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We apply to lattice QCD a bosonization method previously developed in which dynamical bosons are

generated by time-dependent Bogoliubov transformations. The transformed action can be studied by an

expansion in the inverse of the nilpotency index, which is the number of fermionic states in the structure

function of composite bosons. When this number diverges the model is solved by the saddle-point method

which has a variational interpretation. We give a stationary covariant solution for a background matter

field whose fluctuations describe mesons. In the saddle-point approximation fermionic quasiparticles exist

which have quark quantum numbers. They are confined in the sense that they propagate only in pointlike

color singlets. Conditions for chiral symmetry breaking are determined, to be studied numerically, and a

derivation of a mesons-nucleons action is outlined.
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I. INTRODUCTION

The fundamental fields appearing in QCD, that is,
quarks and gluons, are confined, and we are able to observe
directly only mesons and baryons. It is conceptually inter-
esting to see how these composite fields emerge from
the microscopic dynamics, and in several cases, it can be
practically convenient to reformulate QCD in terms of
them. The description of the phase diagram of the theory,
in particular, should be more transparent in terms of these
fields. We will refer to a reformulation of QCD in terms of
hadronic fields as QCD hadronization.

This task goes beyond the perturbation theory in the
gauge coupling constant; thus, our starting point will be
the lattice formulation of QCD [1].

After Wick rotation, in the Euclidean formulation, the
path integral of the pure-gauge sector could be studied
using a number of tools—first of all, Monte Carlo simula-
tions, which have helped us to understand what occurs
in the nonperturbative regime. Within this framework,
the role of quark fields soon appeared to be more difficult
to consider. There is a fundamental difficulty with a lattice
action for fermions which explicitly conserves locality,
gauge and chiral symmetries: the duplication of the spec-
trum (see, for example, the textbook [2]). But also, as in the
path-integral formulation fermionic fields are represented
by Grassmann variables in a Berezin integral, an efficient
numerical simulation seems to require the preliminary
integration of the fermionic degrees of freedom. The re-
covered functional determinant is heavily demanding,
from the numerical point of view, and is still a hard prob-
lem in the region of finite chemical potential because it is

not positive definite. This prevents the definition of a
probability measure, thus making the introduction of ap-
proximation schemes difficult.
A hadronization of QCD could overcome these difficul-

ties, at least in the mesonic sector. We have, therefore, been
pushed to apply to lattice QCD a general method of bo-
sonization we developed in recent years, both in many-
body and field theories, in the presence of fundamental
fermions. It turns out that not only does such a method
allow us to introduce mesons, but also, in some approx-
imations, baryons.
Our starting point is the operator formulation of the

partition function in the Fock space representation for the
fermionic fields, in which approximations can be intro-
duced by following physical insight and can be mathemati-
cally justified. In a first approach [3,4] we restricted the
evaluation of the partition function of a system to states of
composite bosons, in a variational spirit. The resulting
bosonic effective action in such restricted space was eval-
uated exactly.
In such a framework, a perturbative scheme was formu-

lated as follows. The composite bosons are characterized
by an integer, the index of nilpotency, which is the number
of fermionic states in their structure function. This is also
the maximum number of composites which can exist in a
given quantum state, and therefore, only when this number
diverges can composite bosons behave as canonical bosons
[4]. We set a perturbative expansion in the inverse of this
number, which we call nilpotency expansion. Since the
index of nilpotency counts the total number of independent
fermionic modes in the composites, it is, in general, much
greater than the number of internal degrees of freedom of
the fermions. For instance, the number of degrees of free-
dom of the electron is 2, but the total number of fermionic
states in the Cooper pairs in superconductors is infinite in
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the thermodynamic limit, which is the reason why the BCS
solution gives the exact energy per particle in this limit.

It was later recognized [5] that this variational approach
provides the saddle-point approximation in the nilpotency
expansion to a theory obtained from the original one by
time-dependent Bogoliubov transformations. Bogoliubov
transformations are a natural way to introduce composites
as Cooper pairs (see, for instance, [6] for a different
approach along similar ideas, and [7] for the solution,
directly in the continuum, of the problem of Dirac particles
in an external stationary magnetic field in 2þ 1 dimen-
sions by means of a series of Bogoliubov transformations).
But the specific difficulties of the renormalization proce-
dure in the Hamiltonian formalism have limited their use in
this domain. A more severe drawback in an application to
gauge theories is that symmetric terms of the original
theory, in general, give rise to a sum of terms in the trans-
formed actions, none of which conserves, in general, the
symmetries (even though, since Bogoliubov transforma-
tions are unitary, all symmetries are conserved in the sum).
This becomes a potential source of problems when some
approximations are performed.

