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Awarped extra-dimensional model, where the standard model Yukawa hierarchy is set by UV physics,

is shown to have a sweet spot of parameters with improved experimental visibility and possibly

naturalness. Upon marginalizing over all the model parameters, a Kaluza-Klein scale of 2.1 TeV can

be obtained at 2� (95.4% C.L.) without conflicting with electroweak precision measurements. Fitting all

relevant parameters simultaneously can relax this bound to 1.7 TeV. In this bulk version of the Rattazzi-

Zaffaroni shining model, flavor violation is also highly suppressed, yielding a bound of 2.4 TeV. Nontrivial

flavor physics at the LHC in the form of flavor gauge bosons is predicted. The model is also characterized

by a depletion of the third-generation couplings—as predicted by the general minimal flavor violation

framework—which can be tested via flavor precision measurements. In particular, sizable CP violation in

�B ¼ 2 transitions can be obtained, and there is a natural region where Bs mixing is predicted to be larger

than Bd mixing, as favored by recent Tevatron data. Unlike other proposals, the new contributions are not

linked to Higgs or any scalar exchange processes.

DOI: 10.1103/PhysRevD.83.115003 PACS numbers: 12.60.�i

I. INTRODUCTION

Plunging the standard model (SM) in a warped extra-
dimension provides new perspectives on understanding
electroweak symmetry breaking (EWSB), offering a new
way to solve the gauge hierarchy problem [1]. The
Randall-Sundrum (RS) class of models also offers a simple
way to address the SM flavor puzzle by localizing the SM
fermions away from the Higgs vacuum expectation value
(VEV) with Oð1Þ parameters [2,3], which is referred to as
the anarchic approach. In addition, the anarchic setup
protects against large flavor and CP violation via the
so-called RS-GIM mechanism [4–6]. Yet, a residual little
CP problem, in the form of too large contributions to �K
[7–11] and electric dipole moments [4,5,12], remains.
(Some more RS flavor issues can be found in e.g.
[13–22].) Furthermore, this framework calls for improve-
ment on naturalness since a fine-tuning of worse than
Oð10%Þ [9,23–25] of the electroweak (EW) scale is re-
quired to comply with EW precision tests (EWPTs)
[26,27]. In the best of all known RS models, including a
custodial symmetry for Z ! b �b, the lore is that this pushes
the Kaluza-Klein (KK) scale above 3 TeV (below we argue
that these numbers may be too optimistic).

It has been known for some time that changing the
position of the light fermions, thus giving up on the virtues
of the anarchic approach, may result in a better EW fit. In
particular, if the profile of all the light fermions is close to
being flat, a suppression of the Peskin-Takeuchi S parame-
ter is obtained [26,28–33]. This would allow one to lower
the KK-scale and possibly improve the naturalness of
the model. It is interesting that such a fermion setup is

consistent with imposing in the bulk the approximate SM
flavor symmetries: Uð2ÞQ �Uð2ÞU �Uð2ÞD �Uð3ÞL �
Uð3ÞE, where Q, U, D (L, E) correspond to the SM quark
(lepton) doublet, up- and down-type quark (charged lep-
ton) singlets, respectively.
In the following, we propose to give up on the warped

extra-dimensional built-in mechanism for solving the fla-
vor puzzle and the RS-GIM protection; after all, no experi-
mental evidence implies that the flavor hierarchies arise
from TeV scale physics, while, on the other hand, the
hierarchy problem does inevitably point to it. We assume
that the Yukawa hierarchy is set by some unknown physics
on the UV brane, while both the bulk and the IR brane are
invariant under the (now gauged) SM flavor symmetries.1

Then the hierarchical five-dimensional (5D) fundamental
Yukawa couplings are shined through the bulk by scalar
flavon fields, thus realizing the approximate SM flavor
symmetry structure.
Such a setup was first proposed by Rattazzi and

Zaffaroni (RZ) [36], where the SM fields were localized
on the IR brane as in the original RS1 model [1]. In this
case, higher-dimensional operators, which generically con-
tribute to EWPTs and flavor-changing neutral currents
(FCNCs), can be suppressed, but only at the expense of a
severe little hierarchy problem.

1The lepton symmetry can be also be broken down to products
of Uð2Þ. However, for simplicity we do not consider this possi-
bility nor do we focus on lepton flavor violation, which is
suppressed in our framework, or neutrino masses. Both issues
are discussed in [34,35].
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We show below that a bulk version of the RZ model,
with a bulk Higgs [37], leads to a very exciting class of
models, where improved agreement with EWPTs is ob-
tained. We perform a global fit to the EW precision ob-
servables, evaluating the contributions to S, T, and Z ! b �b
at one-loop order (which are calculable in this model). In
order to compare our model to the celebrated anarchic
case, we also repeat the fit for this case. (However, for
simplicity, we only consider one possible custodial assign-
ment.) As a result of our analysis, we find a sweet spot in
the parameter space of the bulk RZ model, which allows
for a significantly lower KK-scale, such that it would be
much easier to observe (or exclude [38]) at the LHC.
Furthermore, we show that the inclusion of the one-loop
contributions to the EWobservables raises the KK-scale of
the anarchic case. In addition, the fine-tuning associated
with our model is ameliorated relative to the anarchic case.

The above scenario offers also some interesting perspec-
tive on flavor physics. First of all, the �K RS problem is
solved, so that the bound from flavor is considerably
weakened. Second, the model is characterized by a deple-
tion of the third-generation couplings, as predicted by the
general minimal flavor violation framework [39]. The
model also yields sizable CP violation (CPV) in �B ¼ 2
transitions with, in particular, the possibility to obtain CPV
contributions in Bs mixing larger than in Bd, as seems
favored by the Tevatron data at present [40]. This is
achieved without invoking Higgs or other scalar exchange
processes [41–43]. Finally, since the bulk flavor symmetry
is gauged, such that large breaking effects from quantum
gravity are avoided, flavor gauge bosons are awaited
around the TeV scale. Such states may be discovered at
the LHC [44].

In short, the main differences between our study and
previous ones are:

(i) We give a rational and an explicit model (a bulk RZ
setup with some rough speculations on a possible
extension to grand unification), where the light fer-
mion profiles are roughly flat.

(ii) We choose a custodial representation for the lep-
tons, which turns out to significantly improve the
result of the global EW fit.

(iii) We emphasize, by calculating explicitly (and via 5D
power counting), that in the bulk Higgs case the S
parameter is one-loop finite. Furthermore, our esti-
mation of the UV sensitive contribution to S, based
on naive dimensional analysis (NDA), shows that
they are subdominant (for related discussions, see
[27,33,45]). Thus, the resulting value of S is domi-
nated by finite contributions, and is under control.

(iv) We use updated input parameters for our EW fit
taken from [46]. Additionally, an appropriate top
5D Yukawa value, matched to the top mass at the
relevant scale, is used, and our 5D gauge couplings
are matched at one loop.

(v) Our statistical treatment consists of two different
analyses. In the first one we report a bound on the
KK-scale upon marginalizing over all the other
model parameters, while in the second we produce
a bound when all the relevant parameters are com-
bined in a multidimensional fit.

(vi) Finally, even though for simplicity we have not
considered the case where the Higgs is a pseudo-
Goldstone boson (PGB), we provide a rough specu-
lation on the fine-tuning of PGB extensions that
include the above improvements, which can be
compared to other genuine PGB studies [9,23,25].

The rest of the paper is organized as follows. In Sec. II
we describe the warped 5D setup and define our notation.
Then, in Sec. III, the constraints from EWPTs on this class
of models are presented, while in Sec. IV we elaborate on
their flavor phenomenology. Finally, Sec. V gathers our
conclusions and discusses prospects at the LHC.

II. THE MODEL

We work in a slice of AdS5 space-time. The metric is
ds2 ¼ ðkzÞ�2ð���dx

�dx� � dz2Þ with ��� ¼ diagðþ �
��Þ and a curvature scale k ’ 2:4� 1018 GeV, hence
solving the hierarchy problem all the way up to the
Planck scale. The slice is bounded by two branes at z ¼
R� k�1 and z ¼ R0 � TeV�1 usually referred to as the
UV and IR branes, respectively. We impose a SUð2ÞL �
SUð2ÞRL �Uð1ÞX gauge symmetry in the bulk. For sim-
plicity, in this study we assume that the Higgs field—H �
ð2; 2Þ0 under the ðL; RÞX custodial gauge group—is a bulk

field with VEV hHi ¼ v5ðz; �Þ=
ffiffiffi
2

p
, where v5ðz; �Þ ’

vR0=R3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �Þp ðz=R0Þ2þ� and v ’ 246 GeV [47].

The � parameter sets the VEV localization in the bulk,
with � ¼ 0 corresponding to gauge-Higgs unified models
[23,48]. Eventually, the model should be lifted to one
where the Higgs is realized as a pseudo-Goldstone boson
[23,49], so that the quadratically divergent corrections to
the Higgs mass are cut at the KK-scale.2 Therefore, we
choose � ¼ 0 in the following, so we expect our conclu-
sions to approximately hold also in models where the
Higgs is a pseudo-Goldstone boson. We also gauge in the
bulk the non-Abelian part of the SM flavor symmetry
SUð3ÞQ � SUð3ÞU � SUð3ÞD � SUð3ÞL � SUð3ÞE, such

that all flavor-changing effects are controlled by the SM
Yukawas, thus realizing the minimal flavor violation
(MFV) ansatz [36,50,51]. The fermions are embedded as
Q� ð2; 2Þ2=3, U� ð1; 1Þ2=3, D� ð1; 3Þ2=3 � ð3; 1Þ2=3 and

L� ð2; 2Þ�1, E� ð1; 3Þ0 � ð3; 1Þ0, so they transform cova-
riantly under the custodial parity [48].
The bulk gauge symmetry breaks down to the SM gauge

group on the UV brane and still preserves a custodial
SUð2ÞLþR after EWSB, so the T parameter is protected

2We leave this specific analysis to future work.
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from large bulk cutoff corrections. The breaking of the
flavor group occurs only on the UV brane, and is shined
toward the IR by some flavon scalar fields �, with VEV
h�i / YI, where YI are the 5D Yukawa matrices (I ¼ U,
D, E). In contrast with most previous studies, we take the
5DYukawas to display the hierarchy observed in 4D, which
boils down to assuming that the latter are set by unspecified
UV physics. The large top Yukawa implies a shift in the
third-generation bulk masses, while the 5D bottomYukawa
is free to be taken either large or small. The latter can be
regarded as the large or small tan� cases in two Higgs
doublet models, such as supersymmetric theories. For sim-
plicity we shall assume in the EW global fit that the 5D
bottom Yukawa is small, and leave the implications of a
large bottomYukawa option to the flavor physics discussion
in Sec. IV. This setup guarantees that at low energies the
model belongs to the MFV framework [52–61], where
harmless top Yukawa resummation is expected and may
be observable in the future. Note that although taking a
somewhat larger 5D bottom Yukawa (but still suppressed
compared to the 5D top Yukawa) would not strongly affect
the EWPTs, it would lead to a richer flavor phenomenology.
In addition, flavor violation from the presence of flavor
gauge bosons is also expected, but yet again, it is going to
be subject to MFV protection [44]. In the following we
discuss in more detail the EW and flavor sectors of our
model and their phenomenological implications.

