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The geodesics of massless particles produced in collisions near a rotating black hole are solved

numerically and a Monte Carlo integration of the momentum distribution of the massless particles is

performed to calculate the fraction that escape the black hole to infinity. A distribution of in falling dark

matter particles, which are assumed to annihilate to massless particles, is considered and an estimate of the

emergent flux from the collisions is made. The energy spectrum of the emergent particles is found to

contain two Lorentz shifted peaks centered on the mass of the dark matter. The separation of the peaks is

found to depend on the density profile of the dark matter and could provide information about the size of

the annihilation plateau around a black hole and the mass of the dark matter particle.
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I. INTRODUCTION

Intermediate mass black holes may be associated with a
density spike of dark matter [1] that can provide an en-
hancement in the annihilation rate of dark matter particles
to gamma rays or neutrinos. The indirect detection of dark
matter through its annihilations could provide information
about the nature of the dark matter in the galaxy and its
distribution. The physics of particle collisions in the gravi-
tational field of a black hole has been extensively studied,
see e.g. [2–10]. In the case of rotating black holes, colli-
sions between dark matter particles can yield large center
of mass energies [3] and inside the ergosphere particles
produced via the Penrose process could carry high energies
[6]. In order to make use of any such collisions around a
black hole, it will be important to understand the fate of the
particles produced, in particular, the fraction of particles
produced that escape the black hole compared to those
which cross the event horizon. The escape fraction can
be defined as the fraction of particles that escape having
been produced in a collision of two dark matter particles.
The escape fraction depends on the momenta of the collid-
ing dark matter particles and the distance from the black
hole at which they collide. The escape fraction has been
calculated for maximally rotating black holes where mass-
less particles are emitted in the equatorial plane of the
black hole [11] and is also known for Schwarzschild black
holes [12]. However, a general analytical solution is not
known for rotating black holes where the particles are not
restricted to the equatorial plane.

The goal of this paper is to find a numerical result for the
escape fraction of massless particles produced in collisions
around a rotating black hole and to investigate the energy
spectrum of any emergent flux. We assume an interaction
of the form �� ! xx where x is a massless particle that

could be a photon or a massless neutrino. (The analysis can
also be used for neutrinos with small masses as the change
in the result is negligible provided the mass of the dark
matter is much larger than the neutrino mass.) To simplify
the analysis, we assume that the final state particles are
emitted isotropically in the center of mass frame of the
collision.
The paper is organized as follows: in Sec. II, the method

of numerically solving the geodesic equation for a massless
particle in a Kerr metric with arbitrary rotation is pre-
sented. Section III uses this to obtain the escape fraction
for massless particles and introduces the effect of a boosted
frame of reference due to the momentum of the colliding
particles. In Sec. IV, the distribution of the momenta of the
colliding dark matter particles is outlined. Section V
presents the spectrum of emergent particles from the colli-
sions and finds that the spectrum generally contains two
Lorentz shifted peaks centered around the dark matter
mass. In Sec. VI, we present our conclusions.

II. NUMERICAL SOLUTION OF THE
GEODESIC EQUATION

To know whether a particular particle escapes the black
hole or not, its geodesic equation must be solved and the
behavior as t ! 1 found. This is most easily performed
using Boyer-Lindquist coordinates as defined in the analy-
sis of Ref. [13], which is followed closely here. In
these coordinates the metric for a Kerr black hole has the
form [13],

ds2¼�
�
1�2Mr

�

�
dt2�

�
4Marsin2�

�

�
dtd�þ�

�
dr2

þ�d�2þ
�
r2þa2þ2Ma2rsin2�

�

�
sin2�d�2; (1)

where M is the mass of the black hole, a is the angular
momentum per unit mass of the black hole, � is the polar*williams@pheno.pp.rhul.ac.uk
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angle from the axis of rotation, � is the azimuthal angle,
and the following functions are defined [13],

