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Extracting scattering phase shifts in higher partial waves from lattice QCD calculations
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Liischer’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon
s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at
unphysical light-quark masses. In this work we review the formalism and develop the requisite
expressions to extract phase shifts describing meson-meson scattering in partial waves with angular
momentum / = 6 and [/ = 9. The implications of the underlying cubic symmetry, and strategies for
extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the
signal-to-noise problem that afflicts the higher partial waves.
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L. INTRODUCTION

The s-wave interactions between hadrons are being cal-
culated with lattice QCD (LQCD) with increasing preci-
sion. Presently, such calculations are being performed at
unphysical light-quark masses, and in the case of mesonic
interactions, extrapolations to the physical light-quark
masses are made possible by chiral perturbation theory
(xPT). Unfortunately, such extrapolations are presently
not reliable for baryon-baryon interactions, and it is likely
that LQCD calculations at, or very near, the physical light-
quark masses will be required to make precise predictions
for these interactions due to the fine-tunings that are known
to exist in nuclear physics. In most LQCD calculations,
periodic boundary conditions (BCs) are imposed on the
quark and gluons fields in the spatial directions of the
lattice volume and Liischer’s method [1,2] can be used to
extract scattering phase shifts from the energy-eigenvalues
of two-hadron states that lie below inelastic thresholds. As
it is the irreducible representations (irreps) of the cubic
group that determine the degeneracies of the eigenstates in
the (cubic) lattice volume, it is difficult to determine the
phase shifts, d;, beyond the lowest few partial waves. Each
of the irreps of the cubic group have a nonzero overlap with
infinitely many irreps of SO(3), and as a result, the energy-
eigenvalues of two-hadron states transforming as a certain
irrep of the cubic group receive contributions from the
phase shifts in an infinite number of partial waves. In
contrast, two-particle systems confined in a harmonic os-
cillator potential have a one-to-one relation between phase
shifts and the energy-eigenvalues since the potential re-
spects SO(3) symmetry [3,4]." The mixing of angular
momentum in cubic irreps consequently limits the preci-
sion with which the phase shift in any given partial wave
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"The same is true when a “spherical wall” is imposed on the
separation between hadrons, as has been demonstrated in recent
lattice effective field theory (LEFT) calculations [5].
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can be extracted in a LQCD calculation. This was made
obvious in the work of Mandula, Zweig, and Govaerts [6]
and explicitly detailed in Liischer’s papers [1,2]. Liischer
calculated the energies of states in the A{ irrep of the cubic
group as a function of §, and d,, and gave general ex-
pressions for the energies of states transforming in each of
the cubic irreps in terms of the §;. The extension of this
formalism to systems with nonzero center-of-mass (CM)
momentum was performed by Rummukainen and Gottlieb
[7], and later by Kim, Sharpe, and Sachrajda [8]. Recently
finite volume expressions for three-nucleon systems within
cubic volumes have been investigated [9-11].

Fully dynamical n; =2+ 1 LQCD calculations of
meson-meson interactions in the isospin-stretch-states
(i.e. no disconnected diagrams) are presently enabling
predictions of the s-wave interactions with percent-level
precision [12—17] (for a recent review, see Ref. [18]), and
very recently a preliminary calculation of the 77"
d-wave phase shift has been performed [19]. Further, pre-
liminary calculations of / = 0 777 scattering, which con-
tain disconnected diagrams, have been performed [20].
These calculations were preceded by quenched LQCD
calculations [21-39], and by early ny = 2 LQCD calcula-
tions [40]. Meson-baryon systems are starting to be ex-
plored in the channels for which disconnected diagrams are
not required in the LQCD calculations [41]. Further,
LQCD calculations of baryon-baryon interactions are
beginning to become reliable at unphysical pion masses
[42—45], and recently the binding energy of the H-dibaryon
has been calculated [46]. Now that the methodology for
extracting s-wave interactions has been shown to be effec-
tive, it is appropriate to explore the higher partial waves. In
the meson sector, a determination of the p-wave phase shifts
has direct implications for postdicting the mass and width
of the p-meson [47,48], but this requires evaluating dis-
connected diagrams in LQCD—calculations that are com-
putationally expensive. In nucleon-nuclei scattering, the
experimentally determined p-wave phase shifts are thought
to be at the heart of the “A,-puzzle” in nucleon-deuteron
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scattering. Further, it is found phenomenologically
that only the phase shifts in partial waves with / < 4 are
required to perform relatively precise calculations
of nuclear structure and reactions (at the physical pion
mass).

The formalism required to analyze the J = 1 coupled
channels, in which the deuteron is the ground state, has
been put in place by Liu, Feng, and He [49], and explor-
atory quenched calculations of the s-d mixing parameter, €,
at pion masses of m . ~ 730, 530, and 380 MeV have been
performed in a small number of lattice volumes [50].
Further, there has been recent work in developing the
phenomenology that goes beyond Liischer’s formalism
in an attempt to explore resonances (and couplings to
multihadron final-states) in the single baryon and meson
sectors [51].

It is appropriate to point out that there is a substantial
amount of information and technology that is directly
relevant to this subject, in particular, space groups, that
has been developed for study of condensed matter systems.
Much of the work in this paper draws directly from various
applications found in these fields. Discussions of space
groups can be found in texts, such as Ref. [52] or
Ref. [53], as are discussions of point groups, and other
formalisms that impact the present calculations.

While the papers by Liischer [1,2] contain the required
formalism, we take this opportunity to present the explicit
relations between the energy-eigenvalues of two spin-zero
meson states in a cubic volume and the phase shifts in the
partial waves with / = 6 and [ = 9. As the total spin is
zero, the total angular momentum of these states is dictated
by the spatial cubic irreps [54,55]. The experimentally
measured phase shifts describing 7r7r scattering in the
lowest-lying partial waves, appropriately parametrized,
are used to perform estimates of the energy-eigenvalues
that are expected in LQCD calculations of such systems
over a range of lattice volumes. We also discuss the issue of
signal-to-noise degradation while performing lattice cal-
culations in higher partial waves.

II. FORMALISM

In the absence of interactions, the states in the cubic
volume can be defined by their behavior under transforma-
tions of the cubic group and by their energy. As the
momentum in the volume is quantized in integer multiples
of 27r/L, where L is the spatial extent of the volume, the
energy quantum number can be replaced by the magnitude
of the integer triplet defining the momentum, |n|?, where
n = (n,, ny, n,). Instead of the energy, it is convenient to
refer to the particular |n|?-shell. For each partial wave with
[ = 6and !/ =9, anirrep of the cubic group is identified for
which 6, provides the dominant contribution to the inter-
action energy. Sources and sinks used in LQCD calcula-
tions that are constructed to transform under such irreps
will allow for a determination of the §; at some level of
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TABLE I. Decomposition of the orbital angular momentum
eigenstates, |/, m), into irreps of the cubic group, I'?, for [ <
9 (see, for instance, Ref. [52]).

Angular
momentum, | Irreps of the cubic group, I'?
Al
Ty
E"eT,
A, 0T, ©T,

AT @E o T ©T;

EeoT, Vo1, Yer;
AfeAfeEteoT 0T, Vo1 ?
AeE ol Ver,Per,Ver,?

Ar @ E+(l) ® E+(2) ® T?’(l) ® T1+(2) ® T;’(l) ® T;’(Z)
Ared,0E oT, VoT Yer, Vo1, Ver,?

O 0 1 N L WD~ O

precision. The energy of states with |n|> < 6 are required
to lie below the inelastic threshold in order to obtain all
of the phase shifts with / = 6, thereby requiring relatively
large lattice volumes. Further, the energy of a state in
the |n|> = 14-shell is required to obtain the / = 9 phase
shift.

A nonzero phase shift in a given partial wave will, in
general, contribute to the energy-eigenvalues of two-
hadron states in the volume that transform as one or
more irreducible representations of the full cubic group,
I'® 2 Table I shows the decomposition of the orbital angu-
lar momentum eigenstates, |/, m), into the ' for [ <9,
from which it is straightforward to determine the I') that
have energy-eigenvalues that depend upon a given phase
shift 6, A cursory study of Table I shows that A{ -states
will, in general, receive contributions to their energy from
interactions with [ = 0,4, 6,8, ..., as is well known [6],
and similarly for the other I'”. As the dimensionality of an
SO(3) irrep (which is 2/ + 1 for |/, m)) must be equal to the
sum of the dimensionalities of the cubic irreps in its
decomposition, cubic irreps will, in general, appear mul-
tiple times [with multiplicities denoted by N(I'®, [)] in the
decomposition of an SO(3) irrep. Multiplicities greater
than 1 occur for [ = 5. The space associated with the jth
occurrence of I'? in the decomposition of |/, m) is spanned
by the orthonormal basis {|T'?, L .5 15 j)}, where the number

*The irreps of the full cubic group are ') = AT, A5, E*, T,
and Tzi, and have dimensionality 1, 1, 2, 3, and 3, respectively.
The superscript denotes the parity of T

3Each T'® appears at least once in the decomposition of the
|/, m) with [ =< 6 except A7 which first appears in the decom-
position of the / = 9 irrep [52]. It is important to note that the
decompositions of the / = 7 and [ = 8 irreps contain only I'?)
that also appear in the decomposition of the / = 6 irreps, and
consequently there is no I' for which the dominant contribution
to the interaction energy (in the large volume limit) is from the
[ =7 and [ = 8 partial waves.
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of values of L, equals the dimensionality of ', e.g. for
[ =5, the three-dimensional irrep 7', occurs twice, and the
space associated with the second occurrence is spanned by
U17,0;5:2), 1T, 1,5, 2), T, 35 5;2)}.* When calculating
observables in a cubic volume, operators transforming as a
component of a spherical tensor of rank-S, o ), are most
conveniently written as

O = Y oI ILSWITO, L 180D, Ls 8;jl, (1)
i L,

where the values of the 6T"LS:#) are simply determined
by matrix elements of O(S“ ) between |1, m), or [T?, L_;S; j),
or any states forming a basis in which the projections onto
IF(i), L.;S; j) are known. In determining the energy-
eigenvalues of the states in the volume, it is the scattering
amplitude in a given partial wave that is written in the form
of Eq. (1), with § = [.

The relations between the energy-eigenvalues of two
hadrons in a cubic volume and their scattering phase shifts
below the inelastic threshold, originally derived in the
context of nonrelativistic quantum mechanics, were shown
to be valid in quantum field theory (QFT) without modifi-
cation by Liischer [1,2]. The energy shifts of scattering
states due to the interactions exhibit power-law dependence
upon the volume when the range of the interaction is
negligible compared to the spatial extent of the volume.
Corrections arising from the range of the interaction [for the
case of w7 the range is set by R ~ 1/(2m,,), while for
nucleon-nucleon interactions it is set by R ~ 1/m,] are
exponentially suppressed for L > R, and of the form
~e~L/R [56]. In this work, it is assumed that these finite-
range corrections are negligible compared to the power-law
energy shifts due to the interactions. It is straightforward to
calculate a two-hadron Green function resulting from an
arbitrary source and sink. The Green function is generated
by the bubble-diagrams with noninteracting two-hadron
states propagating from the source through multiple inser-
tions of the T-matrix, and then to the sink. In free space, the
Green function exhibits poles at the location of bound states
and cuts along the positive real axis. In the finite volume,
modifications to the propagation of the two noninteracting
hadrons eliminates the cuts on the positive real axis, replac-
ing them with poles at the location of the energy-
eigenstates. Further, these modifications shift the location
of the poles on the negative real axis (if present in infinite
volume). The energy-eigenvalues, corresponding to both
bound states and continuum states in the infinite volume
limit are determined by solutions to [8]

det[cosé — sin6 FFV)] = 0, )

*The L, quantum number indicates that a phase of e’*:% results
from a (cubic) rotation of ¢ = nr/2 about the z-axis, with n an
integer. L, =3 is equivalent to a L, = —1 and L, =2 is
equivalent to L, = —2.
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where cotd, sind, and FFY) are (/M + 1)2 X ([max + 1)2-
dimensional matrices when the phase shifts §,; are nonzero
for [ = [™ and vanish for [ > [™# Initially, it is conve-
nient to work in the |, m) basis in which, for uncoupled
channels, coté and siné are diagonal matrices of the form

€088 =088, 6y, 1,0, m,, SINO =8IN6;, 0y 1,6, m,r (3)

for 1;, = [™>*, but in which F*Y) has off-diagonal ele-
ments, in general. FFY) is a matrix that is a function
of the dimensionless quantity § = Z=, where ¢ is related

to the energy of the interacting two-hadron state, Ey, p, =

\/q2 +my, —i-\/q2 +my, . Its matrix elements are of the
form

[+

3/2\/(211 +DRL+1) S Z

I=|l, — by m=—1

l] 7 lz l] l_ ~
Z: (1;¢%), 4
x<00()<_m _m”h>,4 P @

where the functions Z;,(1;§%) are those defined by
Liischer [1,2],

\/ZH-

~(FV)
Lmylmy

Q,
Zinls:d) =X l[ﬁhflm(ﬁ]? 5)

where Y,,,()) are the spherical harmonics. The function

Zy,0(1; 3% is UV-divergent and is defined with the same

renormalization scheme used to define the infinite volume

scattering amplitude.

The nondiagonal nature of F©V with regards to /; and I,
results in the mixing of partial waves within each cubic
irrep I'” and makes the derivation of the finite volume
formulas nontrivial. We found the following steps to be
useful:

(i) Separate the problem into positive (/ even) and nega-

tive (/ odd) parity systems.

(ii) Diagonalize the blocks of FV) with I, =1, =1,

giving F EQV)zm This separates F'V) into blocks
with dimensions dictated by the number of occur-
rences of each I'¥ for [ < [max,

(iii) Perform further diagonalizations confined within
each I'V if needed.