III. ELECTROWEAK PRECISION TESTS

Models of new physics for the EW scale are tightly
constrained, at the per mile level, by the measurements at
SLD and LEP, both at and above the Z pole [62,63], as well
as by the Tevatron. In a large set of such models, the gauge
sector observables, described by the so-called oblique
parameters, capture most (if not all) of the constraints on
new physics. Moreover, the large coupling of the top to the
EWSB sector typically implies sizable nonoblique correc-
tions for the third-generation quarks, notably to the Z �bLbL
coupling. The oblique parameters, along with the Z partial
decay width into b �b, constitute a reduced set of EW
precision observables (EWPOs) often sufficient to con-
strain RS models [24,26,27,64–67]. Indeed, whenever lo-
calized toward the UV brane, the (elementary) light
fermions are barely sensitive to EWSB in the IR and induce

negligible corrections to the EWPOs. In contrast, since the
light fermions are more composite in our setup, additional
nonoblique corrections are expected to be generated. This
requires a more careful study of other observables, such as
the hadronic Z decay width and observables sensitive
to four-fermion operators in the lepton sector, like atomic
parity violation (APV) in heavy nuclei. In such a highly
nonuniversal new physics model, this implies that one must
look at more thanOð35Þ EWPOs in order to assess whether
EWPTs are passed. In the following, we discuss in detail
how such a fit is performed. Then, we report the resulting
bounds on the KK-scale and estimate the fine-tuning in our
model (as well as in the anarchic case) by computing the
sensitivity of the new physics scale to the input parameters.

A. Global fit to electroweak observables

In order to properly include all possible correlations
among the various observables, we perform a global fit to
the EW precision data following the approach of [68,69].
To do so, we match the relevant dimension-six operators in
the SM to our RS setup (see [65] for a review), including
the most important, top (and eventually bottom) Yukawa
enhanced, radiative corrections to the S and T parameters
and the Z �bLbL vertex. Radiative corrections to lighter
fermion-gauge boson couplings and to four-fermion opera-
tors will be suppressed by smaller Yukawas. Note that
when the bottom 5D Yukawa is Oð1Þ or larger, additional
loop contributions to the Z �bLbL vertex involving neutral
currents become important. We have not included such
contributions and therefore will limit our analysis to a
relatively small bottom Yukawa, where these radiative
corrections are subdominant.3

We include the following RS contributions to the SM
dimension-six operators. First of all, working at leading
order in ðv=mKKÞ2 � 1, the tree-level effects arise from
exchange of KK-gauge bosons through the diagrams of
Fig. 1. Additional tree-level contributions from the left-
handed bottom sector (potentially, controlled by the top
Yukawa coupling) are absent due to the custodial protec-
tion [48] (more generally, the left-handed down-type sector
of the three generations enjoys a custodial protection). For

FIG. 1. Tree diagrams contributing at leading order to the EWPO. The double line denotes a sum over the various gauge KK-states,
while the cross represents KK/zero-mode mixing from the Higgs VEV. Wa

0 are the SM zero modes with a ¼ 0; . . . ; 3 and W0 � B is

the hypercharge gauge field.

3In practice, this implies a hierarchy of �4–5 between the 5D
bottom Yukawa and the best fit value obtained for the top one.

ULTRAVISIBLE WARPED MODEL FROM FLAVOR . . . PHYSICAL REVIEW D 83, 115003 (2011)

115003-3



the up-type, as well as the right-handed down quark sec-
tors, which are not protected by this symmetry, the effects
are suppressed by the assumed hierarchical nature of the
5D Yukawa couplings (except for the top which is not, at
present, experimentally constrained).

Furthermore, it is known that isospin breaking in the
fermionic sector leads to sizable corrections to T at one
loop [26]. This correction is often negative as a result of the
choice of custodial representations, unless the singlet con-
tribution dominates, in which case T can be positive at one
loop [27,45]. On the other hand, the one-loop corrections to
S tend to be positive and relatively small in RS for a
reasonable range of parameters [27,45]. To prevent the
appearance of a large S parameter at tree level and cancel
the effect on the global fit of the small positive one-loop
correction, we will focus on a region where the light
fermions are almost flat [26]. Notice that since S is not
protected by any symmetry, it could a priori be UV sensi-
tive in 5D, whereas T is finite to all orders in perturbation
thanks to the custodial symmetry. However, we show
below that for a bulk Higgs the S parameter is one-loop
finite. Thus the one-loop shifts in both S and T are calcu-
lable and dominated by the first KK-states. In practice, we
include the first two KK-levels in the fit; higher KK-levels

would yield at most a ðmð1Þ
KK=m

ð3Þ
KKÞ2 � 10% correction,

which we choose to neglect. Moreover, third-generation
KK-quarks dominate the shift to the weak gauge boson
two-point functions through the diagram of Fig. 2, while
other contributions are suppressed by either gauge cou-
plings or smaller 5D Yukawas.

We include the one-loop correction to the ZbL �bL cou-
pling as well. The dominant contribution is from KK-
fermions through the diagrams of Fig. 3, involving the
SM charged current. Finally, although such contributions
are not present in the model under study, we report the
impact on the fit of the corrections to the S and T parame-

ters arising from SM loops with a pseudo-Goldstone Higgs
[70,71]. We refer the reader to Appendix A for further
details on both the tree and one-loop calculations.

B. UV Sensitivity of the S parameter

We start by deriving the 5D degree of divergence of
various one-loop contributions to S using NDA. We match
the various relevant diagrams onto the coefficient CS of the
5D local operator, B��W

��a
L Hy�aH, that generates S in

the 4D effective action via S ¼ 4�v2CS=gg
0. Gauge and

fermion contributions to this operator scale as Cg
S / g45 and

CY
S / Y2

t g
2
5, respectively. Recalling that the Yukawa cou-

pling has the same mass dimension as the 5D gauge
coupling for a bulk Higgs, ½Yt� ¼ ½g5� ¼ �1=2, power

counting yields Cg;Y
S ���1

5 , hence a finite contribution,

where �5 � NKK � k is the 5D cutoff. Thus S is perfectly
calculable at one loop, and is dominated by the
KK-fermion contribution, provided Yt � g5.
The 5D top Yukawa grows fast in the UV and quickly

becomes nonperturbative. A conservative approach usually
requires NKK * 3, so that the 5D construction makes sense
as an effective theory; we choose NKK ¼ 3 in the follow-
ing. Assuming in addition that the KK-fermion coupling to
a bulk Higgs is Oð1Þ for � ¼ 0, NDA yields a perturba-
tivity upper bound on Yt of

Yt

ffiffiffi
k

p 	 4�=
ffiffiffiffiffiffiffiffiffi
NKK

p ’ 7:3: (1)

Higher loops, however, will still be divergent, as they
involve more powers of Yt and/or g5. This introduces a
UV cutoff sensitivity, even for a bulk Higgs, starting at the
two-loop level. Nonetheless, we argue that the S parameter
calculation is still under control. Indeed, as exemplified by
the diagram shown in Fig. 4, the two-loop correction scales
like Y4

t or Y2
t g

2
5, so its contribution to S diverges like

logNKK. In Fig. 4 we show only the Higgs as the internal
line. As shown below, this is justified for the sweet spot

parameters, for which Yt

ffiffiffi
k

p � 5. Hence contributions from
an exchange of KK-gauge bosons will be subdominant,
since they are proportional to g25k� 9 (see Appendix A),

leading to a g25=Y
2
t � 36% correction NDA then yields

SNDA2-loop ’
4�v2

m2
KK

Nc

ð16�2Þ2 Y
4
t k

2 logNKK; (2)

FIG. 2. Diagram contributing to the SM gauge boson propa-
gators at one loop.

FIG. 3. One-loop diagrams contributing to ZbL �bL in the unitary gauge. KK-modes of third-generation Q ¼ 2=3 states and W

zero-mode are running in the loop.
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where we used the fact that KK-fermion coupling to a bulk
Higgs is Oð1Þ for � ¼ 0 [18]. Thus, SNDA2-loop is suppressed

by about Y2
t =16�

2 logNKK � 20% compared to the one-
loop correction. Higher loops will be even more suppressed
since, according to NDA, the expansion parameter is
Y2
t �5=16�

2, which is smaller than 1 for a perturbative
Yukawa. The S parameter is therefore under control in
our setup.

C. Statistical analysis

We first count the parameters of interest in our model.
Imposing the MFV ansatz, the bulk SM flavor symmetries
receive large breaking only from the third-generation
quark Yukawa couplings. Then, the SUð3Þ3Q;U;D flavor

bulk symmetry is broken down to an approximate
SUð2Þ3Q;U;D by the flavon VEVs, while the lepton flavor

group is unbroken. Therefore, the whole set of effective
operators in the SM is determined by 9 free parameters,
which we choose to be the fermion bulk masses: cQ3 , ct, cb,

cQi , cUi , and cDi (i ¼ 1; 2, with universal first two genera-

tion masses) for the quark sector, cL and cE for the leptons
(also taken to be family universal), and the KK-scale,mKK.
The flavon VEVs are set by the SM fermion masses.

The global fit analysis proceeds as follows. First of all, a
�2-distribution is constructed by comparing the experi-
mental measurements to the theoretical predictions of
the model; it is therefore a function of the new physics
parameters: �2 ¼ �2ðxÞ, where, in our case, x collectively
denotes the 9 parameters listed above. The most probable
parameter values, �x, are then identified by minimizing the
total �2 function with respect to the model parameters:
�2ðx ¼ �xÞ � �2

min. Finally, we bound the parameters x to

lie within confidence level regions around �x, whose size
and shape are dictated by the �2 difference, ��2ðxÞ �
�2ðxÞ � �2

min. The value of ��2 is fixed as a function of

the chosen confidence level (C.L.) and the number of
simultaneously constrained parameters.

For this analysis we assume a light Higgs and fix, for
definiteness, its mass to mH ¼ 115 GeV. We find that the
‘‘best fit’’ parameters in the present scenario are

mKK ¼ 3:5 TeV; ct ’ 0:47; cb ’ 0:6;

cQi ’ 0:54; cL ’ 0:47; ce ’ 0:50;
(3)

with a considerably lower sensitivity of the fit to cQ3 , cUi ,

and cDi (at the minimum of the �2, we find cQ3 ’ 0 and

cDi ’ 0:76). As shown in Fig. 5, there is a preference forUi

to be composite, although the �2 does not depend strongly
on cUi when Ui is sufficiently IR localized. The values
given in Eq. (3) correspond to cUi ’ �0:5, which we
will use as a benchmark point. In addition, we impose
the restriction cb 	 0:6 in order to ensure that the 5D
bottom Yukawa coupling is sufficiently small, so that the
Q ¼ �1=3 states give a negligible contribution to 	gZ �bLbL

(we have not included such contributions; the required
calculation can be extracted from [72]). Note, however,
that the fit prefers a value at the allowed upper limit for cb.
The goodness-of-fit of the above model is found to be

�2
min=d:o:f: ¼ 217:3=223 � 0:97. This can be compared to

the goodness-of-fit of the SM with a Higgs mass mH ¼
90 GeV (currently the best fit value): �2

SM=d:o:f: ¼
219:9=232 � 0:95. Thus, the agreement of this particular
beyond the standard model scenario is quite comparable to
the SM.4We note, however, that we did not fit the SM input
parameters in Eq. (3), but rather fixed them to their best fit
values in the absence of new physics [46]. We proceed now
to set C.L. limits for models that deviate from Eq. (3).