� � r2 � 2Mrþ a2; (2)

� � r2 þ a2cos2�: (3)

For simplicity, the mass of the black hole is set toM ¼ 1, as

a result a ranges between 0 and 1 in units where MBHG
c2

¼ 1

such that the Schwarzchild radius rs ¼ 2. The trajectories
of a particle are then defined by 3 constants ofmotionwhich
are conserved; the forms of these quantities are [13]

E ¼ �pt;

L ¼ p�;

Q ¼ p2
� þ cos2�

�
a2ð�2 � p2

t Þ þ
p2
�

sin2�

�
:

(4)

Here � is the mass of the particle, E is the energy, L is the
component of the angular momentum parallel to symmetry
axis of the black hole, and Qþ p2

� is the total angular

momentum squared when a ¼ 0. Q characterizes the mo-
tion in the � direction and for Q ¼ 0 particles in the equa-
torial plane will remain restricted to that plane [13]. The
equations of motion for the particles can now be written in
terms of �, which will become an affine parameter for
massless particles, and are written here in the form given
by Ref. [13],

�
dr

d�
¼ �Vr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 ��ð�2r2 þ ðL� aEÞ2 þQÞ

q
;

�
d�

d�
¼ �V� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� cos2�

�
a2ð�2 � E2Þ þ L2

sin2�

�s
;

T ¼ Eðr2 þ a2Þ � La: (5)

The final state particles of the collisions are assumed to be
massless allowing the equations to be simplified by setting
� ¼ 0. (For massive particles the approximation � ¼ 0 is

good provided� � E andE is generally of the order of the
darkmattermass. The results therefore remain unchanged if
a small mass is introduced.) In order to calculate the escape
function numerically the equations of motion for r and �
were integrated numerically until the particle either crossed
the horizon or escaped to some large value of r. The
algorithm employed was based on an embedded adaptive
step size Runge-Kutta formula as outlined in Ref. [14].
The integration was ended whenever the massless par-

ticle crossed the horizon or achieved some maximum
distance from the black hole, for example rmax � 100 for
collisions close to the horizon. This was increased for
collisions further from the black hole. In the case of bound
orbits, the integration was ended after a suitable number of
turning points in the r solution or a maximum value for �
was reached. In practice the parameters of the algorithm,
the minimum step size, �max, rmax, and the value of dr

d� that

indicates a turning point were varied to find optimal values
that did not introduce significant errors in the final result.
This was checked against test cases and known solutions
for the escape fraction [11,12] shown in Figs. 1 and 2.

III. THE ESCAPE FRACTION

This method for solving the geodesic equation for the
emergent particle then allows the escape fraction of mass-
less particles produced in collisions around the black hole
to be found. The escape fraction was calculated by a
Monte Carlo integration over the final momentum of the
produced massless particle pair. In the center of mass
frame of the colliding particles the massless particles are
emitted back to back and carry energy equal to one half of
the center of mass collision energy. The momentum inte-
gration is therefore reduced to an integration over the
direction of the massless particle, which we define in terms
of two angles, � the angle from the radial axis parallel to
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FIG. 1 (color online). The escape fraction for a ¼ 0, where N
is the number of Monte Carlo iterations. The solid line shows the
escape fraction constructed from the analytical conditions of
escape.
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FIG. 2 (color online). Escape fraction for a ¼ 1 with momenta
of colliding particles fixed: Analytic solution in equatorial plane
(black line) [11], Numerical result in equatorial plane (blue
circles) and full numerical result allowing propagation in all
directions (red squares).
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the polar angle of the black hole coordinate system and �
the azimuthal angle about the radial axis.

For the integration only one of the pair of massless
particles was considered and a flat distribution of its angles
in the center of mass frame was generated. For each
generated direction the geodesic equation was solved nu-
merically as above and the massless particle was recorded
as either escaping or becoming trapped by the black hole.
The escape fraction was then taken as the number of
massless particles recorded as escaping divided by the total
number generated.

