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With much higher sensitivities due to coherence effects, it is often assumed that the first evidence for

direct dark matter detection will come from experiments probing spin-independent interactions. We

explore models that would be invisible in such experiments, but detectable via spin-dependent inter-

actions. The existence of much larger (or even only) spin-dependent tree-level interactions is not

sufficient, due to potential spin-independent subdominant or loop-induced interactions. We find that, in

such a way, most models with detectable spin-dependent interactions would also generate detectable spin-

independent interactions. Models in which a light pseudoscalar acts as the mediator seem to uniquely

evade this conclusion. We present a particular viable dark matter model generating such an interaction.

DOI: 10.1103/PhysRevD.83.115009 PACS numbers: 95.35.+d

I. INTRODUCTION

The sensitivity of dark matter (DM) direct detection
experiments is undergoing rapid progress and is expected
to continue in the next decade. There are a number of
proposed experiments which will probe complementary
aspects of dark matter properties with much better sensi-
tivities than the existing ones: DM mass, spin-independent
(SI) and spin-dependent (SD) cross sections, the depen-
dence of the cross sections on the target nuclei, directional
information, etc.

The focus, rightly, is often on the detection of spin-
independent DM interactions, because, due to a coherence
effect, the SI interaction cross section with heavy nuclei is
enhanced by A2, the number of nucleons in a nucleus, and
is, therefore, expected in many models to be the dominant
interaction in DM detectors.

There is a good chance that, in the not-too-distant future,
direct detection experiments will be able to extend their
sensitivity to cover the full detectable parameter space for
SI cross sections, down to the 10�48 cm2 level, belowwhich
atmospheric neutrinos constitute an irreducible background.

Prior studies [1–4] have considered the relationship
between SI and SD cross sections, concluding that the
two are typically correlated when a viable dark matter
candidate is present. Most of the discussions have been
in the context of the minimal supersymmetric standard
model. (Similar statements have been made about DM
candidates in universal extra dimensions [1] and little
Higgs models [3], as well.) In general, the common wis-
dom is that SI experiments have a much better chance of
first direct detection discovery.

The generality of this conclusion cannot be addressed by
merely considering operators; one must explore the under-
lying models which determine relationships between op-
erator coefficients. For example, the conclusions stated
above ultimately stemmed from the assumption of DM
with electroweak charges, which generically implies both

mediators with at least weak-scale masses to justify null
results thus far and couplings to the Higgs leading to SI
signals. Once this condition is relaxed, the relationship
between SI and SD cross sections becomes weaker, and
models in which SD interactions are more easily acces-
sible, or even the only interaction accessible in direct
detection experiments, become feasible.
Here, we point out that, in order to impose the last

condition, i.e., uniquely SD detection, the consideration
of subleading effects is crucial. Since, due to coherence
effects, SI experiments are more sensitive than SD ones
(currently by 5 orders of magnitude), a loop-induced SI
process might be only marginally more difficult or possibly
even as easy to detect than a tree-level SD one. Upon
considering these additional operators, we find that models
with light pseudoscalars are uniquely capable of generi-
cally evading such detection modes.
Although several ingredients of our analysis appear in

the literature [5,6], the impact of light mediators on a
general analysis of operators has not been heretofore dis-
cussed, and the effect of loop corrections on DM scattering
has not been considered in this context. In Sec. II, we
review current bounds on SI and SD cross sections and
the expected improvements. Sec. III then constitutes the
bulk of the paper. We discuss operators relevant for the
detection of DM particles, including operators which be-
come important in the case of light mediators. We then
consider which models could generate exclusively SD
interactions and calculate the loop-induced interactions
that would simultaneously be present. In Sec. IV, we con-
struct a viable model achieving our goals, in which the SI
interaction is out of reach, but the SD interaction may be
detected in future experiments. Sec. V concludes.

II. PROSPECTS OF DIRECT DETECTION

The best SI bounds come, at present, from XENON10
[7], CDMS [8], and XENON100 [9], with the highest
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sensitivity from XENON100 near 3� 10�44 cm2 at
50 GeV. In general, optimal sensitivity is for DM masses
of the order of the mass of the recoiling nucleus. At higher
masses, the sensitivity decreases roughly as 1=mDM.
Within the coming years, XENON100, LUX, and
SuperCDMS can improve these bounds down to the
10�45 cm2 or possibly near the 10�46 cm2 level.
Ultimately, multiton xenon or germanium experiments
can achieve sensitivities to 10�47 cm2 or maybe even
10�48 cm2, at which point atmospheric neutrinos form an
irreducible background [10–12] and achieving sensitivity
to lower SI DM-nucleon interactions seems unfeasible.

For SD detection, the best current limit for DM-proton
interaction is near 2� 10�38 cm2 from SIMPLE [13], with
slightly weaker bounds from COUPP [14], KIMS [15], and
PICASSO [16], at similar optimal masses as above. For
DM-neutron cross sections, the best bound is from
XENON10 [17] at 5� 10�39 cm2 at optimal sensitivity
near 30 GeV. Within the next few years, COUPP [18],
PICASSO [19], and XENON100 should improve these to
a few� 10�40 cm2, for both protons and neutrons. These
limits could then be extended to near 5� 10�41 cm2 with
experiments such as DMTPC, or to 5� 10�43 cm2 for a
500 kg extension of COUPP [20].