In our approach we try to avoid difficulties with renor-
malization in the Hamiltonian formalism by use of the
transfer matrix formalism, which is at our disposal since
we are using the lattice formulation. By using this formal-
ism we can oscillate between the operator formalism in
Fock space and the functional formalism.

An independent Bogoliubov transformation at each time
slice is performed in the operator form of the partition
function. The time-dependent parameters of the transfor-
mation are required to vary under symmetry transforma-
tions in such a way that the quasiparticle fields transform in
the same way as the original fermion fields under the
symmetries of the theory, in particular, gauge invariance.
These parameters can then be associated with dynamical
bosonic (composite) fields in the presence of fermionic
fields (quasiparticles) with the quantum numbers of the
bare fermions. A compositeness condition avoids double
counting [5]. One thus gets an effective action of compos-
ite fields plus quasiparticles, exactly equivalent to the
original one, in which ground and excited states can be
treated on the same footing. Of course, in practical appli-
cations, some approximation must be introduced.

As usual, different solutions in a saddle-point approxi-
mation can be related to different phases of the theory,
and the nilpotency expansion will be our tool to study
the dynamics of the composites. There is a complete
arbitrariness regarding the composites introduced by the
Bogoliubov transformations because, since they are uni-
tary, the transformed theory is exactly equivalent to the
original one, irrespective of their choice. But only when the
introduced composites reproduce the effective degrees of
freedom in the given phase, the transformed theory, after
suitable approximations, can have practical applications.

In a successive investigation [8] of our method, we
looked into the nature of the saddle-point equations.
In the saddle-point approximation the Bogoliubov trans-
formation on the transfer matrix has the same effect as
the Foldy-Wouthuysen transformation on the Dirac
Hamiltonian: it eliminates the direct mixing between
fermions and antifermions. In the absence of gauge
fields we found an explicit solution of the saddle-point
equations [4].
In the present work we consider the saddle-point equa-

tions in the presence of gauge fields, namely, the applica-
tion of our method to QCD, restricting ourselves to the case
of zero chemical potential. A preliminary discussion of
finite baryon density can be found in [9]. We use the Kogut-
Susskind regularization for fermions in the flavor basis.
The corresponding expressions in the spin-diagonal basis,
which is more commonly used in numerical simulations,
will be reported elsewhere.
We find an exact covariant solution which requires that

the vacuum be dominated by stationary chromomagnetic
fields. At the present stage of our research, such a domi-
nance appears to be driven by dynamical quark fields, but it
should be remembered that dominance of chromomagnetic
fields was already found and discussed by several authors
for pure-gauge theories [10,11]. Because of the coupling
with quarks, the QCD vacuum appears to be a dual super-
conductor (not a color superconductor). Dominance of
chromomagnetic fields in the non-Abelian case is indeed
reminiscent of the picture of color confinement based on
electric-magnetic duality [12–16] and has been found also
in the standard theory of color superconductivity [17]. This
should be compared with the Abelian case, where, by
contrast, we do not expect that the configurations of gauge
fields giving rise to a stationary nonvanishing magnetic
field should dominate the vacuum.
Our vacuum contains a condensate of quark-antiquark

pairs, but these Cooper pairs do not have the quantum
numbers of chiral fields, which are instead associated
with the fluctuations of this condensate. For this reason
we will refer to this condensate as the background field.
Does this background solution describe what we expect

as essential features of QCD like confinement and chiral
symmetry breaking? Our answer can be only partially
positive. Concerning the first issue, we obtained an impor-
tant result: in the background of a stationary chromomag-
netic field quasiparticles cannot propagate separately;
only color singlet composites of quasiparticles can propa-
gate and therefore have a physical particle interpretation.
This means that color is confined as far as quasiparticles
are concerned. The quasiparticle color singlets can be
mesons and baryons as well. Therefore, not only can our
method describe bosonization, it can also account for
the more complicated process of formation of composites
of an odd number of quasiparticles. Concerning sponta-
neous chiral symmetry breaking, instead we have found
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conditions similar to the standard ones which must ulti-
mately be solved numerically.