1.0 0.5 0.0 0.5

4.0

3.8

3.6

3.4

3.2

3.0

cU i

2
SM2

FIG. 5 (color online). �2 � �2
SM as a function of cUi , with the

rest of the parameters fixed to the best fit values of Eq. (3).
Besides being relatively insensitive to the localization of Ui, the
�2 distribution flattens for cUi <�0:5. Here we take mH ¼
115 GeV.

FIG. 4. Two-loop diagram relevant for matching onto the
dimension-six operator generating the S parameter. A similar
diagram with exchange of weak gauge boson is also present.

4The net decrease in the total �2 with respect to the SM can be
traced to �had, Re, R�, Ae, and to a number of LEP II cross
sections. Conversely, we find a worse fit to the forward-
backward asymmetry of the bottom, Að0;bÞ

FB , and to a lesser extent
to Rb. We also assume in our fit a Higgs mass mH ¼ 115 GeV,
but this has a negligible impact on the total �2. For example, the
SM with mH ¼ 115 GeV has �2 ¼ 221:3, which is only about
1.4 larger than the value given above.
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In our scenario, ��2 is a function of 9 new input
parameters, displaying a smooth decoupling limit,
with approximately ��2 / m�2

KK. We choose to present
bounds at the 95.4% (2�) C.L. We describe two statistical
treatments, of distinct physical relevance, to bound the
KK-scale from EWPTs at a given confidence level. First of
all, we derive a one d.o.f. bound on mKK only, by
marginalizing5 over all the bulk masses and imposing
��2 ¼ 4:00. In addition, we quote a bound on the KK-
scale resulting from a simultaneous fit of the most relevant
model parameters. We adopt the following simple criterion
for assessing the relevance of a given input parameter: if
@ log��2=@ logci >Oð1Þ, then the parameter ci is relevant
in setting the C.L. We find that the logarithmic derivatives
with respect to cQ3 , cUi and cDi are much smaller than 1 (so

we do not count them as d.o.f. for setting the C.L. limits),
while the rest of the logarithmic derivatives are order 1 or
larger. Therefore, the second bound on mKK is obtained by
assuming 9� 3 ¼ 6 d.o.f., which translates into ��2 ¼
12:8 for 95.4% C.L.

We stress that these two bounds have a meaning of their
own and contain complementary information. For the one
d.o.f. analysis, we have that, statistically, 95.4% of the
models show a KK-scale larger than the bound, without
any assumptions on all the other parameters. Thus, we
expect the one d.o.f. bound on the KK-scale to be rather
conservative and of most relevance in terms of LHC
discovery potential. On the other hand, the six d.o.f. analy-
sis informs us on the possible correlations among the
model parameters and, in particular, on the existence of
less constrained directions in the parameter space. The
presence of the latter could allow for a lower mKK, pro-
vided some other parameters deviate from their best fit
values in a correlated way. As a result, however, we expect
such a KK-scale to be statistically unlikely, although we
have not tried to quantify this statement. Nevertheless, we
think that the existence of such points in the parameter
space are worth mentioning, for such correlation may be
theoretically motivated and/or future experimental analy-
ses may become sensitive to additional parameters, on top
of the KK-scale.

D. EWPT global fit results

We report in this section the sweet spots found for the
one and six d.o.f. statistical analyses defined above. These
are done for both our flavor-triviality model, as well as for
a (slight) variant of the conventional anarchic model.

1. Sweet spot in the flavor-triviality model

Assuming the hierarchical Yukawa ansatz, we find from
the global fit a bound on the KK-scale of mKK > 2:1 TeV
(95.4% C.L.) for the one d.o.f. analysis (i.e. �2 � �2

min ¼
4:00). The corresponding sweet spot values for the bulk
masses are

cQ3 ’0:05; ct’0:47; cQi ’0:51; cL’0:48;

ce’0:50; cb’0:6; cUi ’�0:5; cDi ’0:77:
(4)

If instead the SM is taken as the ‘‘best fit point’’ (i.e. �2 �
�2
SM ¼ 4:00), the resulting bound is improved to 1.8 TeV

(with some changes in the bulk masses). Performing a six
d.o.f. analysis at 95.4% C.L. (i.e. �2 � �2

min ¼ 12:8) yields
mKK > 1:7 TeV, with

cQ3 ’0:02; ct’0:48; cQi ’0:50; cL’0:48;

ce’0:50; cb’0:6; cUi ’�0:18; cDi ’0:77:
(5)

We illustrate in Fig. 6, as a function of the left-handed
lepton localization parameter, cL, the ��2 contributions
which are most sensitive to this parameter; they are the Z
pole observables (including b and c quark observables) and

0.45 0.50 0.55 0.60 0.65

0

20

40

60

80

100

cL

2 total 2

Z pole b c quarks

Z pole

W mass

FIG. 6 (color online). Most important contributions to ��2 as
a function of cL, withmKK and other bulk masses set to the sweet
spot values of Eq. (4). The different curves, ordered according to
their value on the right side of the plot from bottom to top,
correspond to Z pole heavy quark observables including Rb;c,

Ab;c, and AFB
b;c (green), W mass measurements (red), Z pole

observables including total Z width, eþe� hadronic cross section
and other leptonic observables (blue), and total ��2 (black),
respectively.

5Assuming the parameters to be Gaussian distributed, margin-
alizing over the bulk masses boils down to setting them to the
values that minimize the �2 as a function of the KK-scale: i.e.,
ci ¼ ciðmKKÞ, where the ciðmKKÞ’s satisfy a null gradient con-
dition @�2=@cijmKK

¼ 0. (See e.g. [73].)
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theW mass measurements. This shows that a low KK-scale
is achieved for relatively flat light fermions, cL ’ 0:48, as
expected from cancellation of an effective S parameter
[see also Eq. (13) below]. We also report in Table I the
contributions to the �2 and ��2 for the one d.o.f. sweet
spot of Eq. (4).

2. Bounds on the semianarchic model

For the sake of comparing our setup to known anarchic
models, and better assessing the benefits of the flavor-
triviality scenario, we report the EW global results for a
semianarchic model defined as follows. We set the first two
quark generations and all the leptons to be elementary,
cQi ¼ cUi ¼ cDi ¼ cL ¼ cE ¼ 0:65, thus allowing the

corresponding 5D Yukawa couplings to be all of the
same order (the fit is completely insensitive to the precise
value of the c’s, or to the fact that these are all the same, as
long as they are UV localized). However, we require
cb < 0:6, so that the 5D bottom Yukawa coupling is sup-
pressed. This restriction ensures that our loop contribution
to 	gZ �bLbL

is reliable, as mentioned above. The results of

relaxing this assumption, so that full anarchy can be
achieved, will be presented elsewhere. The parameters
determined in the fit are mKK, cQ3 , ct, and cb. Unlike

what was found in the flavor-triviality model, under the
anarchy assumption the minimum �2 is obtained
when mKK ! 1, hence it is the same as in the SM.
The goodness-of-fit in this case is �2

SM=d:o:f: ¼
221:3=228 � 0:97.

We then find a one d.o.f. bound (�2 � �2
SM ¼ 4:00) on

the KK-scale of mKK > 4:6 TeV (95.4% C.L.) with the
following sweet spot values:

cQ3 ’ 0:11; ct ’ 0:49; cb ’ 0:6: (6)

For completeness, we also report that comparing the semi-
anarchic scenario to the best fit point of Eq. (3), the bound
is raised to mKK * 7 TeV (�2 � �2

min ¼ 4:00).
In order to set a limit on mKK by simultaneously

fitting all the parameters, we note that mKK and ct are
unequivocally relevant parameters (as defined in the pre-
vious subsection), while the logarithmic derivative of ��2

with respect to cQ3 is much smaller than 1, and the one

corresponding to cb is of order 1. We therefore perform a
4� 1 ¼ 3 d.o.f. analysis, corresponding to ��2 ¼ 8:02
for 95.4% C.L. This yields mKK > 3:9 TeV with

ct ’ 0:49; cb ’ 0:6; (7)

where we fixed cQ3 ¼ 0:10.

We end this subsection by emphasizing that in this work
we explore the possibility that the fermions span SUð2ÞL �
SUð2ÞR representations. However, the loop-level contribu-
tions to S, T, and 	gZ �bLbL

can be rather dependent on this

assumption. For instance, when the third-generation fermi-
ons are assigned to SOð5Þ representations, à la gauge-
Higgs unification, one finds that the one-loop S parameter
can be significantly smaller than for the SUð2ÞL � SUð2ÞR
representations (this happens, e.g., in the scenario of
Ref. [45]). This can affect the bounds for the anarchic
scenario, which are controlled by the oblique parameters
(plus 	gZ �bLbL

). As an example, in the scenario discussed in

[45], where the corresponding bound was found to be
mKK > 3:4 TeV, an updated 3-parameter fit to the EW
data leads to mKK > 3 TeV (both cases are compared to
the SM as the best fit). This slight improvement is mainly
due to the use of the most recent SM fit, that has moved in a
favorable direction for these scenarios. Regarding the
flavor-triviality case, we expect that the representation

TABLE I. Contributions to the �2 and ��2 for the sweet spot of Eq. (4); see [68].

�2 � �2
SM �2

min � �2
SM ��2

W mass 1.37 0.12 1.25

Z line shape and lepton AFB �2:47 �2:74 0.27

Z pole b and c quarks 5.30 3.44 1.86

s2W hadronic charge asymmetry 0.20 0.23 �0:03
Leptonic polarization asymmetries �1:95 �2:18 0.23

Deep inelastic scattering �0:13 �0:12 �0:01
Atomic parity violation 3.23 0.11 3.12

LEP2 hadronic cross section �1:97 �0:97 �1:00
LEP2 muon pair <10�2 0.03 �0:03
LEP2 tau pair �0:04 �0:03 �0:01
OPAL electron pair �0:02 �0:02 <10�2

L3 W pair �0:17 �0:11 �0:06
Z pole s quark 0.07 0.09 �0:02
LEP2 ee ! bb �3:22 �1:75 �1:47
LEP2 ee ! cc �0:18 �0:08 �0:10
Total 0.02 �3:98 4
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assignments for the third family are less crucial for the
sweet spot, since the difference in the loop-level S parame-
ter can be compensated to some extent by an effective
tree-level contribution (with a slight readjustment of
parameters). What is more important for the sweet spot is
the custodial protection associated with the lepton repre-
sentations, as emphasized in the introduction. With these
caveats, we explore the degree of tuning involved, in the
next subsection.

