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We present results on the lower moments of the nucleon generalized parton distributions within lattice

QCD using two dynamical flavors of degenerate twisted mass fermions. Our simulations are performed

on lattices with three different values of the lattice spacings, namely, a ¼ 0:089 fm, a ¼ 0:070 fm, and

a ¼ 0:056 fm, allowing the investigation of cutoff effects. The volume dependence is examined using

simulations on two lattices of spatial length L ¼ 2:1 fm and L ¼ 2:8 fm. The simulations span pion

masses in the range of 260 to 470 MeV. Our results are renormalized nonperturbatively, and the values are

given in the MS scheme at a scale � ¼ 2 GeV. They are chirally extrapolated to the physical point in

order to compare with the experiment. The consequences of these results on the spin carried by the quarks

in the nucleon are investigated.
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I. INTRODUCTION

Lattice QCD calculations of observables, related to the
structure of baryons, are now carried out using simulations
of the theory with parameters that are close enough to their
physical values that a connection of lattice results to the
experiment is facilitated. This is due to the fact that sys-
tematic uncertainties caused by a finite volume, a finite
lattice cutoff, and unphysically high pion masses are be-
coming better controlled. Nowadays, a number of major
collaborations are producing results on nucleon form
factors and the first moments of structure functions close
to the physical regime, both in terms of pion mass and with
respect to the continuum limit [1–6].

The generalized parton distributions (GPDs) encode
important information related to baryon structure [7–9].
They occur in several physical processes, such as deeply
virtual Compton scattering and deeply virtual meson pro-
duction. Their forward limit coincides with the usual par-
ton distributions, and their first moments are related to the
nucleon elastic form factors. Moreover, a combination of
their second moments, known as Ji’s sum rule [10], allows
to determine the contribution of a specific parton to the
nucleon angular momentum. In the context of the ‘‘proton
spin puzzle,’’ this has triggered an intense experimental
activity [11–15].

The GPDs can be accessed in high-energy processes
where QCD factorization applies, in which case the am-
plitude is the convolution of a hard perturbative kernel with
the GPDs, as illustrated in Fig. 1. Generically, the GPDs
are defined as matrix elements of bi-local operators sepa-
rated by a lightlike interval. Because of the Wick rotation,
such matrix elements cannot be computed directly on the

Euclidean lattice. Instead, one considers their Mellin mo-
ments, which, in principle, carry the same information.
If jp0i and jpi are one-particle states, the twist-two

GPDs, which are studied in this paper, are defined by the
matrix element [16]

F�ðx; �; q2Þ ¼ 1

2

Z d�

2�
eix�hp0j �c ð��n=2Þ

� �P e
ig
R

�=2

��=2
d�n�Aðn�Þ

c ð�n=2Þjpi; (1)

where q ¼ p0 � p, � ¼ �n � q=2, x is the momentum
fraction, and n is a lightlike vector collinear to P ¼
ðpþ p0Þ=2 and such that P � n ¼ 1. The gauge link
P expð. . .Þ is necessary for gauge invariance. In model
calculations, it is often set to one, which amounts to work-
ing with QCD in the lightlike gauge A � n ¼ 0; however, on
the lattice, such a gauge fixing is not necessary.
In this work, we shall consider only the GPDs corre-

sponding to a Dirac structure � which conserves the quark
chirality; that is, � ¼ n and � ¼ n�5. The associated
matrix elements may be parametrized in the following
way:
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FIG. 1 (color online). ‘‘Handbag’’ diagram.
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Fnðx; �; q2Þ ¼ 1
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þ i
n�q��

��

2mN

Eðx; �; q2Þ
�
uNðpÞ; (2)

Fn�5
ðx; �; q2Þ ¼ 1

2
�uNðp0Þ

�
n�5

~Hðx; �; q2Þ

þ n � q�5

2mN

~Eðx; �; q2Þ
�
uNðpÞ; (3)

where uN is a nucleon spinor and H, E, ~H, and ~E are the
twist-two chirality-even GPDs. In the forward limit, for
which � ¼ 0 and q2 ¼ 0, they reduce to the ordinary
parton distributions; namely, the longitudinal momentum
qðxÞ and the helicity �qðxÞ distributions are given by

qðxÞ ¼ Hðx; 0; 0Þ and �qðxÞ ¼ ~Hðx; 0; 0Þ: (4)

The first few Mellin moments of these parton distributions
are of particular interest:

hxn�1iq ¼
Z 1

�1
xn�1qðxÞdx; (5)

hxn�1i�q ¼
Z 1

�1
xn�1�qðxÞdx: (6)

Since, as already mentioned, matrix elements of the light-
cone operator, as defined in Eq. (1), cannot be extracted
from correlators in Euclidean lattice QCD, the usual
method is to proceed with an operator product expansion
of this operator that leads to a tower of local operators
given by

O �1...�n

V ¼ �c�f�1 iD
,�2

. . . iD
,�ng

c ; (7)

O �1...�n

A ¼ �c�f�1 iD
,�2

. . . iD
,�ng

�5c : (8)

The curly brackets represent a symmetrization over indices
and the subtraction of traces. The computation of the
matrix elements of these operators on the Euclidean lattice
can be done with standard techniques. The case n ¼ 1
amounts to calculating the elastic form factors of the vector
and axial-vector currents, and the results are reported in
Refs. [4,17]. In this work, we concentrate on the n ¼ 2
moments, i.e., the matrix elements of operators with a
single derivative. The matrix elements of these operators
are parametrized in terms of the generalized form factors

(GFFs) A20ðq2Þ, B20ðq2Þ, C20ðq2Þ and ~A20ðq2Þ, ~B20ðq2Þ,
according to

hNðp0; s0ÞjO��
n jNðp; sÞi ¼ �uNðp0; s0Þ

�
A20ðq2Þ�f�P�g

þ B20ðq2Þ i�
f��q�P

�g

2m

þ C20ðq2Þ 1mqf�q�g
�
uNðp; sÞ;

hNðp0; s0ÞjO��
n�5

jNðp; sÞi ¼ �uNðp0; s0Þ
�
~A20ðq2Þ�f�P�g�5

þ ~B20ðq2Þ q
f�P�g

2m
�5

�
uNðp; sÞ:

(9)

Note that the GFFs depend only on the squared momen-
tum transfer q2 ¼ ðp0 � pÞ2, which implies that the mo-
ments of the GPDs are polynomial in �. In the forward

limit, we have A20ð0Þ ¼ hxiq and ~A20ð0Þ ¼ hxi�q, which
are, respectively, the first moments of the unpolarized
and polarized quark distributions. Knowing the GFFs,
one can evaluate the quark contribution to the nucleon
spin using Ji’s sum rule: Jq ¼ 1

2 ½Aq
20ð0Þ þ Bq

20ð0Þ�.
Moreover, using the measured or calculated value of
the quark helicity ��q ¼ gqA, the decomposition Jq ¼
1
2 ��

q þ Lq allows to study the role of the quark orbital

angular momentum Lq.