The expression of the background field is the starting
point of our program of hadronization. This will require, at
the present stage, the evaluation by numerical simulations
(possible because of our lattice regularization) of some
quantities appearing in the nilpotency expansion. An illus-
trative example of such quantities can be found in Sec. VII,
where a derivation of a meson-nucleus action is outlined,
and gauge-invariant coefficients depending on link varia-
bles appear explicitly. Also, the expression of the partition
function at finite chemical potential that we found [9],
which avoids the sign problem, requires an integration
over spatial gauge link variables.

We wish to remark that our method is well suited to
also study the effect of an intense background magnetic
field on strong interactions, a problem considered of inter-
est both at the level of the cosmological electroweak phase
transition and for the heavy-ion collisions. And, indeed,
numerical simulations have already been performed both
in the quenched approximation (see, for example, [18])
and with dynamical fermions (see also [19] for a detailed
bibliography), in order to try to understand magnetic ca-
talysis, i.e. the increase of chiral symmetry breaking in-
duced by the magnetic background field.

The paper is organized in the following way. In Sec. II
we establish our definitions and notations. To make the
paper self-contained, we report in Sec. III the derivation of
the effective action by time-dependent Bogoliubov trans-
formations. In Sec. IV we report our solution of the saddle-
point equations for gauge theories. In Sec. V we discuss the
physical interpretation of our results and their relevance to
symmetries, in particular, chiral symmetries. In Sec. VI
we prove confinement of quasiparticles in the saddle-
point approximation. In Sec. VII we outline a derivation
of the mesons-nucleons action from QCD. Finally, in
Sec. VIII we perform a summary and give an outlook of
our method.

II. DEFINITIONS AND NOTATIONS

Consider a system of fermions interacting with external
bosonic fields, including gauge fields, regularized on a
lattice. The fermionic part of the partition function at finite
temperature T can be written

Z F ¼ TrF
YL0=s�1

t¼0

T t;tþ1: (2.1)

L0 ¼ T�1 is the number of links in the temporal direction,
T is the fermion transfer matrix, and TrF is the trace over
the Fock space of fermions. The parameter s takes the
value 1 in the Wilson formulation for lattice fermions,
but s ¼ 2 for the Kogut-Susskind fermions which live on
blocks twice the size of the lattice spacing. The index t
labels the blocks along the ‘‘time’’ direction.

For Wilson fermions the expression of T was given by
Lüscher [20], in the gauge U0 ¼ 1, in which one has to
impose the Gauss constraint in the Hilbert space of the
system (a Fock space of fermions in which the coefficients
of the fermionic states are polynomials of spatial link
variables). One can also use a slightly modified form which
avoids the Gauss constraint by reinstating the temporal link
variables:

T t;tþ1 :¼ e1=2 trðMtþMy
t ÞT̂y

t V̂te
s�n̂T̂tþ1; (2.2)

where � is the chemical potential and n̂ is the fermion
number operator,

n̂ :¼ ûyû� v̂yv̂ (2.3)

(the sum on all fermion indices is understood) with ûy and
v̂y (respectively, û and v̂), creation (respectively, annihi-
lation) operators of fermions and antifermions, obeying
canonical anticommutation relations and

T̂ t ¼ exp½�ûyMtû� v̂yMT
t v̂� exp½v̂Ntû�; (2.4)

V̂ t ¼ exp½ûy lnU0;tûþ v̂y lnU�
0;tv̂�: (2.5)

The matricesMt (M
T
t being the transpose ofMt) and Nt are

functions of the spatial link variables at time t and possibly
of other bosonic fields, such as the external magnetic fields
considered in [18,19].
Remarkably, Kogut-Susskind fermions, but in the so-

called flavor basis (see, for example, [2]) give rise to a
transfer matrix of the same form [21]. Explicit expressions
for Wilson and Kogut-Susskind fermions in the flavor basis
are reported in Appendix A. The variablesU0;t are matrices

in a unitary representation of the gauge group whose
elements are the link variables between Euclidean time t
and tþ 1,

ðU0;tÞx;y ¼ �x;yU0ðt;xÞ; (2.6)

where boldface letters, such as x, denote spatial
coordinates.
We introduced the following notation, which we will use

for any matrix �:

tr�� :¼ trðP��Þ: (2.7)

The operators P� project on the components of the fermion
field which propagate forward or backward in time,

û ¼ Pþ ĉ ; v̂y ¼ P� ĉ ; (2.8)

and their expressions are given in Appendix A. The symbol
‘‘tr’’ denotes the trace over fermion-antifermion intrinsic
quantum numbers and spatial coordinates (but not over

time). Finally, we will denote by Tð�Þ
0 the forward and

backward translation operators of one block, that is, s
lattice spacing, in the time direction,

½Tð�Þ
0 �t1;t2 ¼ �t2;t1�1: (2.9)
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The expression of the full partition function is

Z ¼
Z
½dU� expð�SGÞZF; (2.10)

where SG is the pure gluon action.