E. Fine-tuning estimates

The bulk RZ model displays a sweet spot of bulk masses
where the KK-scale is significantly lower than for the most
optimistic anarchic cases. Such a lower KK-scale would, in
principle, reduce the fine-tuning associated with the Higgs
mass in warped models. However, this result is a mere
consequence of the approximate flatness of the SM light
fermion wave functions. We therefore expect a large sen-
sitivity of the KK-scale under corrections to the sweet spot
values of the bulk masses, and a potentially larger new
source of fine-tuning. We show that, even in the anarchic
case, a sensitivity of this sort is actually also present; we
shall estimate its size as well.

Because of the flavor symmetries, the only UV sensitive
contributions are expected to be related to gauge interac-
tions, which distinguish between different fermion repre-
sentations. This would raise a legitimate question
regarding the sweet spot: why are fields related to different
SM representations located near each other, in particular,
around cx � 0:5? We do not have a sharp answer to this
question. However, one could imagine embedding the
above theory into some form of unification model (for an
SOð10Þ grand unified theory (GUT) see for example
[74–80]), which would explain why the couplings are
related to each other.6 Finite radiative corrections to these
quantities are proportional to the bulk masses themselves
[81]. The radiative corrections to the bulk masses, which
split the universal part of the fermions’ wave functions, ci,
will be finite and suppressed by a loop factor of order
g25k=16�

2 (g25k� 9). Therefore, a mass splitting of a few

percent is expected. It is interesting that within the RS
framework the radiative correction to the masses seems to
vanish for flat fermions. However, we shall not pursue this
possibility, as it goes beyond the scope of this project.

We now estimate the fine-tuning in the flavor triviality
and semianarchic models. The fine-tuning is composed of
two ingredients, namely, the sensitivity of the weak scale to
the KK-scale, FTmKK

, and the sensitivity of the KK-scale

itself to the bulk masses, FTc, through the global EW

fit. Strictly speaking, the former is under control only
if the Higgs is a pseudo-Goldstone boson (i.e., if its mass
is finite). Nonetheless, we believe a pragmatic approach7

consists in estimating this fine-tuning as FTmKK
’ ðv=f�Þ2,

where f�1
� � R0 (see e.g. [23]). The specific definition is

not crucial (and different studies differ in their order 1
coefficients in any case [9,23,25]), but it does enable us to
assess the difference in success between the anarchic and
flavor triviality cases.
Regarding FTc, one conventional procedure is to relate

it to the logarithmic derivative at the sweet spot, Sc �
maxij@ logmKK=@ logcij [82,83], and to interpret its inverse
as a measure of the fine-tuning involved. However, since
the sweet spot naturally resides in a local minimum of the
parameter space, this derivative exactly vanishes. Instead,
we find it convenient to use the (one-sided) finite difference
analog, which gives a measure of the sensitivity of mKK to
ci in a vicinity of the sweet spot. Since these one-sided
finite derivatives can be different on both sides of the best
fit point, especially for parameters which control the size of
the top Yukawa coupling (e.g. ct), we use an average of the
two,

Sci �
1

2

���������
ci
�ci

�mþ
KK

mKK

��������þ
��������

ci
�ci

�m�
KK

mKK

��������
�
; (8)

where we choose �ci ¼ 0:03, as motivated by the typical
size of the radiative corrections. Here �m


KK ¼ mKKðci 

�ciÞ �mKKðciÞ is the change of the KK-scale for a given
�ci, with the other bulk masses fixed, that is necessary to
keep��2 fixed (so as to keep the success of the EW global
fit at the same level). The final sensitivity should corre-
spond to the largest value obtained by repeating the pro-
cedure for all the parameters in the model, Sc ¼ maxiSci .

Using the definitions above, we find for the flavor-
triviality (one, six) d.o.f. sweet spots the following mea-
sures of fine-tuning:

FTmKK
’ ð8:4; 13Þ%; S�1

ct ’ ð5:3; 10Þ%;

S�1
cL ’ ð6:2; 8:9Þ%; S�1

cE ’ ð8:1; 9:3Þ%;

S�1
c
Qi
’ ð46; 42Þ%;

(9)

6This would require various fermions to come from the same
GUT multiplet, which would require a nonconventional ap-
proach to ensure proton longevity. Alternatively, one could
impose a discrete symmetry that would correspond to invariance
with respect to interchanging the different GUT multiplets.

7In the present model the Higgs mass parameter is quadrati-
cally sensitive to the cutoff scale, rather than to the KK-scale.
Our intention here is to very roughly estimate the fine-tuning of
the EW scale in PGB extensions that also incorporate the
ingredients discussed in this paper. One should remember, how-
ever, that such extensions can contain additional correlations that
may not allow a KK-scale as low as we have found above, or
may contain additional sources of fine-tuning (see e.g. [25]).
Nevertheless, we believe that the new ingredients highlighted
here should help in relaxing the bound on mKK, and hence
associated the fine-tuning in such models.
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while there is essentially no sensitivity to the rest of the
input parameters. If the SM is assumed to constitute the
best fit, these numbers slightly improve,

FTmKK
’ ð11; 14Þ%; S�1

ct ’ ð8:1; 10Þ%;

S�1
cL ’ ð8:2; 9:1Þ%; S�1

cE ’ ð9:2; 9:4Þ%;

S�1
c
Qi
’ ð44; 42Þ%:

(10)

In contrast, for the semianarchic model with fermions in
SUð2ÞL � SUð2ÞR representations, we find

SM:FTmKK
’ð1:7;2:3Þ%; S�1

ct ’ð22;20Þ%;

Best fit:FTmKK
’ð0:7;1:7Þ%; S�1

ct ’ð�;22Þ%;
(11)

for (one, three) d.o.f., respectively.8 We then see that in-
deed the fine-tuning of the weak scale is improved in our
model. On the other hand, the sensitivity to the bulk masses
is greater. We regard the sensitivity exhibited by S�1

c as an
indication of fine-tuning that, together with FTmKK

, deter-

mines the overall fine-tuning of the model.
Finally, it is interesting to analytically examine the

sensitivity of the vertex corrections [see Eqs. (A4) and
(A5)] to the localization of the leptons in our model, which
is the main source for S�1

cL;E , as given above. The parametric

dependence on cL;E and mKK of the corresponding opera-

tors is

at;shF / ðcL;E � 1=2þ kÞ
m2

KK

; (12)

where cL;E � 1=2 originated from the fþþg gauge

KK-states [26] and k ’ 0:06 effectively parametrizes the
contribution of the f�þg gauge KK-states. Using this
expression, we can approximately evaluate S�1

cL;E as

S�1
cL;E ¼

�
@ logmKK

@ logcL;E

��1 ’ 2ðcL;E � 1=2þ kÞ
cL;E

; (13)

which for cL ¼ 0:48 gives S�1
cL ’ 0:16. The remaining

sensitivity above comes from the rest of the observables.

IV. FLAVOR PHYSICS

Our setup is a variation of the anarchic 5D MFV model
[50,51], where the shined Yukawas are of hierarchical
structure as in [36], but the SM quarks propagate in the
bulk. Therefore, the following relation between the bulk
masses and the 5D Yukawa matrices is obtained:

CQ ¼ aQ � 13 þ bQUYUY
y
U þ bQDYDY

y
D þ � � � ;

CU;D ¼ aU;D � 13 þ bU;DY
y
U;DYU;D þ � � � ;

(14)

where the dots stand for contributions from higher powers
of the Yukawa flavons. Recall also that, in the absence of
mixing, the masses in terms of the Yukawas are given by

mU;D ’ 
U;D

vffiffiffi
2

p FQYU;DFU;Dr
H
00ð�; cQ; cU;DÞ þ � � � ;

(15)

where FX are matrices with eigenvalues fxi representing
the IR projection of the quark zero-mode profiles, given by
f2
xi
¼ ð1� 2cxiÞ=ð1� �1�2c

xi Þ, cxi are the eigenvalues of

the Cx matrices, � ¼ exp½���, � ¼ log½MPl=TeV�, MPl is

the reduced Planck mass, and rH00ð�; cL; cRÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ�Þ

p
2þ��cL�cR

is the overlap correction for a bulk Higgs [22]
(rH00ð�; cL; cRÞ ¼ 1 for a brane-localized Higgs). The


U;D coefficients are distinct from those in the expansion

of Eq. (14) (in our subsequent discussion, only the combi-
nations 
U;DYU;D appear). For simplicity we show in

Eq. (15) only the part related to the zero-mode couplings
and the leading term in terms of the Yukawa flavon fields.
In practice, the third-generation masses are somewhat
modified due to the fact that the mass eigenstates are
affected by mixing with the KK-fermions, hence this is
taken into account in our quantitative analysis. NDA sug-

gests that in the most generic models bQU;D, bU;D, and 
U;D

are all of order 1 in appropriate units of the curvature [51].
However, we point out that 
U;D carry different

Uð1ÞYU;D; �Q;U;D;H charges (which can be thought of as gen-

eralized Peccei-Quinn symmetries), and therefore a hier-

archy between 
U and 
D, and between 
i and bQi , bi is
natural, and can be obtained in specific models. For in-
stance, in models of gauge-Higgs unification, 
i can be
indirectly suppressed due to gauge interactions.
An immediate consequence of the MFV framework is

that bounds from flavor violation in the first two genera-
tions become much weaker. This follows from an inherent
suppression of right-handed currents, which require light
mass insertions [39,57]. Thus, the bound from �K, which is
rather strong in the anarchic case [7–11], is irrelevant here
[39], since the right-handed current is suppressed by
r4Qmsmd=m

2
b [rQ � 2–3; see Eq. (B4) in Appendix B]

compared to the left-handed current.
As a result of the large top mass, we actually expect

higher powers of the up Yukawa to be important, and these
would shift the eigenvalues of the bulk masses [39,84]. The
impact of top Yukawa resummation is subtle, but can be
observed in flavor violation involving left-handed currents
in the first two generations. This applies, in particular, to
CP violation in the D system [85] (effects of order m2

c=m
2
t

are present in the kaon system, but are much harder to
observe [39,86]). If the bottom Yukawa is large as well,

8Because of the high KK-scale observed in the semianarchic
model when compared to the best fit point [see below Eq. (6)],
the one d.o.f. requires us to extrapolate the results, hence the
sensitivity in that case could not be computed. However, from
the three d.o.f. case we see that the sensitivity is roughly the
same as when the bound was compared to the �2

SM.
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then in the presence of flavor diagonal phases, order 1
CP violating contributions are expected in Bd;s mixing

[39,87–90]. An easy way to see this is to take the two-
generation limit, where the SM Lagrangian is manifestly
CP conserving. In this case, higher-dimensional operators
can contain a CP violating combination of the Yukawa

matrices, proportional to the covariant flavor direction, Ĵ
[91,92]

Ĵ / ½YDY
y
D; YUY

y
U�: (16)

This induces CP violation in both up and down sectors,
even in the two-generation case.

