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A new method of stochastically estimating the low-lying effects of quark propagation is proposed

which allows accurate determinations of temporal correlations of single-hadron and multihadron operators

in lattice QCD. The method is well suited for calculations in large volumes. Contributions involving quark

propagation connecting hadron sink operators at the same final time can be handled in a straightforward

manner, even for a large number of final time slices. The method exploits Laplacian Heaviside (LapH)

smearing. ZN noise is introduced in a novel way, and variance reduction is achieved using judiciously-

chosen noise-dilution projectors. The method is tested using isoscalar mesons in the scalar, pseudoscalar,

and vector channels, and using the two-pion system of total isospin I ¼ 0, 1, 2 on large anisotropic

243 � 128 lattices with spatial spacing as � 0:12 fm and temporal spacing at � 0:034 fm for pion masses

m� � 390 and 240 MeV.
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I. INTRODUCTION

Recent discoveries of new hadronic resonances have
generated much excitement in the field of hadron spectros-
copy. The current surge in experimental activity underlines
the need for a better understanding of excited hadronic
states from the theory of quantum chromodynamics
(QCD). Presently, Markov-chain Monte Carlo estimates
of QCD path integrals defined on a space-time lattice offer
the best way to make progress in this regard.

Calculating the mass spectrum of excited-state hadron
resonances is a key goal in lattice QCD. However, such
calculations are very challenging. Computational limita-
tions cause simulations to be done with quark masses that
are unphysically large, leading to pion masses that are
heavier than observed and introducing systematic errors
in all other hadron energies. The use of carefully designed
quantum field operators is crucial for accurate determina-
tions of low-lying energies. To study a particular state of
interest, the energies of all states lying below that state
must first be extracted, and as the pion gets lighter in lattice
QCD simulations, more and more multihadron states lie
below the masses of the excited resonances. The evaluation
of correlations involving multihadron operators contains
new challenges since not only must initial to final time
quark propagation be included, but also final to final time
quark propagation must be incorporated. The masses and
widths of resonances (unstable hadrons) cannot be calcu-
lated directly in finite-volume Monte Carlo computations,
but must be deduced from the discrete spectrum of finite-
volume stationary-states for a range of box sizes [1–4].

Our approach to constructing hadron operators appro-
priate for such calculations was outlined in Refs. [5,6]. Our
first study of the nucleon and� excitations in the quenched
approximation was presented in Ref. [7], and nucleon
results for two flavors of dynamical quarks appeared in
Ref. [8]. A survey of excited-state energies in small volume
for the isovector mesons and kaons using Nf ¼ 2þ 1

dynamical quarks was given in Ref. [9], along with results
for the �, �,� baryons. Other recent progress in calculat-
ing excited-state energies in lattice QCD can be found in
Refs. [10–15]. All of our results to date have been achieved
in small volume with pions having masses comparable to
or heavier than about 390 MeV. Our goal now is to extend
our efforts into larger volumes and using lighter pions. To
do this, the issue of multihadron states must be addressed.
In this work, we focus on the problem of incorporating

multihadron operators into finite-volume excited-state
spectrum calculations in lattice QCD. To compute the
finite-volume stationary-state energies of QCD, one
must first evaluate a matrix of temporal correlations
CijðtF � t0Þ ¼ h0jTOiðtFÞ �Ojðt0Þj0i, where T denotes

time-ordering, the source operators �Ojðt0Þ create the states
of interest at an initial time t0, and the sink operatorsOiðtFÞ
annihilate the states of interest at a later time tF. The
correlation functions CijðtÞ can be expressed in terms of

‘‘path’’ integrals over quark �c , c fields and gluon U fields
involving the QCD action having the form

S½ �c ; c ; U� ¼ �cK½U�c þ SG½U�; (1)

where K½U� is known as the Dirac matrix and SG½U� is the
gauge-field action. Integration over the Grassmann-valued
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quark fields introduces a detK and factors of K�1 in the
remaining integrals over the gluon U field, and when
formulated on a Euclidean space-time lattice, such path
integrals can be estimated using the Monte Carlo method
with Markov-chain importance sampling. Incorporating
the detK in the Monte Carlo updating and evaluating the
elements of K�1 (the quark propagators) are the most
computationally demanding parts of the calculations.

Once estimates of a Hermitian matrix of temporal
correlation functions CijðtÞ are obtained, several proce-

dures for extracting the lowest stationary-state energies
E0; E1; E2; . . . in any given symmetry channel are available
[16,17]. For example, let �nðt; t0Þ denote the eigenvalues of
the Hermitian matrix Cðt0Þ�1=2CðtÞCðt0Þ�1=2, where t0 is
some fixed reference time (typically small) and the eigen-
values, also known as the principal correlation functions,
are ordered such that �0 � �1 � � � � as t becomes large.
Then one can show that

lim
t!1�nðt; t0Þ ¼ e�Enðt�t0Þ: (2)

Determinations of the principal correlators �nðt; t0Þ for
sufficiently large temporal separations t yield the desired
energies En.

The rows and columns of the gauge-covariant Dirac-
matrix K½U� can be viewed as compound indices which
incorporate the lattice space-time site indices and the
quark color, flavor, and spin indices. Hence, K is a very
large matrix, and determining and storing all of the ele-
ments of K�1 is not possible. Symmetries are used to
eliminate the need to compute all K�1 elements.
Computations are usually arranged such that the linear
system of equations Kx ¼ y needs to be solved for
only a manageable number of source vectors y. For tem-
poral correlations of single-hadron operators (excluding
isoscalar mesons), invariance under all spatial and tempo-
ral translations dramatically reduces the number of K�1

elements required. In such cases, the hadron creation op-
erator needs to be considered only on one initial time slice
and only at a single spatial site, yielding the so-called
point-to-all method. A handful of points can be used to
increase statistics.

To study a particular eigenstate, the procedure by which
energies are extracted from Monte Carlo estimates of
temporal correlation functions using Eq. (2) requires that
all eigenstates lying below the state of interest must first be
extracted. As the pion gets lighter in lattice QCD simula-
tions, more and more multihadron states will lie below the
excited resonances, and multihadron operators will be
needed to accurately compute the energies of such states.
For example, a good baryon-meson sink operator which
annihilates a total zero momentum is typically a superpo-
sition of terms having the form

Bð�p; tÞMðp; tÞ ¼ 1

V2

X

x;y

’Bðx; tÞ’Mðy; tÞeip�ðx�yÞ;

where V is the spatial volume of the lattice, 2p is the
relative momentum, and ’Bðx; tÞ and ’Mðy; tÞ are appro-
priate localized interpolating fields for a baryon and a
meson, respectively. In the evaluation of the temporal
correlations of such a multihadron operator, it is not pos-
sible to completely remove all summations over the spatial
sites on the source time slice using translation invariance.
Hence, the need for estimates of the quark propagatorsK�1

from all spatial sites on a time slice to all spatial sites on
another time slice cannot be sidestepped. Some correlators
involve diagrams with quark lines originating at the
sink time tF and terminating at the same sink time tF
(see Fig. 1), so quark propagators involving a large number
of quark-line starting times must also be handled.
Finding better ways to incorporate the low-lying effects

of such slice-to-slice quark propagation for large numbers
of quark source times is crucial to the success of our
excited-state hadron spectrum project at lighter pion
masses. A new method, known as distillation [18], uses a
novel quark-field smearing procedure that facilitates exact
treatment of slice-to-slice quark propagation. Although
distillation was found to work well, calculations with that
method are costly, making it feasible only on small lattices.
Here, we propose to combine the quark-field smearing
used in Ref. [18] with a new stochastic approach to esti-
mating the quark propagators, resulting in a much more
efficient treatment suitable for large volumes [19].
Describing and testing this new method is the aim of this
work. This method was briefly introduced with preliminary
testing in Refs. [9,20,21].
The remainder of this paper is organized as follows. The

stochastic LapH method is described in Sec. II. Laplacian
Heaviside quark-field smearing is reviewed, and our
new stochastic treatment of quark propagation is detailed.
The method involves Monte Carlo estimation of quark
propagation using ZN noise in the LapH subspace with
variance reduction achieved through the introduction of
suitable noise-dilution projectors. The new method is
compared to an earlier procedure which uses noise intro-
duced on the space-time lattice itself. The number of
inversions of the Dirac-matrix needed in the new method

ψ

ψ

ψ

ψ
ψ

ψ
ψ
ψ

ψ

0t

ψ
ψ

ψ
ψ
ψ
ψ

ψ

ψ
ψ

t t0tF F

FIG. 1 (color online). Examples of quark-line diagrams in
multihadron correlators involving the �c field on the later time
tF connecting to a c field also on the later time slice tF. The
initial time is denoted by t0. (Left) A two-meson correlator.
(Right) The correlator of a baryon-meson system.
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is demonstrated to be insensitive to the volume of the
lattice. Details on how the temporal correlations of hadron
operators are evaluated using the stochastic LapH method
are then presented in Sec. III. Full source-sink factorization
is seen to be another advantageous feature of the method,
especially for computations of correlation matrices involv-
ing large sets of hadron operators. Various implementation
details are given in Sec. IV. Applications of the method to
the isoscalar mesons in the scalar, pseudoscalar, and vector
channels and to the two-pion system of total isospin I ¼ 0,
1, 2 using anisotropic 243 � 128 lattices with pion masses
m� � 390 and 240 MeV are then presented in Sec. V.
Conclusions are summarized in Sec. VI.