III. TIME-DEPENDENT BOGOLIUBOV
TRANSFORMATIONS

The material of this section is taken from Ref. [8] and is
reported to make the paper self-contained.

Usually the trace appearing in the definition of the trans-
fer matrix is evaluated using, at each time slice, coherent
states of fermions,

j�;�i ¼ expð��ûy � �v̂yÞj0i; (3.1)

where the �, � are Grassmann fields. We will use instead
states obtained by applying, at each time slice, an inde-
pendent Bogoliubov transformation,

ĉ F ¼ ½PþR1=2ð1�F yÞ þ P�R
�
1=2ð1þF Þ�ĉ ; (3.2)

where

R ¼ ð1þF yF Þ�1; R
� ¼ ð1þFF yÞ�1 (3.3)

and F is an arbitrary matrix such that

P�F ¼ FP�: (3.4)

The circle over the R denotes the involution defined by the
above equations. The new operators (we omit the subscript
F to lighten the notation)

�̂ ¼ Pþ ĉ F ¼ R1=2ðû�F yv̂yÞ; (3.5)

�̂ y ¼ P� ĉ F ¼ R
� 1=2ðv̂y þF ûÞ (3.6)

satisfy canonical commutation relations for any choice of
the matrix F . We will let F depend on all the fields
coupled to the fermions in such a way as to respect as
many symmetries as we can. The vacuum of the new
operators is

jF i ¼ expðF̂ yÞj0i; (3.7)

where

F̂ y ¼ ûyF yv̂y (3.8)

is a the creation operator of a composite boson. As already
mentioned, the new vacuum appears as a coherent state of
fermion-antifermion pairs. We also remark that the new
vacuum defined in (3.7) is gauge invariant and therefore
satisfies the Gauss constraint. The transformed states can
be written

ÛðF Þj�;�i ¼ ðdetþR1=2Þj�;�;F i (3.9)

¼ ðdetþR1=2Þ expð���̂y � ��̂yÞjF i
(3.10)

¼ ðdetþR1=2Þ expðF̂ y � a�̂y

� b�̂y � �F�Þj0i; (3.11)

where detþ is the determinant in the subspace where P�
projects, with

detþR ¼ det�R; (3.12)

det�R ¼ det�R
�

(3.13)

and a :¼ R�ð1=2Þ� and b :¼ �R
� �ð1=2Þ

. The explicit defini-

tion of the operator Û can be found in [8] (Appendix B),
and here we correct a misprint in [8] [Eqs. (2.16–2.18)]

where the normalization factor detþR1=2 had been
forgotten.
After evaluation of the trace, the partition function be-

comes

ZF ¼ expf�SmeðF Þg
Z

D½��; �; ��; ��
� expf�Sqpð�;�;F Þg; (3.14)

where the Grassmann variables ��, �, ��, � satisfy anti-
periodic boundary conditions in time. In the above equa-
tion Sme, the term independent of the Grassmann variables,
will be interpreted as a meson action,

SmeðF Þ :¼ � XðL0=sÞ�1

t¼0

trþ lnðRtU0;tEtþ1;tÞ

¼ � XðL0=sÞ�1

t¼0

trþ lnðRtEtþ1;tÞ; (3.15)

where

Etþ1;t :¼ ðF N;tþ1ÞyeMtþ1Uy
0;te

My
t F N;t

þF y
tþ1e

�Mtþ1Uy
0;te

�My
t F t; (3.16)

with

F N;t :¼ 1þ Ny
t F t (3.17)

and we used the fact that U0;t are unitary.