We shall focus on two scenarios. The first is when the
bulk parameters give a small 5D bottom Yukawa.
Generically, the phenomenology of this model is rather
simple, and the contributions to various flavor changing
processes are highly suppressed. We then slightly deform
this sweet spot solution, and show how the model ap-
proaches the large bottom 5D Yukawa limit, which yields
a richer flavor structure. In particular, we demonstrate how
one can generate sizable new CP violating contributions in
Bd and Bs mixing, and identify a natural region of the
parameters where the latter dominates, as favored by the
recent D0 data [93,94] and permitted by the CDF one [95]
(see [40–43,96–104] for related work and [105] for a much
earlier study about lepton asymmetry in the B system).

In the following we employ only a one d.o.f. analysis of
the EWPT bounds, for simplicity. We also mainly focus on
a comparison with the best fit point (which is now required
to comply with flavor constraints).

A. Small 5D bottom Yukawa

We first analyze the flavor structure of the theory with a
small bottom Yukawa. For concreteness we give an ex-
ample of such a point9,

CQ ¼ ð0:497; 0:497; 0:348Þ;
CU ¼ ð�0:5;�0:5; 0:482Þ;
CD ¼ ð0:56; 0:56; 0:55Þ;


UYU ¼ ð3:6� 10�5; 0:017; 6:2Þ;

DYD ¼ ð0:0013; 0:024; 0:36Þ:

(17)

The reader should bear in mind though, that as long as the
bottom Yukawa is small, the gross features of the model
near the sweet spot remain unchanged. The resulting bound
from EWPTs is 2.4 TeV.

In the limit of small YD, the bulk masses can be ex-
panded in powers of YU only. This is manifest in the choice
of bulk masses in Eq. (17), where CD is almost completely
diagonal, and in CQ;U only the third eigenvalue is shifted

away from the first two. Since this applies to the FX’s as
well, we have according to Eq. (15) ½mU; YU� ¼ 0, i.e.,mU

and YU can be simultaneously diagonalized. Our model
thus contains a built-in up-type flavor alignment, hence
FCNCs are only present in the down sector. Moreover,
flavor violation in the down sector is proportional to ele-
ments of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
VCKM, and right-handed currents are significantly sup-
pressed, as anticipated since our current setup belongs to
the MFV framework with a small bottom Yukawa.
It is crucial to emphasize that when expanding the bulk

masses as functions of the Yukawa matrices, higher order
terms in YU are important, and may give rise to a significant
effect, as shown below. Therefore, we write

CQ¼aQ �13þbQUYUY
y
UþbQDYDY

y
DþdQUUYUðYUY

y
UÞYy

U

þdQDUYDðYUY
y
UÞYy

Dþ��� ;
CU¼aU �13þbUY

y
UYUþdUUY

y
UðYUY

y
UÞYUþ��� ;

CD¼aD �13þbDY
y
DYDþdDUY

y
DðYUY

y
UÞYDþ��� ; (18)

where some of these terms are actually small in the case of
small bottom Yukawa.
The most severe constraints are from the Bd;s systems, in

the form of a �B ¼ 2 contribution to the mixing ampli-
tude. These are generated in RS via a tree-level KK-gluon
exchange, formulated in terms of two of the standard four-
quark operators,

Q1¼ �q
jL��q


iL �q

�
jL��q

�
iL; Q4¼ �q
jRq



iL �q

�
jLq

�
iR; (19)

where 
, � are color indices and i, j are flavor indices.
New physics in the Bd;s mixing amplitudes can be de-

scribed by four real parameters,

Md;s
12 ¼ ðMd;s

12 ÞSMð1þ hd;se
2i�d;sÞ; (20)

whereM12 is the dispersive part of the amplitude. We shall

use the notation h1;4d;s, where the superscript denotes the

contributing operator.
In order to evaluate the flavor-violating contribution to

Bd, we need to rotate the diagonal coupling of two quarks
with the KK-gluon to the mass basis. Since the mass basis
is aligned with YU, this introduces CKM factors (plus
subleading corrections for large bottom Yukawa) in
the case of left-handed quarks, and a factor related to the
difference of overlaps of the b and d quarks with the
KK-gluon. This calculation is performed in detail in
Appendix B [see Eq. (B10)]. The Wilson coefficient for
Q1 is then given by

C1� g2s
6m2

KK

ðVtbV

tdÞ2½f2Q3r

g
00ðcQ3Þ�f2

Q1r
g
00ðcQ1Þ�2: (21)

Here gs is the dimensionless 5D coupling of the gluon

(gs ¼ 3 with one-loop matching), rg00ðcÞ �
ffiffi
2

p
J1ðx1Þ

0:7
6�4c �

ð1þ ec=2Þ is the overlap correction for two zero-mode

9In the context of flavor physics, it is more convenient to
employ the notations cU3 and cD3 instead of ct and cb used
above. We thus adopt this change in this section.

DELAUNAY et al. PHYSICAL REVIEW D 83, 115003 (2011)

115003-10



quarks with the KK-gluon [9,20,22], with x1 ffi 2:4 as the
first root of the Bessel function J0ðx1Þ ¼ 0, and
ðVtbV


tdÞ2 � ½VCKM

tb ðVCKM
td Þ�2ð1þ rY2

be
i2dÞ, with d an ar-

bitrary phase and r a proportionality coefficient (in the
current case we neglect this correction, which is formally
of order Y2

b). A similar formula applies for Bs (replacing

d ! s and 1 ! 2).
For a right-handed coupling, which is a part of the Q4

contribution, the rotation is more involved, and introduces
some additional factors (see Appendix B). The resulting
Wilson coefficient is

C4 � g2s
m2

KK

ðVtbV

tdÞ2

md

mb

��
fQ3rH00ð�; cQ3 ; cD3Þ
fQ1rH00ð�; cQ1 ; cD3Þ

�
2 � 1

�

� ½f2
Q3r

g
00ðcQ3Þ � f2

Q1r
g
00ðcQ1Þ�½f2

D3r
g
00ðcD3Þ

� f2
D1r

g
00ðcD1Þ�: (22)

In order to derive a bound on the KK-scale, we allow for

h1;4d to be as large as 0.5 (since the NP contributions do not

carry additional CP phases) [40]. We include running and
mixing effects at 2 TeV, as described in [7] and references
therein. The bound resulting from Q1 is

�
mKK

2 TeV

�
* 3:7ð	f2

Q31Þ � 2:3

�
1� 2:1cQ3

1� 2
3 cQ3

�
; (23)

where we defined

ð	f2
QijÞ � f2

Qir
g
00ðcQiÞ � f2

Qjr
g
00ðcQjÞ; (24)

and used cQ1 ¼ 0:497 from Eq. (17) and

f2xr
g
00ðcxÞ �

1� 2cx
1:5� cx

; (25)

which is a good approximation for 0< cx < 0:47. Note
that for cQ3 ¼ 0:348 we have mKK * 1:9 TeV, consistent

with EWPT.10 Similarly, the bound from Q4 is

�
mKK

2TeV

�
* 23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md

mb

��
fQ3rH00ð�; cQ3 ; cD3Þ
fQ1rH00ð�; cQ1 ; cD3Þ

�
2 � 1

�
ð	f2

Q31Þð	f2D31Þ
vuut : (26)

The actual constraint is much weaker than Eq. (23) because
of themd=mb suppression and the approximate degeneracy
of the fD’s. It is instructive to see the relation between the
contributions of Q4 and Q1 to Bd mixing,

C4

C1

��������2 TeV
� 40

md

mb

ð	f2
D31Þ

ð	f2
Q31Þ

��
fQ3rH00ð�; cQ3 ; cD3Þ
fQ1rH00ð�; cQ1 ; cD3Þ

�
2 � 1

�
:

(27)

The same exercise can be carried out for Bs mixing,
where now we allow the RS contribution to be 30% of the

SM one (that is, h1;4s ¼ 0:3), without new phases [40]. The
bounds from Q1 and Q4 are�

mKK

2 TeV

�
* 4:7ð	f2

Q32Þ � 3

�
1� 2:1cQ3

1� 2
3 cQ3

�
;

�
mKK

2 TeV

�
* 30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	f2

Q31Þ
f2
Q1r

g
00ðcQ1Þ ð	f

2
Q32Þð	f2D32Þms

mb

vuuut ;

(28)

respectively. For cQ3 ¼ 0:348 the first bound reads mKK *

2:4 TeV. The Q4 bound is much stronger than for Bd, but
still weaker than the one from Q1. Note that the Q1 con-
tribution is universal, i.e., the same for Bd and Bs, and that
the bound in the first line of Eq. (28) is stronger than
Eq. (23) only because we required hd ¼ 0:5 and
hs ¼ 0:3. Equation (27) changes for Bs to

C4

C1

��������2 TeV
� 39

ms

mb

ð	f2
D32Þ

ð	f2
Q32Þ

��
fQ3rH00ð�; cQ3 ; cD3Þ
fQ2rH00ð�; cQ2 ; cD3Þ

�
2 � 1

�
:

(29)

Note that in our example ð	f2
Q31Þ ¼ ð	f2

Q32Þ.
One may wonder whether �B ¼ 1 processes, such as

b ! s�, could also lead to significant bounds on the model
(see e.g. [18,22] for some recent estimations within the
anarchic scenario). However, since this is a chirality-
flipping process, it must involve right-handed mixing an-
gles, which are strongly suppressed in our model, as shown
in Eq. (B9). More generally, this is a consequence of the
fact that our model belongs to the class of general MFV
[39], where right-handed currents are suppressed by a ratio
of masses, that is ms=mb in this case.
To summarize this example, characterized by Eq. (17),

the overall bound that we find is

mKK * 2:4 TeV; (30)

coming from theQ1 contribution to Bs and from EWPTs. It
should be noted that this bound can be reduced to 2.2 TeV if
compared to the SM, instead of the best fit point (with an
appropriate change in the bulk masses).

10This is weaker than in [106], which was ultraconservative.
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B. Large 5D bottom Yukawa

The analysis of the previous subsection assumed a small
bottom Yukawa, as can be inferred from Eq. (17). Yet by
reducing
D, for example, the bottomYukawa can be made
larger, until it is of order 1. Consequently, YD resummation
effects appear, and the results of the previous subsection
receive Oð1Þ corrections plus a general phase [39].

We can try to use the large bottomYukawa case to obtain
a larger RS contribution to Bs than for Bd. Since C1 is
universal in that sense, this requires one to increase C4 to
be larger than C1, noting that h4s > h4d in any case.

Considering as an example the following bulk masses,

CQ ¼ ð0:516; 0:516; 0:35Þ;
CU ¼ ð�0:5;�0:5; 0:479Þ;
CD ¼ ð0:56; 0:56; 0:497Þ;


UYU ¼ ð5:1� 10�5; 0:025; 5:9Þ;

DYD ¼ ð0:0018; 0:034; 0:12Þ;

(31)

and an appropriate
D to obtain a large bottomYukawa, we
have the following results:

(i) The bound on the KK-scale from EWPT is slightly
raised to 2.6 TeV.