II. DESCRIPTION OF THE METHOD

The use of smeared fields is crucial for successfully
extracting the spectrum of QCD in our Monte Carlo com-
putations. Hadron operators constructed out of smeared
fields have dramatically reduced mixings with the high-
frequency modes of the theory that obscure the low-lying
eigenstates of interest. Our operators are constructed using
spatially-smoothed link variables ~UjðxÞ and spatially-

smeared quark fields ~c ðxÞ.
The spatial links are smeared using the stout-link pro-

cedure described in Ref. [22]. Note that only spatial staples
are used in the link smoothening; no temporal staples are
used, and the temporal link variables are not smeared.

The quark field for each quark flavor is smeared using

~c a�ðxÞ ¼ Sabðx; yÞc b�ðyÞ; (3)

where x, y are lattice sites, a, b are color indices, � is a
Dirac spin component, and the smearing kernel S is such
that the smeared field behaves in exactly the same way as
the original field under all time-independent symmetry
transformations on a cubic lattice. For extracting energies
from temporal correlations, it is important that only spatial
smearing is used. In other words, the smearing kernel is
diagonal in time: Sabðx; yÞ / �x4y4 . In addition, our smear-

ing kernel is independent of spin.
We use the new Laplacian Heaviside (LapH) quark-field

smearing scheme, which has been described in Ref. [18]
and is defined by

S ¼ �ð�2
s þ ~�Þ; (4)

where ~� is the three-dimensional gauge-covariant
Laplacian defined in terms of the stout-smeared gauge-
field ~U, and �s is the smearing cutoff parameter. The
Laplacian matrix is given by

~�abðx; y;UÞ ¼ X3

k¼1

f ~Uab
k ðxÞ�ðy; xþ k̂Þ

þ ~Uba
k ðyÞ��ðy; x� k̂Þ � 2�ðx; yÞ�abg; (5)

where x, y are lattice sites, and a, b are color indices. This
is a Hermitian matrix which is block-diagonal in time.
It is important to use the stout-smeared gauge links when
smearing the quark field, since doing so dramatically re-
duces the statistical errors in the correlations of the hadron
operators we use which involve covariantly-displaced
quark fields [8]. The gauge-covariant Laplacian operator
is ideal for smearing the quark field, since it is one of the
simplest operators that locally averages the field in such a
way that all relevant symmetry transformation properties
of the original field are preserved.
Let V� denote the unitary matrix whose columns are the

eigenvectors of ~�, and let �� denote a diagonal matrix

whose elements are the eigenvalues of ~� such that

~� ¼ V���V
y
�: (6)

The LapH smearing matrix is then given by

S ¼ V��ð�2
s þ��ÞVy

�: (7)

All of the eigenvalues in �� are real and less than zero.
Hence, the matrix �ð�2

s þ��Þ has unit entries on those
diagonal elements corresponding to eigenvalues whose
magnitudes are less than �2

s and zero entries for all other

elements. Given that ~� is block-diagonal in time, each
eigenvector has nonzero elements only on one time slice,
so we can associate any given eigenpair with that particular

time. The eigenvalues of ~� always occur such that ap-
proximately Nv eigenvalues have magnitude smaller than
�2

s on each time slice. We have observed that the number of
eigenvalues on each time slice that survive the Heaviside
function varies from time to time by only one or two in
cases where Nv exceeds 60 or more. Hence, the Heaviside
smearing matrix is well approximated by fixing Nv to
the same value on each time slice and for each gauge
configuration.
Let Vs denote the matrix whose columns are in one-to-

one correspondence with the eigenvectors associated with

the Nv lowest-lying eigenvalues of �~� on each time slice.
Then our LapH smearing matrix is well approximated by
the Hermitian matrix

S ¼ VsV
y
s : (8)

This is the actual smearing matrix used in our calculations.
Note that on a lattice having Nt time slices and Ns sites in
each of the spatial directions, the matrix Vs has NvNt

columns and NtN
3
sNc rows, where Nc ¼ 3 is the number

of quark colors. The NvNt eigenvectors that form the
smearing matrix span the so-called LapH subspace.
To set the parameter �s, and hence Nv, several small

simulations were done varying this parameter while
computing the effective masses for a handful of simple
meson and baryon operators. We chose the value of �s that
minimized the effective masses at a chosen early time
separation ts. The effective masses for ts ¼ 1 for three
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representative nucleon operators are shown in Fig. 2
against values of �s. A single-site nucleon operator in
which all three-quark fields are taken at the same site is
shown, as well as a singly-displaced nucleon operator in
which one of the quarks is displaced away from the other,
and a triply-displaced-T operator in which all three quarks
are displaced from the others in a T configuration. The
value �2

s � 0:33 was chosen. This value is insensitive to
which time interval is used as long as ts is small enough
such that contributions from excited states have not de-
cayed away. It is also insensitive to the choice of hadron
operator used and the quark mass. We expect �s to change
little with the lattice spacing.

Evaluating the temporal correlations of our hadron op-
erators requires combining matrix elements associated
with various quark linesQ. Since we construct our hadron
operators out of covariantly-displaced, smeared quark
fields, each and every quark line in our computation in-
volves the following product of matrices:

Q ¼ DðjÞS��1SDðkÞy; (9)

where � ¼ �4K and DðiÞ is a gauge-covariant displace-
ment of type i. The displacement type can be trivial (no
displacement), a displacement in a given single spatial
direction on the lattice by some number of links (typically
three), or a combination of two or more spatial lattice
directions. The use of� ¼ �4K is convenient for ensuring
baryon correlation matrices that are Hermitian.

An exact treatment of such a quark line is best accom-
plished by writing

Q ¼ DðjÞVsðVy
s ��1VsÞVy

s DðkÞy; (10)

then one needs to compute and store only the elements of

the much smaller matrix Vy
s ��1Vs instead of computing

and storing a very large number of ��1 elements. Let
Nd ¼ 4 denote the number of Dirac spin components,

and define yði;�Þc� ðxÞ ¼ Vsðc; x; iÞ���, where �, � are spin

indices, c indicates color, x is a lattice site, and i refers to
the column of Vs which is the i-th eigenvector of the

Laplacian. Then, solving the linear system �x ¼ yði;�Þ

for x and all i, � by standard methods yields ��1VðiÞ
s .

Hence, NvNtNd such inversions are required in order to

obtain the full matrix Vy
s ��1Vs for each quark mass and

each gauge configuration in the Monte Carlo ensemble. If
only one source time slice is used in the hadron correlators,
then NvNd inversions are required per quark mass per
gauge configuration. Once multihadron operators are in-
cluded, however, sink-to-sink quark lines are needed, so
NvNsnkNd inversions must be done, where Nsnk is the
number of sink times. Generally, a handful of hadron
source times are used to improve statistics, so upon includ-
ing multihadron operators, one finds that the number of
inversions needed in practice ends up near NvNtNd.
Solving the linear systems �x ¼ y is a major compo-

nent of the computational cost of evaluating the hadron
correlators once a Monte Carlo ensemble is generated. It
turns out that the number Nv of required eigenvectors on
each time slice rises in direct proportion to the spatial
volume of the lattice, as shown in Fig. 3. The number of
eigenvectors is also fairly insensitive to the light-quark
mass, as shown in Fig. 4. Initial calculations on 163 lattices
with spatial spacing as � 0:12 fm showed that Nv ¼ 32
worked well. On 203 lattices, Nv ¼ 64was needed, and for
the 243 � 128 lattices used in this study, we found that
Nv ¼ 112 levels were below the �2

s cutoff. We have
generated gauge configurations on 323 � 256 anisotropic
lattices. On these lattices, we find that Nv ¼ 264, so the
number of inversions needed becomes NvNtNd > 270; 000
for each configuration and each quark mass, which is far
too large to be feasible with current computing resources.
Fortunately, an exact treatment of the quark lines is not

needed. In fact, we have found that exact treatment of
the quark lines is very wasteful. Given our use of the
Monte Carlo method to evaluate the path integrals over
the gauge link variables, the statistical errors in our esti-
mates of the hadron correlators are ultimately limited by
the statistical fluctuations arising from the gauge-field
sampling. Thus, we only need to estimate the quark lines
to an accuracy comparable to the gauge noise from the
Monte Carlo method. Such estimates can be obtained with
far fewer inversions than required by an exact treatment of
the quark lines.
Random noise vectors � which satisfy Eð�iÞ ¼ 0 and

Eð�i�
�
j Þ ¼ �ij, where EðÞ denotes an expected value as

defined in probability theory, are useful for stochastically
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FIG. 2 (color online). The effective masses for temporal sepa-
ration ts ¼ 1 for three representative nucleon operators against
the LapH smearing cutoff �2

s . Results were obtained using
Nf ¼ 2þ 1 configurations on a 163 � 128 anisotropic lattice

with spacing as � 0:12 fm for stout-link smearing with n	 ¼ 10

iterations and staple weight 	 ¼ 0:1. The circles show results
(shifted downward by 0.04) for a single-site operator. The
squares correspond to a singly-displaced nucleon operator, and
the triangles are the results (shifted upward by 0.04) for a triply-
displaced-T operator. The value �2

s � 0:33 is observed to be a
good choice.
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estimating the inverse of a large matrix � as follows.
Assume that for each of NR noise vectors, we can solve
the following linear system of equations: �Xr ¼ �r for
Xr, where r labels the noise vectors r ¼ 1; 2; � � � ; NR. Then
Xr ¼ ��1�r, and EðXi�

�
j Þ ¼ ��1

ij so that a Monte Carlo

estimate of ��1
ij is given by ��1

ij � N�1
R

PNR

r¼1 X
r
i �

r�
j .