The other term is the action of quasiparticles,

Sqpð�;�;FÞ

¼ �s
XL0=s�1

t¼0

½�tþ1I
ð2;1Þ
tþ1 �tþ1 þ ��

t I
ð1;2Þ
t ��

t

þ ��
t ðrt �H tÞ�tþ1 � �tþ1ðr

�

t �H
�

tÞ��
t �; (3.18)

written in terms of lattice covariant derivatives
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rt :¼ s�1ðes�U0;t � Tð�Þ
0 Þ; (3.19)

r
�

t :¼ s�1ðe�s�Uy
0;t � TðþÞ

0 Þ (3.20)

and the lattice Hamiltonians, respectively, for fermions and
antifermions,

H t :¼ s�1es�ðU0;t � R�ð1=2Þ
t E�1

tþ1;tR
�ð1=2Þ
tþ1 Þ; (3.21)

H
�

t :¼ s�1e�s�ðUy
0;t � R

� �ð1=2Þ
tþ1 E

� �1

tþ1;tR
� �ð1=2Þ
t Þ: (3.22)

There are, in addition, the unwanted terms which mix
quasiparticles with quasiantiparticles whose coefficients
are

Ið2;1Þt :¼ s�1R
� 1=2
t ½R� t � E

� �1

t;t�1F
�

N;t�1e
My

t�1

�U0;t�1e
Mt�F y�1

t R1=2
t ; (3.23)

Ið1;2Þt :¼ ¼ s�1R1=2
t F�1

t ½R� t � eM
y
t U0;te

Mtþ1

� ðF
�
N;tþ1ÞyE

� �1

tþ1;t�R
� 1=2
t : (3.24)

The definitions of the other new symbols are

E
�
tþ1;t :¼ F

�
N;te

My
t U0;te

Mtþ1ðF
�
N;tþ1Þy

þF te
�My

t U0;te
�Mtþ1F y

tþ1; (3.25)

F
�

N;t :¼ 1þF tN
y
t : (3.26)

IV. SADDLE-POINT EQUATIONS AND
FACTORIZATION OF THE TRANSFER MATRIX

We assume that the contribution of quasiparticles to the
vacuum energy is negligible. Therefore, in order to deter-
mine the contribution of the fermions to the vacuum en-
ergy, we must minimize the mesonic action with respect to
F , F y. This gives the saddle-point equations, valid for

0 � t � L0

s � 1,

F tþ1 ¼ Ntþ1 þ e�Mtþ1Uy
0;te

�My
t F tðF N;tÞ�1

� e�My
t U0;te

�Mtþ1 ; (4.1)

F y
t ¼ Ny

t þ e�My
t U0;te

�Mtþ1ðF y
N;tþ1Þ�1F y

tþ1

� e�Mtþ1Uy
0;te

�My
t : (4.2)

The main difficulty of the saddle-point equations stems
from their dependence on time. This difficulty is reduced if
we look for stationary solutions, as appropriate to the
vacuum. If F is stationary, the elementary bosonic fields
coupled to the fermions which enter its expression should
also be stationary [4]. In gauge theories F certainly de-
pends on spatial link variables. Stationarity for gauge fields
can be formulated in a gauge covariant way by requiring

that these fields evolve according to gauge transformations,
so we must require that

Ukðt;xÞ ¼ Wy
t;xUkð0;xÞWt;xþk̂: (4.3)

As a consequence, the chromomagnetic contribution to the
pure gauge-field action, namely, the trace of spatial pla-
quettes, does not depend on time.
Accordingly, the matrices Nt, Mt are related to those at

time t ¼ 0, that is, if N0 ¼ N and M0 ¼ M, by

Nt ¼ Wy
t NWt; Mt ¼ Wy

t MWt: (4.4)

We still wish to set the contribution of the chromo-
electric field to the gauge action, namely, the trace of
spatiotemporal plaquettes, to be independent on time. We
have been able to arrive at a stationary solution for F only
with the particular choice

Wtþ1;x ¼ U0ð0;xÞU0ð1;xÞ . . .U0ðt;xÞ; (4.5)

which lets the contribution from the chromoelectric field
vanish at all times. Indeed, if we do not consider colored
composites, the saddle-point equations for

F t ¼ Wy
t F 0Wt ¼ Wy

t FWt (4.6)

then become

F ¼ N þ e�Me�My
FF�1

N e�My
e�M (4.7)

and the Hermitian conjugate relation.
Assuming M ¼ My, a condition satisfied in both the

Wilson and Kogut-Susskind regularizations, under the con-
dition, ½N;M� ¼ 0 (which is not satisfied by the Wilson
regularization in the presence of a nontrivial gauge con-
figuration), their solution [4,8] is