Bounds on direct detection cross sections can also come
indirectly from other experiments. One source is from DM
annihilation signals from the Sun. The annihilation at
equilibrium is proportional to the rate of DM capture,
which is driven by the same interactions as direct detection.
In this case, the SI terms are not so strongly enhanced over
the SD ones, since this capture is mostly due to light nuclei,
almost entirely hydrogen and helium. (Some enhancement
does occur due to small amounts of Fe and O, but bounding
the SD interaction, neglecting the SI contribution, is con-
servative.) Super-Kamiokande [21] and IceCube [22] used
this to place limits on SD proton interactions at around
10�38 cm2, assuming annihilations primarily to b �b. Above
mDM � 250 GeV, IceCube could even place a bound at
2� 10�40 cm2 if the DM annihilated toWþW�. However,
these indirect bounds do not apply in the case of light
mediators, which will be discussed below, since, if the
annihilations proceed through a light on-shell particle,
decays to neither heavy quarks nor W bosons occur.

Other bounds can be placed from constraints on opera-
tors from collider searches [23–25]. In cases where the
mediator can be integrated out, these searches place
bounds on interactions of very light dark matter better
than those of direct detection, while remaining competitive
with them for SD interactions of DM that can be directly
produced at the Tevatron. The expected LHC reach is
expected to also remain competitive with direct detection
sensitivites of upcoming expierments [24]. However, for
mediators light enough to be produced on-shell, the bound
deteriorates rapidly [25] and is also not applicable for the
class of models we discuss below.

III. GENERAL CONSIDERATIONS

A. Operator analysis

In order to survey possible models, we first identify all
operators through which dark matter may interact with
detectors. In doing so, we will see which interactions
give us the signals we are looking for and which operators
need to be suppressed by small coefficients or forbidden by
symmetries. Similar operator analyses have been consid-
ered before in Refs. [2,6,26]. We present it here as a guide
to possible types of underlying structure.
We assume that the mediator is heavy enough so that, for

the purposes of direct detection, describing the interaction
of dark matter via a contact term is a reasonable approxi-
mation. Beyond this, we want to consider interactions with
dark matter of arbitrary spin, without making additional
assumptions, such as parity conservation. At the structural
level of the operators, this encompasses both elastic and
inelastic scattering. Having two (or more) fields of differ-
ent mass in the DM sector only leads to differences in
kinematics and the presence of operators that are otherwise
zero for Majorana fermions and real bosons for symmetry
reasons (discussed below).
The smallest number of operators, as expected, is fur-

nished by scalar dark matter candidates. These are listed in
Table I. Note that Os

3 and Os
4 are nonvanishing only if the

dark matter candidate is complex.
For fermionic dark matter, the operators are listed in

Table II. If the dark matter candidate is a Majorana fer-

mion, the operators Of
5 , O

f
7 , O

f
9 , and Of

10 are absent, as

they are odd under charge conjugation. There are only two
operators with tensor couplings. Since ����5 ¼
i��������=2, not all (pseudo)tensor-(pseudo)tensor com-

binations are linearly independent. In addition, Of
7 has

separate SD terms suppressed independently by v2 and

q2, whileOf
6 , commonly referred to as the anapole moment

coupling, has contributions to both SI and SD cross sec-
tions with different suppression factors. (Here, as else-
where in the paper, v is the velocity of DM in the halo,
approximately 10�3, while q is the momentum transfer in
the interaction.)
Finally, in Table III, we give the possible operators for

vector dark matter candidates. Similar to the case of scalar
dark matter, the operatorsOv

3 andO
v
4 are only present if the

vector is complex.

TABLE I. Operators relevant for scalar dark matter detection.
The suppression factor given is for the relevant cross section.
Operators Os

3 and Os
4 are only allowed for complex scalars.

Operator SI/SD Suppression

Os
1 ¼ �2 �qq SI —

Os
2 ¼ �2 �q�5q SD q2

Os
3 ¼ �y@�� �q��q SI —

Os
4 ¼ �y@�� �q���

5q SD v2
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There are a large number of operators that could mediate
SD interactions. However, for our purposes, some of these

may be ignored right away. For example, Of
6 and Ov

7 lead

to both SD and SI interactions of comparable magnitudes.
It may naively seem that all operators that come with
kinematic suppression factors can be dismissed just as
easily. After all, with DM in the galactic halo at such low
velocities, the nonrelativistic limit is appropriate for detec-
tion, and, traditionally, such operators have indeed been
neglected. Let us examine this assumption more carefully.

Within the dominant weakly interacting massive particle
paradigm, the mediator has typically been assumed to be at
the weak scale, with direct detection occurring with
Oð100 MeVÞ momentum transfers and Oð100 keVÞ recoil
energies. In that case, the integrated-out mediator sets the
scale of the operators through a factor of 1=m2

W . In the
nonrelativistic limit, terms like �c�5c are suppressed by
factors of j ~qj=2mN or j ~qj=2mDM, while others, like
�c���5c , have some components scale as v. Operators
with any of these factors can typically be dismissed,

because they are suppressed by Oð103Þ. This means that,
even if present, such interactions can be ignored. For
example, in the case of Majorana fermion dark matter,
such as the neutralino in supersymmetric models, the
only two operators that need to be considered are scalar-
scalar and axial-vector–axial-vector [11,27,28]; all others
are highly suppressed.
However, recent interest in explaining various possibly

DM-related anomalies have introduced models with
OðGeVÞ mediator particles. In this case, if the leading
operators were suppressed or forbidden for some symmetry
reason, the traditionally subleading operators could lead to
contributions of the correct magnitude to be accessible to
current or future direct detection experiments. As pointed
out in Ref. [29], these two statements may, in fact, be
connected, since the spontaneous breaking of a symmetry
forbidding the appearance of certain operators can provide
for a natural explanation for the presence of light (pseudo)
Nambu-Goldstone scalars.
This opens up new possibilities. If SI operators without

kinematic suppression factors are forbidden or highly sup-
pressed for other reasons, the set of operators which may
lead to a detectable SD signal becomes much larger.