Unfortunately, this equation usually produces stochastic
estimates with variances which are much too large to be

useful. Variance reduction is done by diluting the noise
vectors [23–25]. A given dilution scheme can be viewed as
the application of a complete set of projection operators

PðbÞ. Define �r½b� ¼ PðbÞ�r, and define Xr½b� as the solution
of �Xr½b� ¼ �r½b�, then a much better Monte Carlo esti-
mate of ��1

ij is

��1
ij � 1

NR

XNR

r¼1

X

b

Xr½b�
i �r½b��

j : (11)

The dilution projections ensure exact zeros for many of
the Eð�i�

�
j Þ elements instead of estimates that are only

statistically zero, resulting in a dramatic reduction in the
variance of the��1 estimates. The use of ZN noise ensures
zero variance in our estimates of the diagonal elements
Eð�i�

�
i Þ. The effectiveness of the variance reduction de-

pends on the projectors chosen.
Earlier stochastic methods [26,27] introduced noise in

the full spin-color-space-time vector space, that is, on the
entire lattice itself. However, since we intend to use
Laplacian Heaviside quark-field smearing, an alternative
is possible: noise vectors 
 can be introduced only in the
LapH subspace. The noise vectors 
 now have spin, time,
and Laplacian eigenmode number as their indices. Color
and space indices get replaced by Laplacian eigenmode
number. Again, each component of 
 is a random ZN

variable so that Eð
Þ ¼ 0 and Eð

yÞ ¼ Id, where Id is

the identity matrix. Dilution projectors PðbÞ are now ma-
trices in the LapH subspace. In the stochastic LapH
method, a quark line on a gauge configuration is evaluated
as follows:

Q ¼ DðjÞS��1SDðkÞy ¼ DðjÞS��1VsV
y
s DðkÞy;

¼ X

b

DðjÞS��1VsP
ðbÞPðbÞyVy

s DðkÞy;

¼ X

b

DðjÞS��1VsP
ðbÞEð

yÞPðbÞyVy

s DðkÞy;

¼ X

b

EðDðjÞS��1VsP
ðbÞ
ðDðkÞVsP

ðbÞ
ÞyÞ: (12)

Displaced-smeared-diluted quark source and quark sink
vectors can be defined by

%½b�ð
Þ ¼ DðjÞVsP
ðbÞ
; (13)

’½b�ð
Þ ¼ DðjÞS��1VsP
ðbÞ
; (14)

and each quark line on a given gauge configuration can be
estimated using

Q ðABÞ
uv � 1

NR

�AB

XNR

r¼1

X

b

’½b�
u ð
rÞ%½b�

v ð
rÞ�; (15)

where the subscripts u, v are compound indices combining
space, time, color, spin, and quark-displacement type, B is
the flavor of the source field and A is the flavor of the sink
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FIG. 3 (color online). The effect of the spatial lattice volume
on the eigenvalues of the gauge-covariant Laplacian operator. �n

is the n-th lowest eigenvalue of -~� on a given time slice. The
error bars show the variation over different time slices and over a
set of Nf ¼ 2þ 1 configurations. The lattice spacings as are

both near 0.12 fm, and the pion masses are both near 0.70 GeV.
Link smearing with n	 ¼ 10 iterations and staple weight

	 ¼ 0:1 was used. For the 123 lattice, there are nine eigenvalues
between 0.3 and 0.4, whereas for the 163 lattice, there are 22
eigenvalues between 0.3 and 0.4, demonstrating that the density
of eigenvalues is proportional to the spatial volume of the lattice
(at sufficiently high values). The lowest-lying modes do not
change very much with the lattice volume.
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FIG. 4 (color online). The small effect of the light-quark mass
on the eigenvalues of the gauge-covariant Laplacian operator. �n

is the n-th lowest eigenvalue of -~� on a given time slice. The
error bars show the variation over different time slices and over a
set of Nf ¼ 2þ 1 configurations on a 163 � 128 anisotropic

lattice with as � 0:12 fm for link smearing n	 ¼ 10 and 	 ¼ 0:1.

IMPROVED STOCHASTIC ESTIMATION OF QUARK . . . PHYSICAL REVIEW D 83, 114505 (2011)

114505-5



field. The above quark line estimate has the form of an
outer product expansion. Such estimates are frequently
used in the compression of digital images, so the stochastic
LapH estimate can be viewed as a lossy compression of the
quark propagation.

Occasionally, it is useful to estimate a quark line using
�5-Hermiticity to switch the source and sink. Using
Ky ¼ �5K�5, it is straightforward to see that another
way to estimate a quark line is using

Q ðABÞ
uv � 1

NR

�AB

XNR

r¼1

X

b

�%½b�
u ð
rÞ �’½b�

v ð
rÞ�; (16)

defining

�%ð
Þ ¼ ��5�4%ð
Þ; �’ð
Þ ¼ �5�4’ð
Þ: (17)

Equations (15) and (16) are meant to be used inside
Monte Carlo estimates of path integrals over the gauge
link variables. To simplify matters, the Monte Carlo within
a Monte Carlo computation can be combined into a single
larger Monte Carlo calculation over both gauge link vari-
ables and quark line noises, effectively setting NR ¼ 1 for
each gauge configuration. However, each quark line in a
hadron correlator needs an independent noise to ensure
unbiased estimation. For example, a baryon correlator
requires at least three noises per gauge configuration.
Once inversions are done for a handful of such noise
vectors for a given configuration, noise permutations can
be used to increase statistics.

The dilution projectors we use are products of time
dilution, spin dilution, and LapH eigenvector dilution pro-
jectors. The full projector index b ¼ ðbT; bS; bLÞ is a triplet
of indices, where bT is the time projector index, bS is the
spin projector index, and bL is the LapH eigenvector
projector index. Our noise-dilution projectors have the
form

PðbÞ
t�n;t0�0n0 ¼ PðbT Þ

t;t0 P
ðbSÞ
�;�0P

ðbLÞ
n;n0 ; (18)

where t, t0 refer to time slices, �, �0 are Dirac spin indices,
and n, n0 are LapH eigenvector indices. For each type
(time, spin, LapH eigenvector) of dilution, we studied
four different dilution schemes. Let N denote the dimen-
sion of the space of the dilution type of interest. For time
dilution, N ¼ Nt is the number of time slices on the lattice.
For spin dilution, N ¼ 4 is the number of Dirac spin
components. For LapH eigenvector dilution, N ¼ Nv is
the number of eigenvectors retained on each time slice.
The four schemes we studied are defined below:

PðbÞ
ij ¼ �ij; b ¼ 0; ðno dilutionÞ

PðbÞ
ij ¼ �ij�bi; b ¼ 0; . . . ; N � 1; ðfull dilutionÞ

PðbÞ
ij ¼ �ij�b;bJi=Nc; b ¼ 0; . . . ; J � 1; ðblock-JÞ

PðbÞ
ij ¼ �ij�b;i mod J; b ¼ 0; . . . ; J � 1; ðinterlace-JÞ

where i; j ¼ 0; . . . ; N � 1, and we assume N=J is an in-
teger. Note that each projector is a diagonal matrix with
some or all of the diagonal elements set to unity and all
other elements vanishing. We use a triplet (T, S, L) to
specify a given dilution scheme, where ‘‘T’’ denote time,
‘‘S’’ denotes spin, and ‘‘L’’ denotes LapH eigenvector
dilution. The schemes are denoted by 1 for no dilution, F
for full dilution, and BJ and IJ for block-J and interlace-J,
respectively. For example, full time and spin dilution with
interlace-8 LapH eigenvector dilution is denoted by (TF,
SF, LI8).
Introducing noise in this way produces correlation func-

tions with significantly reduced variances, as shown in
Fig. 5. Let CðtÞ denote the correlation function of a repre-
sentative triply-displaced-T nucleon operator at temporal
separation t. Let �gn represent the statistical error in