(iv) Asthe sind and cosd matrices are diagonal in /; and
[, their inclusion into Eq. (2) is straightforward.
The determinant in Eq. (2) then becomes the prod-
uct of determinants resulting from each I'?,

For /™ = 6 this procedure requires dealing with matrices
of size at most 4 X 4. Unfortunately, even with these steps
laid out, calculations can become quite tedious in the
absence of automation (as is currently the case). As an
aid, we give explicit derivations of select systems in
Appendix A.
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Despite the fact that Eq. (2) requires forming the
determinant of a finite dimensional matrix, it has
infinitely many solutions. It is derived from a Green
function between arbitrary sources and sinks which,
in principle, can couple to all of the eigenstates in
the volume, manifested in the infinite sums over integer
triplets that define the Z;,-functions. Therefore, the
zeros of the determinant in Eq. (2) define all of the
energy-eigenvalues and hence eigenstates. As discussed
previously, the energy spectrum of two noninteracting
hadrons in the cubic volume with periodic BCs, and
with vanishing total momentum can be defined by triplets
of integers, n,

E =yl + i+ yflasl + n3

27\2 2m\2
— \/(fw) In|> + m? + J(Tw) In| + m3

2 2
_ lq. I |qa| L.
2m1 2m2

2 2
=P ©)
M

where one hadron carries momentum q; = ZT”n and the
other carries momentum ¢, = —ZT”n, and the reduced
mass of the system is w~! = m; ! + m5'. This (noninter-
acting) spectrum is recovered in the above formalism, in
particular Eq. (2), in the limit that §; — 0 in each partial
wave from the poles in the Z; ,-functions that exist along
the positive real axis. The degeneracy of any given
In|?-shell is straightforward to determine and is recovered
from the number of states in the I'” that span the
In|?-shell, as shown in Table II. As the (single hadron)
momentum eigenstates in a given |n|?-shell are degener-
ate, the corresponding I'@ are also degenerate. These
degeneracies are lifted by two-particle interactions that
induce nonzero 6;s. Table I shows that all but one of the
'@ are required to describe the eigenstates for [n|> < 6,
and from Table I it can be concluded that for §; # 0 for
[ = 6 all of the eigenstates with |n|?> < 6 are shifted from

TABLE II. The degeneracies of, and the number of occur-
rences of each I'” in, the lowest-lying |n|?-shells. Note: the
A7 irrep first appears in the [n|> = 14 shell.

[n|> degeneracy A} AS T} TS ET A7 Ay Ty T, E-

0 1 1

1 1 1 1

2 12 1 1 1 1 1

3 8 1 1 1 1

4 6 1 1 1

5 24 1 1 1 1 2 2 2

6 24 1 1 1 1 2 1 1
14 48 1 1 3 3 2 1 1 3 3 2
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the noninteracting two-hadron energy due to interactions.
However, the Aj irrep first occurs in the |n|*> = 14
shell and its energy is dependent upon interactions
with [ = 9.

III. ENERGY-EIGENVALUES, SOURCES,
AND SINKS

Liischer’s formalism, as detailed in the previous section,
is used to construct explicit relations between the energy-
eigenvalues of the I'” and the interaction phase shifts for
[ = [™ = 6, the results of which are presented in this
section. Sources and sinks for LQCD calculations that
transform as a given I'® are constructed from the single-
hadron momentum-eigenstates, and Fourier transformed
into position space. One pair of these sources and sinks
would couple only to a single energy-eigenstate in the
absence of interactions between the hadrons. As the inter-
actions do not induce mixing between distinct I'? these
sources and sinks couple, in principle, to all states that
transform in the same I'”. To keep the presentation of
results simple, explicit derivations are deferred to
Appendix A, where calculations of the even- and odd-
parity systems with [™* =4 are detailed, and which
straightforwardly generalize to any [™®*.

As the hadronic interactions considered in this
work result from QCD with the strong CP-violating
parameter 6 set equal to zero and, without the
electroweak interactions, parity is a good quantum
number. Consequently, the contributions to the finite
volume function F*¥) do not mix states of opposite
parity, and therefore the required calculations decompose
into the parity-even and parity-odd sectors. If weak
interactions are included in the analysis, as will neces-
sarily be the case when hadronic parity-violating interac-
tions are calculated with LQCD, mixing between the
parity sectors will occur.

A. Positive parity systems

There are five positive parity irreps of the cubic
group, AT, Ay, E*, T{", and T with dimensions 1, 1, 2, 3,
and 3, respectively. Table I shows how the interactions
in a given partial wave contribute to each I
The energy-eigenvalues, sources, and sinks for the even-
parity states are presented in the following sections:
ITAI-ITAS.

1. A representation

The energy-eigenvalues of A states depend upon the
phase shiftsinthe [ = 0,4, 6, §, ... partial waves, as can be
seen in Table 1. Diagonalization of the blocks in the finite
volume function of the form F ﬁ ) for [ = 0, 4, 6 gives the
states |ATF, Ll J), as defined immediately before Eq. (1),
with
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|A},0;0; 1) = |0, 0)

|AF,0;4:1) = — ‘[|44>+ \[|4o>+ [|4 4 7

AT, 0;6;1) = |6 4) — |6,0) + — |6 —4)

\/_

cotd, 0 0
det ( 0 cotd, 0 )—

0 0 cotdg

where the finite volume contributions are

F4;O
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for the A] eigenstate of each F ng in the orbital angular
momentum (spherical wave) basis |/, m). With these states
and the corresponding eigenvalues from £, (F v , the proce-

dures described in Appendix A allow for the contribution
to Eq. (2) from Af’ states to be written as

=(FV,AT) =(FV,A7) —(FVA*)
Foo o'W Fou ™' Fog
_ + — + — +
SRR S OSEEN SACUEN N B ®)
P A g

AN _ Zo0(1:3%)
3/251' ’
F(FVA*) 2\/_240(1 )
R
q
FEVAD _ 2\/526,0(1;5]2)
0;6 77.3/267
Fvan _ Zoo(13g%) | 108Z40(134%) | 80Zgo(134%) | 560Zg(1:4?)
e G 143732 1I1B3m2g 14317723
FEVAD _ 40\/_240(1 7% +42\/—Z60(1 q%) 224\/22 Zgo(1:G%) 1008\/—2100(1 %)
o 11732 18772 2097%24° 323725
FEVAD _ Zoo(1;3%)  126Z,4(1:3°) 160v/13Z4,0(1: 3%) | 840Z0(1; %) B 201621 Z,0,(1: )
o0 72 187723 355324 20917725 742973/2G"
30492Z50(1;G%)  1848v1001Z54(1;3%)
3714573/2G"3 3714573213
and F (F VIO — =F; (F VIO Equation (8) yields an infinite  the /[ = 4 partial wave, the shift in a third combination is

number of energy elgenvalues and eigenstates, each of
which depend upon the phase shift in the / = 0, 4, and 6
partial waves.

In the |n|?-shells for which there is just one A; state,
as shown in Table II, its energy shift due to interactions
receives contributions from the [ =0,4,6,... partial
waves. However, in the |n|?-shells in which there are
multiple A] states (first occurring at [n|> =9), the
energy-eigenstates are linear combinations of these
states. In the large-volume limit, the shift in the
energy-eigenvalue of one combination is dominated by
the interactions in the [ = 0 partial wave, the shift in a
second combination is dominated by the interactions in

dominated by the interactions in the / = 6 partial wave,
and so on. So while the naive argument that A states
receive contributions from interactions in the [ =
0,4,6,... partial waves is generally true, linear combi-
nations of A; states are formed such that it is not true in
the infinite volume limit. The energy shift of each oc-
currence of an A} energy-eigenstate in a given |n|>-shell
is dominated by the interaction in a different partial
wave in the infinite volume limit. To demonstrate
this point, consider the situation where the phase shift
in the /=6 partial wave vanishes, in which case
Eq. (8) becomes a 2 X 2 matrix with the following two
solutions:

114508-5



THOMAS LUU AND MARTIN J. SAVAGE

PHYSICAL REVIEW D 83, 114508 (2011)

cotdy n cotdy  Zoo(1;G%)  280Zg0(1;3%)  40Z60(1;G%)  542Z40(1;G°)
2 2 w2G 14317723° 11137257 1437323
1 |/560Z¢,(1; 4> 80Z¢(1; 4% 1082, 0(1; > 2 48Z,,(1;3%)?
1 ( g0(1:G%) N 60(1:3%) 10(154°%) + cotdy — cot54) n 4,03(~1(§] > _ 0. ©)
2\\143V177323° 11137327 143725 TG

In the case of tanéd, < tan60,5 the / = 0 dominated solu-
tion is

2 1228877 Z, 0(1;G2)>
t6g=——2y0(1:3%) + 400>
qe0t00 ==y 2008+ o oo cors]
+ O(tan?8,), (10)

and is valid for all |n|?-shells. If phase shifts in both the
[l =4 and [ = 6 partial waves vanish, Egs. (8) and (10)
reduce to the familiar result found by Liischer,®

2
_ =2
qC0t50 = —,_L Z0,0(I, q ), (11)

where the function Zyo(1;4%) is shown in Fig. 1.
Performing a large-volume expansion of the solution (as
discussed in Appendix C) to Eq. (11) in the |n|?> = 9-shell
gives the energy-eigenvalue

1 [367> 20tandy(In|> =9)
EA+(1) - _[ ) - 2
1 2,LL L L
+ O(tan®8y) + - - ] (12)

while the second solution to Eq. (9) has a perturbative
expansion of the form

1 [367T2 8960tand,(In|>=9)
Eyror=oA—5"~ p)
ol L 243L

+ O(tandg) + - ] (13)

>For (non-nuclear) systems in which the [ = 4 partial wave
might be resonant, and therefore tand, << tanéd,, Eq. (9) can be
expanded to obtain the / = 4 dominated solution,

5127132 200(13¢%) | 17694727772 Z,(13 %)
VK 143L14¢°

| 3145728713 Z,0(1: )
TL3¢° cotd,,

However, as argued later, the Tl+ system is better suited for
extracting the phase shift in this channel.

5The S-function, S(cf), used in, for example, Ref. [57], is
related to Zy(153%) by S(§%) = V47 Zy (15 G).

q° cotd, =

+ O(tan?§).

where the contribution from the [/ = 0 partial wave is
strongly suppressed in the large-volume limit. While the
two basis states, |In|> = 9; A7 (1)) and ||n]> = 9;A] (2)),
both have a nonvanishing overlap with |/, m) = |0, 0),
it is obvious that a linear combination can be formed
that has vanishing overlap. Inserting the interactions
once, as is appropriate for determining the energy-
eigenvalues in large volumes (i.e. first order perturbation
theory in 1/L), dictates the form of the expansions in
Egs. (12) and (13).

Sources and sinks that have an overlap, and in general
a range of overlaps, with the finite volume energy-
eigenstates of hadronic systems are required for LQCD
calculations. While the interactions between hadrons
gives rise to energy-eigenstates that are not products of
single-hadron eigenstates of the linear-momentum opera-
tor, sources and sinks can be constructed from the
single-hadron momentum-eigenstates that transform as
a given I'®, that will have nonzero overlap with the
energy-eigenstates in the same irrep. Constructing
sources and sinks from single hadrons that have
equal and opposite momenta ensures that the total
momentum of the combined system vanishes. The
relative-momentum-eigenstates of definite parity, P, are
denoted by

30 T [ T 0 T T T

20

10

_1:/5(

-20 |

-30

~2

FIG. 1 (color online). The function Z;(1;§?). The vertical
dashed lines denote the position of the poles of the function
corresponding to the noninteracting energy-eigenvalues.
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TABLE III. The momentum space structure of A" sources and sinks for |n|*> = 0, 3, and 6.

These are shown graphically in Fig. 2.

[n2=0 [n]?=3 [n]> =6
211, +1) 5l 21, =D, +1) 5%
(L1, 1), +1) 1 12 =11, +1) 57 1@ -L=-1+1)
10,0,0), +1) 1 [(1,1,—1),+1) 1 (L2 1), +1) 5l (L2 -1, +1) 55
I(L-1L1),+1) & (L 1L2),+1) ;s (L1, =2), +1) 55

I(L=1,=1,+1) & (L -L2,+1) ;=
(1, -2,1), +1) 3=

(1, =1, =2), +1) ﬁ?
(1, =2, —1), +1) ﬁ;

|7y +P|—it) > A
mp =] v @F0 (14)
|71) (7=0 and P=+1),

where P is the parity of the state (P = *1) and
i = (n,, ny, n.) is the triplet of integers that define
the relative momentum of the two-body system. The
states in Eq. (14) are eigenstates of the relative kinetic
energy operator Ty, with the eigenvalues displayed in
Eq. (6). By taking appropriate linear combinations of

[In|>=1;A]) =

these momentum-eigenstates, states in the Af’ represen-
tation (or any other irrep) can be constructed in each
[n|?-shell if the shell supports it (see Table II and
Ref. [52]). For example, in the |n|?> = 0 shell the basis
state is

IIn]* = 0;A7) = 1(0,0,0), P = +1),

=

while for |n 1, the basis state is

[(1,0,0), P=+1)+1(0,1,0), P = +1) + |(0,0,1), P = +1)

In general the coefficients of these basis vectors are valid
up to an arbitrary phase. The momentum space basis for the
AIJr sources and sinks in select |n|?-shells are presented in
Table III.

The momentum space representations of the sources and
sinks (the left panels in Fig. 2) show the n-vectors that
transform as an A in the given |n|?-shells. The widths of
the vectors are proportional to the magnitude of their ampli-
tudes and their color denotes the sign (red [light gray] =
positive, blue [dark gray] = negative). Since only positive
vectors contribute to A]” sources, all momentum vectors in
Fig. 2 are red (light gray). The position space representations
of the sources and sinks (the right panels in Fig. 2) show the
surfaces of constant p,, p(r), defined by

pa2(r) = Krl(ny, ny,n,), PP, (15)

NG

which are obtained by Fourier transform. In the position
space representations, r refers to the relative distance be-
tween the two particles and in Figs. 2, 4, 6, 8, 10, 12, 14, 16,
18, and 20 ¥ is defined to be ¥ = r/L.

