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I construct exact solutions for general nonextremal rotating, charged Kaluza-Klein black holes with a

cosmological constant and with arbitrary angular momenta in all higher dimensions. I then investigate

their thermodynamics and find their generalizations with the Newman-Unti-Tamburino charges. The

metrics are given in both Boyer-Lindquist coordinates and a form very similar to the famous Kerr-Schild

ansatz, which highlights its potential application to include multiple electric charges into solutions yet to

be found in gauged supergravity. It is also observed that the metric ansatz in D ¼ 4 dimensions is similar

to those previously suggested by Yilmaz and later by Bekenstein.
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I. INTRODUCTION

It is generally accepted that an appropriate ansatz for the
metric and the gauge potential plays a crucial role in
finding an exact solution to Einstein and Einstein-
Maxwell field equations. A well-known example is pro-
vided by the Kerr solution [1], which was first derived via
the Kerr-Schild ansatz [2]. This ansatz was then used by
Myers and Perry [3] in 1986 to successfully obtain higher-
dimensional vacuum generalizations of the Kerr solution.
Several years ago, the Kerr-Schild form was adopted again
by Gibbons, et al [4,5] to include a cosmological constant
in the vacuum Myers-Perry’s solution in all higher
dimensions.

With the discovery of the remarkable anti-de Sitter/con-
formal field theory (AdS/CFT) correspondence, it is of
considerable interest to generalize the above-mentioned
neutral rotating solutions to charged ones in arbitrary
dimensions. One of the major reasons is that rotating
charged black holes with a cosmological constant in higher
dimensions can provide new important gravitational back-
grounds for the study of the microscopic entropy of black
holes and for testing the AdS/CFT correspondence within
the string theory framework. In the case of ungauged
supergravity, research on string dualities has revealed
that some global symmetries can be used as solution-
generating transformations to obtain new solutions from
old ones. Therefore, it is straightforward to employ a
solution-generating procedure to generate charged solu-
tions from neutral ones. In general, the generated solutions
are very complicated and typically characterized by mul-
tiple electromagnetic charges, in addition to the mass and
angular momenta. (For an earlier review, see [6] and refer-
ences therein.)

However, the situation is quite different for the gauged
cases. There is no longer a solution-generating technique
available for deriving the nonextremal charged black holes

from neutral solutions in the gauged supergravity, since the
presence of a cosmological constant breaks down the
corresponding global symmetries of ungauged supergrav-
ity. One has little option but to resort to brute-force calcu-
lations [7,8], starting from a guessed ansatz to verify that
all the equations of motion are completely satisfied. At
present, almost all the previously-known solutions of rotat-
ing charged AdS black holes in higher dimensions have
been obtained in this way. What is more, they are limited to
very special cases either with some charges equal, or with
equal rotation parameters [9].
As far as the simplest case with only one charge is

concerned, the currently-known charged nonextremal ro-
tating black hole solutions within the Kaluza-Klein super-
gravity theory are as follows. The first rotating charged
black hole in the four-dimensional Kaluza-Klein theory
was derived in [10] via the boost-reduction procedure,
and its extension with a Newman-Unti-Tamburino (NUT)
charge was obtained recently in [11]. Generalizations to all
higher dimensions were presented in [12]. In the case of
Kaluza-Klein gauged supergravity, a single-charged solu-
tion with only one rotation parameter nonvanishing in five
dimensions was found for the first time in [13], and the
general rotating charged solution with only one charge
nonzero and with two unequal rotation parameters was
then announced in [9]. Inspired by the work [13], Chow
[14] recently found a solution describing a rotating charged
AdS(-NUT) black hole in four-dimensional Kaluza-Klein
gauged supergravity. General solutions that describe rotat-
ing charged Kaluza-Klein-AdS (KK-AdS) black holes in
D � 6 dimensions are not yet known explicitly until the
present work. For the most general case with three unequal
charges and with two independent rotation parameters, the
explicit form of charged rotating AdS5 solutions has re-
mained unknown up to now.
So far, all the previously-obtained solutions for rotating

charged AdS black holes were not derived via a universal
method other than via a combination of guesswork and trial
and error, followed by explicit verification of the field*Electronic address: sqwu@phy.ccnu.edu.cn
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equations. A natural question is, can one develop an effec-
tive method somewhat like the Kerr-Schild ansatz to over-
come the difficulty in the construction of rotating black
holes with multiple charges in gauged supergravity? The
answer seems likely to be definitive. The purpose of this
article is to present a clue to resolve this dilemma. As a first
step towards this direction and for simplicity, I shall be
mainly concerned with the single-charge case in Kaluza-
Klein supergravity.