B. Renormalizable models

If wewish to remain agnostic about the nature of theDM-
nucleon interactions, we can say no more. However, if a
further step is to be taken, it seems most conservative to
assume that the DM comes from some theory with renor-
malizable interactions in which the operators leading to
direct detection come from heavy states that have been
integrated out. One can then askwhat sort of renormalizable
interactions could lead to the operators given above. Such a
procedure was followed in Ref. [5]. Here, we quote their
results, along with the additional possibilities afforded by
interactions yielding kinematically suppressed operators.
For scalar DM, the only option for generating solely SD

operators seems to be a t-channel exchange of a light
pseudoscalar, which yields Os

2. While such an interaction

breaks parity, given that parity is badly broken already in
the standard model (SM), this is not a serious concern.
For fermionic DM, several possibilities present them-

selves. Once again, a t-channel light pseudoscalar exchange

produces solely SD interactions via Of
4 . Additionally, for

Majorana fermions, the t-channel exchange of a vector with
axial couplings, either the SM Z or a new Z0, will generate
only a single kinematically unsuppressed operator, Of

8 .

Other options are an s- or u-channel coupling through either
a scalar or vector, provided the couplings are chiral, in

which case Of
8 is generated again. If the couplings are not

chiral, Of
1 is produced, as well.

Finally, for vector DM, a light pseudoscalar in the t
channel produces only Ov

2 , which breaks parity as in the

scalar case. Alternatively, an s- or u-channel coupling

TABLE III. Operators relevant for vector dark matter detec-
tion. Operators Ov

3 and Ov
4 only exit for complex vector fields.

Notations as in Table I.

Operator SI/SD Suppression

Ov
1 ¼ B�B� �qq SI —

Ov
2 ¼ B�B� �q�5q SD q2

Ov
3 ¼ By

�@
�B� �q��q SI —

Ov
4 ¼ By

�@
�B� �q���

5q SD v2

Ov
5 ¼ B�@�B

� �q��q SI v2q2

Ov
6 ¼ B�@�B

� �q���
5q SD q2

Ov
7 ¼ �����B

�@�B� �q��q
SI v2

SD q2

Ov
8 ¼ �����B

�@�B� �q���5q SD —

TABLE II. Operators relevant for fermionic dark matter de-

tection. Operators Of
5 , O

f
7 , O

f
9 , and Of

10 only exist if the dark

matter is Dirac. Notations as in Table I.

Operator SI/SD Suppression

Of
1 ¼ ��� �qq SI —

Of
2 ¼ ��i�5� �qq SI q2

Of
3 ¼ ��� �qi�5q SD q2

Of
4 ¼ ���5� �q�5q SD q4

Of
5 ¼ ����� �q��q SI —

Of
6 ¼ �����5� �q��q

SI v2

SD q2

Of
7 ¼ ����� �q���

5q SD v2 or q2

Of
8 ¼ �����5� �q���

5q SD —

Of
9 ¼ ������ �q���q SD —

Of
10 ¼ ��i����5� �q���q SI q2

DARK MATTER MODELS WITH UNIQUELY SPIN- . . . PHYSICAL REVIEW D 83, 115009 (2011)

115009-3



through a fermion makes Ov
8 the leading operator, if the

coupling is chiral while the vector boson is real.

C. Loops and subleading interactions

Suppose that one is presented with a model in which one
of the above SD interactions is the only one present or
dominant over others by many orders of magnitude. Does
that mean that only an experiment sensitive to SD inter-
actions would see a signal? Not necessarily.

The bounds on SI cross sections are currently 5–7 orders
of magnitude higher than the SD ones, and this looks to
continue to be the case in the future. Therefore, if any of
the SD interactions discussed above induce subleading SI
couplings, such an effect could potentially be visible in a SI
experiment. There are two sources for such effects. First,
there are kinematically suppressed contributions of tree-
level scattering that were ignored above. These are easily
estimated from Tables I, II, and III given earlier. Second,
the tree-level SD interactions can induce SI couplings at
loop level. These are not as simple to estimate and should
be calculated to confirm their effect.

Let us consider a Z (or Z0 exchange) with a Majorana
fermion, as in Fig. 1(a). While the dominant contribution

comes from Of
8 , also present is Of

6 , the anapole coupling.

We see that this gives rise to a SI interaction suppressed by
v2. Similarly, both the scalar exchange of Fig. 2(a) and the
equivalent diagram for vector exchange give an anapole
coupling after using Fiertz identities. A fermion exchange
of the same form in the case of vector DM producesOv

7 , as

well as Ov
8 , in the chiral limit, which again mediates a

v2-suppressed SI coupling. In all of these cases, there is
a SI scattering cross section no more than Oð106Þ smaller
than the SD one, independent of any other field content of a
model. This means that such interactions would be seen in