Cðt ¼ 5Þ using exactly-determined slice-to-slice quark
propagators. In other words, �gn arises solely from the

statistical fluctuations in the gauge configurations them-
selves (the gauge-noise limit). Let � denote the error in
Cðt ¼ 5Þ using stochastic estimates of the quark propaga-
tors. The vertical axis in Fig. 5 is the ratio of the statistical
error � in Cðt ¼ 5Þ over �gn. Results are shown for a

variety of different dilution schemes. In the lattice-noise
method, variance reduction is achieved with projectors
which dilute in the time, spin, and color indices. Simple
spatial dilutions are also used. The squares show results for
dilution schemes with noise introduced in the larger spin-
color-space-time vector space, and the triangles show re-
sults for different dilution schemes using noise introduced
only in the LapH subspace. The triangles show nearly
an order of magnitude reduction in the statistical error,
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FIG. 5 (color online). Comparison of the new stochastic LapH
method (triangles) with the earlier stochastic method using noise
on the full lattice (squares) for the correlator Cðt ¼ 5Þ of a triply-
displaced-T nucleon operator on a 163 � 128 lattice. The vertical
scale is the ratio of statistical error � (with no averaging over the
six permutations of the three noises) over the error in the gauge-
noise limit �gn, and in the horizontal scale, ND is the number of

Dirac-matrix inversions per source per quark line. Each point
shows an error ratio using a particular dilution scheme. The
LapH points lie significantly below the results from the lattice-
noise method, indicating a dramatic variance reduction.
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compared to the square symbols. The correlator for other
time separations t and for a variety of other hadron opera-
tors were also examined. All of the observables we studied
showed the same dramatic reduction in the variance using
the new LapH-noise method compared to the lattice-noise
method.

The number of Dirac-matrix inversions needed in the
stochastic LapH method to achieve a target statistical
precision was found to be insensitive to the spatial volume,
despite the rapid increase in the number of LapH eigen-
vectors. Calculations on a 163 and a 203 lattice were carried
out and the ratios �=�gn for various correlators at various

time separations were compared. The error ratios for the
representative triply-displaced-T nucleon correlator for
time separation t ¼ 5 on a 163 lattice (triangles) are com-
pared to those from a 203 lattice (squares) in Fig. 6. For the
(TF, SF, LI8) dilution scheme, we found �=�gn ¼ 1:31 for

this quantity on the 163 lattice and �=�gn ¼ 1:32 on the

203 lattice. Not only is the equality of these ratios on the
two volumes remarkable, but also their closeness to unity is
striking. Keep in mind that the number of Laplacian ei-
genvectors needed doubles in going from the smaller to the
larger volume. These results show that once a sufficient
number of dilution projectors are used, the number of
inversions required by the stochastic LapH method does
not increase with the lattice volume and are sufficient
to essentially reach the gauge-noise limit. Additional

inversions of the Dirac matrix are totally unnecessary since
they do not lower the error any further. Other time separa-
tions and a variety of other hadron operators were also
studied and led to the same conclusions.
Different dilution schemes were explored using 163,

203, and 243 spatial lattices with spacing as � 0:12 fm
and light quark masses yielding pion masses ranging
from 240 MeV to 500 MeV, and we have found that the
scheme (TF, SF, LI8) produces variances near that of
the gauge-noise limit for correlators which involve only
quark lines that connect the source and sink time slices.
Interlace-J and block-J were observed to work equally
well for spin and LapH eigenvector dilutions. For correla-
tors which involve quark lines that originate and terminate
at the final sink time, the dilution scheme (TI16, SF, LI8)
was found to work well. The interlacing in time enables us
to evaluate quark lines that originate on any time slice.
Results for several isoscalar correlators using (TI32, SF,
LI8) on 20 configurations were compared with (TI16, SF,
LI8) and no differences in the variances were discernible,
suggesting the gauge-noise limit has essentially been
reached.
In the stochastic LapH method, the number of times that

�x ¼ y must be solved is N
NP for each gauge-field

configuration, where N
 is the number of ZN noises used

andNP is the number of dilution projectors. Using full time
dilution (with four choices of source time t0), full spin
dilution and interlace-8 LapH eigenvector dilution, then
the t0-to-tF (for sink time tF) quark lines require 128
inversions for each noise on each configuration. To accom-
modate a baryon-meson system, at least 5 noises for
these quark lines are needed. The tF-to-tF quark lines use
interlace-16 time dilution, full spin dilution, and interlace-
8 LapH eigenvector dilution, requiring 512 inversions
per noise per configuration. Two noises are required for
these quark lines. Hence, a total of 5� 128þ 2� 512 ¼
1664 inversions per configuration are needed to compute
all baryons and mesons composed of u, d quarks.
This number of inversions is the same for both the 243

and 323 lattices that we plan to use. An exact treatment of
the quark propagation requires 57 344 inversions per
configuration on 243 � 128 lattices for Nv ¼ 112 and
270 336 inversions per configuration on 323 � 256 lattices
for Nv ¼ 264.

III. TEMPORAL CORRELATIONS
OF HADRON OPERATORS

Details on how the temporal correlations of hadron
operators are evaluated using the stochastic LapH method
are presented in this section. We limit our attention to four
cases: baryon to baryon, meson to meson, two-meson to
meson, and two-meson to two-meson systems. Other
source to sink cases are straightforward generalizations
of the four examples below.
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FIG. 6 (color online). Comparison of the new stochastic LapH
method on 163 (triangles) and 203 (squares) lattices for the
correlator Cðt ¼ 5Þ of a triply-displaced-T nucleon operator.
The vertical scale is the ratio of statistical error � (with averag-
ing over the six permutations of the three noises) over the error in
the gauge-noise limit �gn, and in the horizontal scale, ND is the

number of Dirac-matrix inversions per source per quark line.
Each point shows an error ratio using a particular dilution
scheme. The number of Laplacian eigenvectors needed is 32
on the 163 lattice and 64 on the 203 lattice. The leftmost points
correspond to the dilution scheme (TF, SF, LI8). For this scheme,
�=�gn ¼ 1:31 on the 163 lattice and �=�gn ¼ 1:32 on the 203

lattice. For 100 configurations, the ratio of the fractional error in
the gauge-noise limit of this quantity for the 203 lattice over that
for the 163 lattice is approximately 0.73.
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A. Baryon to baryon correlations

All of our hadrons are assemblages of basic building
blocks which are covariantly-displaced, LapH-smeared
quark fields:

qAa�j ¼ DðjÞ ~c ðAÞ
a�; �qAa�j ¼ ~�c

ðAÞ
a��4D

ðjÞy; (19)

where a is a color index,� is a Dirac spin component, j is a
displacement type, and A is a quark flavor. To simplify
notation, the Dirac spin component and the displacement
type are combined into a single index in what follows.

Each baryon operator destroying a three-momentum p is
a linear superposition of so-called elemental three-quark
operators, which are gauge-invariant terms of the form

�ABC
���ðp; tÞ ¼

X

x

e�ip�x"abcqAa�ðx; tÞqBb�ðx; tÞqCc�ðx; tÞ:

The ‘‘barred’’ three-quark elemental operators which cre-
ate a momentum p have the form

�� ABC
���ðp; tÞ ¼

X

x

eip�x"abc �qCc�ðx; tÞ �qBb�ðx; tÞ �qAa�ðx; tÞ:

We use hadron operators which transform irreducibly
under all symmetries of the three-dimensional cubic lat-
tice. Each baryon sink operator, being a linear superposi-
tion of the three-quark elemental operators, has the form

BlðtÞ ¼ cðlÞ����
ABC
���ðtÞ; (20)

where l is a compound index comprised of a three-
momentum p, an irreducible representation (irrep) � of
the lattice symmetry group, the row � of the irrep, isospin
and other flavor quantum numbers, and an identifier label-
ing the different operators in each symmetry channel. The
corresponding source operators are

�B lðtÞ ¼ cðlÞ����
��ABC
���ðtÞ: (21)

The baryon correlation matrix elements are given by

Cl�lðtF � t0Þ ¼ 1

Nt

X

t0

hBlðtFÞ �B�lðt0Þi; (22)

where h. . .i denotes a vacuum expectation value, which is
given by the usual ratio of path integrals over the fermion
and gauge fields Wick-rotated into imaginary time. To
simplify notation, we replace the average over all source
times by a single fixed time t0, exploiting time-translation
invariance, and obtain

Cl�lðtF � t0Þ ¼ cðlÞ���c
ð�lÞ�
�� �� ��

h�ABC
���ðtFÞ ��ABC

�� �� ��
ðt0Þi:

Expand the three-quark elemental operators in terms of the
covariantly-displaced smeared quark fields,

Cl�lðtF � t0Þ
¼ cðlÞ���c

ð�lÞ�
�� �� ��

X

x �x

"abc" �a �b �ce
�ip�ðx� �xÞhqAa�ðx; tFÞqBb�ðx; tFÞ

� qCc�ðx; tFÞ �q �C
c�ð �x; t0Þ �q �B

b�
ð �x; t0Þ �q �A

a�ð �x; t0Þi;
where the three-momenta associated with l and �l are as-
sumed to be the same p, then evaluate the path integrals
over the Grassmann fields to obtain a sum over products of
quark lines, defining t ¼ tF � t0:

Cl�lðtÞ¼cðlÞ���c
ð�lÞ�
�� �� ��

X

x �x

"abc" �a �b �ce
�ip�ðx� �xÞ

�hQðA �AÞ
a�;a�Q

ðB �BÞ
b�;b�

QðC �CÞ
c�;c��QðA �AÞ

a�;a�Q
ðB �CÞ
b�;c�Q

ðC �BÞ
c�;b�

�QðA �BÞ
a�;b�

QðB �AÞ
b�;a�Q

ðC �CÞ
c�;c��QðA �CÞ

a�;c�Q
ðB �BÞ
b�;b�

QðC �AÞ
c�;a�

þQðA �CÞ
a�;c�Q

ðB �AÞ
b�;a�Q

ðC �BÞ
c�;b�

þQðA �BÞ
a�;b�

QðB �CÞ
b�;c�Q

ðC �AÞ
c�;a�iU;

where time and spatial labels have been omitted, and h. . .iU
is an expectation value defined as a ratio of path integrals
over the gauge field U only, using the gauge field action
and the fermion determinant as the path integral weight.
Note that each quark propagator Q connects each source
site �x to each sink site x, as well as connecting color and
spin components between the source and sink. Hence, the
summations in the above equation are quite costly to carry
out, and must be repeated over and over again for every
pair of baryon operators.
A dramatic simplification of the above equation can be

achieved by using Eq. (15) to estimate each quark line.
The following quantity emerges as a key component of
the resulting estimate:

B½b1b2b3�
l ð’1;’2;’3; tÞ
¼ cðlÞ���

X

x

e�ip�x"abc’
½b1�
a�xtð
1Þ’½b2�

b�xtð
2Þ’½b3�
c�xtð
3Þ; (23)

where b1, b2, b3 are noise-dilution projector indices, and
the short-hand notation ’k ¼ ’ð
kÞ has been used, where
’ is the quantity defined in Eq. (14). The baryon correla-
tion matrix element is then given by

Cl�lðtF � t0Þ
¼ hB½b1b2b3�

l ð’1;’2;’3; tFÞ � ð�ABC
ABCB

½b1b2b3�
�l

ð%1;%2;%3; t0Þ
��ACB

ABCB
½b1b3b2�
�l

ð%1; %3; %2; t0Þ
��BAC

ABCB
½b2b1b3�
�l

ð%2; %1; %3; t0Þ
��CBA

ABCB
½b3b2b1�
�l

ð%3; %2; %1; t0Þ
þ�CAB

ABCB
½b2b3b1�
�l

ð%2; %3; %1; t0Þ
þ�BCA

ABCB
½b3b1b2�
�l

ð%3; %1; %2; t0ÞÞ�iU;
 (24)

where �DEF
ABC ¼ �AD�BE�CF and h. . .iU;
 indicates an ex-

pectation value over the gauge field U and any ZN noises

k. Again, the above equation uses the short-hand notation
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’k ¼ ’ð
kÞ and %k ¼ %ð
kÞ, where the quark sinks ’ are
defined in Eq. (14) and the quark sources % are defined in
Eq. (13). A, B, C are the quark flavors of the first, second,
and third quarks as ordered in theB functions. To increase
statistics, an average of the six permutations of the 1, 2, 3
superscripts labeling the quark lines can be used, and if the
masses of all three-quark lines are the same, this requires
no further inversions of the Dirac matrix.

A very useful feature of Eq. (24) is the fact that the
baryon correlator completely factorizes into a function
associated with the sink time slice tF, and another function
associated with the source time slice t0. Summations over
color, spin, and spatial sites at the source have been com-
pletely separated from the color, spin, and spatial summa-
tions at the sink. The stochastic LapH method leads to
complete factorization of hadron sources and sinks in
temporal correlations, which greatly simplifies the logistics
of evaluating correlation matrices involving large numbers
of operators. Equation (24) also shows that implementing
the Wick contractions of the quark lines is also straightfor-
ward. Contributions from differentWick orderings within a
class of quark-line diagrams differ only by permutations
of the noises at either the source or the sink. In Eq. (24),
permutations of the noises at the source have been used
since this is generally much less costly.

Given the plethora of indices, a graphical representation
of the above equation is useful and is shown in Fig. 7. The
quark field c is represented by a quark sink ’ or a �%, and
�c becomes a % or a �’. We represent a baryon given by
Eq. (23) by a box containing the quark sources or sinks
vertically aligned with the first quark on the left in Eq. (23)
located at the top of the box. We use lines connecting
a % with a ’ (or a �% with a �’) to denote summation
over the dilution indices associated with the connected %
and ’. The same noise must be used at the two ends of
any single line, and different noises should be used for
different lines.

B. Meson to meson correlations

Each meson operator destroying a three-momentum p is
a linear superposition of quark-antiquark elemental opera-
tors which are linear superpositions of gauge-invariant
terms of the form

�AB
��ðtÞ ¼

X

x

e�ip�ðxþð1=2Þðd�þd�ÞÞ�ab �q
A
a�ðx; tÞqBb�ðx; tÞ;

(25)

where q, �q are defined in Eq. (19), d�, d� are the spatial

displacements of the �q, q fields, respectively, from x, the
superscripts A, B indicate flavor, and �, � are compound
indices incorporating both spin and quark-displacement
types. The phase factor involving the quark-antiquark dis-
placements is needed to ensure proper transformation
properties under G-parity for arbitrary displacement types.
The barred operators which create a momentum p then
take the form

�� AB
��ðtÞ ¼

X

x

eip�ðxþð1=2Þðd�þd�ÞÞ�ab �q
B
b�ðx; tÞqAa�ðx; tÞ:

(26)

Each meson sink operator has the form

MlðtÞ ¼ cðlÞ���
AB
��ðtÞ; (27)

(or is a flavor combination of the above form), where again,
the l label includes the momentum p, the symmetry group
irrep �, the row � of the irrep, and an identifier specifying
the different operators in each symmetry channel. The
corresponding source operators are

�M lðtÞ ¼ cðlÞ���
��AB
��ðtÞ: (28)

The meson correlation matrix elements are given by

Cl�lðtF � t0Þ ¼ 1

Nt

X

t0

hMlðtFÞ �M �lðt0Þi: (29)

In terms of the elemental operators and using translation
invariance, the above equation becomes

Cl�lðtF � t0Þ ¼ cðlÞ��c
ð�lÞ�
�� ��
h�AB

��ðtFÞ ��AB
�� ��
ðt0Þi; (30)

using translation invariance to fix to a single t0 for nota-
tional convenience. Expand the elemental operators in
terms of the covariantly-displaced smeared quark fields:

Cl�lðtF � t0Þ
¼ cðlÞ��c

ð�lÞ�
�� ��

X

x �x

e�ip�ðxþð1=2Þðd�þd�ÞÞeip�ð �xþð1=2Þðd ��þd ��ÞÞ

� h �qAa�ðx; tFÞqBa�ðx; tFÞ �q �B
�a ��
ð �x; t0Þq �A

a�ð �x; t0Þi;
where the three-momenta associated with l and �l are as-
sumed to be the same p. Next, the path integrals over the
Grassmann fields are carried out, and one obtains, for
t ¼ tF � t0,
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FIG. 7. Graphical depiction of Eq. (24) for a baryon correlator
Cl�lðtF � t0Þ with source time t0 and later sink time tF. Each box
represents a baryon function given by Eq. (23) with the first
quark located at the top of the box. Lines connecting a %with a ’
indicate summation over their dilution projector identifiers. The
same noise must be used at the two ends of any single line, and
different noises should be used for different lines. Any line
connecting quarks of different flavors represents a zero value.
The asterisks indicate complex conjugation.
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Cl�lðtÞ ¼ cðlÞ��c
ð�lÞ�
�� ��

X

x �x

e�ip�ðxþð1=2Þðd�þd�ÞÞeip�ð �xþð1=2Þðd ��þd ��ÞÞ

� h�Qð �AAÞ
a�;a�Q

ðB �BÞ
a�; �a ��

þQðBAÞ
a�;a�Q

ðABÞ
a�; �a ��

iU; (31)

omitting time and spatial labels. Equation (15) or Eq. (16)
can then be used to estimate the two quark propagators. In
the first term, we find that it is advantageous to use Eq. (16)
for the A quark line and Eq. (15) for the B quark line.

To proceed, define the following meson function:

M½b1b2�
l ð%1; ’2; tÞ ¼ cðlÞ��

X

x

e�ip�ðxþð1=2Þðd�þd�ÞÞ

� %½b1�
a�xtð
1Þ�’½b2�

a�xtð
2Þ; (32)

where b1, b2 are noise-dilution projector indices, and the
shorthand notation ’k ¼ ’ð
kÞ has been used again. The
meson correlator is given by

Cl�lðtF � t0Þ
¼ h��AB

ABM
½b1b2�
l ð �’1; ’2; tFÞM½b1b2�

�l
ð �%1; %2; t0Þ�

þ �B �B
A �A
M½b1b1�

l ð%1; ’1; tFÞM½b2b2�
�l

ð’2; %2; t0Þ�iU;
 (33)

where �CD
AB ¼ �AC�BD. The second term only contributes

to isoscalar mesons. Again, color, spin, and spatial sum-
mations at the sink have completely factorized from the
summations at the source. This equation is graphically
represented in Fig. 8.