In this paper, I begin by presenting the general solutions
for rotating, charged KK-AdS black holes with a single
electric charge and with arbitrary angular momenta in all
higher dimensions. Then I calculate the conserved charges
that obey the first law of thermodynamics, and make a
generalization to include the NUT charges. After these, a
primary analysis of the metric structure is given, which
sheds new light on constructing the most general rotating,
multiple-charged AdS black hole solutions yet unknown in
gauged supergravity theories.

II. GENERAL KK-ADS SOLUTION

To present the general exact solutions, conventions are
adopted as those in [4]. Let the dimension of spacetime be
D ¼ 2N þ 1þ � � 4, with N ¼ ½ðD� 1Þ=2� being the
number of rotation parameters ai, and 2� ¼ 1þ ð�1ÞD.
Let �i be the N azimuthal angles in the N orthogonal
spatial 2-planes, each with period 2�. The remaining
spatial dimensions are parametrized by a radial coordinate
r and by N þ � ¼ n ¼ ½D=2� ‘‘direction cosines’’ �i sub-
ject to the constraint

P
Nþ�
i¼1 �2

i ¼ 1, where 0 � �i � 1 for
1 � i � N, and (for even D) �1 � �Nþ1 � 1, aNþ1 ¼ 0.

The general nonextremal rotating, charged KK-AdS
solutions can be elegantly written in a unified form very
similar to the Kerr-Schild metric ansatz [2] by

ds2 ¼ H1=ðD�2Þ
�

d�s2 þ 2m

UH
K2

�

; (1)

A ¼ 2ms

UH
K; � ¼ �1

D� 2
lnðHÞ; (2)

where the anti-de Sitter metric d�s2 and the timelike 1-form
K are given by

d�s2 ¼ �ð1þ g2r2ÞWd�t2 þ Fdr2

þ XNþ�

i¼1

r2 þ a2i
�i

d�2
i þ

XN

i¼1

r2 þ a2i
�i

�2
i d

��2
i

� g2

ð1þ g2r2ÞW
�XNþ�

i¼1

r2 þ a2i
�i

�id�i

�
2
; (3)

K ¼ cWd�tþ
ffiffiffiffiffiffiffiffiffi
fðrÞ

q
Fdr�XN

i¼1

ai
ffiffiffiffiffiffi
�i

p

�i

�2
i d

��i; (4)

in which the functions ðU;W;F;HÞ and fðrÞ are defined
to be

U ¼ r�
XNþ�

i¼1

�2
i

r2 þ a2i

YN

j¼1

ðr2 þ a2j Þ; W ¼ XNþ�

i¼1

�2
i

�i

;

F ¼ r2

1þ g2r2
XNþ�

i¼1

�2
i

r2 þ a2i
; H ¼ 1þ 2ms2

U
;

fðrÞ ¼ c2 � s2ð1þ g2r2Þ; �i ¼ c2 � s2�i;

�i ¼ 1� g2a2i :

In the above and below, the shorthand notations c ¼ cosh�
and s ¼ sinh� are used.
One may transform the above solutions to a frame in

terms of generalized Boyer-Lindquist coordinates by

d�t ¼ dtþ 2mc
ffiffiffiffiffiffiffiffiffi
fðrÞp

dr

ð1þ g2r2Þ½VðrÞ � 2mfðrÞ� ;

d ��i ¼ d�i þ 2mai
ffiffiffiffiffiffi
�i

p ffiffiffiffiffiffiffiffiffi
fðrÞp

dr

ðr2 þ a2i Þ½VðrÞ � 2mfðrÞ� ;
(5)

where the function VðrÞ is defined by

VðrÞ � U

F
¼ r��2ð1þ g2r2ÞY

N

i¼1

ðr2 þ a2i Þ:

The general KK-AdS solutions then have the form

ds2 ¼ H1=ðD�2Þ
�

�ð1þ g2r2ÞWdt2 þ Udr2

VðrÞ � 2mfðrÞ

þ XNþ�

i¼1

r2 þ a2i
�i

d�2
i þ

XN

i¼1

r2 þ a2i
�i

�2
i d�

2
i

� g2

ð1þ g2r2ÞW
�XNþ�

i¼1

r2 þ a2i
�i

�id�i

�
2

þ 2m

UH

�

cWdt�XN

i¼1

ai
ffiffiffiffiffiffi
�i

p

�i

�2
i d�i

�
2
�

; (6)

