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We present a connection between two known solutions to the strong-CP problem: the standard

introduction of axions and the extra-dimensional one, relying on topological arguments. Using an

equivalent lower-dimensional setup with a warped extra dimension but without adding any new fields,

it is shown that an additional light degree of freedom appears. Like an axion, it couples to the topological

charge density via fermionic loop corrections. Its decay constant is related to the geometry of the extra

dimension and is suppressed by the warping scale.
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I. INTRODUCTION

Quantum chromodynamics has a complicated vacuum
structure [1]. Because of the nontrivial group of mappings
from the coordinate space to the gauge group, there is an
infinite number of vacua parametrized by an angle �. The
physics depends on �, which becomes a new parameter of
the theory. Equivalently, this may be expressed by a new
CP-violating effective term in the Lagrangian of the form
�q, where q is the topological charge density [2].

The presence of massive fermions also leads to an
effective topological term proportional to the imaginary
part of the fermionic mass matrix determinant detM.
The fact that the sum �þ arg detM is experimentally
constrained to be smaller than 2� 10�10 is known as the
strong-CP problem. Note that chiral symmetry can be used
to redefine the fermion masses and get rid of their imagi-
nary part. However, because of the chiral anomaly, this
amounts to shifting the value of � so that the sum
�þ arg detM remains constant.

Extra-dimensional solutions to the strong-CP problem
were proposed some time ago [3–5]. The formal idea in
Ref. [5] is that the presence of the anomaly depends on the
number of dimensions and vanishes, for instance, if one
extra-dimension is added. If the fermionic anomaly ac-
tually vanishes, one is free to rotate away the imaginary
phase of the fermion masses, which suggests that the
strong-CP problem will disappear automatically. Of
course, the solution is not that simple. One would like
that after integrating out the extra dimension, the low-
energy effective theory resembles the normal QCD, so
that one has to show that the strong-CP problem does not
reappear after proper localization of the fields [6].

The models considered in Refs. [5,6] are not very real-
istic from the cosmological point of view. In these models,

the spatial dimensions have the topology of a sphere
and the fields are localized on the equator. The reason
being, the observation of Ref. [5] that the fermionic anom-
aly reappears if boundaries are present, preventing the
resolution of the strong-CP problem in orbifold models.
Indeed, if the spatial dimensions take the form of Rd � I,
where I is the interval ½�L; L�, the anomaly in the fermi-
onic current JA was shown to be [7]

@AJ
Aðx�; zÞ ¼ qðx�; zÞ½�ðz� LÞ þ �ðzþ LÞ�: (1)

We want to have an alternative look at this restriction.
The strong-CP problem might actually still be solved if
specific boundary conditions are imposed on the gauge
fields, namely, if the topological charge vanishes at the
boundaries

qjz¼�L ¼ 0: (2)

If the strong-CP problem should be solved by this condi-
tion, it is not clear how. In the models of Refs. [5,6], the
spherical topology changes the group of mappings from the
coordinate space to the gauge group, so that the degeneracy
of the vacua is removed. In the orbifold case, it is not so as
the space manifold factorizes. The resolution of this para-
dox is easy to guess: If the strong-CP problem is not solved
by the topology, it has to be solved by the appearance of an
axionlike particle [8].
Different extra-dimensional models with axions were

already considered in the literature [9]. However, they
either required the addition of another field or extra terms
to the Lagrangian to get the particular coupling of the axion
to the topological charge.
In our setup, the boundary conditions are enough to

solve the strong-CP problem and no other fields need to
be introduced. As a first step to simplify the problem, we
study a topologically-equivalent lower-dimensional model
with the same vacuum structure: The two-dimensional
Abelian Higgs model. This model has the same amount
of vacuum degeneracy as four-dimensional QCD and was
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already studied many times as a toy model for QCD,
e.g., the Uð1Þ problem was first solved there [10]. This
solution could then be mapped to QCD [11].

The resolution can be sketched as follows: In our model,
one single field can provide an additional scalar, namely,
the extra-dimensional component of the gauge field A2.
This component actually couples to fermions with the
matrix �5, which is just what we need to get a topological
effective coupling to the photon A� via fermionic loop

corrections from the diagram

In the following, we will show explicitly that the differ-
ent parameters of the model can be chosen to make it
realistic.

II. ABELIAN HIGGS MODEL

The action for the Abelian Higgs model in 1þ 1 dimen-
sions reads [12]

S ¼
Z

d2x

�
� 1

4
F��F

�� � VðHÞ þ 1

2
jD�Hj2

þ i ����D��� ~��y
L�R � ~���y

R�L

�
; (4)

with the covariant derivative D� :¼ @� � i~eA�. Here and

below, we use a tilde to denote the (1þ 1)-dimensional
variables.