The uncertainty in the escape fraction due to the statis-
tical effects of the Monte Carlo integration was found by
separating the massless particles into discrete bins, the
escape fraction for each bin was determined, and then
the average escape fraction taken. The variance in the
escape fraction for each bin then gave an estimate for the
uncertainty in the averaged escape fraction. This uncer-
tainty does not account for any error in the numerical
solution for the geodesic equations, but since the escape
fraction only depends on the general behavior of each
massless particle this was neglected.

To test the implementation of the numerical method
the escape function can be calculated for the a ¼ 0
Schwarzschild case. Analytically the conditions for escape
are known, and can be converted to an escape fraction as a
function of the radial position [12]. Figure 1 shows the
behavior of the escape fraction when the massless particle
is emitted in an unboosted frame so that the emission is
isotropic in the lab frame. The escape fraction matches the
function determined from [12] with some variation due to
the Monte Carlo integration. The effect of the number of
Monte Carlo iterations on the error in the escape fraction
can be seen and gives an indication of the number of
iterations required to give a good agreement with the
analytical solution.

Locally nonrotating and boosted frames

Having tested the machinery for the nonrotating case,
results can be obtained for black holes with a > 0. For
a ¼ 1 it will be useful to consider two cases for the
numerical calculation, firstly where the massless particles
are generated with no component of their motion outside
the equatorial plane (Q ¼ 0) and secondly where they are
generated in all directions to compare with the result found
in [11]. For a rotating black hole there is another compli-
cation. So far the massless particles have been assumed to
be emitted in a locally flat frame that is at rest in the Boyer-
Lindquist coordinate system. For a rotating black hole the
corresponding frame is that of a locally nonrotating frame
(LNRF) [13]. A LNRF represents a set of Minkowski
coordinates such that the physics in this local frame can
be described by special relativity. This is further compli-
cated when the center of mass frame of the collision is
Lorentz boosted relative to the LNRF. In this case it is

easiest to generate the massless particle momentum in the
center of mass frame where it is assumed to be isotropic
and apply a Lorentz transformation to attain the momen-
tum in the LNRF.
The transformation from the isotropic distribution of

momentum in the center of mass frame to the distribution
of the constants of motion in the Boyer-Lindquist coordi-
nate system depends on the coordinates at which the col-
lision takes place, r0, �0, and �ðP1; P2Þ, the Lorentz
transformation between the center of mass frame and the
LNRF. Where P1 and P2 are defined as the momenta of the
colliding particles in the LNRF. For details on transform-
ing between a LNRF and a Boyer-Lindquist system, see
Ref. [13], while the method of calculating �ðP1; P2Þ we
follow that in Ref. [11].
The general procedure for the calculation of the mass-

less particle momentum in the Boyer-Lindquist coordi-
nates was carried out as follows. First, the momenta of
the incoming particles were defined in the Boyer-Lindquist
frame by setting the constants of motion L and Q then
evaluating the equations for their momentum at the coor-
dinates that the collision was assumed to take place. The
incoming momenta were transformed to the LNRF as in
Ref. [13]. With the two momenta of the incoming particles
defined in this locally flat space, the relative momentum of
the center of mass frame was found and the boost between
these two frames determined. The massless particle direc-
tion was then randomly generated in the center of mass
frame, and the boost between the LNRF and the center of
mass frame was inverted to allow the massless particle
momentum in the LNRF to be found. Finally, the massless
particle momentum in the Boyer-Lindquist coordinates
was calculated giving the constants of motion for the
massless particle. The geodesic equation for the massless
particle could then be integrated numerically as before.
The momentum of the incoming particles was deter-