(ii) Because of the generic phase, it is required to take

h1;4d to be 0.3 instead of 0.5 [40].

(iii) As a result of taking cD3 ¼ 0:496, we now have
h4s ffi 1:33h1s ffi 0:4, while for the Bd system C4 is
still smaller than C1 [see Eqs. (27) and (29), when
evaluated at the scale 2.6 TeV originating from
EWPT constraints].

(iv) Another possible point is cD3 ¼ 0:4 (and somemore
slight adjustments of other bulk masses). Then the
EWPT bound is �2:7 TeV and h4s ffi 1:75.

The implication of this result is that our model is now in
accordance with the recent Tevatron data, which favor
larger contributions to Bs than for Bd [40]. The price to
pay is that 
DYb � 0:12, so that in order to have an Oð1Þ
bottom Yukawa, 
D must be small. While this is techni-
cally natural, it still requires a small parameter to be tuned
by hand.

It is actually simple to explain why our model cannot
produce hs > 0:3 and hd 	 0:3 if we insist on having a
large bottom Yukawa with 
D ¼ Oð1Þ. The latter require-
ment leads to the relation fQ3fD3 & 0:01, in order to get

the correct bottom mass. However, as can be seen from
Eq. (22), the C4 contribution is roughly proportional to
ðfQ3fD3Þ2 (times another factor of f2

Q3 which is smaller

than 1), and as a result it is too small to yield hs > 0:3.

The universal hd ¼ hs case

While the data favor large CP violation in the Bs system,
a reasonable fit of the flavor measurements is obtained in

the SUð2Þ universal case where hb � hd ¼ hs � 0:3, con-
sistent with the data [40]. It is not surprising that our
framework (as well as the anarchic RS case [4,5]) can
account for this case in a straightforward manner, while
having 
D and the 5D bottom Yukawa of order unity. This
is obtained by taking cD3 to be �0:6 and cDi around
0.6–0.65, while the other bulk masses are as in Eq. (17).
In this case, one can sharply predict order 1 CPV phases
with exact universality, �b � �d ¼ �s [39]. The resulting
EWPT bound is �2:4 TeV.

C. Higgs mediated FCNCs

Another possible source of flavor violation arises from
the Higgs [107–109], which obtains off-diagonal couplings
in the mass basis as a result of mixing between zero mode
and KK-fermions. For an IR brane Higgs, the leading
spurion which induces this process is [108]

� FQYDY
y
DYDF

y
D; (32)

omitting all universal factors.11 Yet, the resulting flavor
violation is suppressed relative to the KK-gluon contribu-
tion. To see this, let us neglect the masses (and Yukawa
couplings) of quarks of the first two generations. Then in
its diagonal basis, YD is proportional to diagð0; 0; YbÞ, and
consequently we have Y3

D / Y2
bYD. In other words, the

leading mass term in Eq. (15) and the spurion in Eq. (32)
are aligned together, so no flavor violation is generated.
Restoring the strange mass, we expect to have a ðms=mbÞ2
suppression, after squaring these spurions to obtain the
relevant Wilson coefficients. Since a factor of this kind
does not appear for the KK-gluon contribution to flavor
violation via Q1, the Higgs effect can be neglected.
This argument is easily generalized to the bulk Higgs

case. The Y3
D part of Eq. (32) should be written now as

YDr
H
01Y

y
Dr

H
10YD; (33)

where rH01;10 is an overlap correction for the coupling of the

Higgs to a zero-mode quark and a KK-quark. Even though
these corrections are not universal, the wrapping YD’s act
as a projection operator for the 3-3 matrix element, when
neglecting the first two generations’ masses. Therefore, we
still have Y3

D / Y2
bYD, and the conclusion from before

applies to this case as well. Moreover, we did not have to
assume anything about FQ and FD, hence the Higgs con-

tribution is negligible in both the small and the large
bottom Yukawa cases.

V. CONCLUSIONS

We analyzed a warped 5D model where the SM Yukawa
hierarchy is set by UV physics, which realizes a bulk

11An additional contribution comes from a one-loop process
involving a charged Higgs and up-type quarks. However, as a
result of the loop suppression, it is subleading.
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version of the Rattazzi-Zaffaroni model [36]. Such a sce-
nario displays the weakest bound on the scale of RS type of
new physics explored to date, both from the point of view
of electroweak precision measurements, as well as from
flavor constraints. The EW precision tests allow for a sweet
spot with a KK-scale as low as 2.1 TeV, which is more than
a factor of 2 lower than in the anarchic RS setup [with
fermions in the minimal SUð2ÞL � SUð2ÞR representa-
tions, as discussed in the main text]. Such a low scale for
the RS KK physics should lead to significantly better
prospects for discovery at the LHC, given the fact that its
reach for a KK-gluon is around 4 TeV [110,111]. A sum-
mary of the bounds that we find from EWPTs for different
statistical scenarios is presented in Table II.

This model, by construction, belongs to the minimal
flavor violation (MFV) framework [52–61], and naively
one would expect a rather dull flavor phenomenology.
Indeed the model is strongly protected from CP violation
in the first two generations. Imposing the flavor constraints,
we also find consistency with a KK-scale of about 2.4 TeV.
Thus the RS �K problem is avoided, practically, without
interfering with the model’s visibility. This is a natural
consequence of MFV. However, the fact that in this frame-
work the third-generation couplings are sizable and flavor-
violating couplings effectively exponentiate leads to vari-
ous interesting deviations from the commonly studied
MFV models. Thus, this class of models belongs to the
general MFV framework [39]. Performing a deformation
around the best fit point in parameter space allows for a
rather rich third-generation flavor phenomenology, such as
providing the new CPV source required by the latest same-
sign dimuon signal from D0. The present ideas are ex-
pected to help reduce the constraints (hence the fine-
tuning) of extra-dimensional scenarios of EWSB, such as
models where the Higgs is a pseudo-Goldstone boson. The
detailed study of such an exciting possibility is left to
future work.
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APPENDIX A: MATCHING RS TO THE EW
PRECISION OPERATORS

New physics effects at the weak scale are captured by a
set of effective operators added to the renormalizable part
of the SM Lagrangian:L ¼ LSM þP

iaiOi, whereOi are
gauge and flavor invariant operators. In the absence of
flavor and CP violation, 20 operators12 (of mass
dimension-6) contribute most significantly to the electro-
weak precision observables [68]. There are 2 operators
affecting the gauge sector,

OWB¼hy�ahWa
��B

��; Oh¼jhyD�hj2; (A1)

which generate, respectively, the S and T parameters, 7
operators shifting the fermion-gauge boson couplings

Os
hf ¼ ihyD�h �f��fþ H:c:;

Os
hF ¼ ihyD�h �F��Fþ H:c:;

Ot
hF ¼ ihy�aD�h �F���aFþ H:c:;

(A2)

where f ¼ u, d, e and F ¼ q, l, and 11 four-fermion
operators contributing to the leptonic sector

Os
ll ¼

1

2
ð�l��lÞ2; Ot

ll ¼
1

2
ð�l���alÞ2;

Os
le ¼ ð�l��lÞð �e��eÞ; Os

ee ¼ 1

2
ð �e��eÞ2;

Os
lq ¼ ð�l��lÞð �q��qÞ; Ot

lq ¼ ð�l���alÞð �q���
aqÞ;

Os
qe ¼ ð �q��qÞð �e��eÞ; Os

lu ¼ ð�l��lÞð �u��uÞ;
Os

ld ¼ ð�l��lÞð �d��dÞ; Os
eu ¼ ð �e��eÞð �u��uÞ;

Os
ed ¼ ð �e��eÞð �d��dÞ: (A3)

Whenever relevant, a Uð3Þ trace over flavor is assumed in
all of the above. Given the peculiar behavior of the third-
generation quarks, new physics is expected to break the
Uð3Þ3 flavor symmetries in the quark sector down to
½Uð2Þ �Uð1Þ�3. In our setup bR behaves as the lighter
generations dR and sR, and EWPTs are not sensitive to
top observables. Thus, it is well justified to work in a limit
where only Uð3ÞQ is broken down to Uð2Þq �Uð1ÞQ, with

TABLE II. Bounds (in TeV) from EWPTs for the various
statistical scenarios considered, comparing the flavor triviality
model to the semianarchic case. Best fit refers to the bound
relative to the best fit point, where �2 is lower than in the SM,
and SM refers to the case where the SM is assumed to be the
minimum �2. In the last two columns the flavor-triviality analy-
sis is for six d.o.f., while the semianarchic one is for three d.o.f.

One d.o.f. Six/three d.o.f.

Model Best fit SM Best fit SM

Flavor triviality 2.1 1.8 1.7 1.6

Semianarchy 7 4.6 4.6 3.9

12An additional operator, OW ¼ �abcW
a
��W

��bW�c
� , can be

considered as well. However, it is weakly constrained by
EWPT, since it affects only the triple and quadruple gauge
self-couplings, which are poorly measured. Thus we set this
operator to zero in our fit.
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q and Q denoting the first two- and third-generation quark
doublets, respectively. In this case there are 5 additional
operators

Os
hQ ¼ ihyD�h �Q��Qþ H:c:;

Ot
hQ ¼ ihy�aD�h �Q���aQþ H:c:;

Ot
lQ ¼ ð�l���alÞð �Q���

aQÞ;
Os

lQ ¼ ð�l��lÞð �Q��QÞ;
Os

Qe ¼ ð �Q��QÞð �e��eÞ;

(A4)

and a Uð2Þ trace over the first two generations is now
understood in the �q��q current of Os;t

hq, O
s;t
lq , and Os

qe.