As emphasized in the Introduction, the Abelian Higgs
model has the same complicated vacuum structure as
QCD. In mathematical terms, this is described by the fact
that the specific homotopy groups match: �3ðSUð3ÞÞ ¼
�1ðUð1ÞÞ ¼ Z. The Abelian Higgs model also has a
strong-CP-like problem, namely, the physics depends on
the �-vacua by the effective term � e

4� "��F
��.

The Higgs has a marginal role here, it is only needed
to add an extra component to the gauge field; (1þ 1)-
dimensional massless electromagnetism has no degrees
of freedom, no photon, and is therefore a poor toy model
for QCD. Adding the Higgs renders the photon massive
and gives a longitudinal mode—a toy particle for the QCD
gluon. For the comparison to QCD, one should consider the
limit where the photon mass becomes much smaller than
any other scale in the model.

III. EXTRA-DIMENSIONAL MODEL

We will now define a (2þ 1)-dimensional Abelian
Higgs model, where the additional dimension is the inter-
val I ¼ ½�L; L� and the fields are localized on a brane
at the middle of the interval. The low-energy theory will
match the previous Abelian Higgs model with an addi-
tional axion particle.

Bosonic sector: Here we have [13]

S ¼
Z

d2xdz�

�
�ðFMNÞ2

4
þ jDMHj2

2
� VðHÞ

�
; (5)

with the Higgs potential VðHÞ ¼ �
4 ðjHj2 � v2Þ2, � > 0,

v > 0, and DM :¼ @M � ieAM. The Higgs field can be
decomposed in real fields as H ¼ ðhþ vÞei�, h has mass
m2

H ¼ 2�v2, and the gauge field gets a mass mW ¼ ev.
Note that, in this work, we will assume that the ‘‘warp

factor’’ �ðzÞ, which is used to localize the fields [14,15], is
coming from the coupling to some external classical field.
This is different from gravity, and done for convenience.
Fermionic sector: Fermions are localized on the brane

with a domain-wall-like mass functions mjðzÞ. Two fermi-

ons are needed in 2þ 1 dimensions to get one Dirac
fermion in 1þ 1 dimensions. We add to action (5) the
part [16]Z

d2xdz½ ��jði 6DþmjÞ�j � ð� ��1�2 þ H:c:Þ�; (6)

wherein the sum over j ¼ 1, 2 is implicit.
The choice of the boundary conditions at the end points

of the extra dimension have to fulfil two criteria: The
vanishing of the anomaly (1) and the conservation of
energy. The latter implies that the component T02 of the
energy-momentum tensor vanishes at z ¼ �L. Both con-
ditions are satisfied if and only if we impose [17]

@2�jz¼�L ¼ eA2jz¼�L; (7a)

@2hjz¼�L ¼ 0; (7b)

F01jz¼�L ¼ 0; (7c)

�y
jD2�jjz¼�L ¼ 0: (7d)

The remaining task is to check that these boundary con-
ditions indeed lead to the desired low-energy theory on the
brane. To achieve that, we have at hand the warp factor
�ðzÞ and the domain-wall functions mjðzÞ.

IV. DIMENSIONAL REDUCTION

We perform the Kaluza-Klein expansion of the fields,
that is to say we separate the dependencies in the extra-
dimensional coordinate z and the brane coordinates x�.
All fields � are decomposed as

�ðx�; zÞ ¼ X1
n¼0

�ðnÞðx�Þ	ðnÞðzÞ; (8)

wherein the �ðnÞðx�Þ are the (1þ 1)-dimensional fields

and the 	ðnÞðzÞ are the solutions of an eigenvalue equation.
Fermionic sector: Fermions can be easily localized fol-

lowing Ref. [18] by choosing the mass functions to be
m1ðzÞ ¼ �m2ðzÞ ¼ �MsignðzÞ. With M> j�j, we obtain
a left-handed [19] low-energy mode for �1, as well as,
a right-handed low-energy mode for �2, which reads
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c ð0Þ
1 ðzÞ ’

ffiffiffiffiffi
M

p
e�Mjzjffiffiffiffiffi

M
p

e�2MLeþMjzj

 !
’ �1c

ð0Þ
2 ðzÞ; (9)

where this expression is valid up to order e�2ML. The next-

to-lightest mode has mass of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ j�j2p

. We can
then make the mass gapM large so that it is meaningful to
build a low-energy effective theory containing only the
low-energy modes; c.f. Fig. 1.

Bosonic sector: For Bosons, the situation is more subtle,
as we need to have a light Higgs, a light photon with a
roughly flat wave function to satisfy charge universality,
and to obtain a light axion.

The usual warp factors—decreasing from the brane
towards the end points of the interval—do not fulfil all
these criteria, leading to a heavy axion. Although this
might not be a fundamental problem, as models with heavy
axions have been studied [20], we prefer to match the usual
scenario where the axion is light.