SI experiments simultaneously or in the next generation of
experiments after they appear in SD ones. Only the pseu-
doscalar exchanges evade this, as they lead to no
v2-suppressed subleading contributions to DM-nucleon
scattering at all.
All the aforementioned interactions should also be com-

puted at the one-loop level. While these will be suppressed
by loop factors and extra couplings, they may also generate
SI interactions. For large enough couplings, these loops
might even give rise to interactions larger than the kine-
matically suppressed ones discussed above and so might be
even more readily detectable.
Without making any further assumptions about the

underlying model, we can already identify diagrams which
will produce SI interactions at loop level. For SD interac-
tions involving a t-channel exchange, at a minimum, ex-
changing two mediators in a box diagram will give rise to a
SI interaction. For an s or u-channel process, a SI loop-
level contribution can come from a loop with W or Z
bosons exchanged between the quarks.
Consider the exchange of a Z with axial couplings to

quarks. (We will discuss the case of a Z0 shortly.) In that
case, the quark-level operator for tree-level scattering
[Fig. 1(a)] is

g22
2cos2	W

Tq
3

Q

2

1

m2
Z

�����5� �q���
5q; (1)

whereQ is the coupling of the DM to the Z. Then, the DM-
proton SD cross section generated is (see Appendixes A
and B for details)

�
�p
SD � ð1:5� 10�39 cm2Þ

�
Q

0:1

�
2
; (2)

with the DM-neutron cross sections about 20% smaller. In
this case, two one-loop processes lead to SI effective
interactions: one with two Z exchanges and a Higgs cou-
pling through a Z loop to the DM [Fig. 1(b)]. We work in
the limit mq � mZ � mDM. (This limit is generally the

one in which the DM has the correct relic abundance in
models where the only coupling of the DM to the quarks is
through electroweak bosons, while foregoing the last in-
equality only yields Oð1Þ changes; see Ref. [30].) The SI
contribution to the effective coupling is then [30,31]1

FIG. 1. The tree- and loop-level contributions to the scattering
of Majorana fermions through a Z boson. For all box diagrams,
the crossed box diagram is included in calculations but not
depicted. In the last diagram, a Higgs mediates the scattering
through a Z loop.

FIG. 2. The tree- and loop-level contributions to the scattering
of Majorana fermions through an s-channel scalar.

1In deriving this result, along with those following, we have
set several quark operators, such as

mq ��� �qq; ��� �qi6@q;
4

3mDM

��i@���� �qi
�
i@��� þ @��� � 1

2
g�� 6@

�
q;

which all simplify to mq ��� �qq on shell, but can have different
nuclear matrix elements, to their on-shell value. In fact, this
seems to yield a conservative estimate, as, out of the nuclear
matrix elements known, the first one has the smallest value (for a
detailed discussion of these issues, see Ref. [32]).
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1

4


g42Q
2

cos4	WmZ

�ðTq
3 Þ2

2m2
Z

þ 1

4m2
h

�
mq ��� �qq: (3)

Taking a reference value of mh ¼ 120 GeV, these inter-
actions will induce a SI cross section of

�
�N
SI ¼ ð4� 10�47 cm2Þ

�
Q2

0:1

�
2
: (4)

Asking that the SD signal be just beyond current SD
experimental bounds implies Q� 0:3, giving a SI cross
section of 4� 10�47 cm2. This, while not detectable in
experiments underway, is feasible with ones in preparation.

This result would make the v2-suppressed contribution
to SI scattering dominant. However, it is worth mentioning
that this cross section acts as a lower bound—it could be
that the DM particle is part of a larger representation of
SUð2Þ, in which case, additional loops involving W’s
would also contribute. Generally, the size of the cross
section grows as n2, with n the dimension of the represen-
tation [31], making it possible for the loop contribution to
be dominant and not merely competitive with the kineti-
cally suppressed contribution, and even being large enough
to be discovered simultaneously with the SD signal.

If one wishes to consider models with a new Z0, then the
existence of a Z0 with Higgs coupling becomes model-
dependent. To talk about a lower bound, we can then ignore
the contribution of the second term in the effective cou-
pling. The heavier mediator mass that such a model would
entail would have to be offset with a larger coupling in
order to be detectable. Thus, at loop level, one would
generally expect the effective interaction to be of at least
similar size, or possibly larger, due to the higher power of
the coupling appearing in the loop-induced term.

If one considers the possibility of a light Z0, which is not
ruled out by collider constraints down to the GeV range for
gauge couplings smaller than the SM by 10�2, the situation
discussed abovewould be reversed, and onewould expect a
smaller loop-induced contribution. However, the SI con-
tribution, due to kinematically suppressed operators, is
insensitive to changes in the mediator mass and would still
be present. Constructing a model without such operators
and without significant fine-tuning seems extremely diffi-
cult. It is difficult to say more in generality, due to the large
freedom in assigning masses and charges under a new
gauge group.

Now, let us consider DMwith chiral couplings to the SM
via an s or u channel. The most model-independent loop-
level processes here come from box diagrams with the
quarks exchanging a W or Z boson, an example of which
is given in Fig. 2(b). The contributions of the loops have
completely different forms, depending on whether the
coupling of the DM is left- or right-handed. However, in
all cases, the loop-level processes only give rise to sup-
pressed SD contributions. In addition to DM of the form in
Fig. 2, this is also true for the cases of fermionic DMwith a

vector mediator and vector DM with a fermion mediator of
similar topologies. In this case, we find that the most
reliable lower bound on a SI cross section in this case
comes from the v2-suppressed contribution to the tree-
level interaction discussed earlier.
Finally, let us turn to the box diagrams induced in the

cases of light pseudoscalar exchange, Fig. 3(b). First, we
consider the case of scalar DM. At tree level, the operator
obtained after integrating out the pseudoscalar is