mined following the procedure in Ref. [11], which calcu-
lated the velocities of the incoming particles that were
restricted to the equatorial plane. The momenta of
the two incoming particles was then used to produce the
4-dimensional Lorentz boost between the LNRF and center
of mass frame. Figure 2 shows the escape fraction as a
function of r for collisions between two massive particles
colliding in the equatorial plane of a black hole with a ¼ 1.
The colliding particles have angular momentum L1 ¼ 2
and L2 ¼ �2 which correspond to the constant of motion
L and both haveQ ¼ 0. The escape fraction found through
an analytical calculation [11] when restricted to the equa-
torial plane is also shown. The numerical result matches
the exact solution when the particles are confined to the
equatorial plane. The numerical result when the massless
particles are emitted in all directions gives a value for the
escape fraction which is comparable in size to the result in
equatorial plane, suggesting that the approximation used in
Ref. [11] is reasonable.
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IV. DISTRIBUTION OF MOMENTA OF THE
COLLIDING PARTICLES

The previous section considered massless particles pro-
duced in collisions of massive particles with fixed incom-
ing momenta. However, the escape fraction depends on the
Lorentz boost from the LNRF to the center of mass frame
given above, which is derived from the constants of motion
E, L, and Q of the incoming particles. These constants are
not fixed in general and the momenta of the colliding
particles will have some distribution. This distribution
will also affect the center of mass energy of the collision
and the energy of the produced massless particles as well as
the direction in which they are emitted. In order to calcu-
late the energy distribution of escaping particles and the
general escape fraction it will therefore be important to
consider incoming particles with some distribution of
momenta.

The form of this distribution is not known so as a first
approximation we assume a flat distribution in the con-
stants L andQ. The allowed range of L andQ was fixed by
considering only particles with geodesics that would allow
the particle to fall from some large r to the radius r0 at
which the collision takes place. The constant of motion E
was set to the mass of the dark matter which in turn is set to
1. The range of allowed constants of motion was calculated
by fixing � to the equatorial plane, then calculating dr

d� as a

function of r starting at r � r0, then running down in small
steps of r to the value r0. If

dr
d� becomes very small, then we

assume that a turning point is reached and that a particle
could not fall from infinity to r0. The distribution of
allowed momenta was sampled by Monte Carlo integra-
tion. Figure 3 shows the allowed range in L and Q for
collisions occurring at r0 ¼ 1:1 as an example. This is
characterized (for a ¼ 1) by a maximum value ofQ, which
occurs for L ¼ �1, as well as a maximum and minimum

value of L with the largest range corresponding to Q ¼ 0.
Figure 4 shows the escape fraction when the momenta of
the colliding particles is averaged over all allowed values
of L and Q. The escape fraction has only a weak depen-
dence on the Lorentz boost and hence L and Q of the
colliding particles, so the full escape fraction is only a
slight shift from the result found for a particular fixed boost
shown in Fig. 2.

V. SPECTRUM OF EMERGENT
MASSLESS PARTICLES

In order to calculate the energy spectrum of emergent
particles, we must integrate the effect of collisions over the
distribution of dark matter surrounding the black hole.
The flux arriving at some distance D from the black hole
reads [11],

� � �vr3s
4�m2

�D
2

Z r1

rh

�2ðrÞeðrÞdV; (6)

where �v is the cross section for annihilation to massless
particles which we assume to be energy independent, m�

is the mass of the dark matter particles, rs is the
Schwarzschild radius, rh is the event horizon, eðrÞ is the
escape fraction shown in Fig. 4, and �ðrÞ is the dark matter
density around the black hole. It is assumed that the escape
fraction is spherically symmetric. The calculation is per-
formed for collisions occurring in the equatorial plane
only, to simplify the integration. By writing