A ¼ 2ms

UH

�

cWdt�XN

i¼1

ai
ffiffiffiffiffiffi
�i

p

�i

�2
i d�i

�

; (7)

which is in a frame nonrotating at infinity. The gauge
potential has been changed modulo a radial gauge
transformation.
In the uncharged case (� ¼ 0), the above metric (6)

reduces to those found in [4,5]. On the other hand, if the
cosmological constant is set to zero, it degenerates to those
derived in [12]. In particular, the KK-AdS solutions in the
D ¼ 4, 5, 7 nonrotating case correspond to the supergravity
black hole solutions [15] but with only one charge. I have
directly and explicitly checked that the general solutions (6)
and (7) obey the field equations derived from the Lagrangian
of the Einstein-Maxwell-dilaton system (F ¼ dA)

L ¼ ffiffiffiffiffiffiffi�g
p �

R� 1

4
ðD� 1ÞðD� 2Þð@�Þ2 � 1

4
e�ðD�1Þ�F 2

þ g2ðD� 1Þ½ðD� 3Þe� þ e�ðD�3Þ��
�

; (8)
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for the D ¼ 4, 5, 6, 7 cases. Since the dimension of space-
time is not distinguished in any way in the general expres-
sions for the solutions, it is confident that the solutions are
valid in all dimensions. In particular, the D ¼ 4 solution
reproduces the one recently found by Chow [14]. In the
D ¼ 5 case with only one rotation parameter and when one
sets �a ¼ �b ¼ 1 here, the single-charged solution then
coincides with the special solution found in [13] after setting
w ¼ 1 there. However, in the case of a rotating single-
charged KK-AdS5 solution with two unequal rotation pa-
rameters, no simple relation has been found to make the
above solution contact with the general solution declared
in [9].

III. THERMODYNAMICS

The KK-AdS black holes have Killing horizons at
r ¼ rþ, the largest positive root of VðrþÞ ¼ 2mfðrþÞ.
On the horizon, the Killing vector

l ¼ @

@t
þXN

i¼1

ð1þ g2r2þÞai
ffiffiffiffiffiffi
�i

p

ðr2þ þ a2i Þc
@

@�i

becomes null and obeys l�l�;� ¼ �l�, where the surface

gravity is given by

� ¼ rþð1þ g2r2þÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
fðrþÞ

p

c

�XN

i¼1

1

r2þ þ a2i
þ �� 2

2r2þ

þ g2c2

ð1þ g2r2þÞfðrþÞ
�

; (9)

hence the Hawking temperature T ¼ �=ð2�Þ is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fðrþÞ

p ½V 0ðrþÞ � 2mf0ðrþÞ�
4�r��2þ c

Q
N
i¼1ðr2þ þ a2i Þ

: (10)

The entropy of the outer horizon is easily evaluated as

S ¼ VD�2r
��1þ c

4
ffiffiffiffiffiffiffiffiffiffiffiffi
fðrþÞ

p
YN

i¼1

r2þ þ a2i
�i

¼ VD�2mrþc
ffiffiffiffiffiffiffiffiffiffiffiffi
fðrþÞ

p

2ð1þ g2r2þÞ
Q

N
i¼1 �i

;

(11)

where I denote the volume of the unit (D� 2)-sphere as

V D�2 ¼ 2�ðD�1Þ=2

�½ðD� 1Þ=2� : (12)

On the horizon, the angular velocities and the electro-
static potential �þ ¼ ‘�A�jrþ are given by

�i ¼ ð1þ g2r2þÞai
ffiffiffiffiffiffi
�i

p

ðr2þ þ a2i Þc
; �þ ¼ s

c
ð1þ g2r2þÞ: (13)

I then adopt the procedure that was used in [16,17] to
calculate the conserved charges as follows,

M ¼ VD�2m

8�
Q

N
j¼1 �j

�

c2
�XN

i¼1

2

�i

þ �� 2

�

þ 1

�

;

Ji ¼ VD�2maic
ffiffiffiffiffiffi
�i

p

4��i

Q
N
j¼1 �j

;

Q ¼ ðD� 3ÞVD�2mcs

8�
QN

j¼1 �j

;

(14)

and explicitly verify that they satisfy the differential and
integral first laws of thermodynamics

dM ¼ TdSþXN

i¼1

�idJi þ�þdQ� PdV ; (15a)

D� 3

D� 2
ðM��þQÞ ¼ TSþXN

i¼1

�iJi � PV ; (15b)

where I have introduced the generalized pressure

P ¼ gD�2m

4�ðD� 2ÞQN
j¼1 �j

�

c2
�XN

i¼1

1

�i

þD� 3þ �

2

� D� 2

1þ g2r2þ

�

�D� 3

2
s2g2r2þ

�

; (16)

which is conjugate to the volume V ¼ VD�2g
2�D of the

(D� 2)-sphere with the AdS radius 1=g. The results pre-
sented above include those given in [12,18] as special cases
when g ¼ 0 and � ¼ 0, respectively.