1

m2
a

�yqm��
y� �qi�5q; (5)

where yq is the Yukawa coupling of the quark, so � absorbs

both the coupling of the DM and mediator and any scaling
to Yukawas of the mediator-quark coupling. This leads to a
tree-level cross section of

��p
SD � ð8� 10�37 cm2Þ

�
�

0:1

�
2
�
1 GeV

ma

�
4
: (6)

(See Appendix B for the definition of the cross section in
cases of kinematically suppressed operators.) For a media-
tor with mass of a few GeV and � ¼ 0:01, this would be
accessible to currently running searches.
The calculation of the loop diagram in the same limits as

the previous Z-mediated case does not give as compact of
an answer, but can be expressed in closed form in terms of
Passarino-Veltman scalar integrals [33], computed with the
use of FeynCalc [34] as

1

ð4
Þ2�
2y2q½C0ðm2

�;0;m
2
�;m

2
�;m

2
a;0Þ

�C0ðm2
�;m

2
�;0;m

2
a;m

2
�;m

2
aÞ

þm2
aD0ðm2

�;m
2
�;0;0;0;m

2
�;m

2
a;m

2
�;m

2
a;0Þ��y@�� �q��q:

(7)

A numerical evaluation of the coefficients shows the C0

and D0 functions with these parameters to scale as
lnðma=m�Þ and ln2ðma=m�Þ, respectively, beyond their

overall 1=m2
� dependence. Using a fiducial value of

ma=m� ¼ 0:01 gives

1

ð4
Þ2
�2y2q

m2
�

CS�
y@�� �q��q; (8)

FIG. 3. The tree- and loop-level contributions to scattering DM
mediated by a light pseudoscalar. The dotted line can represent
either a scalar, fermion, or vector boson.
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where CS � 80. Note that, if the DM were real, this
operator vanishes identically, and there is no loop-induced
coupling at one-loop order at all. If present, the cross
section induced is

��N
SI � ð4� 10�54 cm2Þ

�
�

0:1

�
4
�
100 GeV

m�

�
4
; (9)

undetectable for any choice of parameters that would make
the SD cross section detectable.

The case of vector DM is very similar. For

1

m2
a

�yqmBB
y
�B

� �qi�5q; (10)

the tree-level cross section takes the same value as Eq. (6).
Meanwhile, the loop-induced coupling is

1

ð4
Þ2 �
2y2q

�
C0ðm2

B; 0; m
2
B;m

2
B;m

2
a; 0Þ

� C0ðm2
B;m

2
B; 0;m

2
a; m

2
B;m

2
aÞ

þm2
aD0ðm2

B;m
2
B; 0; 0; 0; m

2
B;m

2
a; m

2
B;m

2
a; 0Þ

þ 1

4m2
B

½B0ðm2
B;m

2
a; m

2
BÞ

� B0ðm2
B; 0; m

2
BÞ�

�
By
�@�B� �q��q; (11)

which numerically evaluates to

1

ð4
Þ2
�2y2q

m2
B

CVB
y
�@�B� �q��q; (12)

with CV � 80 very close to the scalar case, giving a loop-
induced SI cross section, as in Eq. (9), and similarly giving
no contribution if the DM were real.
The case of fermionic DM is slightly different. This is

because the tree-level operator responsible for scattering is

1

m2
a

�yq ��i�
5� �qi�5q (13)

and, therefore, is parametrically suppressed by q4, instead
of the previous cases’ q2. The tree-level cross section then
becomes

��p
SD � ð3� 10�43 cm2Þ

�
�

0:1

�
2
�
1 GeV

ma

�
4
: (14)

We see that, due to the greater momentum suppression, we
require a lighter mediator mass and cannot afford the
coupling of the DM to be as small as in the bosonic case
above. In this case, a cross section detectable in current
experiments would require, for example, a mediator with
ma ¼ 100 MeV and � ¼ 0:1.
Meanwhile, the effective coupling from computing the

loop diagram in the same limits as the other cases is

1

ð4
Þ2
�2y2q

m2
�

��
1

2
þm2

�

2
C0ðm2

�;m
2
�; 0;m

2
a; m

2
�;m

2
aÞ �m2

�C0ð0; m2
�;m

2
�; 0; m

2
a; m

2
�Þ
�
����� �q��q

þ 3

8

�
1þ B0ðm2

�; 0; m
2
�Þ � B0ð0;m2

a;m
2
aÞ þ 4m2

�C0ðm2
�; 0; m

2
�;m

2
�;m

2
a; 0Þ �m2

�C0ðm2
�;m

2
�; 0;m

2
a; m

2
�;m

2
aÞ

þ 3m2
am

2
�D0ðm2

�;m
2
�; 0; 0; 0; m

2
�;m

2
a; m

2
�;m

2
a; 0Þ

�
mq

m�

��� �qq

�
; (15)

which numerically yields

1

ð4
Þ2
�2y2q

m2
�

�
CF1

����� �q��qþ CF2

mq

m�

��� �qq

�
; (16)

with CF1
� 4:8 and CF2

� 170. The magnitudes of these
coefficients can be understood as arising from the
lnðma=m�Þ and ln2ðma=m�Þ behavior of C0 and D0 men-
tioned above. The loop-level cross section is then

��N
SI � ð3� 10�56 cm2Þ

�
�

0:1

�
4
�
100 GeV

m�

�
4
: (17)

We will confirm below in the explicit model of Sec. IV that
the loop-induced coupling is indeed tiny, but it is simple to
see here why this is generically so.