�F ¼ Nð2NyNÞ�1½�Y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2 þ 4NyN

p
�; (4.8)

where

Y ¼ 1� NyN � e�4M: (4.9)

The time evolution of the quasiparticle Hamiltonians is
slightly different:

H t ¼ Wy
t HWtþ1; H

�

t ¼ Wy
tþ1H

�
Wt: (4.10)

At the saddle point (we will overline all quantities
evaluated at the saddle point)

e�s� �H ¼ es� �H
�

¼ 1

s
½1� �F�1

N e�2M�; (4.11)

so that �H and �H
�

are Hermitian functions ofM and NyN,
and the vacuum energy is

�S me ¼ Smeð �F Þ ¼ �L0

s
trþ ln �Q; (4.12)

where we introduced
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�Q ¼ ð1� se�s� �H Þ�1 (4.13)

for future convenience.
For Wilson fermions we have not been able to find

an exact solution, but in the following we will assume its
existence.

Since the matrices N, M are Hermitian and, by assump-
tion, commute with each other, they can be diagonalized

simultaneously, and �F is diagonal in such a basis. Labeling

each eigensubspace by the index i and denoting by �F i the
corresponding eigenvalue, for each state we can choose
either to perform the Bogoliubov transformation by using

the solution F i ¼ �F i or to leave the subspace unchanged
by choosing F i ¼ 0. At zero temperature and chemical
potential the first choice minimizes the vacuum energy, but
increasing the chemical potential because of Pauli blocking
for an increasing number of states, we must make the
second choice. This is the mechanism for chiral symmetry
restoration found in a four-fermion interaction model
[5,8], and confirmed for gauge theories in a forthcoming
paper [22].

The effective mesonic action and therefore the saddle-
point approximation can be obtained also by a variational
calculation [8] in which we assume as a test fermionic
state the quasiparticle vacuum jF i. We then fix the gauge
according to U0ðtÞ ¼ 1. In the presence of such a gauge
fixing we must impose the Gauss constraint in the Hilbert
space. But since the state jF i satisfies the Gauss constraint
by construction, we do not need to think about it any
longer. Under such conditions the remaining gauge fields
are independent of time and therefore automatically satisfy
periodic boundary conditions in the time direction.

Background field and vacuum properties

It might, at first sight, be puzzling that the form of
the saddle-point solution does not depend on whether the
theory is or is not Abelian. This point requires some
discussion.

We first observe that the saddle-point equations are
identical to the conditions

Ið2;1Þt ¼ Ið1;2Þt ¼ 0: (4.14)

Therefore, in the saddle-point approximation the fermion-
antifermion mixing disappears in the quasiparticles action:
the Bogoliubov transformations (3.2) in the saddle-point
approximation factorize the transfer matrix into a term for
quasiparticles and a term for antiquasiparticles [8]. Hence
their effect is analogous to the Foldy-Wouthuysen trans-
formation which separates positive from negative energy
states in the Dirac Hamiltonian. With respect to this facto-
rization there is no difference between Abelian and

non-Abelian theories. The role of the condensate F̂ is
only to provide the background in which quasiparticles
and antiquasiparticles propagate independently, and, as
we will see in the next section, it does not have a particle

interpretation. For this reason we call F , at the saddle
point, a background field.
In order to proceed with our analysis we must distin-

guish two cases. In the first the vacuum is dominated by
chromomagnetic fields with nonvanishing energy, while in
the second the dominating fields are pure-gauge fields.
Here we expect a drastic difference between Abelian and
non-Abelian theories, because we think that the first (sec-
ond) case is realized in the continuum limit of non-Abelian
(Abelian) gauge theories. Then in non-Abelian gauge theo-
ries, because of the nontrivial gauge-invariant vacuum,
temporal link variables disappear from both the gauge-field
and mesonic actions, but not from the quasiparticle
action: the QCD vacuum in the saddle-point approximation
appears as a dual superconductor (not color super-
conductor) which expels chromoelectric fields altogether
(in this dual Meissner effect the penetration length van-
ishes). Fluctuations of chromoelectric fields are subdomi-
nant, and as consequence, we will see in Sec. VI that
quasiparticles are confined. In the Abelian case, on the
contrary, fluctuations of gauge fields dominate and there
is no confinement of quasiparticles.