Therefore, 25 operators are relevant for EWPT. We use
the SM global fit of [46], following the approach developed
in [68,69], with updated mtop ¼ ð173:3
 1:1Þ GeV [112]

and mW ¼ ð80:420
 0:031Þ GeV [113] measurements
from the Tevatron.

a. Tree-level effects.—We start with matching the coef-
ficients of the 25 operators to RS at tree-level. The leading
contributions arise from exchange of gauge KK-modes, as
depicted in the diagrams of Fig. 1. An explicit evaluation of
the latter yields (see [65] for a pedagogical review13)

ah ¼ g025
2
ðGþþ �G�þÞ;

athF ¼ g25
4
IþþðcFÞ;

atFF0 ¼ g25
4
JþþðcF; cF0 Þ;

ashF ¼ g025
2
YF½IþþðcFÞ � I�þðcFÞ� þ g25R

2
TF
3RI�þðcFÞ;

ashf ¼ g025
2
Yf½IþþðcfÞ � I�þðcfÞ� þ g25R

2
Tf
3RI�þðcfÞ;

as
FF0 ¼ g025 YFYF0JþþðcF; cF0 Þ þ g25R

cos2
ðTF

3R � sin2YFÞ
� ðTF0

3R � sin2YF0 ÞJ�þðcF; cF0 Þ;

as
ff0 ¼ g025 YfYf0Jþþðcf; cf0 Þ þ g25R

cos2
ðTf

3R � sin2YfÞ
� ðTf0

3R � sin2Yf0 ÞJ�þðcf; cf0 Þ; (A5)

where F, F0 ¼ Q, q, l and f, f0 ¼ u, d, e with sin2 ¼
g025 =g

2
5R. The G, I, J wave-function overlap integrals are

given by

G
þ ¼ v�4
Z R0

R
dzdz0

�
R

z

�
3

�
�
R

z0

�
3
v5ðz; �Þ2G
þðz; z0Þv5ðz0; �Þ2;

I
þðcÞ ¼ v�2
Z R0

R
dzdz0

�
R

z

�
4

�
�
R

z0

�
3
�ðz; cÞ2G
þðz; z0Þv5ðz0; �Þ2;

J
þðc; c0Þ ¼
Z R0

R
dzdz0

�
R

z

�
4

�
�
R

z0

�
4
�ðz; cÞ2G
þðz; z0Þ�ðz0; c0Þ2;

(A6)

where G
þ is the mixed position-momentum 5D propa-
gator for ð
;þÞ gauge bosons in anti–de Sitter space
evaluated at zero (4D) momentum [74,114] and �ðz; cÞ is
the fermion zero-mode wave function, while v5ðz; �Þ is the
bulk Higgs VEV. g5, g

0
5, and g5R are the 5D gauge cou-

plings of SUð2ÞL, Uð1ÞY , and SUð2ÞR, respectively. While
g5 and g05 have to be matched to the 4D gauge couplings

(see below), g5R is a free parameter of the model, which we
take to be g5R ¼ g5, as required by the extended custodial
symmetry that protects the ZbL �bL coupling. Note that
aWB �Oðv4=m4

KKÞ at tree level, and we recall that the
tree-level S parameter often quoted in RS is coming from
a ‘‘universal’’ shift to the fermion couplings. This contri-
bution is included in the global fit through the shifts in the
fermion-gauge boson couplings, which is just a conse-
quence of the fact that some operators in the effective
Lagrangian are redundant [115,116].
b. Matching of 5D gauge couplings.—The 5D gauge

couplings used above have to be matched to their 4D
values in the effective action. Including one-loop renor-
malization, the matching conditions are [74–76,117–123]

1

g2
¼ logðR0=RÞ

�
1

g25k
þ bg

8�2

�
þ 1

g2UV
þ 1

g2IR
; (A7)

where the last two terms are contributions from (possible)
‘‘bare’’ brane-localized kinetic terms, which we set to zero
for simplicity. The one-loop �-function coefficients b
receive contributions from the bulk only through elemen-
tary fields. Hence after removing the Higgs contribution
from the running, we find bg ¼ �10=3 and bg0 ¼ 20=3.

Therefore, matching the 5D gauge couplings at the TeV

scale yields g5
ffiffiffi
k

p ’ 27:3g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðR0=RÞp ’ 3:02 and

g05
ffiffiffi
k

p ¼ 43:9g0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðR0=RÞp ’ 2:66 for k ¼ R�1 ¼ 2:4�

1018 GeV and mKK � 2 TeV.
c. One-loop effects.—The large top Yukawa induces a

non-negligible contribution to the S and T parameters, as
well as to the bL coupling to Z. A straightforward calcu-
lation of the one-loop diagram of Fig. 2 gives the following
contributions to the oblique parameters [27,124]:

13For reference, the relation between the notation used here and
that of [65] is as follows: 
N ¼ LGþþ, 
D ¼ LG�þ, �N

c ¼
LIþþðcc Þ, �D

c ¼ LI�þðcc Þ, �N
c c 0 ¼ LJþþðcc ; cc 0 Þ, and

�D
c c 0 ¼ LJ�þðcc ; cc 0 Þ, where L ¼ R log½R0=R� is the proper

size of the fifth dimension.
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S¼Nc

2�

X

;�

X
X¼U;D

½ðXLy

�Y

L
X�
þXRy


�Y
R
X�
Þ�þðm


X;m
�
XÞ

þðXLy

�Y

R
X�
þXRy


�Y
L
X�
Þ��ðm


X;m
�
XÞ�;

T¼ Nc

16�s2Wc
2
Wm

2
Z

�X

;i

V2

iþðm


U;m
i
DÞþAV


i�ðm

U;m

i
DÞ

� X
�<


U2

�þðm


U;m
�
UÞþAU


��ðm

U;m

�
UÞ
�
; (A8)

where we defined K2 � jKLj2 þ jKRj2, AK ¼
2Re½KLKR� with K ¼ U, V. The unitary matrices

UL;R,DL;R (YL;R
U;D) denote the couplings of the Q ¼ 2=3

and Q ¼ ð�1=3; 5=3Þ mass eigenstates to the W�
3L (B�)

zero mode, while the VL;R matrices stand for the coupling
of the mass eigenstates to the W
 zero mode. The defini-
tions of the loop functions 
 and �
 are [124]

þðm1; m2Þ ¼ m2
1 þm2

2 �
2m2

1m
2
2

m2
1 �m2

2

log
m2

1

m2
2

; (A9)

�ðm1; m2Þ ¼ 2m1m2

�
m2

1 þm2
2

m2
1 �m2

2

log
m2

1

m2
2

� 2

�
; (A10)

�þðm1; m2Þ ¼ 5ðm4
1 þm4

2Þ � 22m2
1m

2
2

9ðm2
1 �m2

2Þ2
� 2

3
log

m1m2

�2

þ 3m2
1m

2
2ðm2

1 þm2
2Þ � ðm6

1 þm6
2Þ

3ðm2
1 �m2

2Þ3
log

m2
1

m2
2

;

(A11)

��ðm1; m2Þ ¼ m1m2

ðm2
1 �m2

2Þ3
�
m4

1 �m4
2 � 2m2

1m
2
2 log

m2
1

m2
2

�
;

(A12)

where the renormalization scale dependence in �þ cancels
out in S thanks to tr½UyYU þDyYD� ¼ 0. Note that
Eq. (A8) includes SM contributions from top and bottom

SSM ’ Nc

18�

�
3� log

�
m2

t

m2
b

��
; TSM ’ Nc

16�s2Wc
2
W

�
m2

t

m2
Z

�
;

(A13)

which need to be subtracted in order to isolate the new
physics contributions.

These loop effects are controlled by EWSB, dominantly
from the top sector as parametrized by the 5D top Yukawa.
The contributions associated with EWSB mixing among
heavy KK-modes are controlled by the top Yukawa cou-
pling evaluated at a scale of the order of the KK masses.
These contributions are subdominant, however, and the
result is dominated by EW mixing between the KK-modes
and the top zero-mode. The relevant diagrams display an
IR divergence that is cut off by the top mass, indicating that
the result is dominated by scales of order ��mtop (see

[27]). To be conservative, we use in these loop contribu-
tions a top running mass mtð� ¼ mtopÞ � 160 GeV [125].

Similarly, we use mbð� ¼ mtopÞ � 2:7 GeV.

In gauge-Higgs unified models, where the Higgs is
realized as a pseudo-Goldstone boson, the Higgs only
partially regulates the divergent contribution to the S and
T parameters arising from loops of (longitudinal) SM
gauge fields14 [70]. This results in a logarithmic correction
to the S and T parameters which is cut by the KK-scale
[71],

�S ¼ 1

12�
ð1� a2Þ log�

2
eff

m2
h

;

�T ¼ � 3

16�c2W
ð1� a2Þ log�

2
eff

m2
h

;

(A14)

where �eff ’ mKK and a measures the amount of Higgs
compositeness, with a ¼ 1 corresponding to the fully ele-
mentary SM Higgs. Deviation from a ¼ 1 also leads to an
incomplete unitarization of the W=Z scattering

amplitude, and perturbative unitarity is lost at �eff ’
1:2 TeV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� a2jp
. Requiring unitarity not to be violated

below the KK-scale, we find the contributions in (A14) to
raise the bound for one (six) d.o.f. by 300 (200) GeV,
assuming the SM as the best fit.
The Z �bLbL vertex also receives large radiative correc-

tions dominated by the diagrams of Fig. 3. This yields

	gbL ¼ 


2�

�X



VL

bV

L

b

�
FSMðr
Þ

þ ~F

�
UL





2
� 1

2
;
UR





2
; r


��

þ X

<�

VL

bV

L
�bF

�UL

�

2
;
UR


�

2
; r
; r�

��
; (A15)

where r
 ¼ ðm

U=mWÞ2 and the loop functions are [45,126]

FSMðrÞ¼ r

8s2W

ðr�1Þðr�6Þþð3rþ2Þ logr
ðr�1Þ2 ; (A16)

~FðgL;gR;rÞ¼ r

8s2W

�
gL

�
2� 4

r�1
logr

�

�gR

�
2r�5

r�1
þr2�2rþ4

ðr�1Þ2 logr

��
; (A17)

14We thank Kaustubh Agashe for bringing this point to our
attention.
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F ðgL; gR; r; r0Þ

¼ 1

4s2Wðr0 � rÞ
�
2gL

�
r� 1

r0 � 1
r02 logr0 � r0 � 1

r� 1
r2 logr

�

� gR
ffiffiffiffiffiffi
rr0

p �
r0 � rþ r0 � 4

r0 � 1
r0 logr0 � r� 4

r� 1
r logr

��
:

(A18)

Here again the SM contribution,

	gbLSM ¼ 


2�
FSMðrtÞ; (A19)

should be subtracted to isolate the contribution from new
physics. Note that this result is derived for an off-shell
(q2 ¼ 0) Z in the ’t Hooft/Feynman (� ¼ 1) gauge.
Although the result should only be gauge-invariant when
the Z is on-shell (q2 ¼ m2

Z), we expect the missing terms to
suffer an additional m2

Z=m
2
KK suppression, so the q2 ¼ 0

result quoted constitutes a valid approximation for the new
physics contribution. Notice also that all the radiative
corrections above decouple like v2=m2

KK, as expected,
since they arise from vectorlike (KK-)fermions which
mix with the chiral zero-mode through Yukawa couplings.

The above one-loop corrections are accounted for in the
global fit by adding the following shifts to the coefficients
of the OWB, Oh, and Os

hQ operators:

aWB ! aWB þ gg0

16�v2
ðS� SSMÞ;

ah ! ah � g2s2W
2�v2

ðT � TSMÞ;

ashQ ! ashQ � 2

v2
ð	gbL � 	gbLSMÞ:

(A20)

As for S and T, we use a renormalization scale of order
��mtop to evaluate 	gbL , which errs on the conservative

side.

APPENDIX B: CONTRIBUTIONS
TO B MESON MIXING

In Sec. IV we estimated the bounds coming from the
contributions to Bd;s mixing in our model. Here we calcu-

late these contributions in detail. We begin with the simpler
case of small bottom Yukawa coupling, based on the bulk
masses of Eq. (17), and then we generalize to the large
bottom Yukawa case, and show that in fact there are only
Oð1Þ corrections.