Unlike in the massive mediator cases, there are two mass
scales in the dark sector, that of the DM itself and that of
the mediator. At tree level, the lighter mediator mass is the

one that appears in the denominator of the operator.
However, at loop level, the value of the loop integral is
parametrically controlled by the mass of the DM, the
heaviest particle in the loop. Additionally, a pseudoscalar
which is the Nambu-Goldstone boson of a broken symme-
try would be expected to couple to quarks proportional to
the masses of the quarks. Thus, at loop level, the effective
operator would be expected to be suppressed by extra
factors of quark Yukawa couplings. Together, both effects
combine to make the loop-level coupling to be as many as
20 orders smaller than the tree-level one, with higher-order
corrections to the nonrelativistic scattering approximation
coming at similar orders as q2v4, so that the SI-induced
interaction is expected to be completely negligible.

IV. THE AXION PORTAL

We have just seen that, without tuning of couplings,
models with light pseudoscalar mediators provide the
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unique method of avoiding any SI signal, while still pro-
ducing a SD direct detection signature. Now, we turn to the
question of whether a viable model producing DMwith the
correct abundance can have these features.

Coupling a light pseudoscalar to quarks is most effi-
ciently achieved by adding a scalar field which spontane-
ously breaks a global symmetry and which, by mixing with
the Higgs, gets a coupling to the SM. Allowing this scalar
to have a new global charge, while adding new fermions
charged under the same symmetry, ensures that the new
scalar field is the only method for the new fermions to
interact with the SM.

As a simple realization of such a mechanism, where the

dominant interaction is Of
4 via a pseudoscalar interaction,

we introduce, following Ref. [35], a scalar field charged
under a new global Uð1ÞX charge that is spontaneously
broken to

S ¼
�
fa þ sffiffiffi

2
p

�
exp

�
iaffiffiffi
2

p
fa

�
: (18)

This scalar field is coupled to a new fermion, which is
vectorlike under the SM, throughL ¼ ��S��c þ H:c:, so
that, after the scalar field acquires a vacuum expectation
value, the fermion receives a mass of m� ¼ �fa, allowing

it to act as dark matter, with stability ensured by the
remnant of Uð1ÞX after breaking.

In order for the pseudoscalar to interact with the SM,
some known particles must also carry charges under the
new Uð1ÞX. In a two-Higgs–doublet model, this can be
accomplished by adding a term of the form

L ¼ �SnHuHd þ H:c:; (19)

by assigning the appropriate charges to the Higgses and
SM fermions and promoting the Uð1ÞX to a Peccei-Quinn
(PQ) symmetry. For n ¼ 2, this coupling is of the same
form as in the case of the Dine-Fischler-Srednicki-
Zhitnitsky axion [36,37], while the n ¼ 1 case functions
like that of the PQ-symmetric limit of the next-to-minimal
supersymmetric standard model [38]. We now have a dark
matter candidate coupling to the SM through a massive
scalar and an axionlike Nambu-Goldstone boson. The
Nambu-Goldstone boson is assumed to get a small mass
through an unspecified mechanism. Anticipating making
the scalar heavy, by virtue of

h�vi��c!sa ¼ m2
�

64
f4a

�
1� m2

s

4m2
�

�
þOðv4Þ; (20)

a choice of, say, ms ¼ fa ¼ 1 TeV and m� ¼ 1:1 TeV

(corresponding to � ¼ 1:1) yields a cross section of
3� 10�26 cm3=s and so generates the correct order of
magnitude for the relic abundance [35].

For direct detection, two channels present themselves.

The scalar gives a SI cross section through the operatorOf
1 ,

due to mixing of the scalar with the two CP-even Higgses,

while the light axionlike state yields a SD interaction, Of
4 ,

by a similar mixing with the CP-odd Higgses. For our
purposes, we need to check whether this tree-level SI cross
section can be small enough to be completely negligible.
The mixing of the scalar with the two CP-even Higgses

has a lot of arbitrariness to it, due to the 11 constants in the
most general Uð1ÞPQ-preserving two-Higgs–doublet and

one-singlet potential. However, we can say that, barring
accidental cancellations, this mixing will be � ¼
Oðvew=faÞ, so that we may write the tree-level SI cross
section as

��N
SI � ð2� 10�42 cm2Þ�2�2

�
100 GeV

ms

�
4
: (21)

(See Appendix A for a caveat on the values of the nuclear
matrix elements in this calculation.) In the model consid-
ered in Ref. [35], ms needed to be light, Oð10 GeVÞ, in
order to provide a mechanism for Sommerfeld enhance-
ment to explain astrophysical anomalies. In that case, the
direct detection cross section was in tension with the SI
bound and could only be slightly beyond current limits, at
a few� 10�43 cm2. However, if we impose no such con-
dition, ms could be larger. If it is at the electroweak scale,
then the cross section is, at most, a few� 10�45 cm2,
smaller than the sensitivity of the next generation of direct
detection experiments. If ms �Oð1 TeVÞ, a reasonable
choice given the scale of fa in this setup, then the cross
section becomes undetectably small, below the irreducible
atmospheric neutrino limit.
Let us next consider the pseudoscalar channel. With the

interaction kinetically suppressed by the momentum trans-
fer as q4, we cannot merely compute the cross section in
the limit of q2 ! 0 as we did in the scalar exchange case.
Instead, we must define a cross section at a fixed momen-
tum transfer. (See Appendix B for a more thorough dis-
cussion.) We choose to do so at q2ref ¼ ð100 MeVÞ2.
Because the signal is different from that of unsuppressed
interactions relative to the expected recoil energies, the
sensitivities of experiments are modified. This was studied
in Ref. [29], with the result that, at the same reference
momentum transfer, optimal sensitivities of SD experi-
ments to pseudoscalars remained at the same order of
magnitude as in the unsuppressed case, but with 1=mDM