2. AJ representation

The other one-dimensional positive parity irrep of the
cubic group is the AJ. Because of its complexity, the
lowest-lying state transforming as a A5 is in the [n|* =5
shell, as indicated in Table II. Further, the lowest partial
wave contributing to its energy is / = 6, and as this analy-
sis is truncated to partial waves with [ = 6, the contribution
to the determinant in Eq. (2) has the solution

2m\13 1 6G%Z40(1;3%) 160:/13G°Z¢o(1;3%)  40G*Zg(1; G*
4" cotds = (_77') (@12200(1252) 4 b4 40(1;%) V13§ Zs (15 3%) 404" Zg(1;4°%)
L) 2 » 17 323 19V17
2592v2142 Z10,0(15.4%) | 1980Z150(1; ) N 26410012, 4(1; 672))
7429 7429 7429
2m\13 1 5
= (f) WXXZ(qZ) (16)
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FIG. 2 (color online). The momentum space representations (left) and position space representations (right) of two-body relative
states in the A} representation for select [n | shells. Here # = r/L. Surfaces of constant color (grayscale shade) in the right figures denote
position space density contours. The red (gray) lines in the left figures represent momentum vectors. See text for further description.
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2e+06

1.5e+06 ! 1
1e+06 [
500000 ! b

0

-500000 ! 1
-1e+06 ' 4

-1.5e+06 | . g

20406 ‘ s w s X ‘
4 R

FIG. 3 (color online). The function XXZ, as defined in Eq. (16),
as a function of §. The vertical dashed line denotes the position
of the pole of the function corresponding to the noninteracting
energy-eigenvalues.

and the associated eigenstate of the F (6?/) block is

1 11 1 11
AF,2:6;1) = —4|—=16,2) + —|—16, —2
43260 = 1M 2+ Ll )
15 15
— —4/516,6) — —4/=]6, —6). 17
4\@ ) 4\[2| . an

The function X;{z is shown in Fig. 3 as a function of §°.
Its pole at §> =5, denoted by the vertical dashed line,
corresponds to the noninteracting (8¢ = 0) energy-
eigenvalue. This is the only |n|>-shell with |n|> <6

PHYSICAL REVIEW D 83, 114508 (2011)

TABLE 1V. The momentum space structure of the AS source
and sink in the |n|> = 5-shell. They are shown graphically in
Fig. 4.

In|*> =5
21,0, +1) -5~
2.0, -1),+1) ;5
I(1L2,0,+1) 5l
(1,0, =2), +1)

12,0, 1), +1) 5=

12 -1,0,+1) -5}
1(1,0,2), +1) —5=
(1L, =2,0), +1) 3=

— 1
23
10,2,1), +1) — 51 0,2, =1, +1) =3k

[0, 1,2), +1) # [(0, 1, =2), +1) ﬁ;

which supports the AJ irrep, as shown in Table II. In
Fig. 4 we give the graphical representations of the source
and sink that generates this irrep in the |n|> = 5-shell. As
this is the lowest-lying state whose energy-eigenvalue is
insensitive to [ < 6 interactions, it is LQCD correlation
functions constructed to transform in the A irrep that
will enable a calculation of §4. However, as the lowest
energy contributing to an AJ correlation function occurs
in the [n?| = 5-shell, relatively large lattice volumes will
be required in order to have this state lie below the
inelastic threshold. The momentum space structure of
the source and sink that couple to the Ay state in the
[n|> = 5-shell is given in Table IV.

3. E* representation

The energy-eigenvalues of states transforming in
the E* irrep receive contributions from interactions in the
[=12,4,6,... partial waves. As the E* irrep is two-
the contribution to the

dimensional, determinant in

FIG. 4 (color online).
in the AJ representation for the [n|*> = 5 shell.

The momentum space representation (left) and position space representation (right) of two-body relative states
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Eq. (2) results from a 6 X 6 matrix when [ = 6. However,
as the two states in the E™ irrep (with L, = 0 and L, = 2)
are degenerate, and orbital angular momentum is conserved
by the interactions (unlike the situation in the baryon

PHYSICAL REVIEW D 83, 114508 (2011)

sector), the analysis can be reduced to that of a 3 X 3
matrix. The E™ L, = 0 states associated with the F (2;F2V) s
F f&v), and F g;V) blocks are

17 15 17 1 17 1
E*,0:2;1)=12,0) |E*,0:4;1)=24[=14,4) — 54/514.0) + 24/ =14, —4) |ET,0:6;1)=—6,4) +-4/516,0) +—[6,—4), (18
| )=12.0) | >2\[6|>2‘f3|>2\[6|>| >4|>2\f2|>4|><>

and the contribution to Eq. (2) becomes

~(FV,E") ~(FV,E") ~(FV,E")
29 F F

cotd, 0 0 2 24 26
det 0 cots, 0 |—|FYE FEE FEED [ =0, (19)
0 0  cotdg F(:zv,E*) F(6f4v,E*) Fé@v’“
where
FUFVE) _ Zoo(1:3%) | 6Z,40(1;3%)
2;2 3/2~ 7773/255
F(FVE+) 30’\/_260(1 CI ) 40\/3—240(1,62)
11732g 11725
_(FVE+) 8\/110 Z80(1 q 4\/_260(1 q 30\/—240(1 61
3/2 ~0 11773/26?7 1177.3/265
FUFVE) _ Zoo(1:G%) | 392Z50(1:G%)  64Z60(1:G%) | 108Z,44(1: )
4 w2 143/17723° 111373257 1001723
FUVE) _ _ 1512\/%210,0(1;52) B 128\/%28,0(1;512) _18210Z,(1:4%) 8\/32?24,0(1§512)
46 32373/2411 20973/23° 187732 117325
HEVE) _ Zoo(1;3%) 304922, (15 %) N 264\10012Z,4(1;3%)  1152321Z,00(1;3) | 280Zg0(1;G2)
o G 371457/2G" 371457/2¢" 742973231 2091772
+480JEZG,0(1;(72) 1142Z,,(1; %)
35537327 18773/25°

It is obvious that the solutions of Eq. (19) depend upon the / = 2, 4, and 6 partial waves in a nontrivial manner.
In the limit of vanishing interactions in partial waves with [ > 4, the contribution from the E™ irrep to Eq. (19) results

from a 2 X 2 matrix, and has solutions

COt(Sz + COt54 _ ZO,O(I; (,?2) . 196280(19 q2) 32260(19 qz) _ 69Z40(1, 512) _

2 2 /g 143/177323° 11137327 1437325

17(392Z0(1:4%)  64Zo(1:4%)  750Z,0(1; G°) 2
* - : - d - : + cotd, — cotd,
2L\14317723° 111373257 1001723
30\/_260(1 7%) 40J_Z40(1 G2\2T1/2
: (20)
1173257 71w

114508-10



EXTRACTING SCATTERING PHASE SHIFTS IN HIGHER ...

In the limit that tand, < tand,, the [ = 2 dominated
solutions to Eq. (20) result from

L

2m\5 1
\L) »~

2m\s 1 (. _ 6 .
g’ cotdy = (7) m(tfzo,o(l; 7’ + 724,0(1§ 612))

X5 (), 1)

where function X} is shown in Fig. 5 as a function
G2 The graphical representations of the sources
and sinks that generate this irrep for particular
In|?> < 6-shell are shown in Fig. 6 in the case of L, = 2,
and the momentum space structures are given explicitly
in Table V.

There are two occurrences of the E* irrep in the |n|> =
S5-shell. Linear combinations of the basis states can be
formed: one that is dominated by &,, and one that is
dominated by J, in the infinite volume limit. As is the
case in the A] sector, these states are not energy-
eigenstates since they have a nonzero projection, in prin-
ciple, onto all E* states. The perturbative expansions of the
energy-eigenvalues in the large-volume limit can be found
in Appendix C.

4. T representation

The energy-eigenvalues of states transforming in
the T, irrep receive contributions from interactions

in the [ =4,6,... partial waves. The Tl+ irrep is
three-dimensional, with states identified by L, =0, 1, 3,
and provides a contribution to the determinant

in Eq. (2) that results from a 6 X 6 matrix for [/ = 6.
As the three L,-states are degenerate, the analysis
collapses down to that of a 2 X2 matrix. The T}
L. = 0 states associated with the F{,” and FY blocks
are

1 1
T, 0;4:1) = —[4,4) — —[4, —4),
T, ) ﬁl ) ﬁl )

: . (22)
T}, 0;6:1) = —=16,4) — —=16, —4),

V2 V2

and the contribution to Eq. (2) is

"This expression has been derived previously by R. Briceno
[58].

PHYSICAL REVIEW D 83, 114508 (2011)
1000 T T T T T

500 |

-500

-1000
-4

~2
q

FIG. 5 (color online). The function X, as defined in Eq. (21),
as a function of §2. The vertical dashed lines denote the position
of the poles in the function corresponding to the noninteracting
energy-eigenvalues.

e (00 0 )- F RSN o o)
0 cotdg F(61;:2V’T1) F(GI;’6V,T1) g
where

4Z40(1;4°)
11/1373/257

(FV,T})

2 _ Zoo(1;G%)  448Z40(1:3%)
a4 =

m2q 14317723
542Z,0(1: %)
143732

F(FVT*) 576\/—2100(1 7’ N IIZJ;ZSO(I 7°)
32377.3/2 11 20977.3/2 ~9

125240158
1877324 1724
AV _ Zool157)  26136Z150(15¢%)
6:6 3/26? 371457T3/2~l3
| 1584V/1001Z,5,4(1: %)
3714573/2G13
+624\/_Z|0’0(1;6?2)
74297321

. 80+/13Z0(1; 4%) B
35537327

42\/_26 o(1;G%)

120Z34(1; 3°)

209/1773/2°
96Z,(1; %)
1877/25°
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FIG. 6 (color online). The momentum space representations (left) and position space representations (right) of two-body relative
states in the E* representation with L, = 2 in the |n|?> = 1, 4, and 6 shells.
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TABLE V. The momentum space structure of E*, L, = 2 sources and sinks for [n|]? = 1, 4, and 6. These are shown graphically in

Fig. 6.

n]2=1 [n|2 =2

n>=4

[(1,0,0), +1) —715
[(0, 1,0), +1) 715

2,0,0, +1) —
0,2,0, +1) &

(2, 1,1), +1) —ﬁi
(2, -1, 1), +1) —ﬁa
[(1,2,1), +1) ﬁi

2,1, —1), +1) _ﬁz
(2, —1, —1), +1) _ﬁz
(1,2, —1), +1) ﬁi

[(1, =2, 1), +1) ﬁi (1, =2, —1), +1) 217
The solutions to Eq. (23) are obtained from
COt54 + C0t86 . 312@210‘0(1, 512) 13068212,0(1, qz) . 792\/ 1001212’4(1, qQ) - ZO,O(I; qz)
2 2 742973/2g" 371457%/25"3 3714573/2g" /2§
15Z,(1:4%) | 106Z60(15G%) | 316Z54(1;3%)
2217325 3231373257 247177%23°
- 4+ l [(624\/5-1—210’0(1; qz) . 26136212,0(1, qz) 1584\/ 1001212’4(1, qZ) . 216624,()(1, q2)
2 742973/2 " 3714573213 3714573213 2431723
.2 2 576402 Z100(1:3%)  124/32Z40(15G%)
252260(1’q ) 10072280(1,61 ) 2 4 654100 . q 13440 . q
: : + cotd, — cot86> + —3< -t — —
35531373257 271717723 T 323G 11g
42/5Z4 (15 32) 112\/%28,0(1; g N\271/2
+ 7 + 9 ) ] : (24)
187g 209G

In the situation where the interaction in the [ = 6 (and
higher) partial wave vanishes, the energy-eigenvalues are
sensitive to the [ = 4 interaction alone, and can be found
from

27\ 1 44874 o(1:3%)
9cotd =<—> —<~8Z 1,2 — =800 24 7
q 4 L 77_3/2 q 0,0( q ) 143\/ﬁ

47 Z60(1;3%) | 54G% Z40(15 512))
11J/13 143

2m\° 1
() i@ (25)

where the function X7, (¢) is shown in Fig. 7.

The graphical representations of the sources and sinks
that generate the T, irrep for the low-lying |n|*-shells are
shown in Fig. 8, and the momentum space structures for
L, = 0 are given explicitly in Table VI.

80000 0 T
60000 [
40000 [

20000

S~

-20000 [

-40000 [

-60000 [

-80000
-4
~2
g
FIG. 7 (color online). The function X;l, as defined in Eq. (25),
as a function of §. The vertical dashed lines denote the position
of the poles of the function corresponding to the noninteracting
energy-eigenvalues.
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PHYSICAL REVIEW D 83, 114508 (2011)

FIG. 8 (color online).

The momentum space representations (left) and position space representations (right) of two-body relative

states in the 7} representation with L. = 0 in the |n|*> = 5 and 6 shells.