IV. INCLUSION OF THE NUT CHARGES

To include the NUT charges, it is convenient to adopt the
Jacobi-Carter coordinates used in [19]. In doing so, I find
that the general nonextremal KK-AdS-NUT solutions can
be cast into the following compact form:

ds2 ¼ H1=ðD�2Þ
�

� Yn

	¼1

1� g2x2	
�	

dt2 þ Xn


¼1

U


X


dx2


þ Xn��

i¼1

~�2
i

�i

d�2
i þ

Xn


¼1

2m
ð�x
Þ�
U


K2



� s2

H

�Xn


¼1

2m
ð�x
Þ�
U


K


�
2
�

; (17)

A ¼ s

H

Xn


¼1

2m
ð�x
Þ�
U


K
; (18)

� ¼ �1

D� 2
lnðHÞ; (19)

with n independent 1-forms

K
 ¼ c

1� g2x2


Yn

	¼1

1� g2x2	
�	

dt� Xn��

i¼1

ai ~�
2
i

ffiffiffiffiffiffi
�i

p

ða2i � x2
Þ�i

d�i:

(20)
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In the above, I denote

~�2
i ¼

Q
n

¼1ða2i � x2
Þ

Q
n
k¼1

0ða2i � a2kÞ
; U
 ¼ Yn

	¼1

0ðx2	 � x2
Þ;

H ¼ 1þ s2
Xn


¼1

2m
ð�x
Þ�
U


; fðx
Þ ¼ 1þ g2s2x2
;

X
 ¼ �X
 þ 2m
ð�x
Þ�fðx
Þ;
�X
 ¼ 1� g2x2


x2


Yn

i¼1

ða2i � x2
Þ;

where the prime on the product symbol in the definition of
~�2
i or U
 indicates that the vanishing factor (i.e. when

k ¼ i or 
 ¼ 	) is to be omitted. In odd dimensions, one
has mn ¼ m; and for even dimensions, mn ¼ im and
an ¼ 0. In all dimensions, one sets xn ¼ ir.

One may transform the above KK-AdS-NUTmetrics via
the following coordinate transformations,

d�t ¼ dtþ c
Xn


¼1

2im
ð�x
Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
fðx
Þ

p

ð1� g2x2
ÞX


dx
;

d ��j ¼ d�j þ aj

ffiffiffiffiffiffi
�j

q Xn


¼1

2im
ð�x
Þ�
ffiffiffiffiffiffiffiffiffiffiffiffi
fðx
Þ

p

ða2j � x2
ÞX


dx
;

(21)

into a form like the multi-Kerr-Schild ansatz [20]. The
expected line element and the gauge potential can be
rewritten as follows

ds2 ¼ H1=ðD�2Þ
�

d�s2 þ Xn


¼1

2m
ð�x
Þ�
U


�K2



� s2

H

�Xn


¼1

2m
ð�x
Þ�
U


�K


�
2
�

; (22)

A ¼ s

H

Xn


¼1

2m
ð�x
Þ�
U


�K
; (23)

where the NUT-AdS metric d�s2 and the timelike 1-forms
�K
 read

d�s2 ¼ � Yn

	¼1

1� g2x2	
�	

d�t2 þ Xn


¼1

U


�X


dx2
 þ Xn��

i¼1

~�2
i

�i

d ��2
i ;

(24)

�K
 ¼ c

1� g2x2


Yn

	¼1

1� g2x2	
�	

d�tþ i
ffiffiffiffiffiffiffiffiffiffiffiffi
fðx
Þ

q U


�X


dx


� Xn��

i¼1

ai
ffiffiffiffiffiffi
�i

p

ða2i � x2
Þ�i

~�2
i d

��i: (25)

Reinterpreted in Dþ 1 dimensions, the general KK-AdS-
NUT solutions can be obtained via the standard dimension
reduction along the z-direction from the (Dþ 1)-
dimensional line element

dŝ2 ¼ dz2 þ d�s2 þ Xn


¼1

2m
ð�x
Þ�
U


ð �K
 þ sdzÞ2: (26)