scaling of the limits.
With this definition, we can compute the SD cross

section for q2 ¼ q2ref as

�
�p
SD � ð2� 10�37 cm2Þ�2sin2	

q2ref
4m2

�

�
1 GeV

ma

�
4
; (22)

where tan	 ¼ n sin2
½vew=ð2faÞ� is the mixing of the s
with the Higgses [39]. From this, we see that, given a DM
mass m� ¼ 1:1 TeV, a pseudoscalar with a mass ma �
300 MeV generates a cross section of 3� 10�40 cm2,
within the range of the next generation of direct SD detec-
tion experiments. In fact, in a two-Higgs–doublet model
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like this, the nuclear matrix element also has a dependence
on 
, as up-type quarks couple with a coefficient propor-
tional to cot
, while down-type ones couple proportional
to tan
. We have evaluated the matrix elements for the
above cross section at tan
 ¼ 1. At large values of tan
,
the cross section can rise by almost 2 orders of magnitude.

Given the tiny size of the tree-level SI cross section, and
in keeping with the discussion of the previous section, we
should confirm that the loop-induced couplings fail to
produce a detectable SI cross section. The calculation
mostly mirrors that of Sec. III C. The only substantial
difference is the aforementioned different coupling to up-
and down-type quarks. As before, we evaluate the nuclear
matrix elements at tan
 ¼ 1, but this time, varying tan

cannot only modify the cross section by a factor ofOð1Þ, as
the suppression of sin2	 at high tan
 is too strong, so we
find

�
�N
SI � ð3� 10�56 cm2Þ

�
� sin	

0:1

�
4
�
100 GeV

m�

�
4
; (23)

with no additional implicit tan
 dependence.

V. CONCLUSIONS

As the sensitivity of both SI and SD direct DM detection
experiments increases, it is worth asking to what extent the
discovery potential of the two methods is complementary.
In this work, we have pointed out that, when one considers
the full range of possible mediators, instead of being
confined to new weak-scale particles, the range of possible
viable interactions generating SD cross sections increases.
At the same time, when one searches for interactions for
which SD experiments are complimentary for discovery—
ones which could not be seen in any SI experiments
without the need for accidental cancellations or other
tuning—it becomes necessary to take into account sub-
leading contributions to scattering, such as suppressed
operators and loop processes. The outcome is that the
traditional models considered also generically produce SI
interactions whose suppression is counterbalanced by the
greater sensitivity of SI experiments. The list of viable
candidates whose interaction with the SM can be described
by tree-level mediators integrated out in a renormalizable
model is then reduced to merely ones mediated by light
pseudoscalars.

We have presented a realistic model of such interactions
that generates the right DM abundance with a fermionic
DM candidate without having other interactions generating
detectable SI interactions.

Similar scenarios can also be considered with a scalar or
vector dark matter candidate. Just as in the case of fermi-
onic DM, Os;v

1 gives the leading interaction in the non-

relativistic limit, while Os;v
2 is kinematically suppressed.

The necessary couplings between the pseudoscalar and the
scalars or vectors cannot be generated in as simple a
manner as those used above, so more model building will

be required. However, the suppression is only by q2, so the
mass differences between the scalar and pseudoscalar do
not have to be quite as large, and the couplings themselves
can be smaller, so that the parameter space of couplings
and the pseudoscalar mass are not as tightly limited by
experiment, potentially making the exercise worthwhile.
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APPENDIX A: NUCLEAR MATRIX ELEMENTS

Here, we summarize how to compute the dark-matter–
nucleon interaction cross sections from quark-level inter-
actions. Much of this has been discussed in the DM
literature, with the exception of the pseudoscalar matrix
element, as it only plays a role in momentum-suppressed
cross sections.
For a vector coupling, nuclear matrix elements are

straightforward to compute, since a vector coupling to
quarks is a conserved current, so the coupling to a nucleon
is obtained from the sum of the currents of the valence
quarks.
In the case of a scalar coupling to quarks, we are

interested in the effective nucleon coupling induced by a
quark-level coupling:

aqmq �qq ! fNmN
�NN: (A1)

We define the nuclear matrix elements conventionally by

hNjmq �qqjNi ¼ mNf
ðNÞ
Tq : (A2)

On including the coupling to gluons induced by integrating
out heavy quark loops, fN is given by

fN ¼ X
q¼u;d;s

fðNÞ
Tq aq þ

2

27
fðNÞ
TG

X
q¼c;b;t

aq; (A3)

where fðNÞ
TG ¼ 1�P

q¼u;d;sf
ðNÞ
Tq .

Unlike the u and d matrix elements, which can be
extracted from 
N scattering, the uncertainty associated

with the strange quark matrix element fðNÞ
Ts is higher, which

introduces a substantial uncertainty in the SI coupling to

nucleons. Most studies use numerical values fðNÞ
Ts � fðNÞ

Tu;d

based on older calculations. A representative set of values
is that used by the DarkSUSY package [40], wherein,

fðpÞTu ¼ 0:023; fðpÞTd ¼ 0:034; fðpÞTs ¼ 0:14;

fðnÞTu ¼ 0:019; fðnÞTd ¼ 0:041; fðnÞTs ¼ 0:14:
(A4)

These are the values used for the numerical estimates given
above and in most of the literature. However, recent lattice
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QCD results give substantially smaller values, fðNÞ
Ts ¼

0:013� 0:020 [41] (see also [42,43]), and so the SI cross
section from scalar exchange (if it couples proportionally
to mass) may be smaller by a factor of 2–5 than numerical
results quoted by many calculations.