5. T, representation

The energy-eigenvalues of states transforming in
the TS irrep receive contributions from interactions in
the [ = 2,4,6,... partial waves. The T2+ irrep is three-
dimensional, with states defined by L, = 1, 2, 3, and pro-
vides a contribution to the determinant in Eq. (2) that

results from a 12 X 12 matrix for [ =6 (it is 12 X 12
and not 9 X 9 because there are two 75s in the decom-
position of [/ = 6; see Table I). As the three L_-states
are degenerate, the analysis collapses down to that
of a 4 X 4 matrix. The 75 L. = 2 states associated with

Z
the 7S5, FED, and FYY) blocks are

TABLE VI. The momentum space structure of 7}, L, = 0 sources and sinks. These are shown graphically in Fig. 8.
[n|> =75 [n]> =6
12,1,0), +1) 1 2L, +1) 5l 2L -1, +1) 55
2, —1,0,+1) -1 2 -1+ -5 2 -1 -D.+1) -5}
I(1,2,0), +1) =% (L2 D),+1) =35 (1,2, =1, +1) —35
(1, =2,0), +1) 1 (L -2.1),+1) 55 (1L, =2 -1, +1) ;5

114508-14
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1 1 1
T5,2:2: 1) =—=(12,2)— 12, =2)), |75, 2;4;1)=—=(14,2)—|4,=2)), |T5,2:6;1)=—(]6,2)— 6, —2)),
| >\/§(I>I>)| >\/§(|>|>)I >\/§(I>I>)
1
|T5",2:6;2)=—=(]6,6) — |6, —6)). 26
2 ) ﬁ( ) ) (26)
With these basis states, the contribution to the determinant in Eq. (2) becomes
- S(FV,TH)  =(FV.TS)  2(FV,TH)  2(FV.TH) N\
COt62 0 0 0 F2;2 ’ F2,4 F2;6] ’ F2,62
S(FV,TH)  =(FV.TS)  =2(FV,T)  =(FV.TS
det 0 cotd, O 0 Fﬁz ! Fﬁ% a Fﬁﬁl i Fﬁﬁz ) 0,(27)
e - =0,
_(FV,TS)  =(FV.T;) =(FV.T}) =(FV.T})
0 0 COt56 0 F6];2 2 F61;4 2 F61;6] 2 F61,62 2
0 0 0 cotd ~(FV,TS)  =(FV.T})  =(FV,TS)  =(FV.T))
| F62;2 F62;4 6,36, 65,6, -
where
FUEVT) _ Zoo(153%) A4Z,0(1; g*) FEVT _ 40\/%26»0(1;62) B 20\/§Z4,0(1;6?2)
22 w3/2c} 7773/2q5 24 11 77.3/257 7777.3/2@5
FEVT) _ Zoo(13G%) _ 54Z40(1;%) | 20Z40(1; %)
h /g 712 1137
v _ W20 @) SVTaZe(1:4)
261 1177'3/2q5 11773/25]7
FEVTD _ 28\/22 Zygo(1;3%) 10\/—240(1 7% IZGO(I 7% 1008\/72100(1 %)
o 197°/2§° 11725 1877257 3237%/2G1
FEVTD _ 45Z50(1:3%) | Zoo(1:3%)  59Z40(1:3%) 620713 Z4(15G%) | 162/21Z,0(1; %)
ou 6 1917728 g 187723 35537247 7429721
+ 3267212‘0(1,62) . 198\/1001212’4(1;62)
742973/2 "3 742973/2 "3
—(FVT*) 15’\/200 Z4()(1 512) J_Z60(1 qz) 64‘\/ 12155280(1 q
Fys, PVERE 2 373230
v _ 2 %zm(l;qz)_9\/%zﬁ,o<1;q2>+ 210 Z4.0(1; 42>+336[ Zio ) ey re)
4,6, 3/2~5 17773/247 19773/2 ~9 323773/2 11 61,6,
_WAZaoa) 140526018 S5 Zun158) 666y Zio(137) 128744 Z120(1:87)
177324 323732 577%/25° 7429732 7429732413

, 858¢4Z04(1:8)
74297323

v _ Zood) | 9Zao(13) _ 20813Z60(153%) | 5Zs0(134°) _ 18v21Z100(133%) _ 23991Z130(15 4%)

0202 /%G 17723 32372 19177250 742972 3714573241

5944100125 ,4(15 3%)
3714573213

(28)

The solutions to Eq. (27) must be determined numerically and will, in general, depend on the interactions in the [ = 2, 4,
and 6 partial waves. In the limit where the interactions in the / = 6 and higher partial waves vanish, leaving contributions
only from interactions in the [ = 2, 4 partial waves, the contribution to the determinant in Eq. (27) collapses down to that of
a 2 X 2 matrix, which has solutions
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cotd, cotd, Zyo(1;4°) +7Z4,o(1 3G°)  10Z4(1;4%)
2 2 »Pg 1P 11BrF
1 102410(1,62) 2026,0(1,62) 2
i§[<_ 11725 " 11/137%/2¢ ~7+C0t62_00t54)

(20\/_240(1 78 40‘J_Z60(1 q )) ]1/2' 29)

77723 172g

In the limit that tand, < tand, the energy-eigenvalues are
the solutions to

27\s 1 (. ~ 4 ~
qS COt(SZ = (T) m (‘1420,0(1 5 qz) - ? Z4,0(] N 512))

2m\s 1
= () s xh@ (30

where X; is shown as a function of §* in Fig. 9. The
T irrep first appears in the |n|?> = 2-shell, as can be
seen in Fig. 9. The graphical representations of the
sources and sinks that generate the 75 irrep for the low-
lying |n|?-shells are shown in Fig. 10, and the momentum
space structures for L, =2 are given explicitly in
Table VII.

The [ =2 phase shift was calculated from the
energies of states in both the E* and T, irreps in recent
work by Dudek et al [19]. Two states in each irrep were
calculated below the 27 — 47 inelastic threshold at the
pion mass of the calculation. The contamination in
the extraction of &, from the higher partial waves was
estimated to be small.

1000

500 [

-500

-1000 ! !
4 R

FIG. 9 (color online) The function X ;f , as defined in Eq. (30),
as a function of ¢>. The vertical dashed lines denote the position
of the poles of the function corresponding to the 75 noninter-
acting energy-eigenvalues.
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B. Negative parity systems

The analysis of the odd-parity energy levels, and
their associated sources and sinks, parallels that of the
even-parity states. There are five negative parity irreps of
the cubic group, A, A5, E~, T, and T, with dimensions
I, 1, 2, 3, and 3, respectively. The energy-eigenvalues,
sources and sinks for the negative parity states are pre-
sented in the following sections: III B 1-IIIB 5. As dis-
cussed previously, the A; irrep first appears relatively
high in the spectrum, in the [n|> = 14-shell, and is sensi-
tive to the / = 9 and higher partial waves.

1. A representation
The energy-eigenvalues of states transforming in
the A, irrep (L, = 2) receive contributions only from
interactions in the / = 3 partial wave for / = 6, as pre-
sented in Table I. The A5 state associated with the F75, (F Y
block is (in the |/, m) basis)

1 1
N A

and the solutions to Eq. (2) from this irrep result from

Ay, 2:3;1) = 13, —2),

2m7\7 1 - 5 -
q7cot83=<f) 3/2( t3200(1 6]2)_— 224,0(1;q2)

11\/—260(1 4 ))

2 1

where the function X (%) is shown in Fig. 11.
The graphical representations of the sources and sinks
that generate the A5 irrep in the low-lying |n|*-shells
(In|> =3 and |n|*> = 6) are shown in Fig. 12, and the
momentum space structures are given explicitly in
Table VIIIL.

The A5 irrep first appears in the |n|?> = 3-shell and
[ = 3 is the lowest contributing partial wave. LQCD cal-
culations of correlation functions from sources and sinks
transforming as A, will provide determinations of J3
with contamination from partial waves with [ =7, i.e.
the energy of the A, states receives contributions from
[ =3,7,.... This is in contrast to states in the 7, irrep,
which will be considered subsequently, whose energy-
eigenvalues receive contributions from partial waves with
[ =3,5,.... This suggests that the A; irrep is optimal for
determining &3.

2. E” representation

The energy-eigenvalues of E~ states receive contribu-
tions only from interactions in the /[ = 5 partial wave for

114508-16
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Ty : |a]* =2

FIG. 10 (color online). The momentum space representations (left) and position space representations (right) of two-body relative
states in the 7, representation with L. = 2 for |n|*> = 2, 3, and 5 shells.
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TABLE VII. The momentum space structure of 75, L, =2 8000 !
sources and sinks for |n|?> =2, 3, and 5. These are shown 6000 1
graphically in Fig. 10.
P =2 P =3 nP =5 oo ’
(1,1, 1), +1) 4 12,1,0), +1) -1 2000 - .
I(LLO),+1) =5 (1,1, =1),+1) } 12, —1,0), +1) 3 0
I(L=1L0)+1) Z (1, =11, +1) =% [(1,20,+1) -3}
(L, =1, =1),+1) —1 |1, =20, +1) L 2T ]
-4000 | .
-6000 | .
=6, as presented in Table I. As the E~ irrep is 8000, 2 o 2 5 8
two-dimensional, the contribution to the determinant 7

in Eq. (2) results from a 2 X2 matrix for /=6,

which collapses down to a one-dimensional factor as the
L, =0 and L, = 2 states are degenerate. The E~ L, =0

state associated with the F g;_v) block is

FIG. 11 (color online). The function X;z, as defined in
Eq. (31), as a function of §>. The vertical dashed lines denote
the position of the poles of the function corresponding to the
noninteracting energy-eigenvalues.

_ 1 1
E7,0:5:1) = \/_§|5’ 4) - ﬁls’ —4. order for the |n|?> = 6 shell to lie below the inelastic
threshold.
The solution to Eq. (2) from the E™ irrep results from
N eots. — 27\l 1 07 (1. ~2)_6q624,0(1;q2) 3. T| representation
q co 5 3/2 q 0,0 ’q . .
L) = 13 The energy-eigenvalues of states transforming

in the 7| irrep receive contributions from interactions in
the [ = 1,3,5,... partial waves, as presented in Table I.
As the T| irrep is three-dimensional, the contribution
to Eq. (2) is the determinant of a 12 X 12 matrix for

" 32g* Z0(1:G%) 6724 Zgo(1:4%)
17/13 24717
n 1152@210,0(1;52))

4199 [ = 6 (there are two T| s in the decomposition of [/ = 5),
2w\ 1 o which collapses down to the determinant of a 4 X 4 matrix
- (T) 2 X (@), (32) a5 the L,=0,L,=1and L, = 3 states are degenerate.

The T L, = 0 states associated with the F\""), F')) and
. — ~2 . . . - i -
Wherg the function .X £(g*) is shown in E1g. 13. The Fg;FSV) blocks are
graphical representations of the source and sink that gen-
erate the E~ irrep in the |n|> = 6-shell are shown in
Fig. 14, and the momentum space structure is given ex-

plicitly in Table IX.

|T7,0;151) = [1,0),

The E~ irrep first appears in the [n|?> = 6-shell I7y,0:3:1) = 13,0)
and [ = 5 is the lowest contributing partial wave. LQCD |7, 0;5,1) = [5,0),
calculations of correlation functions from sources and 1
sinks transforming as E~ will provide determinations IT},0:5:2) = \/—z
of &5 with contamination from partial waves with [ = 7,
i.e. the energy of the E~ states receive contributions from
[=5,7,.... The LQCD calculations will need to be per-
formed in relatively large volumes, as we discuss later, in

(15, 4) + 15, —4)).

With these four basis states, the 7| contribution to
Eq. (2) becomes

=(FV.TT)  =(FV,T7)  (FV.T)) (FV,TT)

Fy Fig™'" Fis' ' Fis)
cotd 0 0 0 (FV,Ty)  =(FV,T}) (FV.T;) (V)
0 cotd 0 0 Fj. Fi,o Y Fyos ' Fuol!
det 3 3:1 33 35 35, -0 33)
0 0 cotds 0 FUVID GUEVID) GV S(FVTT) g
5031 53 5035, 5.5,
0 0 0  cotds —(FV,TT)  =(FV,IT)  z(FV,T7)  =(FV,T])
F52§1 F52;3 52,51 52,5,
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FIG. 12 (color online). The momentum space representations (left) and position space representations (right) of two-body relative
states in the A5 representation for the lowest-lying |n|?-shells.

TABLE VIII. The momentum space structure of A, sources and sinks. These are shown
graphically in Fig. 12.

[n]2 =3 [n|2=6
21,1, -1 5% 21, -1, -1) —3%
(L1, -1 & 2 -1LD. -1 -3 12 =1, -1, -1) =
(L1, -1, —1) =1 I(L2.1), -1 5k (L2 =D, -1 -3
(L, —1,1),-1) -1 I(1L,1,2), 1) ;= (L1, =2, =) =55
11, =1, -1),-1) L (1, =1,2),-1) =5 I(1, =1, -2), 1) ;=
(1, =2, 1), —1) —% (1, =2, —1), —1) %
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800000 X TABLE IX. The momentum space structure of E~, L, =0
600000 - sources and sinks. The L, = 0 case is shown graphically in
Fig. 14.

400000 | 1 P —6
200000 |- / (2,1, 1), —1) ﬁi (2,1, -1), - 1) ﬁ;

6 2 ~11),-1) -7 2, —1,—1), -1) =5

1,20, -1) 515 (L2 -1, -1) -5
-200000 [ i [(1,—2,1), —1) 7'5 (1, =2, —1), —1) ﬁi
-400000 .
-600000 | .
800000 - - - - ) o ‘/_240(1 32) 2\/12 Zso(1;G%)
7 152 32 7 %/2 ~7
FIG. 13 (color online). The function Xj, as defined in _(FV,T}) ZO,O(I;q) 100Z40(1;G%)  6Z40(1;G%)
Eq. (32.),. as a function of §2. The Ver.tical dashed liqe denotes F3 3 77.3/251 33 [—1377'3/2517 11773/2675
the position of the poles of the function corresponding to the
noninteracting energy-eigenvalues. F(FV’T;) _ 60 Z4,0 (1 qz) . 7 / % Z6,0(1§ (?2)
35, 13\/ﬁ77.3/2~5 3773/2577
where
56‘\/18 ZSO(1 61 )
vty Zoo(1:4%) 137723
Fio™ ==
’ m/2G 12 Z(l~2)7 2326013 3%
- F(FVT ) 4,0 q 14346,0 q
=(FV,T{) _ 4Z4,o(1;61 ) 3,5, 3/2 %5 3/2 ~7
Fi, = 1377 q
) \/ﬁ,n_:i/ZqS
56‘\/18 Z80(1 q )
_ 52,012 6yZeo(1: %)
Fovay 52403 | Y 39725

1,5, - \/3_3773/255 773/2c}7

1.0

FIG. 14 (color online).
states in the E~ representation with L, = 0 for the |n|> =

The momentum space representations (left) and position space representations (right) of two-body relative
6 shell.

114508-20



EXTRACTING SCATTERING PHASE SHIFTS IN HIGHER ...