II. LATTICE EVALUATION

Twisted mass fermions [18] provide an attractive for-
mulation of lattice QCD that allows for automatic OðaÞ
improvement, infrared regularization of small eigenvalues,
and fast dynamical simulations [19]. For the calculation of
the moments of GPDs, which is the main focus of this
work, the automatic OðaÞ improvement is particularly
relevant, since it is achieved by tuning only one parameter
in the action, requiring no further improvements on the
operator level.
The action for two degenerate flavors of quarks in

twisted mass QCD is given by

S ¼ Sg þ
X
x

�	ðxÞ½DW þmcrit þ i�5

3��	ðxÞ; (10)

where DW is the Wilson Dirac operator, and we use the
tree-level Symanzik improved gauge action Sg [20]. The

quark fields 	 are in the so-called ‘‘twisted basis’’ obtained
from the ‘‘physical basis’’ at maximal twist by a simple
transformation:

c ¼ 1ffiffiffi
2

p ½1þ i
3�5�	 and �c ¼ �	
1ffiffiffi
2

p ½1þ i
3�5�:
(11)

We note that, in the continuum, this action is equivalent to
the standard QCD action. As we pointed out, a crucial
advantage is the fact that, by tuning a single parameter,
namely, the bare untwisted quark mass to its critical value
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mcrit, a wide class of physical observables are automati-
cally OðaÞ improved [18,19,21]. A disadvantage is the
explicit flavor symmetry breaking. In a recent paper, we
have checked that this breaking is small for the baryon
observables under consideration in this work and for the
lattice spacings that we use [22–26]. To extract the GFFs
without needing to evaluate the disconnected contribu-
tions, we evaluate the nucleon matrix elements correspond-
ing to the operators defined by

O�1...�n

Va ¼ �c�f�1iD�2 . . . iD�ng 

a

2
c ;

O�1...�n

Aa ¼ �c�5�f�1 iD�2 . . . iD�ng 

a

2
c ;

(12)

where, from now on, we use the notations O�...�n

Va and

O�...�n

Aa to denote the vector and axial-vector operators
with flavor index a. These matrix elements receive contri-
butions only from the connected diagram for a ¼ 1; 2 and
up to Oða2Þ for a ¼ 3 [27]. In particular, we consider the
isovector combination with a ¼ 3, for which the form of
the operators remains the same in the physical and twisted
basis. In order to find the spin carried by each quark in the
nucleon, we also analyze the isoscalar one-derivative vec-
tor and axial-vector operators. The latter receive contribu-
tions from disconnected fermion loops, which we neglect
in this analysis. Simulations including a dynamical strange
quark are also available within the twisted mass formula-
tion. Comparison of the nucleon mass obtained with two
dynamical flavors and the nucleon mass including a dy-
namical strange quark has shown negligible dependence on
the dynamical strange quark [28]. We, therefore, expect the
results on the nucleon moments to show little sensitivity on
a dynamical strange quark. This is also confirmed by
comparing our results to those where a dynamical strange
quark is included.

In this work, we consider simulations at three values of
the coupling constant with lattice spacings 0.056, 0.07, and
0.089 fm determined from the nucleon mass. This enables
us to obtain results in the continuum limit. We also exam-
ine finite size effects by comparing results on two lattices
of spatial length L ¼ 2:1 fm and L ¼ 2:8 fm [29–31].

A. Correlation functions

The GFFs are extracted from dimensionless ratios of
correlation functions. The two-point and three-point func-
tions are defined by

Gð ~q; tf � tiÞ ¼
X
~xf

e�ið ~xf� ~xiÞ� ~q�0
��hJ�ðtf; ~xfÞJ�ðti; ~xiÞi;

(13)

G�1����nð��; ~q; t� tiÞ ¼
X
~x; ~xf

eið ~x� ~xiÞ� ~q��
��hJ�ðtf; ~xfÞ

�O�1����nðt; ~xÞ �J�ðti; ~xiÞi; (14)

where we consider kinematics for which the final momen-
tum pf ¼ 0. We drop tf � ti from the argument of the

three-point function, since it will be kept fixed in our
approach. The projection matrices �0 and �k are given by

�0 ¼ 1
4ð1þ �0Þ; �k ¼ i�0�5�k; k ¼ 1; 2; 3:

(15)

The proton-interpolating field, written in the twisted basis
at maximal twist, is given by

~JðxÞ ¼ 1ffiffiffi
2

p ½1þ i�5��abc½~ua>ðxÞC�5
~dbðxÞ�~ucðxÞ; (16)

where C is the charge conjugation matrix. We use Gaussian
smeared quark fields [32,33] to increase the overlap with
the proton state and decrease overlap with excited states.
The smeared quark fields are given by

qasmearðt; ~xÞ ¼
X
~y

Fabð ~x; ~y;UðtÞÞqbðt; ~yÞ;

F ¼ ð1þ �HÞn;

Hð ~x; ~y;UðtÞÞ ¼ X3
i¼1

½UiðxÞx;y�{̂ þUy
i ðx� {̂Þx;yþ{̂�: (17)

We also apply APE smearing to the gauge fields U� enter-

ing the hopping matrixH. The parameters for the Gaussian
smearing � and n are optimized using the nucleon mass, as
described in Ref. [6].
For correlators containing the isovector operators, the

disconnected diagrams are zero up to lattice artifacts and
can be safely neglected as we approach the continuum
limit. The detailed investigation of volume and cutoff
effects will be performed on isovector quantities, for which
no contributions are neglected. They can be calculated by
evaluating the connected diagram, shown schematically in
Fig. 2. A standard approach to calculate the connected
three-point function is using sequential inversions through
the sink [34,35]. The creation operator is taken at a fixed

position ~xi ¼ ~0 (source). The annihilation operator, at a

later time tf (sink), carries momentum ~p0 ¼ ~0. The current

couples to a quark at an intermediate time t and carries
momentum ~q. Translation invariance enforces ~q ¼ � ~p for
our kinematics. At a fixed source-sink time separation,
we obtain results for all possible momentum transfers

and insertion times, as well as for any operator Of�1����ng,

FIG. 2 (color online). Connected nucleon three-point function.
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with one set of sequential inversions per choice of the sink.
We perform separate inversions for each one of the four
projection matrices �� given in Eq. (15).