�ðrÞ ¼ �pl�0ðrÞ; (7)

where �0ðrÞ is a dimensionless function giving the shape of
the density profile. The flux can be written in terms of a
dimensionless integral containing all the of the dependence
on the rotation of the black hole and the shape of the
density profile as [11],
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FIG. 3 (color online). Allowed range in Q and L for incoming
particles that reach r0 ¼ 1:1 with a ¼ 1. The upper line (red)
shows Lmax and the lower line (green) Lmin.
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FIG. 4 (color online). Escape fraction for a ¼ 1 with integra-
tion over momenta of the colliding particles including the effect
of the Lorentz boost.
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� � �vr3s�
2
pl

m2
�D

2
Iða; r1Þ; (8)

I ða; r1Þ ¼
Z r1

rh

r2�2
0ðrÞeðrÞdr: (9)

In order to calculate the spectrum of the emergent massless
particles, we need to know �ðEÞ, which depends on the
convolution of the escape fraction and spectrum of mass-
less particles produced in the collisions. To find this we
define pðr; E1; E2Þ as the fraction of massless particles that
escape with energy between E1 and E2 per collision. This
was found numerically by separating the escaped massless
particles into bins of energy and dividing by the total
number of collisions. The integral can then be rewritten as

�ðE1; E2Þ / Iða; r1; E1; E2Þ ¼
Z r1

rh

r2�2
0ðrÞpðr; E1; E2Þdr;

(10)

where summing over all the energy bins gives the total flux.
The density distribution of dark matter around black

holes has been extensively studied for nonrotating black
holes, see [1,15,16]. Considering the case of an intermedi-
ate mass black hole, the density distribution can be de-
scribed as follows [1]; close to the black hole there is an
annihilation plateau with constant density �pl ¼ m�=ð�vtÞ
where t is the formation time of the black hole. This holds
out to a radius rcut from which point the density falls off

with a power law � / r�ð7=3Þ. The distribution here is
assumed to be spherically symmetric. (For a rotating black
hole this may no longer be true but serves as a first
approximation.) The flux will be dominated by contribu-
tions from the annihilation plateau and density spike since
the escape fraction is only small for radii much smaller
than the annihilation plateau. It is now clear that if �pl

given in Eq. (7) is taken to be the density of the annihilation
plateau, �0ðrÞ will take the form [1],

�0ðrÞ ¼
8<
:
1 if r < rcut�

r
rcut

��ð7=3Þ
if r > rcut:

(11)

To calculate the value of I for a particular set of black
hole parameters, the value of rcut needs to be specified. In
general this depends on the mass of the black hole and on
the annihilation cross section of the dark matter. For the
super massive black hole at the center of the galaxy, this
was estimated to be rcut � 4� 10�5 pc from Ref. [15],
which is rcut � 137rs in terms of the Schwarzschild radius.

The exact value is not important since the shape of the
spectrum remains distinctive over a large range of rcut and
a measurement of the spectrum should in principle allow
rcut to be determined. To show this, the spectrum produced
for a number of different values of rcut is shown in Fig. 5.
The energy is expressed in units of the dark matter mass.

Figure 5(a) shows the spectrum for a small value of
rcut ¼ 5 (in units where rs ¼ 2), and hence is dominated
by collisions close to r0 ¼ 5. Here the spectrum is charac-
terized by a single asymmetric peak below the dark matter
mass. The peak itself is broad and the mass of the dark
matter is found to be roughly equidistant from the peak and
the edge of the shoulder in the distribution. This structure
arises due to several effects. First, there is a balance between
the center of mass energy and the gravitational red shift as
suggested in Ref. [2]; this is expected from energy conser-
vation considerations that the energy available to the colli-
sion as measured far from the black hole will be 2m�.