V. SYMMETRIES AND COMPENSATING FIELDS

In this section we shall consider only transformations s
associated with symmetry groups which act in a unitary
linear representation on the fermionic field

ĉ ! ĉ 0 ¼ sĉ (5.1)

and leave the action invariant.
Since Bogoliubov transformations are unitary, they pre-

serve such symmetries. But individual terms of the original
action which are invariant are transformed, in general, into
terms which do not enjoy this property any longer, and
symmetry conservation of the transformed total action is
realized through compensations among such noninvariant
terms. Then there is the danger that approximations can
disrupt such compensations, resulting in effective symme-
try breaking.
This drawback can be avoided in many cases, requiring

that the quasiparticle fields should transform in the same
way as the original fermionic fields, because then invariant
terms would obviously be transformed into invariant terms.
This can be achieved by making the Bogoliubov trans-
formations at each time slice dependent on time, and
introducing, when necessary, compensating fields.
We will restrict ourselves to symmetries which do not

mix the components which propagate forward and back-
ward in time, that is,

½s; P�� ¼ 0; (5.2)

so that

û 0 ¼ sû; ðv̂0Þy ¼ sv̂y: (5.3)

Then the quasiparticle operators change according to
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�̂ 0 ¼ sðsyR1=2sÞðû� ðsyF sÞyv̂yÞ; (5.4)

ð�̂0Þy ¼ sðsyR� 1=2sÞðv̂y þ ðsyF sÞûÞ; (5.5)

namely, they are still defined by the action of s on a
Bogoliubov transformed field, where instead of F the
modified matrix syF s is used. A simple way to preserve
the symmetries as in the starting action is recovered if we
require that the F matrix changes under the symmetry
transformation according to

F 0 ¼ sF sy: (5.6)

In order to enforce the above condition let us expand the
matrices F t at a given time slice in the basis of time-
independent matrices �ðKÞ labeled by the indices K
(which also include space):

F t ¼
X
K

’�
t ðKÞ�ðKÞ ¼ ð’t;�Þ: (5.7)

Then (5.6) becomes

ð’0
t;�Þ ¼ ð’t; s�syÞ: (5.8)

The transformation of the basis matrices can be written as

s�ðKÞsy ¼ X
K0
SKK0�ðK0Þ ¼ ðS 	�ÞðKÞ (5.9)

so that

ð’0
t;�Þ ¼ ð’t; S 	�Þ ¼ ðSy 	 ’t;�Þ; (5.10)

which is to say that it is necessary to require that the
expansion coefficients transform according to

’0
tðKÞ ¼

X
K0
Sy
KK0’tðK0Þ: (5.11)

The above construction also provides a physical interpre-
tation of our formalism. Indeed we observe that, since we
could perform a unitary transformation with an arbitraryF
matrix and then an arbitrary expansion coefficient ’ðKÞ,
we can integrate over them with an arbitrary probability
measure, getting

ZF ¼
Z

d�ð’ÞD½��; �; ��; ��
� expf�SmeðF Þ � Sqpð�;�;F Þg: (5.12)

Looking at the form (3.15) of Sme we immediately realize
that time derivative terms are generated for the com-
pensating fields. As a consequence, unless the basis matri-
ces �ðKÞ are invariant, the expansion coefficients ’ðKÞ
must become dynamical bosonic fields. The basis matrices
then acquire the meaning of structure functions of mesonic
composites with quantum number K. K includes color for
colored mesons, which should exist only in the deconfined
phases. The choice of the basis matrices�ðKÞ (whose form
must be determined by a variational calculation) selects

which mesons one will include in the calculation in a
variational spirit.
We can look for an approximation to this expression of

the partition function by determining the minimum of the
action with respect to F y, F . The phases of the theory are

determined by the solutions �F y, �F of the saddle-point

equations. By construction, if �F y, �F are matrices which

minimize the action, then the rotated matrices �F 0y, �F 0
must also be minima of the action. Therefore, either they
coincide with the unrotated matrices or the solutions of the
minima are degenerate. And this accounts for the breaking
of the symmetry.
A perturbative expansion is realized by setting

F ¼ �F y þ �F y; F ¼ �F þ �F : (5.13)