Using the two- and three-point functions of
Eqs. (13)–(15) and considering only one-derivative opera-
tors, we form the ratio

R��ð��; ~q; tÞ ¼ G��ð�� ~q; tÞ
Gð~0; tfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð ~p; tf � tÞGð~0; tÞGð~0; tfÞ
Gð~0; tf � tÞGð ~p; tÞGð ~p; tfÞ

vuuut ;

(18)

which is optimized because it does not contain potentially
noisy two-point functions at large separations and because
correlations between its different factors reduce the
statistical noise. For sufficiently large separations tf � t

and t� ti, this ratio becomes time-independent (plateau
region):

lim
tf�t!1 lim

t�ti!1R��ð��; ~q; tÞ ¼ ���ð��; ~qÞ: (19)

From the plateau values of the renormalized asymptotic
ratio�ð��; ~qÞR ¼ Z�ð��; ~qÞ, the generalized form factors

can be extracted. The equations relating �ð��; ~qÞ to the
GFFs are given in Appendix A. All values of ~q resulting
in the same q2, the four choices of �, and the ten orienta-
tions � and � of the operator lead to an over-constrained
system of equations which is solved in the least-squares
sense via a singular value decomposition of the coefficient
matrix. All quantities will be given in Euclidean space,
with Q2 ¼ �q2 the Euclidean momentum transfer
squared. The coefficients follow from the matrix-element
decomposition given in Eq. (9) and may depend on the
energy and mass of the nucleon, as well as on the initial
spatial momentum ~p ¼ � ~q (see Appendix A). It turns out
that both the operators with � ¼ � and � � � are neces-
sary to obtain all three one-derivative vector form factors.
Since those two classes of operators on a lattice renormal-
ize differently from each other [36], renormalization has to
be carried out already on the level of the ratios. Although
the one-derivative axial form factors can be extracted using
only correlators with� � �, we use all combinations of �
and � in order to decrease the statistical error.
Since we use sequential inversions through the sink, we

need to fix the sink-source separation. The statistical errors
on the three-point function are kept as small as possible by
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FIG. 3 (color online). Ratios for the one-derivative vector (left) and axial-vector (right) operator for a few exemplary choices of the
momentum. The solid lines with the bands indicate the fitted plateau values with their jackknife errors. The extent of the bands shows
the range of the plateaus.
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using the smallest value for the sink-source time separation
that still ensures that the excited state contributions are
sufficiently suppressed. We have tested different values
of the sink-source time separation in the case of the
form factors. We found that, taking tf � ti ¼ 12a and

tf � ti ¼ 14a, the results are consistent [6]. Therefore,

for the nucleon matrix elements of the generalized form
factors, we used throughout tf � ti ¼ 12a� 1 fm. For the

lattices considered, we use the following values, which
correspond to tf � ti � 1 fm:

� ¼ 3:9: ðtf � tiÞ=a ¼ 12;

� ¼ 4:05: ðtf � tiÞ=a ¼ 16;

� ¼ 4:20: ðtf � tiÞ=a ¼ 18:

In Fig. 3, we show representative plateaus for different
momenta and indices � and �. Fits using two different
plateau ranges are shown, one for 4a to 8a and one for 3a
to 9a, allowing, in each case, equal time separation from
the source and sink. As can be seen, the values obtained are
fully consistent, and, therefore, in what follows, we fix the
fitting range to be the longer one. In all cases, we check that
the final results are consistent with those extracted using
the range 4a to 8a.

B. Simulation details

The input parameters of the calculation, namely,�, L=a,
and a� are summarized in Table I. The lattice spacing a

is determined from the nucleon mass, and the reader is
referred to Refs. [6,17] for more details. Here, we present
only the final values, which are

a�¼3:9 ¼ 0:089ð1Þð5Þ; a�¼4:05 ¼ 0:070ð1Þð4Þ;
a�¼4:2 ¼ 0:056ð2Þð3Þ;

where the first error is statistical and the second systematic.
The systematic error provides a measure of the uncertainty
regarding the chiral extrapolation. It is estimated by com-
paring the value obtained using theOðp3Þ andOðp4Þ heavy
baryon chiral perturbation theory. More details can be
found in Ref. [25]. The pion mass values, spanning a range
from 260 to 470 MeV, are taken from Ref. [37]. At m� �
300 MeV and � ¼ 3:9, we have simulations for lattices of
spatial size L ¼ 2:1 fm and L ¼ 2:8 fm, allowing to in-
vestigate finite size effects. Finite lattice spacing effects are
studied using three sets of results at � ¼ 3:9, � ¼ 4:05,
and � ¼ 4:2 for the lowest and largest pion masses avail-
able in this work. These sets of gauge ensembles allow us
to estimate all the systematic errors in order to produce
reliable predictions for the nucleon one-derivative GFFs.

C. Renormalization

We determine the renormalization constants for the one-
derivative operators nonperturbatively, in the RI’-MOM
scheme [38]. We employ a momentum source [39] and
perform a perturbative subtraction of Oða2Þ terms [38,40].

TABLE I. Input parameters ð�;L; a�Þ of our lattice calculation and corresponding lattice spacing (a) and pion mass (m�).