80Z(1: %)
51137325

7567/21Z10,0(15 3%)
41997324

PV _ Z0(1:3%) | 6Z40(1;7%)
51,51 773/267 ]377.3/2&5

490Z3 (15 3%)
247 1773/23°

—(FV,T7) 6\/524,0(1§ 7*) 8\/%26,0(1; g%
F51,52 - 3/2~5 + 3/2~7
1377/§ 177§
154[B 201580 277243Z000(158)
74177.3/2q~9 4199773/2‘711
FEVTD _ Zoo(134%)  6Z40(1;3%) | 32Z4,(1; %)
52,5, 1377.3/2@5 17\/B7T3/Zq7

N 1417 Z4(15 3%) B 84+/21Z,,(1; 4%)
247728 3237/23"

773/26

(34)

In the limit of vanishing interactions in the / = 5 partial
wave, Eq. (33) collapses down to the determinant
of a 2 X 2 matrix, which has solutions

cotd,

PHYSICAL REVIEW D 83, 114508 (2011)

200

150

100

50 |

-50 |

-100

-150

-200
-4

FIG. 15 (color online). The function X;}, as defined in Eq.
(36), as a function of §*. The vertical dashed lines denote the
position of the poles of the function corresponding to the non-
interacting energy-eigenvalues.

n cotdy  Zoo(1:G%)  3Z40(1:4%)  50Z6(1:3%)

2 2 773/2q

11732

~5 33\/1_3—773/26?7

100Z4(1; G%)

64Z4(1; §%)>

_ 41 (624,0(1;512)+
2\\ 11725

In the situation where tand; < tand;, Eq. (35) can be
perturbatively expanded to give the / = 1 dominant solu-
tion

2m\3 1 _ ~
g’ cotd; = (T) quzo,o(l;qz)

2m\3 1
() s x@ (36)

where the function X7 (§%) is shown in Fig. 15. The
graphical representations of the source and sink that gen-
erate the 7 irrep for the three lowest-lying |n|*-shells are
shown in Fig. 16, and the momentum space structure is
given explicitly in Table X.

The T, irrep first appears in the [n|*> = 1-shell and [ =
1 is the lowest contributing partial wave. LQCD calcula-
tions of correlation functions from sources and sinks trans-
forming as 7, will provide determinations of &, with
contamination from partial waves with / = 3. LQCD cal-
culations of the phase shift in this partial wave are pres-
ently being performed, and the p-resonance is beginning to
be mapped out, e.g. Ref. [47].

33137327

2
+ cotd; — cot63> + (35)

21773610

4. T, representation

The energy-eigenvalues of states transforming in the 7',
irrep receive contributions from interactions in the [ =
3,5, ... partial waves, as presented in Table I. As the T,
irrep is three-dimensional, the contribution to the determi-
nant in Eq. (2) results from a 6 X 6 matrix for [ = 6, which
collapses down to the determinant of a 2 X 2 matrix as the
L,=1,L,=2and L, = 3 states are degenerate. The T,

L, = 2 states associated with the F ggv) and F ggv) blocks
are

1 1
T,,2;3;1) = —=|3,2) + =13, —=2),

1 1
T5,2;5,1) = —=152) + —=I5, —2),
7, ) ﬁl ) ﬁl )

in terms of which, the 7, contribution to Eq. (2) becomes

det (C0t83 . >_ FQZV’TD Fg;FSV’T{) =0, (37)
0 cotds F(SI;VSV,TZ) F;z;v,Tz) ,

where
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FIG. 16 (color online). The momentum space representations (left) and position space representations (right) of two-body relative
states in the 7| representation with L. = 0 for the |n|?> = 1, 2, 3-shells.
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TABLE X. The momentum space structure of 7, L, = 0 sources and sinks for [n]? = 1-3.
These are shown graphically in Fig. 16.

n]2=1 [n|2 =2 [n]> =3
[(1,0,1), =1) 3 (1, 1,1), 1) =%

10,0,1), —1) 1 (1,0, —1), 1) —1 (1,1, —1), —1) 1
10, 1,1), 1) % (1, =1,1), 1) —%

10,1, =1),—1) —3 (1, -1, -1),=1) 3

vy _ Zoo(134%)  2Z40(1:4%)  60Z60(15G°)

F.
33 77_3/251 1177.3/2q5 11\/E7T3/2677

FEVT) _ 20Z40(1;G%)  14Z6o(1;4%) | 112Zg(15G)
35 13\/H7T3/2675 143#3/2677 13 187773/26?9

Frvr) _ Zoo(134) | 4Zao(158°) _ 80Ze0(1,%) _ 280Z50(13) _ 432421Z10(1:°)
5:5 7T3/26 13773/251'5 17\/3773/267 247\/ﬁ773/2q9 4199773/qu1

The solutions to this equation result from

C0t53 + COt55 . ZO,O(I; (,?2) . 9Z4,0(1; qz) 95026,0(1’ qz) 14028,0(1’ qZ) 216\/5210’0(1, qz)
2 2 el 143732 187/1372G7  247/177%3° 41997251
L1 [(_432Jﬁzlo,o(1;qz) L 70Z40(1,) | 140Z60(156%) _ 280Z50(154%) | o o )2
2 419973211 1437255 18713727 247J177%3° ’ :
n 4 (2024,0(1;52) 14Z¢(1;4%) 11228,0(1;52))2]1/2 (38)
w3\ 13115 V14357 13/1873° '
In the limit of vanishing interactions in the [ = 5 partial wave, Eq. (37) collapses down to
2m\7 1 2@224 0(1 62) 6026 0(1 qz) 2m7\7 1
7 — ~6 N SUSE A S = — (72
q' cotd; = (f) m(‘] Zoo(15G%) T TNiE ) = (T) mxrz(q ), (39)
where the function X7 (%) is shown in Fig. 17. The
graphical representations of the source and sink that gen- 8000 ; ; ——
erate the T, irrep for the lowest-lying |n|-shells are I |
shown in Fig. 18, and the momentum space structure is 6000 o
given explicitly in Table XI. 4000 | o ,
The 75 irrep first appears in the |n|?> = 2-shell and Co
[ = 3 is the lowest contributing partial wave. LQCD cal- 2000 | 1
culations of correlation functions from sources and sinks 0 J
transforming as 7, will provide determinations of 65 with r, I
contamination from partial waves with [ = 5. -2000 | B - 1
5. A] representation oot |
The lowest-lying state transforming in the A irrep is in -6000 - ]
the |n|?> = 14-shell. The energy-eigenvalues are sensitive 000 - : : : !

to interactions in odd partial waves with / =9, and the
energy splitting in the large volume limit is dominated by
the / = 9 partial wave. Using the methods of the previous

~2
q

FIG. 17 (color online). The function X;z, as defined in Eq.

section to isolate the state and determine the appropriate
energy-eigenvalue equation is tedious as F. égv) isal9 X 19
matrix. Using the following spherical basis state,

(39), as a function of §*. The vertical dashed lines denote the
position of the poles of the function corresponding to the non-
interacting energy-eigenvalues.
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FIG. 18 (color online). The momentum space representations (left) and position space representations (right) of two-body relative
states in the T, representation with L, = 2 for select |n|?-shells.
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TABLE XI. The momentum space structure of 7, , L, = 2 sources and sinks. These are shown
graphically in Fig. 18.
[n|> =2 n|*> =53 n|> =5_s
[2,0,1),—-1) — 715 [(2,0,1), —1) ﬁg
12,0, =1), —1) 2.0, -1, -1) -5
1(1,0,1), -1y —1} 1(1,0,2), 1) —3= 1(1,0,2), =1} -
(1,0, =1), = 1) % 11,0, =2), =1) 5= (1,0, =2), =) %
0,1, 1), =1) § 10.2,1), -1) 10.2.1), -1) —3l=
10,1, —-1),-1) —1 0.2, =1), =1) - 0.2, =1, =1) 5=
0,1,2), =1) 5% 0,1,2), =1) %
[(0,1,-2),—-1) - ﬁg [(0,1, —2), —1) —715

|A1,091>—— —(|98> 9, —8)) — \/7(|94> 9, =4)),

(40)

the eigenvalue-equation for the interaction in the [ = 9 partial wave is

644 Z40(1:3%) 321332 Z40(1:3%)

567/17G" Zg (15 3%)

2m\19 1 /. B
q" cotdy = <—) m(qlgzo,o(l;ff) -

L 23

308G°Z5(1; 512)

616+/10015°Z,5,4(1; 3%)

115 345
532485 Z 4(1; 4°)

L 1568738 210015 4%)
333543
16641142 Z160(1; 3%)

2139

832461894°Z16,4(1:4)

20677
220646425 (1; G)

10695+/29

35653

2m\19 1 _a
-(7) =@

1033857

1e+12 T

5e+11

-5e+11 -

-le+12

FIG. 19 (color online). The function X, as defined in
Eq. (41), as a function of §°. The vertical dashed line denotes
the position of the first pole of the function corresponding
to the noninteracting energy-eigenvalue.

N 28288+/3553Z,5.4(1; qz))

103385+/37 20677+/259

(41)

where the function X, (%) is shown in Fig. 19. The
graphical representations of the source and sink that gen-
erate the A] irrep for the |n|> = 14-shell are shown in
Fig. 20, and the momentum space structure is given ex-
plicitly in Table XII. It is interesting to note that these odd-
parity singlet states require the integers comprising the
integer triplet to differ from each other. The first
[n|?-shell for which this is possible has |n|> = 14, and
the next has |n|?> = 21. Given the first appearance of this
irrep is high in the spectrum, a LQCD calculation of the
[ = 9 phase shift will require enormous lattice volumes in
order for the state to lie below inelastic thresholds. Thus,
this calculation cannot be expected to be performed in the
near future.

IV. DISCUSSION
A. Strategy for extracting phase shifts from lattice QCD

In lattice QCD calculations, sources and sinks with the
quantum numbers of the hadronic states of interest gener-
ate correlation functions, which in general are sums of
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FIG. 20 (color online).

exponentials with arguments that depend upon the energy
of the eigenstates in the lattice volume. One path for LQCD
calculations to follow is to form sources and/or sinks that
transform as irreps of the cubic group from the eigenstates
of linear-momentum (generated by the Fourier transform
of single-hadron objects). Clearly, such sources are not the
energy-eigenstates in the lattice volume due to the inter-
actions between the particles, and as such these sources

The momentum space representations (left) and position space representations (right) of two-body relative
states in the A} representation with L_ = 0 for the |n?| = 14-shell.

and sinks will couple, in principle, to all states in the lattice
volume with the appropriate quantum numbers. Since cu-
bic irreps are not diagonal in the partial waves, one could in
principle extract information about multiple &;s within
each cubic irrep. For example, correlation functions in
the A} irrep, determined from an A] source constructed
from momentum eigenstates with |n|?> > 0, would give
information on the [ =0 and [ =4 (and higher) phase

TABLE XII. The momentum space structure of A", L, = 0 sources and sinks. These are
shown graphically in Fig. 20. The coefficients of the state vectors are of the form c¢; ~
ghtbinbinlson(n )sgn(n,)sgn(n.).

[n]?> = 14

[(1,2,3), —1) 712—4 [(1,2, =3), —1) —712—4 [(1,=2,3), —1) —712—4
I(1, =2, =3), = 1) 7127 1(1,3,2), —1) —7121 (1,3, -2), —1) 7127
[(1,=3,2), —1) 712—4 [(1, =3, -2), —1) —712—4 [(2,1,3), —1) —712—4

[(2,1, =3), —1) 712—4 [(2, —1,3), —1) '24 (2, —1,=3),—1) —712—4
23,1, -1) & 123, -D. -1 -4 2. =30, -1 -
[(2, =3, —1), —1 7'2? [(3,2, 1), —1) 77121 [(3,2, —1), —1) 7‘21
[(3,—2,1), = 1) 7152 [(3, =2, —1), —1) _71547 [(3,1,2), = 1) 715Z
[(3,1,=2), —1) _712? [(3,—1,2), = 1) _71227 (3, —1, =2), —1 7‘21

TABLE XIII. The |n|?-shell of the lowest-lying energy-eigenstate transforming as I'®, and the
angular momentum of the dominant interaction in the large-volume limit.

r At Ty E* TS T, A5 T A E- Ay
In|? 0 1 1 2 3 5 5 6 14
l 0 1 2 2 3 4 6 5 9
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FIG. 21 (color online). The 77 phase shifts, 5{ , as a function

shifts. However, at large times such correlation functions
will depend exponentially upon the energy of the lowest
A eigenstate. Of course, the overlap onto the ground state
may be small, in which case this state dominates only after
a large number of time slices. With this in mind, the
extraction of any particular 6; for / = 6 is most simply
performed using the cubic irrep whose lowest energy-
eigenvalue is dominated by that particular §;. These
irreps are shown in Table XIII, along with the |n|?-shell
of the lowest-lying energy-eigenstate that contributes
to the corresponding partial wave. For example, the
cleanest way to determine 8, is to use sources with 7
symmetry, as opposed to A; . This procedure was used in
Ref. [19] by using different |n|?-states of a given cubic
irrep as a variational basis to determine &, and &, for
mt 7" scattering at different energies within a single
lattice volume.

Table XIII shows that with just the lowest two |n|?-shells,
[n|> = 0, 1, the phase shifts in the lowest three partial
waves, 0 12, can be determined. In order to determine the

2
250t \n
S
S 200 10
2 :
& 150 .
T 100t 3
3
&
o S0 2
1
0
0 5 10 15 20
L (fm)

FIG. 22 (color online). The energy-eigenvalues associated
with two noninteracting pions as a function of the spatial extent
of the lattice volume, L. The spectrum results from the momen-
tum of each pion being restricted to q = %n for all possible
triplets of integers, n, due to the periodic boundary conditions
imposed on the quark and gluon fields. The maximum value
shown on the vertical axis corresponds to the inelastic threshold
/s = 4m,,. The corresponding n? of each curve is labeled on the
right vertical axis. For reference, a spatial extent of L = 6 fm
corresponds to m L ~ 4.2.
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of \/E <4m, for [ =0, 1,2, 3, as parametrized in Ref. [60].

phase shifts in all partial waves with / = 6, correlation
functions must be formed for states that have ground
states in the shells up to [n|> = 6. Determining the phase
shift for / = 7 can be seen to be decidedly more difficult
than for / = 6 as there is only one further irrep of the cubic
group, the A} which first occurs in the |n|> = 14 and is
dominated by the interactions in the [ = 9 partial wave in
the large volume limit.