For SD interaction, we need to consider the nuclear
matrix elements induced by the quark-level axial-vector
and pseudoscalar couplings,

dq �q���
5q ! aN �NsðNÞ

� N; (A5)

and

cqmq �qi�
5q ! gNmN

�Ni�5N: (A6)

For the axial-vector current, defining

hNj �q���
5qjNi ¼ sðNÞ

� �qðNÞ; (A7)

where sðNÞ
� is the spin of the nucleon, we have

aN ¼ X
q¼u;d;s

dq�q
ðNÞ: (A8)

The matrix elements coming from polarized deep inelastic
scattering carry much smaller uncertainties than for the
scalar SI interaction above. For our numerical results, we
use again the DarkSUSY values,

�uðpÞ ¼ �dðnÞ ¼ 0:77; �dðpÞ ¼ �uðnÞ ¼ �0:40;

�sðpÞ ¼ �sðnÞ ¼ �0:12: (A9)

More recent determinations favor slightly different values,

and the Particle Data Group quotes �sðnÞ ¼ �0:09,

�dðnÞ ¼ 0:84, and �uðnÞ ¼ �0:43, with a 0.02 uncertainty
for each [44]; the effect on our numerical results is
negligible.

For the pseudoscalar current in Eq. (A6), the nucleon-
level coupling is determined by the same axial-vector
matrix elements above. The relationship is established
through generalized Goldberger-Treiman relations. While
not normally considered in dark matter detection, it has
been well-studied in the axion literature [45,46]. Taking
divergences of the axial currents and using the equations of
motion for the quarks yields [47]

gN ¼ ðcu � �cq�Þ�uðNÞ þ ðcd � �cq�zÞ�dðNÞ

þ ðcs � �cq�wÞ�sðNÞ; (A10)

where � ¼ ð1þ zþ wÞ�1, z ¼ mu=md, and w ¼ mu=ms,
while �cq is the mean of the quark coupling coefficients.

Because of uncertainties in the value of z, the value of gN
can vary by as much as a factor of 2.

APPENDIX B: CROSS SECTIONS

In this Appendix, we provide a summary of cross sec-
tions for DM-nucleon interactions relevant for calculating

the various cross sections discussed above in the nonrela-
tivistic limit.
We first consider the unsuppressed operators in the limit

of zero momentum transfer. SI cross sections can come
from either scalar or vector quark couplings. Effective
DM-nucleon scalar interactions for fermions of the form

fN ��� �NN; (B1)

which are derived from the quark-level couplings using
nuclear matrix elements, as explained in Appendix A, lead
to a DM-nucleus cross section

�̂ ¼ 4



�̂2½Zfp þ ðA� ZÞfn�2; (B2)

for Majorana DM fermions. (For Dirac fermions, all results
for Majorana fermions are divided by 4.) Here, �̂ is the
reduced mass of the DM-nucleus system. The per-nucleon
cross section, which is usually quoted for comparisons, is

� ¼ 4



�2 1

A2
½Zfp þ ðA� ZÞfn�2; (B3)

where � is the reduced mass of the DM-nucleon system.
For scalar or vector dark matter, the relevant operators

are (we include the DMmass to give all operators the same
dimension)

fNm��� �NN or fNmBB
�B�

�NN; (B4)

and the nucleon cross section for either operator is

� ¼ 1



�2 1

A2
½Zfp þ ðA� ZÞfn�2: (B5)

Vector interactions for fermions only exist in the case of
Dirac DM:

bN ����� �N��N; (B6)

where bp ¼ 2bu þ bd and bn ¼ bu þ 2bd, due to vector

current conservation, as discussed above in Appendix A.
Then,

� ¼ 1



�2 1

A2
½Zbp þ ðA� ZÞbn�2: (B7)

For the operators

bN�
y@�� �N��N or bNB

y
�@�B

� �N��N; (B8)

which only exist for complex scalars or vectors, the cross
section is

� ¼ 1



�2 1

A2
½Zbp þ ðA� ZÞbn�2: (B9)

Unsuppressed SD interactions come solely from the
quarks’ axial currents. In the case of

aN �����5� �N���
5N; (B10)

the DM-nucleus cross section is
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�̂ ¼ 16



�̂2a2NJNðJN þ 1Þ; (B11)

and, for a nucleon,

� ¼ 12



�2a2N: (B12)

The only other unsuppressed SD interaction is for vector
DM and comes from

aN�
����B�@�B�

�N���
5N: (B13)

Here, the DM-nucleon cross section is

� ¼ 2



�2a2N: (B14)

All of the above cross sections are quoted in the q2 ! 0
limit. In this limit, interactions mediated by light

pseudoscalars are all zero, so we need another way of
expressing such cross sections. To do so, we will use the
fact that, while in the nonrelativistic limit, �c c � 2m,
�c�5c � qi�y�i�, so that, using the results above, we
can write (since q2 � j ~qj2 in the nonrelativistic limit)

���5� �N�5N � q2

4m2
�

q2

4m2
N

�����5� �N���
5N: (B15)

We then compute the cross section as above and quote a
result at a reference value of q2. We have chosen q2 ¼
ð100 MeVÞ2, since, with q2 ¼ 2mNER, where ER is the
recoil energy of the nucleus, this is a typical value for most
SD detectors. Other momentum-suppressed operators can
be handled the same way.
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