� ¼ 3:9, a ¼ 0:089ð1Þð5Þ fm, r0=a ¼ 5:22ð2Þ
243 � 48, L ¼ 2:1 fm a� 0.0040 0.0064 0.0085 0.010

Number of configurations 943 553 365 477

m� (GeV) 0.3032(16) 0.3770(9) 0.4319(12) 0.4675(12)

m�L 3.27 4.06 4.66 5.04

323 � 64, L ¼ 2:8 fm a� 0.003 0.004

Number of configurations 667 351

m� (GeV) 0.2600(9) 0.2978(6)

m�L 3.74 4.28

� ¼ 4:05, a ¼ 0:070ð1Þð4Þ fm, r0=a ¼ 6:61ð3Þ
323 � 64, L ¼ 2:13 fm a� 0.0030 0.0060 0.0080

Number of configurations 447 326 419

m� (GeV) 0.2925(18) 0.4035(18) 0.4653(15)

m�L 3.32 4.58 5.28

� ¼ 4:2, a ¼ 0:056ð1Þð4Þ fm r0=a ¼ 8:31
323 � 64, L ¼ 2:39 fm a� 0.0065

Number of configurations 357

m� (GeV) 0.4698(18)

m�L 4.24

483 � 96, L ¼ 2:39 fm a� 0.002

Number of configurations 245

m� (GeV) 0.2622(11)

m�L 3.55
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This subtracts the leading cutoff effects, yielding only a
very weak dependence of the renormalization factors on
ðapÞ2, for which the ðapÞ2 ! 0 limit can be reliably taken.
It was also shown with high accuracy that the quark mass
dependence is negligible for the aforementioned operators.

Converting into the MS scheme at a scale � ¼ 2 GeV, we
find the values

Z�¼�
V ¼ 0:970ð26Þ; 1:033ð14Þ; 1:097ð6Þ;

Z
���
V ¼ 1:061ð29Þ; 1:131ð18Þ; 1:122ð10Þ;

Z���
A ¼ 1:076ð1Þ; 1:136ð0Þ; 1:165ð10Þ;

(20)

at � ¼ 3:9, 4.05, and 4.2, respectively. These are the values
that we use in this work to renormalize the lattice matrix
element.

III. LATTICE RESULTS

In this section, we present our results on the nucleon
generalized form factors A20ðQ2Þ, B20ðQ2Þ, C20ðQ2Þ and
~A20ðQ2Þ, ~B20ðQ2Þ. We examine their dependence on the
lattice volume and spacing, as well as on the pion mass. We
also compare with recent results from other collaborations.
In particular, we discuss lattice artifacts for the results on
the isovector combination for the renormalized nucleon
matrix element of the one-derivative operators

�u�f�D
,

�gu� �d�f�D
,

�gd; �u�5�f�D
,

�gu� �d�5�f�D
,

�gd

in the MS scheme at a scale � ¼ 2 GeV. All the errors
shown are statistical and are computed using the jackknife
approach. To convert the momentum transfer to physical
units, we use the lattice spacing as determined from the
nucleon mass. Any systematic error in the determination of
the lattice spacing affects only the value of Q2 and has not
been included in the analysis.

In order to obtain some estimates on the spin content of
the nucleon, we also analyze the isoscalar parts of the
spin-independent and helicity quark distributions, which,
however, neglect the disconnected contributions.

The GFFs A20ðQ2 ¼ 0Þ and ~A20ðQ2 ¼ 0Þ are computed
directly from the matrix elements, whereas B20ðQ2 ¼ 0Þ,
C20ðQ2 ¼ 0Þ, and ~B20ðQ2 ¼ 0Þ are obtained by linearly
extrapolating the Q2 � 0 data. C20 is consistent with
zero within error bars for all momentum transfers.

A. Finite volume effects

In order to assess volume effects, we compare in Fig. 4
the results on the moments hxiu�d and hxi�u��d computed
on different lattice sizes as a function of m2

�. As already
mentioned, both of these quantities are directly obtained
at Q2 ¼ 0 and require no assumption on their Q2

dependence. Alongside our results, we also show results
using NF ¼ 2 clover fermions [41] (preliminary), NF ¼
2þ 1 domain wall fermions (DWFs) [42], and domain

wall valence quarks on an NF ¼ 2þ 1 staggered sea
(hybrid) [43].
The results shown in Fig. 4 using twisted mass fermions

correspond to a pion mass of about 300 MeV and are
computed on lattices of spatial L with Lm� ¼ 3:3 and
Lm� ¼ 4:3. As can be seen, the results on these two
lattices for both hxiu�d and hxi�u��d are consistent. The
LHPC, using a hybrid approach and m� � 350 MeV, has
very accurate results at two lattices with Lm� ¼ 4:5 and
Lm� ¼ 6:2. No volume effects are seen for both vector and
axial-vector first moments. The QCDSF Collaboration has
preliminary results for hxiu�d, using clover fermions for
m� � 270 MeV with Lm� ¼ 3:4 and Lm� ¼ 4:2, which
are consistent. Finally the RBC-UKQCD results with do-
main wall fermions with Lm� ¼ 3:9 and Lm� ¼ 5:7 show
no volume effects for both hxiu�d and hxi�u��d [42]. The
conclusion that we draw from this comparison is that finite
volume effects on hxiu�d and hxi�u��d are insignificant at
our current statistical precision for lattices that satisfy
Lm� > 3:3.
In Figs. 5, we compare results on the GFFs A20ðQ2Þ,

B20ðQ2Þ, ~A20ðQ2Þ, and ~B20ðQ2Þ using twisted mass fermi-
ons for m� � 300 MeV for our two spatial lattice sizes of
L ¼ 2:1 fm and L ¼ 2:8 fm. The lines shown are linear
fits to theQ2 dependence. As can be seen, for both A20ðQ2Þ
and ~A20ðQ2Þ, one cannot ascertain any volume dependence.
For B20ðQ2Þ and ~B20ðQ2Þ, the statistical errors are larger,
and the linear fits show a larger spread with the change in
the spatial volume. However, given the large statistical
uncertainties, it is difficult to quantify any volume
dependence.