For shells in which there are multiple occurrences
of a given I', the partial diagonalization of the states
in the infinite volume limit in terms of the angular
momentum of the interactions is possible. However,
sources cannot be constructed to isolate these states
due to interactions, and in general, closely spaced states
will be encountered in the spectrum. In this case a large
variational basis of sources in the I'” is needed to resolve
these states [59].

B. Expectations for the 777 energy-eigenvalues

In order to estimate the computational resources
required to extract the w7 phase shifts in higher
partial waves, the experimentally determined (and
parametrized) phase shifts can be used to determine
the energy-eigenvalues for a range of lattice volumes.
The w7 phase shifts for /=0, 1, 2, and 3 partial
waves extracted from experimental data and parame-
trized with functions that satisfy unitarity and analyticity,
and specifically incorporate any lowest-lying resonances
in the channel [60]8 are shown in Fig. 21. The central
values of the parameters describing each partial wave
provided in Ref. [60] are used in the analysis but, as
only estimates of the energy-eigenvalues are being
explored, a systematic propagation of the uncertainties
has not been performed. Further, we assume isospin
symmetry in our analysis. As Liischer’s formalism is
valid below inelastic thresholds, only the phase shifts in

8The real-part of the inverse scattering amplitude, cotd!, is

expanded as a power-series in the function w(s) =£;\/—.—_ Vz’:f,

where s; is the energy above which inelastic processes cannot
be neglected.
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the kinematic regime /s <4m, (at the physical pion
mass) are considered.

Figure 22 shows the energy-eigenvalues associated with
two noninteracting pions with vanishing total momentum
in the lattice volume (also shown in Fig. 1 of Ref. [1]).
At the physical pion mass, LQCD calculations in volumes
with L = 6 fm are highly desirable in order to suppress
the exponential corrections that are not included in the
formalism of Liischer [56]. The energy shift between the

— 1=0 A}
>
[$)
S 05
3

4}
6 10 15 20
L (fm)

FIG. 23 (color online).

PHYSICAL REVIEW D 83, 114508 (2011)

noninteracting state and the interacting I = 0 A} and [ =
2 Af states in the |[n|> = 0 shell are shown in Fig. 23. The
energy shifts for the eigenstates in the |n|> =1,2,3,4
shells are shown in Figs. 24-27, respectively. The energy
shifts for the [n|*> = 0 A} states and the [n|> = 1 T} state
can also be found in Fig. 7 of Ref. [1]. The energy shifts of
the states due to the s-wave and p-wave interactions are of
comparable size. As the s-wave interactions are currently
being calculated in volumes with L ~ 3.5 fm, we do not

b — I=2 A}
> 05

[

2

0 0.1

<

6 10 15 20
L (fm)

The expected 77 energy shifts in the |n|> = 0-shell due to strong interactions. The left panel shows the shift

inthe I = 0 A{ irrep (dominated by 89), while the right panel shows the shift in the / = 2 A} irrep (dominated by 63). Both the L-axis

and the AFE-axis are scaled logarithmically (log,g).

_ — 1=0 A} B 20

> == 1=0 E* a”" % § 1

Q - 5] Ssa

= -0.02 JISe = s “See

£ _1/ & w OO =) T
-20 < -- =2 E* ~

6 10 15 20 6 10 15 20 6 10 15 20
L (fm) L (fm) L (fm)

FIG. 24 (color online).

The expected 7r7r energy shifts in the [n|?> = 1 shell due to strong interactions. The left panel shows the shift

inthe I = 0 AT, E* irreps (dominated by 68 and 68, respectively), the center panel shows the shiftin the / = 1 7 irrep (dominated by
1), and the right panel shows the shift in the / = 2 A}, E irreps (dominated by 6(2) and 83, respectively). Both the L-axis and the

AE-axis are scaled logarithmically (log,).

—_ — I=0 A] — — I=1 T[ |~ 1(1) \
S —001[ =0 7o) == = _001 T .
’—-__::_—_ ----- ”",f ~—~ 0 01 — I=2 Al ~~.:;_;:.
0 -1 - 3 -1 / m == 1=2 E* 3
| _20 / A _20 < =2 T;—
6 10 15 20 6 10 15 20 6 10 15 20
L (fm) L (fm) L (fm)

FIG. 25 (color online).

The expected 77 energy shifts in the |n

| = 2 shell due to strong interactions. The left panel shows the shift

inthe I = 0 A, E*, T; irreps (dominated by 89, 89 and 89, respectively), the center panel shows the shift in the / = 1 T, T, irrep
(dominated by 8} and 61), and the right panel shows the shift in the / =2 A, E*, T; irreps (dominated by 82, 63 and &3,
respectively). Both the L-axis and the AE-axis are scaled logarithmically (log;).
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FIG. 26 (color online). The expected 77 energy shifts in the [n|?> = 3 shell due to strong interactions. The left panel shows the shift
in the I =0 Af, T, irreps (dominated by 68 and 8(2’, respectively), the center panel shows the shift in the / =1 T, A, irreps
(dominated by 8} and &1, respectively), and the right panel shows the shift in the / = 2 A}, 75" irreps (dominated by &3 and &3,
respectively). Both the L-axis and the AE-axis are scaled logarithmically (log;).
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FIG. 27 (color online). The expected 77 energy shifts in the [n|?> = 4 shell due to strong interactions. The left panel shows the shift
inthe I = 0 A, E* irreps (dominated by 83 and 89, respectively), the center panel shows the shiftin the I = 1 T} irrep (dominated by
1), and the right panel shows the shift in the / = 2 A}, E* irreps (dominated by 83 and 63, respectively). Both the L-axis and the
AE-axis are scaled logarithmically (logg).

anticipate significant difficulty in performing these calcu-
lations at the physical pion mass in lattices with L = 6 fm.
In contrast, the energy shifts of states due to the d-wave
(I = 2) and f-wave (I = 3) interactions are more than an
order of magnitude smaller than those of the A} irrep.
Significantly more computational resources will be
required to extract the phase shifts beyond the s-wave
and p-wave. It is difficult to make estimates for the energy
shifts due to interactions beyond the f-wave as the experi-
mental measurements of these phase shifts have large
uncertainties or are absent. Given the results obtained for
[ =3, it is not difficult to speculate as to the size of
the energy shifts of partial waves beyond / = 3, and the

~ — Ty : 6]
S i -
5 - Ty S g
P fmrl
—-0.01 femm""
9 /
-20
6 10 15 20
L (fm)

FIG. 28 (color online). The contributions to the energy-
splitting of the 7, irrep in the |n|> = 1-shell due to 8} and
6_%. Both the L-axis and the AE-axis are scaled logarithmically
(logjo).

associated difficulty in their extraction from LQCD
calculations.

In order to estimate the amount of mixing of higher
partial waves to a given phase shift from the energy-
eigenvalues, it is important to understand the expected
contributions from (all of) the partial waves. The energy
splitting of the 7| irrep in the |n|> = 1-shell from the
[ =1 phase shift, 6{, and the / = 3 phase shift, 61, are
shown in Fig. 28. As expected, the contribution from 8 is
approximately 2 orders of magnitude smaller than that
from &} over the range of lattice volumes for which the
analysis is applicable. Therefore, to high precision it is
sufficient to use the perturbative expansion of the energy-
splitting in terms of tans}.

C. Signal-to-noise issues

There is also a signal-to-noise ‘“problem’” in the extrac-
tion of the §,; for / = 1 as the signal-to-noise ratio degrades
exponentially at large times. To demonstrate this behavior
we return to the argument given by Lepage [61]. Consider
the correlation function resulting from a source that creates
a 7" 7" -state that transforms in the E™ irrep of the cubic

group,

_ A t 7E("'++’T+)t

X(t) = (0p+ (1)) = 0IS g+ (1)S - (0)|0)y = Zre Torr
(42)
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where Sp+(f) annihilates a 7#t#7" in the E* irrep at
the time 7. At large times this correlation function
depends exponentially upon the ground state energy

which, in the absence of interactions, is E(()”Ef ) =

2“(2?7’)2 + mZ. The variance of this correlation function

is given by

a?(1) = (0 (1)*) — (O (1))
OIS (DSL (ST ()8 (0)10) = (B (1))

= 3 OIS 0EO10) — O (02 (43)
FEET®E"
2E(7++7+)t B atat)
—Zyre M —Zie ZE“E* "

where Cr are the Clebsch-Gordan coefficients in
the expansion E* ® E™ = A @ A7 @ E* [52,54,62]. The
energy, Ayg, that dictates the long-time behavior of the
variance correlation function is that of the lowest-lying
irrep composed of four pions, which is the lowest-lying

Af-irrep that has an energy of 2E(()7;+7T :

absence of interactions. Therefore, at large times, the
noise-to-signal ratio behaves as

= 4m, in the

o) _ vV

Anst —
etnst A =2
X(t) ZE* NS

which grows exponentially at large times.
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This argument generalizes to all of the cubic irreps,
and the extraction of the §; for each [ = 1 suffers from a
signal-to-noise problem, with an energy scale that is
approximately

A(|n| ) —

(227) Inl> + m2 — m, 45)

Obviously, in large volumes, the degradation of the signal
obtained for low-lying states will not dramatically impact
the determination of the energy-eigenvalues as the energy-

scale behaves as A(lnl) In|?/(m,L?). However, for
present-day calculatlons in modest lattice volumes, the
degradation of the signal may impact the extraction of
the phase shifts in higher partial waves, and numerical
exploration is required to determine its impact. We note
that this signal-to-noise degradation is not apparent in
the calculations of &, in Ref. [19], which we attribute to
the large values of the pion masses. A closer study
of the signal-to-noise ratio in those calculations would be
enlightening.

V. CONCLUSION

We have explored the phenomenology of Liischer’s
method in the extraction of the phase shifts in higher
partial waves describing meson-meson scattering below
inelastic thresholds using lattice QCD, the formalism for
which is contained in the works of Liischer. The lowest-
lying s-wave and p-wave interactions were explored in
those works, and at the time, lattice QCD calculations of
scattering beyond the s-wave and p-wave were in the
distant future. However, the rapidly increasing computa-
tional resources that are being directed toward lattice
QCD calculations will allow for the calculation of the

TABLE XIV. A summary of the energy-eigenvalue equations for the lowest-lying state in each I'?) arising from the interaction in the

dominant partial wave.

1[I Leading eigenvalue equation Section
0 [A]] gceotéy = 72f Zyo(1; %) A1
LITV] g’ cotd; = () 73 Zoo(1: 3) 1B 3
2 [E7] @’ cotdy = (FF 5 (5* Zoo(1: %) +§ Z40(1:3%) A3
2757 g’ cotdy = () 7 (% Zoo(1:3°) — 7 Z40(1:G%) IIAS
31751 47 cotdy = @27 Ly (0 Zo(1; ) — 220 20°) _ 02l 1B 4
/2 g 11 11/13
3 [A7] q" cotdy = (CF) =5 (g 6200(1'!?2) B3 Z,0(1;g )"'Wrzco(l 7)) MBI
4 [T} ¢ cotdy = (P L (38 Zg(1:g?) — HB2ld) _ 40 2l ) | #5200 MA4
S[ET] g" cotds = D)1 Ly X (§10Zy(1: ) — T ENT) 4 20 2l _ T2 200 NS Z00(1)) B2
6 [A;] q13 cotdg = (ZTW)IS # X (q 220,0(1; qZ) 4 quzal,(;(lfflz) _ lﬁom‘gbziﬁ,o(lsqz) _ 40‘741?,01(7]14:) 2592\/_5122100(1 ) + 19802!4220(] %) n 264\/10074?)24(1 flz)) A2
_ - - - ~14Z ;'-2 3 3 ~I2Z ; IOZ Z 3 Z R
9 [Al ] q19 cotdy = (%)19# X (qISZQO(];qZ) _ 69 ;,g(] 7)) _ 32~/ﬁq1156n<1 ) 56\/_113 50(133%) + 1568\/;235 m’;o(l %) + 3084° 211;,3(] 7?) MBS

+

6163/10013° Z,54(1:6%) + 532483* Z140(1:3%) 16641132 Z160(1:6%) + 8324618932 Z16.4(1:4%) | 22064642,50(1;3%) | 28288+/3553 ZW(l;q?))
20677 10695+/29 35653 1033857 103385+/37 20677+/259
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TABLE XV. The perturbative expansions of the energy-
eigenvalues of the lowest-lying state in each T'®,

Inf” (7] laP

0[A]] — 4] — 2.8373(%) + 6.3752(%)2] + - - -
1I77] 4711 — 2 tand, (1 — 0.3653 tand,) + - - -]
1 [EY] 471 — 5 tand,(1 — 1.5672tand,) + - - -]
2 (7S] 422 — 755 tandy(1 — 0.4830tansy) + -]
2151 %[2—#%;—“@534-...]

3[47] A2 [3 — 10 angy + -]

57,1 4L7722 [5— 12?/6_;8#2 tand, + - - -]
5145 425 — 212 ans 4 -]
61E"] 426 — 35 tands + - -]

14 [Ar] %[14 - % tandy + - - -]

phase shifts in higher partial waves in both mesonic
and baryonic processes in the near future. We have con-
sidered the low-lying spectrum of two-meson states in a
finite cubic lattice volume, and determined contributions
from the partial waves with /=6 and [ =9. There
are a sufficient number of irreps of the cubic group that
will allow for the calculation of the phase shifts, &,
for [ = 6, and possibly / = 9. There are no irreps of the
cubic group with ground state energy splittings that
are dominated by interactions in the /=7 and [ = 8§
partial waves. As such, there appears to be no clean
way to calculate these phase shifts from lattice QCD
calculations performed in cubic volumes. High precision
calculations of the energy of states in other irreps may
allow for their extraction by forming differences of ener-
gies, but this will require significantly more computational
resources than the extraction of the phase shifts in lower
partial waves. We have provided the structure of sources
that will produce the irreps of the cubic group, in both
momentum and position space, that will generate the
relevant states in LQCD calculations. Further, we have
given the explicit formulas, and their perturbative solu-
tions, that are required to analyze the results of such
LQCD calculations. We recapitulate the leading contribu-
tions to the energy-eigenvalue equations and their solu-
tions in the large-volume limit in Tables XIV and XV,
respectively.