1. Small 5D bottom Yukawa

We start with the mass relation of Eq. (16), where for
simplicity we omit the overlap correction rH00 (which can be
restored at the end) and absorb the 
U;D coefficients into

the 5D Yukawas. As explained in Sec. IVA, we have to a
good approximation ½mU; YU� ¼ 0. Thus, it is convenient

to work in a basis in which YU is diagonal. The 5DYukawa
matrices can then be written as

YU ¼ �U; YD ¼ VQ�D; (B1)

where �U ¼ diagðYu; Yc; YtÞ, �D ¼ diagðYd; Ys; YbÞ, and
VQ is the misalignment between YU and YD, or in other
words, the 5D equivalent of the CKM matrix.
In order to find the relation between VQ and VCKM, we

note that the latter diagonalizes the mass matrix mD from
the left, i.e. it diagonalizes

mDm
y
D / FQYDFDF

y
DY

y
DF

y
Q: (B2)

The almost universal FD’s can be thrown away, since we
now only care about diagonalization, and for the FQ’s we

can pull out a factor of fQ1 ( ¼ fQ2), obtaining

FQ / diagð1; 1; rQÞ; (B3)

where we defined15

rQ � fQ3rH00ð�; cQ3 ; cD3Þ
fQ1rH00ð�; cQ1 ; cD3Þ : (B4)

Equation (B2) then becomes

mDm
y
D / diagð1; 1; rQÞVQ�2

DV
Qydiagð1; 1; rQÞ: (B5)

From this expression, it is simple to find the following
relations for the mixing angles16

VQ
12 � VCKM

us ; VQ
13 � rQV

CKM
td ; VQ

23 � rQV
CKM
ts :

(B6)

The 5D CKM mixing angles for the third generation are
thus larger than the corresponding CKM elements. This is
not a surprise, since the hierarchy in the 5D Yukawas is
milder than for the masses because of the fQ’s. After
diagonalization, we find the mass relations

md;s;b ffi vffiffiffi
2

p fQ1;1;3Yd;s;bfD1 ; (B7)

where we used the facts that fQ1 ¼ fQ2 in our current

realization of the model and that all the fD’s are almost
identical.
The matrix DR which diagonalizes mD from the right is

computed from the following expression:

my
DmD / Fy

DY
y
DF

y
QFQYDFD / �DV

Qydiagð1; 1; r2QÞVQ�D:

(B8)

The resulting mixing angles of DR are

15To be precise, the right-handed bulk mass that is used in the
overlap corrections in Eq. (B4) depends on the process in which
we use rQ. Since the largest contributions usually come from the
third generation, we defined rQ with cD3 .
16We omit any complex conjugate signs here and below.
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ðDRÞ12�ðr2Q�1ÞYd

Ys

VQ
13V

Q
23�ðr2Q�1Þr2Q

md

ms

VCKM
td VCKM

ts ;

ðDRÞ13�
r2Q�1

r2Q

Yd

Yb

VQ
13�ðr2Q�1Þmd

mb

VCKM
td ;

ðDRÞ23�
r2Q�1

r2Q

Ys

Yb

VQ
23�ðr2Q�1Þms

mb

VCKM
ts ;

(B9)

where we used Eqs. (B6) and (B7).
The operators considered in Sec. IV are generated by

KK-gluon exchange. The coupling of two zero-mode

quarks to a KK-gluon is proportional to FQF
y
Q or Fy

DFD

for left- or right-handed couplings, respectively. Applying
the appropriate rotation to the down mass basis, the 1–3
entries of the couplings, relevant for Bd mixing, are

ðFQF
y
QÞ13jmassbasis�VCKM

tb ðVCKM
td Þ½f2

Q3r
g
00ðcQ3Þ

�f2
Q1r

g
00ðcQ1Þ�;

ðFy
DFDÞ13jmassbasis�VCKM

tb ðVCKM
td Þmd

mb

�
��

fQ3rH00ð�;cQ3 ;cD3Þ
fQ1rH00ð�;cQ1 ;cD3Þ

�
2�1

�

�½f2
D3r

g
00ðcD3Þ�f2

D1r
g
00ðcD1Þ�:

(B10)

The result for Bs is obtained by the replacements 1 ! 2
and d ! s.

It should be noted that ðDRÞ12 from Eq. (B9) is actually

not useful, since when a DR rotation is applied to Fy
DFD,

the 1–2 entry is multiplied by�ðf2
D2 � f2

D1Þ, which is zero
in our model. Hence, FCNC processes among the first two
generations follow through ðDRÞ13 � ðDRÞ23. This explains
why the right-handed current for �K is suppressed by
r4Qmdms=m

2
b relative to the left-handed current, as men-

tioned in Sec. IV.

2. Large 5D bottom Yukawa

The case where the 5D bottom Yukawa is large is more
complicated, but it turns out that it only leads to Oð1Þ
corrections, as we now show. First, YU and mU do not
commute anymore, so there is no ‘‘natural’’ basis to adopt.
It is therefore useful to define two new matrices, VQD;QU,
which parametrize the misalignment between YD;U and CQ

(and equivalently FQ). Moreover, we need now to compute

both DL and UL (diagonalizing mD and mU from the left,
respectively), in order to relate all the above matrices to the
CKM matrix. In the following we consider for simplicity
only the first relevant terms in the MFV expansion of the
5D spurions.

The first step is to relate VQD and VQU to VQ. In the basis
in which YD is diagonal,CQ from Eq. (14) can be written as

CQ¼aQ �13þbQD�
2
DþbQUV

Qy�2
UV

Qþ��� ; (B11)

and it is diagonalized by VQD. We then obtain the follow-
ing relations:

VQD
12 � VQ

13

VQ
23

� VQ
12;

VQD
13 � VQ

13

�
bQUY

2
t

bQDY
2
b þ bQUY

2
t

�
;

VQD
23 � VQ

23

�
bQUY

2
t

bQDY
2
b þ bQUY

2
t

�
;

(B12)

where we assumed a specific relation between the VQ

mixing angles for VQD
12 , which is consistent with the results

below (since a similar relation holds for the CKM matrix).
Note that the expression in parentheses in the last two
mixing angles is of order 1 as long as Yb is smaller than

or comparable to Yt and bQU;D are Oð1Þ. Similarly, in the

basis in which YU is diagonal, CQ can be written as

CQ ¼ aQ � 13 þ bQU�
2
U þ bQDV

Q�2
DV

Qy þ � � � : (B13)

We then have

VQU
12 � VQ

12;

VQU
13 � VQ

13

�
bQDY

2
b

bQDY
2
b þ bQUY

2
t

�
;

VQU
23 � VQ

23

�
bQDY

2
b

bQDY
2
b þ bQUY

2
t

�
:

(B14)

In this case, if Yb < Yt then the expression in parentheses
becomes small, and we return to the small bottom Yukawa
scenario. We assume that Yb and Yt are comparable, so that
the expressions in parentheses in Eqs. (B12) and (B14) are
Oð1Þ. We then conclude that

VQD � VQU � VQ: (B15)

The next step is to diagonalize from the left the down
and up mass matrices, thus expressing DL and UL in terms
of VQ. Compared to Eq. (B5) for mD, we now need to
account for the fact that FD is nonuniversal and not aligned
with YD. Parametrizing this misalignment by the matrix
VD, Eq. (B5) is generalized to

mDm
y
D / diagð1; 1; rQÞVQ�DV

Ddiagð1; 1; r2DÞ
� VDy�DV

Qydiagð1; 1; rQÞ; (B16)

where rD is defined as rQ but withD $ Q. However, since

the leading terms still come from Yb (so that we can take
Yd ¼ Ys ¼ 0), VD does not play a role in this diagonaliza-
tion. Therefore, the result of Eq. (B6) holds also in the
current case for the relation between VQ and DL, that is
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VQ
12 � ðDLÞ12; VQ

13 � rQðDLÞ13; VQ
23 � rQðDLÞ23:

(B17)

Applying the same process to mU, we see that Eq. (B17)

also holds after replacing DL ! UL. Since VCKM ¼
ULD

y
L, then e.g. for the 2–3 entry,

VCKM
ts � ðULÞ22ðDLÞ23 þ ðULÞ23ðDLÞ33 � VQ

23

rQ
; (B18)

where the two terms in the middle are similar in magni-
tude, but have different phases in general. Thus, we took
only one of them as representing the sum (omitting an
order 1 correction and the unknown phase). The bottom
line is that the relations of Eq. (B6) apply to this case as
well, and we have DL �UL � VCKM.

Before continuing, it should be noted that the mass
relations in Eq. (B7) are slightly changed to

md;s;b ffi vffiffiffi
2

p fQ1;1;3Yd;s;bfD1;1;3 ; (B19)

to include the different cD3 .
In order to estimate DR, we first need to relate VD to an

already known matrix. In the basis where YD is diagonal,
VD diagonalizes CD, written as

CD ¼ aD � 13 þ bD�
2
D þ dDU�DV

Qy�2
UV

Q�D þ � � � ;
(B20)

considering the relevant leading terms from Eq. (18). The
mixing angles of VD are then given by

VD
12 �

Yd

Ys

Y2
t V

Q
13V

Q
23

�
dDU

bD

�
� r3QrD

md

ms

Y2
t V

CKM
td VCKM

ts ;

VD
13 �

Yd

Yb

VQ
13

�
dDUY

2
t

bD þ dDUY
2
t

�
� r2QrD

md

mb

VCKM
td ;

VD
23 �

Ys

Yb

VQ
23

�
dDUY

2
t

bD þ dDUY
2
t

�
� r2QrD

ms

mb

VCKM
ts ;

(B21)

where we again assume that the expressions in parentheses
are Oð1Þ. Now we can generalize Eq. (B8),

my
DmD � diagð1; 1; rDÞVDy�DV

Qydiagð1; 1; r2QÞ
� VQ�DV

Ddiagð1; 1; rDÞ; (B22)

and obtain DR,

ðDRÞ12 � ðr2Q � 1ÞYd

Ys

VQ
13V

Q
23

þ VD
12 � ðr2Q � 1Þr2Q

md

ms

VCKM
td VCKM

ts

þ r3QrD
md

ms

Y2
t V

CKM
td VCKM

ts ;

ðDRÞ13 �
r2Q � 1

r2QrD

Yd

Yb

VQ
13 þ

VD
13

rD
� ðr2Q � 1Þmd

mb

VCKM
td

þ r2Q
md

mb

VCKM
td ;

ðDRÞ23 �
r2Q � 1

r2QrD

Ys

Yb

VQ
23 þ

VD
23

rD
� ðr2Q � 1Þms

mb

VCKM
ts

þ r2Q
ms

mb

VCKM
ts : (B23)

Comparing this to the small bottom Yukawa result in
Eq. (B9), we get here for each of the angles the same
term plus an additional one, which is of the same order.
Since there is a general phase between them, we should just
take one of them as the result, so that overall there is an
Oð1Þ correction and an undetermined phase compared to
Eq. (B9), as expected. Therefore, we are justified in using
Eq. (B10) in our estimates.
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