V. METRIC STRUCTURE AND MODIFIED
NEWTONIAN DYNAMICS

Expressed in the language of tensors, the general non-
extremal KK-AdS solutions (1) and (2) have a beautiful
structure as follows

g�� ¼ H1=ðD�2Þ
�

�g�� þ 2m

UH
K�K�

�

;

g�� ¼ Hð�1Þ=ðD�2Þ
�

�g�� � 2m

U
K�K�

�

;

A� ¼ 2ms

UH
K�;

(27)

with the vector K� ¼ �g��K� being raised by the back-
ground metric tensors �g��. Moreover, the vector K� is a

timelike geodesic congruence, satisfying

�g��K�K� ¼ �s2; K� �r�K� ¼ K� �r�K� ¼ 0: (28)

In the presence of (n� 1) NUT charges and the mass
parameter, with the help of the relations: �g��

�K�

 �K�


 ¼
�g��

�K
�

 �K�

	 ¼ �s2, the inverse metric is found to be

g�� ¼ Hð�1Þ=ðD�2Þ
�

�g�� � Xn


¼1

2m
ð�x
Þ�
U


�K
�

 �K�




�

: (29)

The metric structure (27) naturally reduces to the
notable Kerr-Schild ansatz [2] in the uncharged case, there-
fore it is likely the unique suitable generalization to that of
the Kaluza-Klein gauged and ungauged supergravity the-
ory in the case with only one electric charge. It has already
been checked that with some further modifications, the
ansatz (27) can be extended to large classes of already-
known black hole solutions with multiple pure electric
charges, both in the cases of rotating charged black holes
in ungauged supergravity and in the cases of nonrotating
AdS black holes in gauged supergravity. Guided by the
generalized ansatz, in principle, one is able to construct
the expected new exact gauged solutions. Therefore, it
would be highly expected that the generalized ansatz (27)
can open a new way towards constructing the most
general rotating charged AdS black hole solutions with
multiple pure electric charges in gauged supergravity
theory.
Alternatively, one may use the dilaton scalar to reexpress

the metric tensors and the gauge potential as

g�� ¼ e�� �g�� þ ½e�� � eðD�3Þ��s�2K�K�;

g�� ¼ e� �g�� þ ½e� � e�ðD�3Þ��s�2K�K�;

A� ¼ ½1� eðD�2Þ��s�1K�:

(30)

It is apparent that the metric of the four-dimensional
KK-AdS black holes resembles those proposed by
Yilmaz [21] and by Bekenstein [22]. Given the same
matter contents of these two tensor-vector-scalar theories,
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it deserves a lot of deeper investigations of the relation
between them and the astrophysical implications of the
four-dimensional Kaluza-Klein-AdS theory as another
kind of modified Newtonian dynamics . For instance, it is
an interesting question as to whether the experimental test
of effects of the four-dimensional Kaluza-Klein black hole
on our solar system can explore the existence of extra
spatial dimensions or put some constraints on the size of
extra fifth dimension.

VI. CONCLUSIONS

In this paper, I have found the general nonextremal
rotating, charged KK-AdS black holes with arbitrary an-
gular momenta in all higher dimensions, and extended
them to include the (n� 1) NUT charges. The conserved
charges are given explicitly and shown to obey the
differential and integral first laws of black hole thermody-
namics. I then have explained that the general nonextremal
KK-AdS solutions have a beautiful structure similar to
the Kerr-Schild ansatz, which highlights its promising
application to include multiple electric charges into solu-
tions yet to be discovered in gauged supergravity. In addi-
tion, it is also observed that the generalized ansatz in the
D ¼ 4 case can be expressed as a form like the one

previously suggested by Yilmaz and later by Bekenstein
in his tensor-vector-scalar theory.
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Notes added.—While this paper was being under review

(and finally rejected by PRL), a generalized form of the
ansatz proposed in this work was used to successfully
construct a new exact rotating charged solution with two
unequal rotation parameters and with two different electric
charges, but the third charge being set to zero, in five-
dimensional Uð1Þ3 gauged supergravity. Along the same
line, the present author now succeeds in constructing the
most general charged rotating AdS5 solution with three
unequal charges and with two independent rotation pa-
rameters, which is the most interesting solution previously
unknown in D ¼ 5 Uð1Þ3 gauged supergravity. As such, it
is believed that the ansatz (27) proposed in this paper and
its generalized form would bring about an important break-
through in the method of constructing new exact gauged
supergravity solutions.
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[4] G.W. Gibbons, H. Lü, D.N. Page, and C.N. Pope, Phys.

Rev. Lett. 93, 171102 (2004).
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