Experimental measurements of the 77 phase shifts
are difficult, with precision currently at the few-percent
level in the s-wave and p-wave, but much larger uncertain-
ties are associated with the phase shifts in the higher partial
waves. It would appear that lattice QCD calculations will
be able to provide low-energy meson-meson phase shifts in
the low partial waves with significantly more precision
than the corresponding experimental measurements.
While the contributions to energy splittings rapidly

PHYSICAL REVIEW D 83, 114508 (2011)

become smaller with higher partial waves, we conclude
that it is presently possible to extract phase shifts for partial
waves with / = 3. The implications of the recent prelimi-
nary calculations [19] of the [ =2 phase shift, 83, at
unphysical pion masses are very encouraging for future
calculations.
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APPENDIX A: BLOCK-DIAGONALIZATION
OF F*V)

As the number of partial waves with nonzero phase
shifts increases, so does the complexity of the calculation
of the energy-eigenvalues in a finite cubic volume. To
illustrate the method for determining the energy-
eigenvalues, we provide the details of the calculation
when §; # 0 for [ = 4. As is true in all cases involving
parity-conserving interactions, the analysis in the even-
parity sector (I = 0, 2, 4) decouples from that in the odd-
parity sector (I = 1, 3). The calculations that are required
for 6, # 0 for [ > 4 become more complicated due to the
dimensionality of the matrices involved, the contributions
from the Z;,, for higher values of I, and to multiple
occurrences of the same cubic irreps. This last feature
means that the diagonalization of the finite volume func-
tions, F ;;F,V), is not dictated entirely by geometry due to

mixing between the multiple occurrences of a given I').
However, such calculations are a straightforward extension
of what follows.

1. Odd-parity sector with 6,3 # 0

In the odd-parity sector with only 6,3 # 0, the finite
volume corrections are encapsulated in F*'V) which is a
10 X 10 matrix. It has block form

(FV) (FV)
FEV) — (F1;1 Fis )

Al)
FV) V) (
F3;1 F3;3

where the component matrices in the |/, m)-basis are’

Explicitly, the basis is {1, 1),[1,0), |1, —1),13,3),3,2),
I3, 1), 13,0), 13, = 1), 13, =2), I3, =3)}.
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1 1 NPT
P = 2 520,0(1;612) diag(1, 1, 1)

0 [ooo—g

R = (F{)T = 3/2 ~5Z40(1q)J—_ 0 0 0 0 0
[0 0 0—\/§0 0
[3 0 0 0 V15 0 0 )
o -7 0 0 0 5 0
o 0 1 0 0 0 5
F§”=;L—Zmaq%mg011111n+ Lzﬂzmuq)—- O 0 0 6 0 0 0
J5 0 0 0 1 0 0
O 5 0 0 0 -7 0
0 0 V150 0 0 3/
(—1 0 0 0 7415 0 0\
0 6 0 0 0 -4 0
. 0 0 -15 0 0 0 7J15
+3/2~7Z60(q)33\/—— 0 0 0 20 0 0 0 | (A2)
715 0 0 0 —-15 0 0
0 —-42 0 0 0 6 0
\0 0 7415 0 0 0 —1)

where the relevant relations between the Z;,, that can be found i 1n Eq B7), have been used, and where diag(a, b, ...)
denotes a diagonal matrix. It is convenient to first diagonalize the Ff 1 ") blocks [F\, I 1 s already diagonal in this basis]. The
block-diagonal matrix, S_, is defined to have the form

_ St 0
5= (0 &J’ (A3)

and when acting on F*'V) produces a matrix, FV) = §_ F¥V) st which can be rearranged into block-diagonal form
where each block is associated with a I'”. The matrices cosé and sind in Eq. (3) are invariant under this transformation,

COsé = diag(cl, cy, Cy, C3, C3, C3, C3, C3, C3, C3), (A4)

where ¢, and c; denote cosd, and cosds, respectively, and similarly for sind. The components of S_ in Eq. (A3) are

(0 0 o 0 o )

0 & 0 00 % 0

1 0 0 5 0 0 0o o

511—<0 1 0), Ss= 0 -5 0 0 0 5 0| (AS)

00 1

0 0 Jg 0 0 0J§

500 0 0 42 0 o0

\‘(/); 0 0 1‘{);0 0/

and the matrix FFY) is of the form
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p(FV)  @(FV)

_ F. Fy.

FEV) = ( ) 2o ) (A6)
F3;1 F3;3

where

_ 1
AR =L Lz (18 diag(1,1, 1)

2 G
O 0 0 0 -1 0 O
FE) = FET = 3/2 ~sz4o(1 7)== m 0000 0 0 1
0 0 0 O -1 0 (A7)
. 1
F(31;F3V) = 3/2 ~Zoo(l g% diag(1,1,1, 1, 1,1,1)7L Z40(1 q) dlag(—l —1,-6,333)

1 -
+—=5 3/2 ~7 ‘Z60(1 qz)

diag(—9, =9, =9, 12,5, 5, 5).
33J_ &l )

From the structure of FV) it is clear that the ordering of the I'” along the diagonal of F}. a9 V) is T, , A, and T,
respectively, and the equations that dictate the energy-eigenvalues of each of the I'”, given in Eqs (31), (35), and (39),
follow directly from Eq. (A7). The matrix S_ that diagonalizes F*") is independent of the Z,, functions because, with
each relevant I'® occurring only once, the decomposition depends upon geometry only.

2. Even-parity sector with 6,4 # 0
In the even-parity sector with only 0,4 # 0, the finite volume corrections are encapsulated in (+FV) whichisa 15 X 15

matrix. It has block form

(FV) (FV) (FV)
Foo' Fop ™ F

5 5 0:4
F(fV) _ F(ZI;VOV) ngv) ngv) ’ (A8)
FV FV FV
Fé(l;O) Fc(t;z) Fﬁ(l;4)
where
11
FSY = =5 = Zooid),  F)=(0 0 0 0 0
0:0 o7 G 00(1:G%) ( )
11 }
FSQV)qu—Zzt,o(l;qz)( 5000100 0 43)
1 0 0 0 5
0 -4 0 0 0
FUY) = 375 = Zooll G%)diag(1,1,1,1,1) + 7 5 2a05d)5[0 0 6 0 0
0 0 0 —4 0
5.0 0 0 1
0 0 320 0 0 -2 0 0
0 0 0O 1 0 0 0 —J71 0
11 103 1
(FV) _ )
Fay 3/2 =5 Zyo(l; g )77\/— -2 % 0 0 0 2\/13j 0 0 0 -2 % +_77-3/2
-7 0 0 0 1 0 0 0
0 0 -2 0 0 0 -3/2 0 0
0 0 1 0 0 0o -7 0 0
53 0 0 0 —-2v2 0 0 0 2J/14 0
Z60(IQ)11\/B -E 0 0 0 VB oo 0 0 -
0 2J14 0 0 0 -2v2 0 0 0
0 0o -7 0 0 0 1 0 0

114508-33



PHYSICAL REVIEW D 83, 114508 (2011)

THOMAS LUU AND MARTIN J. SAVAGE

1 27
Zio(1: %) —
4,0( q )1001

1
) ?

Zoo(1; g diag(1, 1, 1,1, 1,1, 1,1, 1) +

1 1

77.3/2 51

(FV)
F4;4

14317

~
~
o
S
N —
o SN
- =
= N
& l_m,q
liwyl] «
= 17
= S
el
N +
~
1_~q — - —
7 OOOO7OOOA_w
— e
S Ne)
-
- ﬁ SOOOWOOO
—
- o coofLfoococoo 0
coocoltocooco X _
o~
N o _J i
coogooc0 o
~ — coYToocodNoo |
oo o cooNo | |
Te} |
_ _W coPoocoRoo
coloocoToo Pneeo | oeo
_ _ Ay ©
o000 ooco
0ﬁ0009000m 2 _ |
P cocoocoJooo
\O O 1o =)
o o S ococoocloool>
o0 o~
T ocoocooXRoool _W
cooJTococodo ° S
o~ _ v
coocoococo »o e e
Te} . . |
OOA_/.OOOA_wOO
— e o] (e o]
OOﬂOOO.bOO cocnceeeeeaee
~
~ f _W
— ~ CEOOOROCe _®0 o0 7000
oNooo oo o | | o0
| [7e) |
o < £ o
MOOO_WOOOO | OPCPCHLPCLe —~ocooltococo@
O
X X X

(A9)

(A10)

with

(A11)

OOOﬁﬁMOO

o Ko o o o o

- .
_W_.MO -8 o O_ﬁ_MOO
o o o LMO Oﬂ.mo
o Ko © o o o Ko

coco obSc oo %

1_7ﬁ

OOOO]MOOO

—~
=)

=)

ﬁ___MOO o Oﬁ__MOO o

1_.MO o

=)

of
_

ﬁ_.MO 1_30 Oﬁ__MO o o

—

_
3
)
—
-So o 8o
oc—~ococo

SO OO -
SO — O O

N
_TO R )
N~N——————
I
a
)
—
I
<
j=)
A

= S+.F(fv).SJr , where

(FV)
+

After this partial-diagonalization, finite volume function becomes F
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_ 11 ) B}
Fg,DOV):—g/z ?Z(),o(1;612), FE)ZV)Z(O 0 0 0 0)
i} 1 23
FyY = 7 ~5240(1 q2)\/_(0 0000100 0)
F(FV) > 1
P =——Zoo(1 ) diag(1, 1, 1,1, 1) + — 7 — Z(1; q) diag(—2, —2, —2,3,3)
: gyl
0 0 0000 O —10
0 0 0000 O 0 1
a 11 20
) = —5 Z4o(1; ) —= */_ 0 0 00O0O0 -1 0 0
1 0 20000 0 0 0
-2 0 0000 O 0 O
0 0 000O0O0T1 O
A 0 0 000O0O0O0 —1
1 . 403
*=n ~7zﬁo( q2)11\/_ 0 0 000O0T1O0 0] (A12)
0 -3 000000 O
-20 000000
pev L 15 (1; 32)di (111111111)+Liz (1-~)5 diag(2,2,7,7,7, 14, —13, —13, —13)
4:4 /2 q 0,0 ’q lag PR B B A Bt Bt B ] 77_3/2 qs 4,0 7q 1001 lag y
11 4
+ m ?ZG‘O(I;qz) \/Edlag(—ld _16, _1, _1, _1, 20, 5, 5, 5)
11
b — Zgo(1: G2 diag(7,7, —8, —8, —8, 10,0, 0, 0). Al3
77_3/2 519 8,0( q)l()()l\/_ g( ) ( )

It is clear from the form of the matrix F(FV) that the
ordering of the T in the FE‘F4V -block is EJr Ty, Af,
and T, , respectively, and the equations that dictate
the energy-eigenvalues of each of the I'”), given in
Egs. (9), (20), (25), and (29), follow directly from these
expressions.

APPENDIX B: Z,,,(1; %) FUNCTIONS

The two-hadron Green functions in the finite lattice
volume depend upon summations over plane-wave states
subject to periodic boundary conditions and with ampli-
tudes that depend upon the strength of the interactions in
each of the partial waves that generate the two-hadron T-
matrix. The summations that define the energy-eigenvalues
in the volume are [1,2]

In|'Y,,(Q,)
[Inf> = 4’1’

a special case of the sums defined in Eq. (5). The [ =0
summation is special as it requires UV regulation in order
to be defined, while sums with / = 1 are finite due to
contribution from the solitary Y;,,. However, brute-force
evaluation of the sums is quite inefficient and Liischer
presented a method to evaluate the sums that exponentially

Za(1:4%) = Z (B1)

[

accelerates their evaluation [1,2], making use of the
Poisson resummation formula. In this appendix, we repro-
duce Liischer’s results, and then present each of the
Z,;,,(1; %) that contribute to the energy-eigenvalues con-
sidered in the body of this paper.

Numerical evaluation of the Z((1; §*) can be evaluated
by brute force through the definition

Zoo(1;6%) = hm [Zmz — 47TA,,], (B2)

or through the exponentially accelerated relation [1,2,63]"

_|n|2
Zoo(1:3%) = meT (23* — 1) +
0,0( CI) ( q ) \/—Zlnlz
w 2 ~ —7T21f12
2[ dt3—/2( AP =Y e l/f). (B4)

m#0

19The Poisson resummation formula

253()’ _ n) — ZeiZTrm-y,
n m
has been used in obtaining Eq. (B4).

(B3)
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For | # 0, the exponentially accelerated evaluation can be accomplished with''

ly, (Q.)e AlnP=a) A 1+3/2
sz(l;qz)=2'“' i ;‘)e — +y f dA(f) 7 [pl'Yy,, () (TIRE/D), (B6)
' . [In*> - 4°] =~ Jo ""\A

There are exact relations that exist between the Z;,,(1; §*) for fixed /,

5 7
Zy+4(1;35) = \/524,0(1;5]2), Zo4(1;4%) = —\/;Ze,o(l;qz)

B V154 B 5 V1430 -
Zg +4(1; 3 ZTZS,O(IZQZ)r Zg +5(1:4° —Tzso(l g*)

66 187 B
Zi0,+4(1;3%) = —\/%210,0(1;512), Zio,+3(1;3%) = —VEZ,O,O(I;qZ)
429 42
Z15+5(1;4%) = ‘,—212,0(1;52) - 4"—212,t4(1;5]2)
Zir e n(1:87) = 44| 7, (1:22) + 9 HZ+(1q)Z+(1q)
12,412 742 12,0 T4pg< 1244 14,44
= - ‘/ Z140(1 ),
B 1 437 B

Zi4-5(1;3%) = "119 Zi40(1;3%) Ziy-2(1;%) = _Ewlﬁgzm,o(l;qz)
Zis+s(1:3%) = _6\,80 Zi64(1;G%) +\’218 Zi60(15G%)

" > 16
Zig+121;4%) = —— Z164(1 g’ + Z160(1 g%
Zi+16(1:3%) = \/7486 VATYICH Q)+7‘/135470 160(15G%)
Zig+5(1:3%) = ——" Ziga(1;G%) — V ZlSO(1 g

5 501 16
Zig+12(1;3%) _—\/466 Zi54(1;G%) "‘—‘, 2180(1 g%

3162 oy 19437

Zig+16(1:4%) = ‘/2334 Z1g4(15G7) ‘/ 670 ——Z150(1; 7). B7)

Unlike the cases of [ = 0,4, 6,8, 10, 14 which have only one occurrence of the A} irrep in their decomposition,
[ =12, 16, 18 have two, and as such the Z;, .4, (k is an integer) are not simply proportional to Z;, o, as demonstrated in
Eq. (B7), and a similar statement can be made about Zg .4, and Zg +4;.