The result is that the spectrum is not shifted to higher
energies by the increasing center of mass energy close to
the black hole horizon or red shifted by increasing gravi-
tational potential. There is a shift of the peak to lower
energies that arises from the Lorentz boost, since the center
of mass frame is in general boosted towards the horizon,
and massless particles emitted away from the black hole
are red shifted to lower energies. Particles emitted towards
the horizon are correspondingly shifted to higher energies.
The effect of this is to split the spectrum of escaping
particles into two peaks, a red-shifted peak with energy
below the dark matter mass and a blue-shifted peak with
energy above the dark matter mass.
In Fig. 5(a) only one such peak is visible; this is because

particles emitted towards the horizon are much less likely
to escape the black hole. There is still a slight shoulder to
the spectrum just above the dark matter mass which cor-
responds to the remnant of the blue-shifted peak after the
escape fraction has been taken into account.
As rcut in Fig. 5(b) increases to 34, both peaks become

clearly visible and the spectrum becomes less broad. The
height difference between the peaks also decreases as they
get closer together. The peaks in the spectrum move to-
wards the dark matter mass since the Lorentz boost to the
center of mass frame becomes smaller. The size of the
Lorentz boost decreases as the average radial momenta of
the colliding particles decreases. The escape fraction be-
comes less important as r increases and the massless
particles initially emitted towards the black hole can now
escape in many cases. It is still more likely that a massless
particles emitted away from the horizon will escape than
one emitted towards it so the blue-shifted peak is generally
smaller than the red-shifted one. It also becomes clear that
the spectrum is indeed roughly symmetric around the dark
matter mass, which could be useful in determining the
mass from the spectrum.
In Fig. 5(c) the spectrum is shown for rcut ¼ 274 ¼

137rs and the collisions responsible for the majority of
the flux are now occurring far from the horizon. The escape
fraction becomes even less important and nearly all of the
massless particles produced in the collisions will now
escape. This can be seen in the spectrum by noting that
the red-shifted and blue-shifted peaks are now very nearly
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the same height. Comparing the spectrum with that in
Fig. 5(b), it can be seen that the red-shifted and blue-
shifted peaks continue to move towards the dark matter
mass as the effect of the Lorentz boost diminishes.
The spectrum could potentially be used to infer some of

the quantities in the system. The dark matter mass is
indicated by the minimum between the peaks and the value
of rcut can be estimated from the separation of the peaks as
a fraction of the dark matter mass.
The value of rcut can be estimated as follows; the dark

matter mass must be found first by locating the minimum
of the spectrum, the energy at which the first peak occurs as
a fraction of the mass of the dark matter then decreases as a
function of rcut. By plotting the peak location as a function
of rcut from simulation, the expected value of rcut can be
found for a given peak separation. It should be noted that
the distribution is not exactly symmetric and that the higher
energy peak is located closer to the dark matter mass than
the lower energy peak. However, both could be used to find
an estimate of rcut and the ratio of the height of the peaks
could also be utilized in this way. One problem with this
analysis is that it assumes that the angular momentum of
the black hole is known and varying a shifts the separation
of the peaks. However, this effect is much smaller than
changing rcut but would still introduce uncertainty in the
estimation. The ability to resolve the peaks depends on
the total flux available and the energy resolution around the
dark matter mass of a particular measurement. In terms of
the annihilation plateau, the separation of the peaks was
found up to rcut ¼ 105 with a separation of�E � 0:001m�.

For rcut ¼ 103, a separation of�E � 0:03m� was found. In

the case that the peaks cannot be resolved, then the spec-
trum can be approximated as a single peak with a width
comparable to the peak separation centered at the dark
matter mass.
The total flux can be estimated by choosing some suit-

able values for the parameters in Eq. (9). Setting the mass
of the black hole to M ¼ 40� 105M	, the annihilation
cross section of the dark matter as �v ¼ 10�28 cm2 s�1,
the distance from the black hole D ¼ 10 pc, and the time-
scale for the growth of the black hole as t0 ¼ 1010 years,
the flux can be written as [11],