C. More complicated correlations

The graphical rules developed in the preceding sections
can be applied to more complicated correlation matrix
elements. The correlation of a two-meson source with a
single-meson sink is represented in Fig. 9. The source
mesons are assumed to be nonisoscalars, otherwise there
would be additional diagrams involving meson internal
lines. The correlation of a two-meson source with a two-
meson sink is illustrated in Fig. 10. All four mesons are
assumed to be nonisoscalars. We apply �5 Hermiticity only
in cases where a c ðt0Þ at the source connects with a �c ðtFÞ

at the sink. Full time dilution is the best choice for all
quark lines connecting t0 and tF and t0 to t0. For all tF-to-tF
quark lines, interlacing in source time must be used.
To evaluate any correlation matrix element using the

stochastic LapH method, one first must identify the various
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FIG. 8. Graphical depiction of Eq. (33) for a meson correlator
Cl�lðtF � t0Þ with source time t0 and later sink time tF. Each box
represents a meson function given by Eq. (32) with the first
quark field located at the top of the box. Lines connecting a %
with a ’ or a �% with a �’ indicate summation over their dilution
projector identifiers. The same noise must be used at the two
ends of any single line, and different noises should be used for
different lines. Any line connecting quarks of different flavors
represents a zero value. The asterisks indicate complex conju-
gation. Contributions from the meson internal lines occur only
for isoscalar mesons.

t0

δ_

δ_

t0

I=0

ϕδ

ϕδ

δ

ϕ

t

− − +

δ

ϕδ

ϕ

t

ϕ

ϕδ

δ

ϕ

t

ϕ
_ _

∗

∗

∗

∗

∗

∗

t0 FFF

FIG. 9. Computation of the temporal correlation of a two-
meson source at time t0 and a single-meson sink at time tF.
The source mesons are assumed to be nonisoscalars. Each box
represents a meson function given by Eq. (32) with the first
quark field located at the top of the box. Lines connecting a %
with a ’ or a �% with a �’ indicate summation over their dilution
projector identifiers. The same noise must be used at the two
ends of any single line, and different noises should be used for
different lines. Any line connecting quarks of different flavors
represents a zero value. The asterisks indicate complex conju-
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identifiers. The same noise must be used at the two ends of any
single line, and different noises should be used for different lines.
Any line connecting quarks of different flavors represents a zero
value. The asterisks indicate complex conjugation.
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hadron functions that are needed and calculate them using
Eqs. (23) and (32). These can be evaluated for a large set
of hadron operators and stored on disk. The quark propa-
gators are needed only at this stage of the computation.
All color contractions and spatial sums are carried out in
evaluating the hadron functions. Each hadron function for
a given choice of noises takes up very little space on
disk since each is an array over time and dilution indices
only. The correlation matrix elements are then combina-
tions of the different hadron functions for different noise
selections. These final contractions involve only summa-
tions of dilutions indices. In this way, a large number of
correlation matrices can be evaluated very efficiently.

IV. IMPLEMENTATION DETAILS

Our software is written in C++ and links to the USQCD
QDP++/Chroma library [28]. Parts of our computations
must be done using the full four-dimensional lattice, but
other parts are best handled time slice by time slice in three
dimensions. QDP++ does not handle both three and four-
dimensional lattices simultaneously, so the different parts
of the computations were done in separate runs using both
3d and 4d versions of our software. Special input/output
routines were written to enable 4d QDP++ to read and
write 3d time slices of the lattice.

Our computations are done as a sequence of tasks for
each gauge configuration in the Monte Carlo ensemble. In
the first task, the spatial links of the gauge configuration are
smeared using the stout-link procedure. This task is done
using a four-dimensional version of our software, but the
smeared spatial links are written to disk as individual time
slices suitable for input to the three-dimensional version
of our software. In the second task, computation of the
Laplacian eigenvectors is done time slice by time slice in
three dimensions. In the third task, the eigenvectors for the
different time slices are reorganized into four-dimensional
eigenvectors corresponding to the different eigenvalues.
The fourth task is the computation of the quark propaga-
tors. The inversions of the Dirac matrix must be done using
the full four-dimensional lattice, but our results are written
to disk once again as three-dimensional time slices.
Formation of the hadron sources and sinks is accomplished
in the fifth task using the three-dimensional version of our
software. All of our hadron operators have definite three-
momenta which involve summations over all spatial sites
of the lattice, so the resulting hadron sources and sinks are
no longer lattice quantities. The final task is the assembly
of the hadron sinks and sources to form the hadron corre-
lation functions which can be accomplished using a serial
version of our software.

The eigenvectors of the gauge-covariant Laplacian are
evaluated using a Krylov-Spectral Restarted Lanczos
(KSRL) method which is a modification of the thick
restarted Lanczos method described in Ref. [29]. Let
A denote a Hermitian matrix whose lowest-lying or

highest-lying eigenvectors are sought. Given a starting
vector u, the KSRL method begins by constructing a
Krylov space spanned by vectors u; Au; A2u; . . . ; Amu.
The submatrix of A defined in this basis is then diagonal-
ized, and the eigenvalues and eigenvectors of this sub-
matrix, known as the Ritz values and Ritz vectors,
are approximations to those of the full matrix A.
Convergence to the exact eigenpairs occurs as the Krylov
space dimension increases, but a better procedure is to stop
the growth of the Krylov space at some point, typically
just above the number of desired eigenpairs, and restart
the procedure using a different starting vector or vectors.
The use of a certain number of Ritz vectors to restart the
procedure is known as Krylov-Spectral restarting. Key
issues in the method are determining how many Ritz
vectors to use in restarting, determining the size of the
Krylov space to use, and maintaining orthogonality of the
Lanczos vectors in finite-precision mathematics.
In our calculations, we use either a random vector or the

vector whose components are all equal for the starting
vector. Full global reorthogonalization is used at all steps.
The decision to reorthogonalize multiple times is based on
a simple criterion [30]: if the norm of the vector decreases

by 1=�, where � ¼ ffiffiffi
2

p
, then further reorthgonalization is

done. A maximum of four reorthogonalizations is en-
forced. Equation (5) in Ref. [31] is used to choose the
number of Ritz vectors to keep, except that the number
must be at least as large as the number of converged vectors
and cannot exceed the dimension of the Krylov space
minus the number of converged and locked vectors minus
12. For an approximate eigenvector x (with unit norm) and
an estimate � of its corresponding eigenvalue, the residual
norm is defined by r ¼ jjAx� �xjj. An eigenpair is con-
sidered converged when r < toljjAjj, where tol is the
desired tolerance and the matrix 2-norm is defined by
jjAjj ¼ maxx�0jjAxjj=jjxjj, and can be estimated by the
largest absolute value of any Ritz value encountered in the
computation.

In calculating the eigenvectors of ~�, Chebyshev accel-

eration is used. The eigenvalues of �~� are all real and lie
between 0 and some maximum value denoted by �L. We
wish to determine the eigenvectors corresponding to the
lowest-lying eigenvalues lying between 0 and some cutoff
�C. The rate of convergence to solution increases with the
spacing between the levels. Convergence is much faster for
widely spaced levels. Hence, convergence can be acceler-
ated by transforming the spectrum so that the desired part
of the spectrum is more widely spaced. The following
transformation is applied first:

B ¼ 1þ 2

ð�L � �CÞ ð
~�þ �CÞ: (34)

The above transformation maps the unwanted spectrum to
the range �1 � � � 1, and the desired part lies above 1.
Chebyshev polynomials are then applied:
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A ¼ TnðBÞ: (35)

Eigenvalues lying between �1 and 1 stay between �1::1,
and the desired eigenvalues above 1 get spaced out to large
and widely-separated values above 1. The lowest-lying

eigenvalue of �~� becomes the highest-lying eigenvalue
of A. Transforming the desired levels to the region above 1
is most convenient since it allows the use of Chebyshev
polynomials of any order, both even and odd. The
Chebyshev polynomials are applied using the following
recurrence relation:

T0ðxÞ ¼ 1; T1ðxÞ ¼ x; (36)

TnðxÞ ¼ 2xTn�1ðxÞ � Tn�2ðxÞ: (37)

For calculations done on our anisotropic 243 � 128
lattices, we need to compute the lowest-lying Nv ¼ 112
eigenvectors on each time slice. A Krylov space dimension
of 160 was found to work well, and �L ¼ 15 and �C ¼ 0:5
were appropriate. Chebyshev polynomials of order 8
were used, and the residual tolerance was set to 10�9.
Convergence of all Nv levels occurred within a dozen or
less restarts.

The LapH eigenvectors are uniquely determined only to
within an overall phase. Given the way in which ZN noise
is injected in the LapH subspace, one sees that a given
quark line is not invariant under a change of the phase
multiplying each eigenvector (due to the off-diagonal
pieces not being exactly zero). It turns out that changing
the phase is equivalent to changing the noise by a U(1)
phase. This is not a problem, but erroneous results can
occur if the original eigenvector files used to determine
the quark sinks get deleted and the eigenvectors have to
be reconstructed for making the hadrons. With different
run parameters, the eigensolver could produce a different
phase. The introduction of a phase convention eliminates
this potential problem.