B. Cutoff effects

In order to examine cutoff effects, we compare in Fig. 6
our results obtained at the lowest and highest pion masses

FIG. 4 (color online). hxiu�d and
3
2 hxi�u��d using twisted mass

fermions (this work), NF ¼ 2 clover fermions [41] (prelimi-
nary), hybrids [43], and DWFs [42].
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FIG. 5 (color online). Left panel: the isovector GFFs A20 and B20 for pion mass�300 MeV for a lattice of spatial length L ¼ 2:1 fm
and L ¼ 2:8 fm. Right panel: the axial-vector GFFs ~A20 and ~B20 for L ¼ 2:1 fm and L ¼ 2:8 fm.

FIG. 6 (color online). Left panel: the GFFs A20 and ~A20 for our three lattice spacings atm� � 470 MeV. Right panel: A20 and ~A20 for
a ¼ 0:089 fm and a ¼ 0:056 fm at m� � 260 MeV.
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that we have considered in this work, namely, m� �
260 MeV and m� � 470 MeV. We show results on the

quantities A20ðQ2Þ and ~A20ðQ2Þ, since these have smaller
statistical errors than B20ðQ2Þ and ~B20ðQ2Þ. For the heavier
mass, where we have results at all three lattice spacings,

there is no visible dependence on the lattice spacing,
especially at low Q2 values. For the lightest pion mass of
m� ¼ 260 MeV, we have results at the largest and smallest
lattice spacings. The results are in good agreement,
although some deviations are seen at larger Q2 values.
Thus, within our current statistical errors, one may con-
clude that no significant cutoff effects are observed.

C. Quark mass dependence

The mass dependence of A20 and ~A20 is shown in Fig. 7.
Although the dependence on the mass is weak in the range
of pion masses spanned, the tendency is for the values of
the GFFs to decrease with decreasing pion mass. There is
also a tendency for an increase in the slope for both A20 and
~A20 as the pion mass decreases.

D. Comparison with other discretization schemes

In order to compare lattice data using different discreti-
zation schemes, one would have to first extrapolate to the
continuum limit. However, given that the cutoff effects are
small for lattice spacings of about 0.1 fm, lattice results for
different values of a using a number of improved discreti-
zations can be directly compared. In Fig. 8, we show
results on the spin-independent and helicity moments using
twisted mass fermions in the hybrid approach obtained by
LHPC [43], with NF ¼ 2 clover fermions by the QCDSF
Collaboration [41] (preliminary results), and with DWFs
by the RBC-UKQCD Collaborations [42]. There is good
agreement among the lattice results. The very accurate
results obtained using a hybrid action of domain wall
valence and NF ¼ 2þ 1 staggered fermions [43] tend to
be lower, compared to the other data. One difference

FIG. 7 (color online). Pion mass dependence of A20ðQ2Þ and
~A20ðQ2Þ, computed at � ¼ 3:9 and using a lattice size of
243 � 48.

FIG. 8 (color online). Lattice data on hxiu�d and hxi�u��d, using (i) NF ¼ 2 twisted mass fermions: a ¼ 0:089 fm: filled red circles
for L ¼ 2:1 fm and filled blue squares for L ¼ 2:8 fm, a ¼ 0:070 fm: filled green triangles for L ¼ 2:2 fm, a ¼ 0:056 fm: purple
stars for L ¼ 2:7 fm, and open yellow squares for L ¼ 1:8 fm; (ii) NF ¼ 2þ 1 DWFs [42]: crosses for a ¼ 0:114 fm and
L ¼ 2:7 fm; (iii) NF ¼ 2þ 1 using DWFs for the valence quarks on a staggered sea [43]: a ¼ 0:124 fm: open orange circles for
L ¼ 2:5 fm and open cyan triangles for L ¼ 3:5 fm; (iv) NF ¼ 2 clovers: a ¼ 0:075 fm [41] (preliminary results). The physical point,
shown by the asterisk, is from Ref. [50] for the unpolarized and from Refs. [51,52] for the polarized first moment.
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between them and the other results presented is that they
are perturbatively renormalized. It was shown in Ref. [42]
that perturbative renormalization can lead to lower values.
The spread in the values of the lattice results is shown to be
reduced by taking a renormalization-free ratio, leading
to a better agreement among lattice data with Lm� > 4
[44]. In particular, constructing a renormalization-free ra-
tio brought the hybrid data in agreement with our results
using twisted mass fermions and those using clover fermi-
ons by QCDSF. Lattice values for hxiu�d ¼ A20ðQ2 ¼ 0Þ,
although compatible, are higher from the phenomenologi-
cal value hxu�di � 0:16. The very recent preliminary result
by QCDSF [41] at m� � 170 MeV remains higher than
the experiment and highlights the need to understand such
deviations. A similar conclusion holds for the helicity
moment.

In Figs. 9, we compare our results for the GFFs with pion
mass 300 MeV with those obtained using a hybrid action
by LHPC and clover fermions by QCDSF, with pion
masses of 355 and 350 MeV, respectively. The results

show an overall agreement, with the data of LHPC some-
what lower than the other two sets. Once more, the fact that
both our results and those of QCDSF are renormalized
nonperturbatively, while those of LHPC are renormalized
perturbatively, might explain this difference. Moreover,
in our determination of the renormalization constants,
we have subtracted Oða2Þ terms perturbatively to reduce
lattice artifacts [38].

IV. CHIRAL PERTURBATION THEORY

In order to make a direct comparison with the experi-
ment, we need to extrapolate to the physical point. Our
lattice results are obtained using pion masses in the
range of 260 to 470 MeV. We expect chiral expansions
for baryonic quantities to hold below about 300 MeV.
Therefore, our study here is to examine the overall quali-
tative behavior. We only perform a chiral extrapolation of
GFFs at Q2 ¼ 0. We first perform this extrapolation using
our lattice results directly, since, as we have discussed in
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FIG. 9 (color online). Comparison of twisted mass results for A20ðQ2Þ, B20ðQ2Þ, and C20ðQ2Þ (left panel) and ~A20ðQ2Þ and ~B20ðQ2Þ
(right panel) at pion mass 300 MeV with those obtained using a hybrid action at m� ¼ 355 MeV and NF ¼ 2 clover fermions at
m� ¼ 350 MeV. Hybrid results are from Ref. [43], and the results using clover fermions are from Ref. [53].
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the previous section, cutoff effects are small. In the next
section, we will perform a continuum extrapolation and
verify that, indeed, the values we find at the physical point
are compatible.