� ¼ �0I ; (12)

where �0 ¼ 3:41 km�2 year�1. Integrating over r for
rcut ¼ 274 gives a total value of I � 2� 107 which gives
a total flux of� � 7� 107 km�2 year�1. For 10 TeV dark
matter annihilating to high-energy gamma rays, the HESS
experiment could be sensitive to such a large flux; however,
the energy resolution would be smaller than the separation
of the peaks [17]. For smaller values of rcut, resolution of
the peaks becomes easier but the total flux is reduced. At
rcut ¼ 34 the separation is potentially large enough to be
observed but I � 104 requiring greater sensitivity or ob-
servation time.
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FIG. 5. Spectrum of massless particles escaping to infinity
with a cut off in dark matter density at various values of rcut.
(a ¼ 1).
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The shape of the spectrum can also be considered for a
nonrotating black hole and for a reasonable value of rcut
gives a flux very similar to the Kerr case. Figure 6 shows the
spectrum for a nonrotating black hole with rcut ¼ 34 and
differs from Fig. 5(b) by having a slightly larger flux and
the peaks closer toE ¼ 1. This is due to the smaller Lorentz
boosts associated with the Schwarzschild black hole and a
faster growing escape fraction. This is found in contrast to
the spectrum in Ref. [2] where the spectrum was found to
have a narrow single peak. In considering the incoming
dark matter particles to have momenta distributed over the
whole range of allowed in falling geodesics, the Lorentz
shifting of the peak is found to have a splitting effect giving
rise to two peaks that accounts for this difference.

VI. CONCLUSIONS

In conclusion, we have shown that annihilation of dark
matter to massless particles around a black hole can pro-
duce a distinctive signal independent of the particle model.
The spectrum is found to be centered around the dark
matter mass with a splitting into two peaks due to the
Lorentz boosting of the center of mass frame of the collid-
ing particles. The shape of the spectrum retains its distinc-
tive shape when integrated over a typical density profile for
the dark matter and can in fact reveal details of the distri-
bution, in particular, the radius of the annihilation plateau
thought to form around a black hole. The shape of the
spectrum is not dependent on the total flux of massless
particles from the annihilations, which depends on several
unknown parameters for a particular source and is there-
fore a useful tool in discriminating such a signal from
astrophysical backgrounds.

In the analysis presented here, the final state particles are
assumed to be massless, however, the final result is not
changed for massive particles so long as the mass is small
compared to the mass of the colliding particles. This will
certainly be true for neutrinos in models where the dark
matter mass is of the order of few GeV and above. The
numerical calculation can be trivially expanded to include
a mass term for the escaping particles, and we find little
change in the resulting spectrum even for final state parti-
cles with a mass half that of the dark matter particle.
In calculating the energy spectrum, we assumed that the

annihilation cross section of the dark matter was indepen-
dent of the center of mass energy, for a particular dark
matter model the energy dependence of the cross section
could modify the shape of the spectrum. The cross section
would need to be found for each Monte Carlo-generated
collision as the center of mass energy changes for each pair
of colliding particles. We leave this extension for future
work.
In the numerical analysis carried out, the collisions were

assumed to take place in the equatorial plane and the
escape fraction and spectrum were taken to be independent
of the initial polar angle �0 at which the collision takes
place. The results were checked for collisions at �0 ¼ 0:6
for rcut ¼ 34, and the spectrum retains the same structure
with a lower total flux but the same separation between
peaks. It would therefore appear that the radial dependence
of the energy spectrum dominates over any �0 dependence.
For small r the spectrum will differ due to the dependence
of the radius of the ergosphere on �, however for reason-
able value of rcut the spectrum is dominated by collisions
far beyond the ergosphere.
The results also demonstrate that while large center of

mass energies are possible in collisions close to the horizon
the emitted massless particles will in general be largely red
shifted to energies around the dark matter mass. High-
energy massless particles were found in the spectrum
with energies far larger than the dark matter mass due to
the Penrose process; the nonzero escape fraction for these
particles means that collisions around black holes could
still be a source of energetic photons or neutrinos with
energies several times the dark matter mass, but the flux of
these will be small.
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