Once the needed eigenvectors of the Laplacian are com-
puted and stored, the next step is to compute all elements of

Vy
s ��1VsP

½b�
r. There are only NtNv elements to store
for each noise r and each dilution projector b, so storage
of these quark propagation coefficients is modest. Disk
storage is actually dominated by the LapH eigenvectors.
Another nice feature is the fact that the quark propagation
coefficients are gauge invariant, as long as the eigenvector
phases are handled appropriately. Solving �x ¼ y for x

with y ¼ VsP
½b�
r is accomplished using a mixed-

precision improved version of the biconjugate gradient
method with even-odd preconditioning. This was found
to be the fastest inverter available in Chroma.
Occasionally convergence is not achieved, and a
slower conjugate gradient solver is applied to the system
�y�x ¼ �yy.

Our correlator estimates and their variances are insensi-
tive to the value of N used for the ZN noise, as long as N is
not too small. We found that N ¼ 4 produced results

indistinguishable in quality from those of larger N.
Hence, we use Z4 noise in all of our computations. We
identify a Z4 noise vector for an ensemble of gauge con-
figurations by a 16-bit unsigned integer s. To create a noise

vector 
ðsÞ for a gauge configuration labeled by an RHMC
trajectory number k (assumed to have a value ranging from
0 to 216 � 1), a 32-bit unsigned integer m is first formed in
a particular manner using the 16 binary digits of s and the
16 bits of k. Although the procedure of forming m is
arbitrary, the same procedure must be used in every in-
stance. The 32-bit unsigned integer m is then taken as a
seed to the 32-bit Mersenne twister random number gen-

erator which is used to create the Z4 noise 
ðsÞðt; i; �Þ for
each LapH eigenvector, labeled by time t and level i, and

for each spin index �. The elements of 
ðsÞ are generated in
a particular order that is always the same. Each Z4 element
is chosen using the sequence of bits obtained from the
current state of the Mersenne twister, taking 2 bits at a
time. It was found that the linear congruential generator in
QDP++/Chroma is not adequate for generating the Z4

noise and leads to serious errors in some instances.

V. INITIAL APPLICATIONS

Our initial development of the stochastic LapH method
was done using a small 163 spatial lattice which is not very
interesting for hadron physics. Since the main reason for
pursuing the method is to apply it on large lattices for both
single-hadron and multihadron correlators, we proceeded
to test the method by studying several simple hadronic
systems requiring sink-to-sink quark lines on a reasonably
large 243 � 128 anisotropic lattice having spatial volume
ð3 fmÞ3.
Two ensembles of gauge configurations were used.

These ensembles were generated using the Rational
Hybrid Monte Carlo (RHMC) algorithm [32], which is a
variant of the hybrid molecular-dynamics (HMC) algo-
rithm [33] suitable for Nf ¼ 2þ 1 quark flavors. The

updating algorithm is a Metropolis method with a sophis-
ticated means of proposing a global change to the gauge
and pseudofermion fields. A fictitious momentum is intro-
duced for each link variable with a Gaussian distribution
and Hamilton’s equations involving these momenta and the
original action as a potential energy are approximately
solved for some length of fictitious time, known as an
RHMC trajectory. An improved anisotropic clover fermion
action and an improved gauge-field action were used [34].
In both ensembles, � ¼ 1:5 is used and the s quark mass
parameter is set to ms ¼ �0:0743 in order to reproduce a
specific combination of hadron masses [34]. In one en-
semble, the light quark mass parameters are set to
mu ¼ md ¼ �0:0840 so that the pion mass is around
390 MeV using one particular way of setting the scale,
discussed below. In the other ensemble, mu ¼ md ¼
�0:0860 are used, resulting in a pion mass around
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240 MeV. We refer to these ensembles as the 390 and 240
ensembles, respectively.

We calculated the masses of the pion, the nucleon, and
the �-baryon. Our results are shown in Fig. 11 for the two
ensembles on a 243 � 128 lattice. This figure demonstrates
that the use of our stochastic estimates of the smeared
quark propagators still leads to high accuracy results of
standard quantities. The nucleon and �-baryon masses
times at are shown in Fig. 12 against ðm�=m�Þ2. Results
from Ref. [34] are also included in this figure. Our goal in
this work is simply to present and test the stochastic LapH
method, so we defer a detailed analysis of these results
until a later publication. However, it is encouraging that
fitting the three leftmost �-baryon points to a form linear
in ðm�=m�Þ2 and fitting the three leftmost nucleon points
to an empirical form linear in m�=m� yields mN=m� �
0:556 at the physical value of m�=m�, which compares
well with the observed 0.561 value.

Our calculations determine all hadron masses in terms of
the temporal lattice spacing at. In order to express the
hadron masses in terms of MeV, a value of a�1

t must be
specified using an appropriate renormalization scheme.
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FIG. 11 (color online). MassesmfitðtÞ obtained by fitting the correlators for single-site �,�, N operators to a cosh(exponential) form
for the �ð�; NÞ in the temporal range tmin to tmax. Results are shown for different tmin with tmax fixed to the value stated in the lower left
corner of each plot. Open symbols indicate unacceptable fit qualities, and solid symbols show results with acceptable fit qualities Q.
The top row shows results using 551 configurations of the 390 ensemble on a 243 � 128 lattice, and the bottom row shows results with
584 configurations of the 240 ensemble on a 243 � 128 lattice. The dilution scheme (TF, SF, LI8) is used with four widely-separated
source times t0 on each configuration. The fit value given in each plot corresponds to the fit indicated by the red point.
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FIG. 12 (color online). Products of at and the nucleon and
�-baryon masses against ðm�=m�Þ2 for fixed � ¼ 1:5,
ms ¼ �0:0743 and varying mu ¼ md. The two leftmost points
for each baryon are from this work, and the three rightmost
points are from Ref. [34]. The vertical dashed line indicates the
physical value of ðm�=m�Þ2.
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Away from the physical point, different renormalization
schemes will lead to different choices of a�1

t . One particu-
lar scheme that has been used in the past uses the mass of
the � baryon to set the scale when the strange quark mass
is close to the value that reproduces the physical value of
ð2m2

K �m2
�Þ=m2

�. Using this scheme, we find an inverse

temporal spacing a�1
t ¼ 5:661ð17Þ GeV for the 390 en-

semble and a�1
t ¼ 6:015ð17Þ GeV for the 240 ensemble.

Since the ratio of spatial spacing over temporal spacing has
been tuned to a value near 3.5, we have as � 0:12 fm for
both of these ensembles. Our values for the pion and
nucleon masses are m� ¼ 0:3911ð14Þ GeV and mN ¼
1:1781ð58Þ GeV on the 390 ensemble, and m� ¼
0:2439ð20Þ GeV and mN ¼ 1:048ð14Þ GeV on the 240
ensemble. An alternative scale-setting scheme would be
to extrapolate the �-baryon mass results for different mu,
md but fixed �,ms to the physical value ofm�=m� using a
form linear in ðm�=m�Þ2 motivated by heavy baryon chiral
perturbation theory, then use the�mass to determine a�1

t .

Doing this yields a�1
t � 6:3 GeV and pion masses 250 and

430 MeV for our two ensembles.
Results for the isoscalar mesons in the pseudoscalar,

vector, and scalar channels and the two-pion system of
total isospin I ¼ 0, 1, 2 are presented in Figs. 13–16. In
these results, the dilution scheme (TF, SF, LI8) is used for
all quark lines connecting source time t0 to the sink time tF
and t0 to t0. Four widely-separated source times t0 were
used on each gauge configuration. For all tF-to-tF quark
lines, the dilution scheme (TI16, SF, LI8) is used.
Observables are evaluated using configurations separated
by nsep RHMC trajectories, where nsep ¼ 20 for the two-

pion correlators and nsep ¼ 40 for the isoscalar meson

correlators. Jackknife binning shows autocorrelations to
be suitably small.
Our goal here is simply to test the stochastic

LapH method, so simple single-site operators involving
only the light u, d quarks are used for the isoscalar mesons,
and single-site pion operators are used to make the
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FIG. 13 (color online). Correlators CðtÞ against temporal separation t for single-site operators which produce the isoscalar
pseudoscalar (PS), vector (V), and scalar (S) mesons. Results in the top row were obtained using 210 configurations (135 for the
scalar channel) of the 390 ensemble. Results in the bottom row were obtained using 198 configurations of the 240 ensemble. In the
legends, fwd refers to contributions from the diagram containing only forward-time source-to-sink quark lines, smt refers to
contributions from the diagram containing only quark lines that originate and terminate at the same time. For the scalar channel,
the smt contribution has a vacuum-expectation-value subtraction. Forward-time quark lines use dilution scheme (TF, SF, LI8) and
same-time quark lines use (TI16, SF, LI8). The lattice size is 243 � 128 for all the results shown here.
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two-pion states with zero and nonzero relative momenta.
The temporal correlations of such simple operators have
significant contaminations from higher-lying states, so that
the effective masses associated with these correlations tend
to a plateau rather slowly. Future work will make use of
more sophisticated spatially-extended operators. The issue
of mixing with �ss operators is not addressed in these tests,
and no vacuum-expectation-value subtraction is used for
the � correlator. In chirally-symmetric fermion formula-
tions, the expectation value of the unsmeared, isosinglet
pseudoscalar operator would be proportional to the topo-
logical charge, which has notoriously long autocorrelation
times and may not be sampled properly in a Monte Carlo
simulation [35,36]. This can show up as a nonzero vacuum-
expectation-value for the �, which disappears as the vol-
ume increases. Our test results do not take such effects into
account, but future work will investigate this.