Within heavy baryon chiral perturbation theory
(HB	PT) [45,46], the expressions for the m� dependence

of A20 and ~A20 are given by

hxiu�d ¼ C

�
1� 3g2A þ 1

ð4�f�Þ2
m2

� ln
m2

�

�2

�
þ c8ð�2Þm2

�

ð4�f�Þ2
; (21)

hxi�u��d ¼ ~C

�
1� 2g2A þ 1

ð4�f�Þ2
m2

� ln
m2

�

�2

�
þ ~c8ð�2Þm2

�

ð4�f�Þ2
;

(22)

where we take �2 ¼ 1 GeV2. The best fit is shown in
Fig. 10, where the width of the band is computed through
a superjackknife analysis [43]. As can be seen, the fits yield
a value higher than the experiment for both observables.
LHPC carried out a combined chiral fit using the Oðp2Þ
covariant baryon chiral perturbation theory (CB	PT) [47]
to A20, B20, and C20. The mass of the nucleon at the chiral
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FIG. 10 (color online). Chiral extrapolation using HB	PT for the isovector unpolarized and polarized first moments of the quark
distributions. The physical point, shown by the asterisk, is from Ref. [50] for the unpolarized and from Refs. [51,52] for the polarized
first moment.
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limit is used as input to the fits. They obtained a value for
A20 in agreement with the experiment [43]. In order to
compare with their analysis, we also perform a combined
fit to A20ð0Þ, B20ð0Þ, and C20ð0Þ within CB	PT [47]. The
CB	PT fits are shown by the bands in Fig. 11. As can be
seen, they also provide a good description to the lattice
data, but, in the case of A20, CB	PT leads to an even higher
value at the physical point. Therefore, the discrepancy
between our lattice results and the experimental value is
not resolved. In Appendix B, we collect the formulas used
for the chiral extrapolations. The actual renormalized
lattice data are tabulated in Tables III, IV, V, and VI of
Appendix C for the isovector GFFs.

V. CONTINUUM EXTRAPOLATION

In order to study the continuum extrapolation, we use the
simulations at our three lattice spacings at the smallest and
largest pion masses. We first interpolate the GFFs at the
three values of � to a given value of the pseudoscalar mass
in units of r0. We take as reference pion masses the ones
computed on the finest lattice and interpolate results at the
other two � values to these two reference masses.

As already mentioned, hxiu�d ¼ A20ð0Þ and hxi�u��d ¼
~A20ð0Þ are calculated directly at Q2 ¼ 0, requiring no fits.
We, therefore, choose these quantities to examine their
dependence on the lattice spacing, since this choice avoids

FIG. 12 (color online). hxiu�d, hxi�u��d, and B20ð0Þ as a function of ða=r0Þ2. The dashed red line is the result of fitting to a constant;
the dotted blue one is a linear fit.

FIG. 13 (color online). hxiu�d (left) and hxi�u��d (right) extrapolated to a ¼ 0 as a function of m�. The blue band is the chiral fit
using HB	PT. The physical point, shown by the asterisk, is from Ref. [50] for the unpolarized and from Refs. [51,52] for the polarized
first moment.
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any systematic errors, due to the extrapolation to Q2 ¼ 0,
which would require the adaptation of an ansatz for the Q2

dependence.
Having determined the values at a given reference pion

mass, we perform a fit to these data using the form yðaÞ ¼
yð0Þ þ cða=r0Þ2. The resulting fits are shown in Fig. 12.
Setting c ¼ 0, we obtained the constant line also shown in
the figure. As can be seen, for both large and small pion
masses, allowing a nonzero slope yields a value in the
continuum limit that is in agreement with that obtained
using a constant fit. This analysis shows that finite a effects
are small for both large and small pion masses, and ex-
trapolation to the continuum limit using a constant fit is
acceptable. For the intermediate pion masses, we, there-
fore, obtained the values in the continuum by fitting our
data at � ¼ 3:9 and � ¼ 4:05 to a constant. For compari-
son, we also perform a similar analysis for B20ð0Þ, which
requires fitting the Q2 dependence. The qualitative behav-
ior is similar to that observed for A20ð0Þ and B20ð0Þ.

Having results at the continuum limit, we perform a
chiral fit using HB	PT. The resulting curves are shown
in Fig. 13 and still produce a value at the physical point that
is higher than the experimental value. In fact, the value
obtained at the physical point for both vector and axial-
vector moments is in agreement to the one extracted using
the raw lattice data. This provides an a posteriori justifi-
cation of using continuum chiral perturbation theory
directly on the lattice data obtained at our three lattice
spacings to perform the extrapolation to the physical point
in the previous section.

VI. PROTON SPIN

In order to extract information on the spin content of the
nucleon, one needs to evaluate the isoscalar moments Auþd

20

and Buþd
20 , since the total spin of a quark in the nucleon is

given by [10]

Jq ¼ 1
2ðAq

20ð0Þ þ Bq
20ð0ÞÞ: (23)

The total spin can be further decomposed into its orbital
angular momentum Lq and its spin component ��q as

Jq ¼ 1
2��

q þ Lq: (24)

The spin carried by the u and d quarks is determined using

��uþd ¼ ~Auþd
10 . In order to evaluate the isoscalar quanti-

ties, one would need the disconnected contributions. These
are notoriously difficult to calculate, and they are neglected
in most current evaluations of GFFs. Under the assumption
that these are small, we may extract the information on the
nucleon spin.
In Fig. 11, we show our results for the isoscalar

A20ð0Þuþd, B20ð0Þuþd, and C20ð0Þuþd. Since, as shown in
the previous section, cutoff effects are small, we here per-
form a chiral extrapolation directly on the lattice data.
Having both isoscalar and isovector quantities, we can
extract the spin Ju and Jd carried by the u and d quarks.
The results are shown in Fig. 14. We show the extrapolation
using both HB	PT and CB	PT, both of which have the
same qualitative behavior. As can be seen, the contribution
to the spin from the d quark is much smaller than that of the
u quarks. These results are in qualitative agreement with the
recent results obtained using a hybrid action [43]. In Fig. 15,
we show separately the orbital angular momentum and spin
carried by the u and d quarks. Both our results and those of
LHPC [43] are in qualitative agreement, as far as the spin is
concerned. For the orbital angular momentum, we obtain
higher values for both d and u quarks (less negative). Thus,
we obtain a total positive Luþd, compared to a small nega-
tive value in the case of LHPC. After chiral extrapolation,
the value obtained at the physical point is consistent with
zero, in agreement with the value determined by LHPC. For
the spin contribution ��uþd, our value is lower at the
physical point, as compared to that obtained by LHPC.
We summarize the values for the total spin, orbital angular
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momentum, and spin in the proton at the physical point in
Table II. We would like to stress that simulations with pion
masses closer to the physical point would be needed to
check the validity of the chiral extrapolations of these
quantities. Such simulations are currently being performed.