To this aim, we need a warp factor that first decreases
away from the brane, but then increases again close to the
boundary. We checked numerically that the exact form is
irrelevant as long as it decreases away from the brane as
well as from the end points of the extra-dimension suffi-
ciently fast. Here—to have analytical solutions for the
modes—we will consider (c.f. Fig. 1) [21]

�ðzÞ ¼
�
1� jzj

L

��1
e�2Mjzj: (10)

Furthermore we will work in unitary gauge, where the
linearized equations for the gauge and Higgs field actually
decouple.

For the Higgs, the lowest mode is symmetric, light with

mð0Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þM28MLe�2ML
q

’ mH, and reads

að0ÞðzÞ / ðL� jzjÞ2eðL�jzjÞð
ffiffiffiffiffiffiffiffiffiffiffiffi
M2�
2

0

p
�MÞ

� Lag��0
ð2ðjzj � LÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 
2

0

q
Þ; (11)

where Lag��0
ð. . .Þ is the Laguerre function with � ¼ 2,

�0 ¼ �3=2�M=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 
2

0

q
, 
0 ’ M2

ffiffiffiffiffiffiffiffiffiffiffi
2ML

p
e�ML.

The other modes have masses of order M and can be
dropped in the low-energy field theory, so that the only
low-energy mode has the expected Higgs mass.
With our particular warp factor, we are able to decouple

the A2 field from the photon A�. The low-energy mode for

the field A2 has exactly the mass mð0Þ
2 � mW and reads

að0Þ2 ðzÞ / �ðzÞ�1:

The next-to-lightest mode is heavy, having the mass

mð1Þ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þm2

W

q
þOðe�2MLÞ and thus providing again

the desired mass gap.
The equations for the photons are very similar to

the Higgs case: One just has to replace mH by mW .
Hence the lightest mode is symmetric, has the mass

mð0Þ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

W þM28MLe�2ML
q

’ mW , and the wave func-

tion given by (11); c.f. Fig. 2. Also, the next-to-lightest
mode has a mass of order M.

V. EFFECTIVE ACTION

Choosing M � mH, mW , and j�j, we can built the
effective (1þ 1)-dimensional action. In the initial action
(5) and (6), we insert the Kaluza-Klein expansions (8),
truncate it to keep only the light modes, integrate over the
extra-dimension, and neglect subleading terms: We get the
usual (1þ 1)-dimensional Abelian Higgs model (4) with

~e2 � e2M, ~v2 � v2=M, ~� � �M, and ~� � � [22], and an
additional light degree of freedom with the action

S A2
’ � 1

2

Z
d2xA2½ðhþm2

WÞA2 � i~
�
���5��; (12)

wherein the marginal couplings to the Higgs are not shown
(c.f. the previous discussion), and the A2-fermion coupling

~
� is suppressed: ~
� ’ ~e2
ffiffiffi
2

p ðMLÞ3=2e�ML.
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FIG. 1 (color online). The lightest a2 mode together with the

lowest fermion profile function c ð0Þ
1 as functions of z=L for

ML ¼ 3.
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FIG. 2 (color online). The lightest a mode as a function of z=L
for various values of ML.
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Until now, A2 does not have the topological coupling
to A�. It is obtained from the fermionic diagram (3), for

which the fermion loop contributes with

In the limit of vanishing external momentum p�, we find

that fðp2= ~�2Þ ! 1, and finally get the effective coupling

1

fa
A2"��F

�� with fa ’
ffiffiffi
2

p
� ~�eML

~e2ðMLÞ3=2 : (14)

Equation (14) is exactly what we were after. It shows that
the A2 mode couples to the photon precisely like an axion.
Moreover, the inverse axion-photon coupling constant fa is
exponentially large, guaranteeing that phenomenological
bounds are already satisfied for moderately large values of
ML, i.e., without any fine-tuning.

Our results also rely on the applicability of perturbation
theory. This can be done consistently as the warp factor is
nonvanishing, leading to finite couplings everywhere in
the bulk. For realistic QCD, perturbation theory may not
be applicable, however the existence of the strong-CP
problem does not depend on the strength of the coupling
and lattice simulation might also been envisaged in five
dimensions [23].

VI. CONCLUSION

We have seen that the occurrence of an axion could be
a rather natural consequence of the presence of extra
dimensions, as it can arise from the extra-dimensional
component of the gauge field. This is achieved without
adding any new fields or couplings. We obtain—via
fermionic loop corrections—precisely the right axionic
coupling to the topological charge with a suppressed cou-
pling constant. The key issue is the particular selection
of the boundary conditions. This ensures that the gauge
anomaly—generically present on the class of geometries
used—is entirely absent.
Furthermore, our results require essentially only fine-

tuning concerning the warp factor, which—in order to get
both a light axion and photon—should decrease suffi-
ciently fast away from the brane as well as from the end
points of the extra dimension. For this class of theories, our
findings are basically independent of the details of the
model. For instance, the length of the extra dimension is
not really constrained, and also the dependence on the warp
factor (fulfilling the mentioned requirements) is weak.
A future publication will be devoted to the inclusion of
gravitational dynamics to naturally obtain the warp factor.
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