In Fig. 13, the contributions to the isoscalar temporal
correlations CðtÞ from the diagram containing only
forward-time source-to-sink quark lines are shown with
label ‘‘fwd’’, and the contributions from the diagram

containing only quark lines that originate and terminate
at the same time are shown with label ‘‘smt’’. The total
correlator is also shown in each case. In the vector channel,
the contribution from the same-time diagram is very small
and the total correlator can barely be distinguished from
the forward-line diagram contribution, so the fwd contri-
bution is not shown. In the scalar channel, the accuracy of
the smt contribution is particularly remarkable since a
large vacuum-expectation-value has been subtracted.
The correlators in Fig. 13 were used to extract various

isoscalar meson masses. The pion and 
 masses can be
obtained from the forward-line contributions to the pseu-
doscalar and vector correlators, respectively. Correlated-�2

fits to Aðe�mt þ e�mðNt�tÞÞ for temporal separations be-
tween tmin and tmax were done to extract the masses of
the particles. Jackknife sampling was used to estimate the
data covariance matrix, and bootstrap sampling was used
to compute the uncertainties in the fit parameters. Results
are shown in Fig. 14 for various tmin values, with tmax fixed
to the value stated in each plot. Even using such simple
hadron operators, fairly accurate mass extractions are
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FIG. 14 (color online). MassesmfitðtÞ obtained by fitting the correlators CðtÞ shown in Fig. 13 to a cosh form in the temporal range tmin

to tmax. Results are shown for different tmin with tmax fixed to the value stated in the lower left corner of each plot. Open symbols indicate
unacceptable fit qualities, and solid symbols show results with acceptable fit qualities Q. The top row corresponds to the 390 ensemble,
and the bottom row corresponds to the 240 ensemble. The left-hand-side plots show results for the � and � pseudoscalar mesons, and
the right-hand-side plots show results for the ! and 
 vector mesons. The scalar channel is not shown here since a reliable extraction of
the lowest-lying energy in this channel needs a two-pion operator. The lattice size is 243 � 128 for all the results shown here.
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obtained. Future use of better operators will certainly
improve these results. Results are not shown for the scalar
channel since the lowest-lying energy in this channel is a
two-pion state. Extractions of the energies in the scalar
channel are best done with a correlator matrix using both
single-hadron and two-pion operators. The excellent sta-
tistical precision obtained for the correlators at small tem-
poral separations suggests that diagonalizations of future
correlation matrices estimated with stochastic LapH will
be stable and accurate.

With current Monte Carlo algorithms on presently avail-
able computing resources, it remains impractical to use
light u, d quark masses tuned to properly reproduce the
pion mass. Hence, the u, d quark masses used here yield a
pion mass which is too heavy, making comparison to
experiment somewhat problematical. Using the �-baryon
mass to set the inverse temporal spacing, we find masses
m� ¼ 576ð59Þ MeV, m
 ¼ 820ð13Þ MeV, and m! ¼
863ð21Þ using 198 configurations of the 240 ensemble.
The experimental values are m� ¼ 548 MeV, m
 ¼
776 MeV, and m! ¼ 783 MeV. Future work will use
better operators and all 584 configurations to achieve
improved results.

Our results for the energies of two light pions are shown
in Figs. 15 and 16. We studied S-wave states of zero
relative momentum and total isospin I ¼ 0 and I ¼ 2, as
well as a P-wave with minimal nonzero on-axis relative
momenta in the I ¼ 1 channel. In Fig. 15, contributions to
the correlators from the diagrams containing only forward-
time source-to-sink quark lines are labeled by fwd,
contributions from diagrams containing only quark lines
that originate and terminate at the same time are shown as
smt, and contributions labeled by ‘‘box’’ are those from the
diagrams containing both kinds of quark lines (see Fig. 10).

Energies were extracted using correlated-�2 fits to the form

Aþ Bðe�Et þ e�EðNt�tÞÞ in the range tmin to tmax. The
results for different tmin are shown in Fig. 16, for tmax fixed
to the value stated in the figure. Open symbols indicate
unacceptable fit qualities, whereas solid symbols indicate
results from fits of acceptable qualityQ. The constant term
in the fit form arises from a source pion propagating
forward in time interacting with a sink pion propagating
backwards in time and other similar contributions. The
constant term was clearly evident in the I ¼ 2 channel,
but was consistent with zero in the I ¼ 0 channel. Hence,

0 5 10 15 20 25
t
min

0.06

0.08

0.1

0.12

E
fi

t

I=2
I=0

ππ S-wave

mσ= 0.1245(65)
m

a
= 0.2187(58)

t
max

= 35

FIG. 16 (color online). Energies EfitðtÞ obtained by fitting the
correlators CðtÞ shown in Fig. 15 to a coshþ constant form in
the temporal range tmin to tmax. Results are shown for different
tmin with tmax fixed to the value stated in the lower left corner of
the figure. Open symbols indicate unacceptable fit qualities, and
solid symbols show results with acceptable fit qualities Q. These
results were obtained using 584 configurations of the 240 en-
semble. The horizontal dashed lines indicate the energy of two
free pions at rest. The lattice size is 243 � 128.
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FIG. 15 (color online). Correlators CðtÞ against temporal separation t for two-pion operators with total isospin I ¼ 0, 1, 2 and zero
total momentum. S-wave results have zero relative momentum, P-wave has minimal nonzero on-axis relative momenta. Results were
obtained using 584 configurations of the 240 ensemble. In the legends, fwd refers to contributions from diagrams containing only
forward-time source-to-sink quark lines, smt refers to contributions from diagrams containing only quark lines that originate and
terminate at the same time, and box refers to diagrams containing both kinds of quark lines. Forward-time quark lines use dilution
scheme (TF, SF, LI8) and same-time quark lines use (TI16, SF, LI8). The lattice size is 243 � 128 for all the results shown here.
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the I ¼ 0 results shown in Fig. 15 were done setting the
constant term to zero. This figure demonstrates that the
stochastic LapH method can provide sufficient accuracy to
see the difference of these two-pion energies from the
energy of two free pions at rest, indicated by the horizontal
dashed lines. In the I ¼ 1 channel, the 
-meson is ex-
pected to be the lowest-lying energy level, so a correlator
matrix including single-hadron and two-pion operators
is necessary to reliably extract the low-lying spectrum in
this channel. This will be done in future work. Again, we
emphasize that only very simple operators were used here,
and future use of better operators will improve the accu-
racy of these energies.

VI. CONCLUSION

A new method of stochastically estimating the low-lying
effects of quark propagation was proposed which allows
accurate determinations of temporal correlations of single-
hadron and multihadron operators in lattice QCD. The
method enables accurate treatment of hadron correlators
involving quark propagation from all spatial sites on
one time slice to all spatial sites on another time slice.
Contributions involving quark lines originating at the sink
time tF and terminating at the same sink time tF are easily
handled, even for a large number of tF times.

The effectiveness of the method can be traced to two of
its key features: the use of noise-dilution projectors that
interlace in time and the use of ZN noise in the subspace
defined by the Laplacian Heaviside quark-field smearing.
Introducing noise in the LapH subspace results in greatly
reduced variances in temporal correlations compared
to methods that introduce noise on the entire lattice.
Although the number of Laplacian eigenvectors needed
to span the LapH subspace rises dramatically with the
spatial volume, we found that the number of inversions
of the Dirac matrix needed for a target accuracy was

remarkably insensitive to the lattice volume, once a suffi-
cient number of dilution projectors were introduced.
In addition to increased efficiency, the stochastic LapH

method has other advantages. The method leads to com-
plete factorization of hadron sources and sinks in temporal
correlations, which greatly simplifies the logistics of eval-
uating correlation matrices involving large numbers of
operators. Implementing the Wick contractions of the
quark lines is also straightforward. Contributions from
different Wick orderings within a class of quark-line dia-
grams differ only by permutations of the noises at the
source.
The method was tested using the isoscalar mesons in

the scalar, pseudoscalar, and vector channels, and using
the two-pion system of total isospin I ¼ 0, 1, 2 on large
anisotropic 243 � 128 lattices with pion massesm� � 390
and 240 MeV. Given the success of these tests, we are now
applying the stochastic LapH method to compute the ex-
citation spectrum of both mesonic and baryonic stationary-
states of QCD in large finite volume.
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