VII. CONCLUSIONS

We have performed an analysis on the generalized form

factors, A20ðQ2Þ, B20ðQ2Þ, C20ðQ2Þ, ~A20ðQ2Þ, and ~B20ðQ2Þ,
extracted from the nucleon matrix elements of the one-
derivative vector and axial-vector operators using two de-
generate flavors of twisted mass fermions. Our results are
nonperturbatively renormalized, and they are presented in

the MS scheme at a scale of 2 GeV. To investigate volume
and cutoff effects, we have used the isovector combinations,
which can be calculated without the necessity to evaluate
disconnected contributions. Our main conclusion regarding
cutoff effects is that they are small within the current
accuracy of about 5–10% and for lattice spacings smaller

than 0.1 fm. Similarly, no systematic volume effects are
seen. Given the small cutoff effects, one can compare lattice
results directly using different discretization schemes. The
comparison of the results using NF ¼ 2 twisted mass fer-
mions with the results obtained using NF ¼ 2 clover
fermions by the QCDSF [41] shows agreement. Both the
results of this work as well as those by QCDSF are non-
perturbatively renormalized. We also compared our results
with NF ¼ 2þ 1 domain wall fermions [42]. Again, there
is agreement without any indication of any systematic effect
from including a dynamical strange quark. Our results at
three values of the lattice spacing allow for a continuum
extrapolation. By interpolating results to a reference mass
in units of r0 and performing a linear extrapolation in a2, it
was shown that the values obtained are consistent with those
obtained with a constant extrapolation. This has been veri-
fied for both the heaviest and lightest masses used in this
work. Furthermore, if one performs chiral fits to the ex-
trapolated continuum results, one finds a value at the physi-
cal point consistent with the one obtained using directly the
lattice data at finite lattice spacing. This provides a consis-
tency check that cutoff effects for a lattice spacing less than
0.1 fm are smaller than our current statistical errors.
Having established that both volume and cutoff effects

are small for the isovector quantities for which only con-
nected contributions are needed, we analyze the corre-
sponding isoscalar quantities using directly our lattice
data. Of particular interest here is the spin content of the
nucleon. The disconnected contributions to the isoscalar
quantities are not included. We find that the spin carried
by the d quark is almost zero, whereas the u quarks carry
about 50% of the nucleon’s spin. This result is consistent
with other lattice calculations [43].
For the chiral extrapolations of these quantities, we use

HB	PT and CB	PT. In both cases, our results on the
momentum fraction and helicity moment at the physical
point are higher than their experimental value. Such
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FIG. 15 (color online). Chiral extrapolation using HB	PT for the angular momentum and spin carried by the u and d quarks. The
physical points, shown by the asterisks, are from the HERMES 2007 analysis [48].

TABLE II. Values of nucleon spin observables at the physical
point, using CB	PT and HB	PT, and from the experiment [48].

CB	PT HB	PT Experiment

Ju�d 0.236(14)

Juþd 0.143(56)

Ju 0.266(9) 0.189(29)

Jd �0:015ð8Þ �0:047ð28Þ
��u�d=2 0.462(11)

��uþd=2 0.148(5) 0.208(9)

��u=2 0.305(7) 0.421(6)

��d=2 �0:157ð5Þ �0:214ð6Þ
Lu�d �0:258ð5Þ
Luþd �0:025ð53Þ
Lu �0:141ð30Þ
Ld 0.116(27)
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discrepancies are also observed in the case of the nucleon
axial charge, and they need to be further investigated.
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APPENDIX A: EXPRESSIONS FOR THE
EXTRACTION OF GFFs FROM LATTICE

MEASUREMENTS

We collect here the expressions relating the plateau

values to the GFFs A20, B20, C20 and ~A20, ~B20. The index
V (A) refers to the vector (axial-vector) one-derivative
operator. All relations are given in Euclidean space.
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where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

N=ðENðEN þmNÞÞ
q

; E2
N ¼ m2

N þ ~q2; the

Latin indices k, j, and n denote spatial directions 1, 2,
and 3; and k � j. A summation is implied over the index �.

APPENDIX B: CHIRAL PERTURBATION
THEORY RESULTS

For convenience, we collect in this Appendix the results
of theHB	PT results taken from Ref. [49] for the isovector
(I ¼ 1) and isoscalar (I ¼ 0) first moments and axial
charge:
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We note that the expressions for AI¼1
20 and ~AI¼1

20 are the

same as those given in Eq. (22) (up to a redefinition of C, ~C
and c8, ~c8). We have included them here using the notation
of Ref. [49] for completeness. We performed a combined
fit to the following CB	PT results taken from Ref. [47]:
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where M0 is the mass of the nucleon at the chiral limit.