"'We have used a relation that is similar to that used by Liischer [2],

3/2 1
j Xg(x)e AIXP gizmpx — g( )fd3xe—A|x| ei2TPX — (X) g(%p)e_(ﬂl"z“), (BS)
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FIG. 29. The functions Z,(1;G*) (left panel) and Z4(1; §) (right panel).
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FIG. 30. The functions Zg(1;§?) (left panel) and Z,(1; §?) (right panel).
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FIG. 31. The functions Z,,(1; §%) (left panel) and Z,,4(1; §?) (right panel).
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In an effort to better understand the origins of the structure
of the functions determining the energy-eigenvalues
of each of the I'™, it is useful to explicitly display the
functions Z;,,(1; g*). The function Zy(1;G?) is shown in
the body of this paper in Fig. 1. As discussed by Liischer, the
functions Z;,,(1; §*) vanish for all odd-/, and also vanishes
for I = 2. The function Z,(1; %) is shown in Fig. 29, and

PHYSICAL REVIEW D 83, 114508 (2011)

exhibits some structure that is not present in Zy(1; §2).
There are branches of Z,(1;§?) that are nonmonotonic,
for instance, between > = 1 and §> = 2. This behavior
is found in all of the Z;,s with /> 0. The functions
Zgo(1;@%) and Z,50(1;4%) are shown in Fig. 30,
Z1p0(1;¢%) and Z54(1;¢%) in Fig. 31, Zy40(1;4%) in
Fig. 32, Z,50(1; %) and Z,64(1;§?) in Fig. 33, and finally
Zy30(1; %) and Z54(1; ¢*) in Fig. 34.

In constructing the perturbative expressions for the

3% 108 — TV
[ 1 energy-eigenvalues in terms of the &,, the leading contri-
2x10%F ] butions result from the residue of the pole of the leading
X105 j function. We present a few of these residues of the
U X g ] Z,;,,(1; 3%) functions in Tables XVI and XVIL.
% 0f TL ]
ﬁ.‘ b 4
N _1x108F T ] APPENDIX C: PERTURBATIVE EXPRESSIONS
ol 085 ] In many instances the energy shifts due to the interac-
‘ 1 tions are small because the phase shift is small and/or the
—3x108L— I A ] lattice volume is large. In such instances, a perturbative
0 5 10 15 . .
expression can be used to extract the phase shift from an
7 energy-eigenvalue instead of solving the full expression, as
) B discussed by Liischer [1,2]. The energy-eigenvalues for a
FIG. 32 The function Z,40(1;4°)- given I'” in a given |n|?-shell, and more specifically G2,
3% ]09 r T ] 3% ]09 r T T T
2x10°F : 2x 10°F :
_1x10°F /) 1 1x10°f ]
i g s g J ]
2 0 ! 1 = o ﬂ
N —~1x10°F ] N —~1x10°F ]
—2x10°F : —2x10°F :
—3x10— 5 10 5 X 5 0 15
7 7
FIG. 33. The functions Z(1;G*) (left panel) and Z,¢4(1; G*) (right panel).
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FIG. 34. The functions Zg,(1;G*) (left panel) and Z,54(1;G*) (right panel).
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TABLE XVI. Residues of the functions v/47Z,,,(1; %) for [ < 12, i.e. the coefficient of —1;, where ¢*> = |n|?> + Q2.

02 )
|11|2 R[V477'Zo,0] R[V 47724,0] R[V 47726,0] R[\/ 477'28,0] R[\/ 477210,0] R[V477'le,o] R[V 477'212,4]
0 1 0 0 0 0 0 0
1 6 21 3J13 9917 65121 3715 75+/1001
2 ! 32 64 256 S12
2 12 —21 _ 3913 891/17 _ 65421 43885 __ 8085+/1001
2 16 3 128 T 256
3 —84 4813 9917 —5204/21 25 o
4 6 168 4813 79217 1040+/21 59440 600+/1001
_ _ V17 _ 20442521 354/
5 24 210 25513 133685; 20 4125—21 2113895 126251258 1001
6 24 —378 33313 _ 513881 Jli 40891165 \2/1_ 584241‘035 _ 32476152%/1001-
14 48 —4116 —1806+/13 _ 455331 17 19718%35 21 2472:24216835 309589(215\/1001

TABLE XVII. Residues of the functions v47Z;,,(1;§*) for 14 = [ =< 18, i.e. the coefficient of — where % = |n|? + 0%

1
F >

In|? R[4 Z,4] R[41Z6)] R[V47Z64] R[N4mZ,5] R[VATZ54]
1 59529 22819+/33 33./323323 20613+/37 _ 394920227
512 8192 4096 16384 8192
) _ 5295529 2627491+/33 5937/323323 _234021./37 9063+/920227
256 4096 2048 8192 4096
3 3570429 — 13926133 873323303 — 1245337 184920227
4 19040+/29 182552+/33 528+/323323 329808+/37 —1248+/920227
5 935637529 310517579533 1267665+/323323 _ 219526792537 __ 12933225+/920227
128 2048 1024 4096 2048
6 __ 144911655v29 1849263939/33 15619473+/323323 __ 40787860977+/37 _ 26504469+/920227
1024 2048
14 6869655205+/29 __ 12080581399901+/33 4554268593+/323323 44894607368667+/37 51258039399+/920227
64 1024 512 2048 1024

can be expanded in terms of the dimensionless quantity
(L1 g2 cotsh)=1."2 In the case of a single partial
wave, the general form for the energy of an irrep, I'”, in

where the phase shift is evaluated at the unperturbed
energy of the state, and the coefficients are

2_ : 210 210
the |n|?-shell is (nF.r0) _ a(7|r11| ) g(InIZ,F“)) _ agnl )
0 2|20+ 1° 1 2| |20+1
P L e 27T<| ||I:|rm Inf2,10 |2|ZTr<!>n| 3
q cotd; = E(T) [6512+ ag (|n|2,F”>)=(aon , ))2+a(311 , )0‘(1n T0)
&2 22
+ "o + - ] (C1)
For the terms in Eq. (C2), the contributions scale as
where the solutions to Eq. (C1) can be written as 1 1
~2 ~
L2 Gy ~ O() + (9<L21+1> + @<L4z+2)
Tiop,r = Inl* + 84 = (2_> ! !
2 1) 2 1)
= |n|? + gf)lnl T )tan‘é{(l + g(l|n| T )tanB{
4 o2 T®) tan2s! + ..) from which it can be determined when the contributions
&2 Pl from higher partial waves become important. For instance,
4 o d(L;dq)z (Lg)**! cotd?) . © the energy shifts in the 7 irrep are dominated by o, and
' B the expansion is of the form
0 [(Lg)?™! cot5f]3 p

'2The corresponding expansion that is appropriate for systems
near unitarity, an expansion in terms of (Lgcotd) for s-wave
interactions that is small for large scattering lengths, can be
found in Ref. [57].

- 1 1 1
T, ~ O + @<L_) * @(L_) * @(F)

+ (9(%)4— (C5)
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2 4+
TABLE XVIIL The coefficients g\" ' that contribute to the
perturbative expansion of the energy-eigenvalues of states in the
A{ irrep of the cubic group, as given in Eq. (C2), in terms

of s-wave phase shift &.

PHYSICAL REVIEW D 83, 114508 (2011)
TABLE XX. The coefficients g(-lnlz‘Ew) that contribute to the

1
perturbative expansion of the energy-eigenvalues of states in the
(first occurrence of the) E* irrep of the cubic group, as given in

Eq. (C2), in terms of [ = 2 phase shift §,.

2 (Inl%,A7) (Inl2,A7) (Inl%.A7) 2 2EYD 2EYW 2ETD
|n| gO" 1 1“ 1 g2“ | |n| g(()|n| E*W) g(l|ll| E*W) g(2|n| E*W)
1 - % —0.06137 —0.3542 1 - 2% —1.5672 2.5842
2 - %5 —0.1826 —0.3618 2 ~3 12577_2 —0.8065 0.54
3 - ?4772 —0.1981 —0.1996 4 —41;2 0.3272 —0.421

__3 _ __78 _ _
4 37 0.2415 0.1328 5 N 0.447 0.4331
5 ~Fe 0.1590 —05155 ¢ — 5 ~0.7884 03746
6 — 2 ~0.4798 ~0.2025
2 (1)
(mP2.7 ") TABLE XXI. The coefficients g(|11| ™) that contribute to the

TABLE XIX. The coefficients g; that contribute to the
perturbative expansion of the energy-eigenvalues of states in the
(first occurrence of the) 7 irrep of the cubic group, as given in
Eq. (C2), in terms of [/ = 1 phase shift §;.

In|2 g(()lnl%T,’“’) g(llnIE,T,’“' (zlnlz,T(“’)
1 -3 —0.3653 —0.2058
2 -3 —0.3975 —0.1979
3 - ﬁwz —0.2761 —0.1471
4 — 5 0.2035 —0.1589
5 — 0.05024 —0.5555
6 — 2 —0.5625 —0.07659

respectively, and the / = 3 partial wave first contributes at
Cf)(ﬁ). In the case of the 7| irrep, which is dominated by
84, the expansion is of the form

_ 1 1 1
‘1|2n|2,rr ~0(1) + @(F) + @(ﬁ) + @<ﬁ)

1
+ @<ﬁ> T (C6)

and 8 contributions are of the form O(L~'3). Therefore,
the order at which the higher partial waves contribute in the
large-volume limit depends upon the I'®.

The perturbative expansions of the lowest few A
energy-eigenvalues in terms of the / = 0 phase shift §,
were given by Liischer [1], and here we simply extend
those results to levels with |n|? = 6 with the coefficients
given in Table XVIII. The energy of the A; state in the
In|> = 0 level can be expressed in terms of the s-wave
scattering parameters defining the low-energy behavior of
the phase shift, and it is well known that

52 —_ % do (20) S W
qIOIZ,Al*_ 77_L(1+cl<L)-i-c2(L)—f- + ,

perturbative expansion of the energy-eigenvalues of states in the
(first occurrence of the) T; irrep of the cubic group, as given in
Eq. (C2), in terms of [ = 2 phase shift §,.

2 (In7, ™) (2,7, ™) (.75
|l’l| go“ 2 gln 2 g2“ 2
2 - —0.4830 —0.1828
3 -2 —0.6737 02128
5 -8 0.2004 —0.4515
6 R —0.5497 ~0.0902

where the particle-physics convention for defining the
scattering length has been used, and the coefficients are
¢y = —2.8373 and ¢, = 6.3752.

An important point to note is that the perturbative
energy shifts that are presented in Tables XVIII and XXI
are for one of the occurrences of the I' that form a given
[n|2-shell. Other occurrences are unperturbed at leading
order. When multiple occurrences of a given irrep
appear in a given |n|?-shell, the leading interactions will
perturb the energy of one combination, while leaving
the other states unperturbed, but the interactions in
higher partial waves will perturb these remaining states.
The expansion coefficients for the lowest-lying 7, (domi-
nated by 61), the E¥ and T, (both dominated by &%)
are shown in Tables XIX, XX, and XXI, respectively.
We note that the coefficients in the perturbative expansion
of the energy-eigenstates in the 7, irrep given in
Table XIX differ from those given by Liischer [2]. This
can be attributed to the fact that ¢®*" cotd, can be
expanded in a power-series in energy about threshold,"’
as performed in this work, while g cotd; does not have
such an expansion for /> 0. For the remaining irreps,
the 75, A5y, T, A7 and E~, the expansion converges
rapidly with just one nontrivial term, O(tand)).

3This is the effective range expansion which is valid below the
threshold of the t-channel cut, |q| = m,, for 77 — 7.
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TABLE XXII.

The coefficients gélnlz,l“

PHYSICAL REVIEW D 83, 114508 (2011)

) that contribute to the perturbative expansion of the energy-eigenvalues of states in the A, ,

Ty, Ty, E~,and Af, as given in Eq. (C2), in terms of dominant phase shifts 83, 83, 8,, 85, and 8, respectively. Also given are the
coefficients in the perturbative expansion of the second occurrence of E™, T2+ , T, and T , in terms of dominant phase shifts 04, 0y,
83, and &5, respectively.

In|2 g(lnlz,A;) g(InIZ,T;) g(InIZ,T,*) g(InIZ,E’) (In2.4%) g(InIZ,E”z)) (In)2,75®) (In)2,7,®) (In2,7;,®)
0 0 0 0 0 0 0 0 0
_ 105
2 0 o 0 0 0 0 0 0 0
3 — 140 0 0 0 0 0 0 0 0
937
5 0 _ %4 _ 2268 0 _ 162162 _ 23314 0 _ 25 _ 74844
55 12557 312557 16255 25572 31255
6 _ 35 _ 35 _ 352 _ 385 0 0 _ 2452 _ 1752 0
37’ aJor? 4B7? 12672 363 36737

The leading coefficients for these expansion of the energy-
eigenvalues for each of these irreps are given in
Table XXII, along with the coefficients in the expansions
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