2
� v2

c2
:

(A6)

Finally, replacing (A2)–(A5) in (A1) we obtain the final
form of the Liouville’s operator, Eq. (36).

APPENDIX B: ALTERNATIVE EXPRESSIONS
FOR THE CBE

In order to express the CBE as a total derivative, let us
start by writing explicitly the various orders of the DF, i.e.
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L vf ¼ Lclfð0Þ þ ðLclfð2Þ þLpnfð0ÞÞ ¼ 0; (B1)

where

L clfð0Þ ¼ 0 (B2)

and

L clfð2Þ þLpnfð0Þ ¼ 0: (B3)

The first of these equations implies that

@fð0Þ

@t
þ vi @f

ð0Þ

@xi
¼ @�

@xi
@fð0Þ

@vi : (B4)

Moreover,

L clfð2Þ ¼ @fð2Þ

@t
þ vi @f

ð2Þ

@xi
� @�

@xi
@fð2Þ

@vi ; (B5)

whereas

Lpnfð0Þ ¼ 1

c2

�
v2

2
��

��
@fð0Þ

@t
þ vi @f

ð0Þ

@xi

�

þ 1

c2

�
4vivj @�

@xj
�

�
3v2

2
þ 3�

�
@�

@xi
þ 3vi @�

@t

� @c

@xi
� @�i

@t
� vj

�
@�i

@xj
� @�j

@xi

��
@fð0Þ

@vi :

Replacing (B4) in the previous equation we find

Lpnfð0Þ ¼ 1

c2

�
4vivj @�

@xj
� ðv2 þ 4�Þ @�

@xi
þ 3vi @�

@t

� @c

@xi
� @�i

@t
� vj

�
@�i

@xj
� @�j

@xi

��
@fð0Þ

@vi : (B6)

Here we need the 1PN equations of motion which, in
general, are given by [18]

dvi

dt
¼�@�

@xi
þ 1

c2

�
4vivj @�

@xj
�ðv2þ4�Þ@�

@xi

þ3vi@�

@t
�@c

@xi
�@�i

@t
�vj

�
@�i

@xj
�@�j

@xi

��
: (B7)

Introducing (B7) in (B6) we obtain

L pnfð0Þ ¼
�
dvi

dt
þ @�

@xi

�
@fð0Þ

@vi ; (B8)

so

ðLcl þLpnÞfð0Þ ¼ @fð0Þ

@t
þ vi @f

ð0Þ

@xi
þ dvi

dt

@fð0Þ

@vi : (B9)

Also, note that using the 1PN equations of motion in (B5),
we only have to keep the leading term:

L clfð2Þ ¼ @fð2Þ

@t
þ vi @f

ð2Þ

@xi
þ dvi

dt

@fð2Þ

@vi : (B10)

Putting all of this together we can finally write

Lvf ¼ Lclfð0Þ þ ðLclfð2Þ þLpnfð0ÞÞ

¼
�
@

@t
þ vi @

@xi
þ dvi

dt

@

@vi

�
ðfð0Þ þ fð2ÞÞ ¼ 0; (B11)

or

df

dt
¼ 0: (B12)

Now, if we use a set of canonical coordinates w ¼ ðq;pÞ
(i.e. a set of coordinates that satisfies the Hamilton
equations), we can rewrite (B12) as

df

dt
¼@f

@t
þdqi

dt

@f

@qi
þdpi

dt

@f

@pi¼
@f

@t
þff;Hg¼0; (B13)

or

df

dt
¼ @f

@t
þ @

@qi

�
f
dqi

dt

�
þ @

@pi

�
f
dpi

dt

�
¼ 0; (B14)

which means that

@f

@t
þ @

@wm

�
f
dwm

dt

�
¼ 0; (B15)

where m ¼ 1; . . . ; 6 and wm is the m-th component of w.

APPENDIX C: DERIVATION OF
EQUATIONS (54) AND (55)

In order to calculate the rhs of Eqs. (42), we have to
write the required components of the energy-momentum
tensor, 0T00, 2T00 and 2Tii (sum over i ¼ 1, 2, 3) explicitly

0T00 ¼ 2kn
Z ffiffiffiffiffiffiffiffi

�2�
p

0

�
� v2

2
��

�
n�3=2

v2dv; (C1)

2T00 ¼ 6kn
c2

Z ffiffiffiffiffiffiffiffi
�2�
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0

�
� v2

2
��

�
n�3=2ðv2 � 2�Þv2dv

þ 2kn
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ðn� 3=2Þ
Z ffiffiffiffiffiffiffiffi
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�
3v2�
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� 3v4

8
��2

2
� c

�
v2dv;

2Tii ¼ 2kn
c2

Z ffiffiffiffiffiffiffiffi
�2�

p

0

�
� v2

2
��

�
n�3=2

v4dv: (C2)

The above formulas can be computed easily by making the
substitution v2 ¼ �2�cos2	 and running the integrals
over 	, from 0 to �=2. The resulting trigonometric inte-
grals can be expressed in terms of gamma functions by
using the relation [28]
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Z �=2

0
ðcos	Þ2mðsin	Þ2kþ1d	 ¼ �ðkþ 1Þ�ðmþ 1=2Þ

2�ðmþ kþ 3=2Þ ;

(C3)

for m>�1=2 and k >�1. Then we obtain, for n > 1=2,

0T00¼2knIð�;n�3=2;1Þ;
2T00þ2Tii¼kn

c2
f8Ið�;n�3=2;2Þ

�12�Ið�;n�3=2;1Þþðn�3=2Þ
�½3�Ið�;n�5=2;2Þ�ð�2þ2c Þ
�Ið�;n�5=2;1Þ�ð3=4ÞIð�;n�5=2;3Þ�g;

(C4)

where we have introduced the notation

Ið�; k;mÞ ¼ 2m�1=2�ðkþ 1Þ�ðmþ 1=2Þ
�ðmþ kþ 3=2Þ ð��Þkþmþ1=2;

(C5)

and after some calculations we obtain the expressions (54)
and (55).
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