APPENDIX C: NUMERICAL RESULTS FOR THE ISOVECTOR SECTOR

TABLE III. Results on A20 and B20 form factors at � ¼ 3:9; lattice size: 243 � 48.

m� (GeV) (no. configurations) ðQÞ2 A20 B20
~A20

~B20

� ¼ 3:9, 243 � 48

0.4675 (477) 0.0 0.256(9) 0.364(23) 0.307(6) 0.651(99)

0.322 0.230(7) 0.337(18) 0.273(5) 0.487(121)

0.619(1) 0.202(9) 0.299(16) 0.252(7) 0.568(72)

0.897(2) 0.178(12) 0.277(22) 0.227(11) 0.456(69)

1.157(3) 0.172(19) 0.249(34) 0.176(17) 0.078(96)

1.404(4) 0.154(22) 0.232(34) 0.191(22) 0.319(65)

1.640(6) 0.136(40) 0.208(60) 0.193(51) 0.346(126)

0.4319 (365) 0.0 0.257(10) 0.418(34) 0.310(7) 0.516(109)

0.321 0.219(8) 0.361(29) 0.264(7) 0.431(155)

0.615(1) 0.185(9) 0.296(26) 0.232(9) 0.378(75)

0.888(3) 0.167(13) 0.257(34) 0.211(14) 0.339(86)

1.143(4) 0.168(26) 0.209(42) 0.175(25) 0.191(115)

1.385(6) 0.141(29) 0.151(42) 0.173(37) 0.242(99)

1.614(8) 0.103(48) 0.118(63) 0.136(67) 0.139(112)

0.3770 (553) 0.0 0.258(10) 0.408(44) 0.296(8) 0.683(150)

0.320 0.217(10) 0.360(32) 0.266(7) 0.878(170)

0.613(1) 0.192(11) 0.338(26) 0.253(8) 0.417(89)

0.884(3) 0.164(20) 0.265(40) 0.237(26) 0.349(132)

1.138(4) 0.204(76) 0.339(129) 0.288(91) 0.661(301)

1.377(6) 0.166(59) 0.271(97) 0.218(70) 0.402(176)

1.604(8) 0.105(92) 0.140(126) 0.143(113) 0.215(210)

0.3032 (943) 0.0 0.255(16) 0.309(40) 0.284(10) 0.277(136)

0.317(1) 0.239(13) 0.241(36) 0.268(10) 0.380(184)

0.601(2) 0.199(13) 0.268(32) 0.223(11) 0.048(104)

0.862(4) 0.174(23) 0.178(37) 0.195(20) 0.245(110)

1.103(6) 0.135(27) 0.156(45) 0.172(24) 0.304(118)

1.330(8) 0.098(21) 0.142(34) 0.135(22) 0.180(70)

1.543(10) 0.105(34) 0.097(40) 0.087(27) 0.051(75)
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TABLE V. Results on A20 and B20 form factors at � ¼ 4:05.

m� (GeV) (no. configurationss) ðQÞ2 A20 B20
~A20

~B20

� ¼ 4:05, 323 � 64

0.4653 (419) 0.0 0.258(9) 0.431(26) 0.303(7) 0.579(92)

0.294 0.231(7) 0.382(22) 0.270(6) 0.458(166)

0.568(1) 0.210(7) 0.329(20) 0.248(7) 0.523(73)

0.824(2) 0.197(12) 0.283(25) 0.232(11) 0.342(77)

1.067(3) 0.170(19) 0.313(41) 0.221(20) 0.263(116)

1.297(4) 0.166(19) 0.256(30) 0.211(21) 0.367(75)

1.517(5) 0.156(31) 0.208(43) 0.181(33) 0.256(76)

1.930(7) 0.084(29) 0.085(34) 0.111(30) 0.190(92)

2.126(9) 0.056(58) 0.054(63) 0.066(65) 0.114(139)

0.4032 (326) 0.0 0.244(12) 0.465(46) 0.312(10) 0.625(114)

0.293 0.240(10) 0.434(42) 0.287(10) 0.455(206)

0.564(1) 0.208(11) 0.356(36) 0.263(11) 0.477(91)

0.816(2) 0.197(17) 0.302(43) 0.259(19) 0.539(132)

1.053(3) 0.175(32) 0.225(48) 0.251(34) 0.307(154)

1.278(5) 0.144(20) 0.203(36) 0.195(22) 0.332(81)

1.493(6) 0.144(41) 0.204(66) 0.202(56) 0.387(137)

1.895(9) 0.068(25) 0.095(36) 0.093(26) 0.142(73)

2.084(10) 0.043(26) 0.083(45) 0.071(32) 0.151(76)

0.2925 (447) 0.0(0) 0.231(24) 0.426(67) 0.310(23) 0.283(268)

0.291(1) 0.237(20) 0.307(66) 0.279(15) 0.328(322)

0.556(2) 0.216(21) 0.343(47) 0.252(18) 0.459(202)

0.801(3) 0.236(41) 0.279(69) 0.223(33) 0.025(207)

1.029(5) 0.136(39) 0.116(77) 0.165(34) 0.028(238)

1.245(7) 0.139(72) 0.090(84) 0.219(95) 0.484(266)

1.450(10) 0.104(42) 0.132(67) 0.157(52) 0.273(129)

TABLE IV. Results on A20 and B20 form factors at � ¼ 3:9; lattice size: 323 � 64.

m� (GeV) (no. configurations) ðQÞ2 A20 B20
~A20

~B20

� ¼ 3:9, 323 � 64

0.2978 (351) 0.0 0.243(15) 0.375(67) 0.287(10) 0.413(95)

0.183 0.230(14) 0.382(67) 0.262(8) 0.454(215)

0.354(1) 0.207(14) 0.318(54) 0.244(7) 0.282(98)

0.516(1) 0.196(14) 0.298(50) 0.228(9) 0.298(100)

0.670(2) 0.164(20) 0.249(61) 0.228(15) 0.441(138)

0.817(3) 0.165(16) 0.206(44) 0.204(11) 0.318(65)

0.957(4) 0.154(18) 0.188(40) 0.179(14) 0.165(64)

1.222(6) 0.145(28) 0.173(55) 0.191(38) 0.252(110)

1.348(7) 0.095(23) 0.170(42) 0.151(36) 0.123(81)

0.2600 (667) 0.0 0.263(13) 0.301(47) 0.275(13) 0.752(174)

0.182 0.240(09) 0.284(52) 0.261(10) 0.666(331)

0.352(1) 0.222(10) 0.252(38) 0.259(11) 0.582(164)

0.512(1) 0.196(12) 0.221(40) 0.256(16) 0.524(158)

0.664(2) 0.185(17) 0.246(48) 0.216(19) 0.263(185)

0.808(3) 0.161(14) 0.233(34) 0.217(16) 0.378(105)

0.945(4) 0.143(15) 0.204(34) 0.181(18) 0.247(93)

1.205(6) 0.100(22) 0.122(42) 0.127(24) 0.140(128)

1.328(7) 0.106(22) 0.162(40) 0.124(26) 0.072(105)
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