We assume the index of nilpotency of the structure func-
tions appearing in the fluctuations �F y, �F as an asymp-
totic parameter and perform an expansion in the inverse of
the nilpotency number that we call the nilpotency expan-
sion. The fluctuations �F y, �F describe, in the nilpotency
expansion, interacting mesons of the form ûyv̂y, v̂ û ,
which we will call, for easy reference, F -type mesons,
but not of the form ûyû, v̂yv̂, which are not of F -type. A
discussion about some mesons which are not of F -type is
presented later in Sec. VII. An example of such an expan-
sion can be found in Ref. [4].
We emphasize that, from a mathematical point of view,

the new expression of the partition function is exactly
equivalent to the original one. Note also that there is no
double counting because the property of quasiparticles to
annihilate the vacuum

�̂ ij �F i ¼ �̂ij �F i ¼ 0 (5.14)

can be interpreted as a compositeness condition: mesonic
states are orthogonal to quasiquark-quasiantiquark states.
This constraint has the physical meaning of the condition
Z ¼ 0 for bound states in the Lehmann spectral represen-
tation of composite operators [23,24] (see also [25], Vol. I,
p. 461), namely, the condition required to introduce a
bound state on the same footing as the constituents in a
Lagrangian.

A. Some examples

We now give a few illustrative examples. The first one
concerns fermion number conservation in the nonrelativ-
istic theory of many-body systems [3]. We include it
because it shows clearly the need and the physics of
compensating fields and because it was the first application
of our method. Moreover, the Bogoliubov transformation
is, in this case, similar to that necessary in the relativistic
theory of diquarks [22]; namely, it mixes the annihilation
and creation operators of one and the same fermion (quark,
electron, nucleon, . . .),

�̂ ¼ R1=2ðû�F yûyÞ; (5.15)
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while in the relativistic case [see (3.5) and (3.6)], the
transformation mixes the annihilation operator of a fer-
mion with the creation operator of the corresponding anti-

fermion. As a consequence, the operator F̂ ,

F̂ ¼ ûF û; (5.16)

carries fermion number 2 instead of zero. Under the
relevant symmetry associated with fermion number
conservation,

û 0 ¼ sû ¼ ei�û; (5.17)

the F matrix transforms according to

F 0 ¼ s�F sy ¼ e�2i�F : (5.18)

Since in this case the structure functions�ðKÞ can be taken
invariant, we must require that

’0ðKÞ ¼ e2i�’ðKÞ: (5.19)

Namely, we need compensating fields ’ðKÞ with fermion
number 2. These fields describe the low energy excitations.

We come back now to the relativistic cases of compo-
sites of fermion number zero. The first one concerns the
results obtained by the application of our method to a four-
fermion model [4], which at zero mass enjoys a discrete
chiral symmetry generated by the parity transformation

s ¼ �ð�5 
 t5Þ (5.20)

which commutes with the projectors P�.
The interaction can be bi-linearized by introducing an

auxiliary bosonic field� coupled to the fermions according
to Eq. (A4). The relevant matrix in the basis is

� ¼ �0 
 1 (5.21)

so that

s�sy ¼ �� (5.22)

and the compensating field must change sign under parity.
This model is also interesting here because it shows that
the compensating field is exactly the field � coupled to the
fermions.

The second example deals with the residual chiral sym-
metry with Kogut-Susskind fermions in the flavor basis.
For zero fermion mass the QCD action is invariant under
the continuous chiral transformations

s ¼ exp

�
� i

2
�5 
 t5�

�
(5.23)

parametrized by the angle �.
The �̂ field is

�̂ ¼ ĉ yð�0 
 1Þĉ ¼ ûyð�0 
 1Þv̂y þ v̂ð�0 
 1Þû
(5.24)

and the Goldstone pion which corresponds to the axial
symmetry at m ¼ 0 is

�̂ ¼ iĉ yð�0�5 
 t5Þĉ
¼ iûyð�0�5 
 t5Þv̂y þ iv̂ð�0�5 
 t5Þû: (5.25)

We can write

F t ¼ ��
t�� þ ��

t��; (5.26)

where the basis matrices are

�� ¼ �0 
 1; �� ¼ i�0�5 
 t5: (5.27)

Under infinitesimal chiral transformations these basis ma-
trices transform according to

s��s
y � �� þ ���; s��s

y � �� � ���: (5.28)

Therefore, the compensating fields �t, �t must transform
in the inverse way.
There are 15 more pions in four dimensions which can

be constructed with the taste matrices t [26,27]. Only those
of F -type can be described by the fluctuations �F y, �F .
For our illustrative purposes it is sufficient to consider the
Goldstone pion.
The most important application concerns gauge invari-

ance in QCD. Let us consider the case of a gauge trans-
formation. In addition to (5.3), where s is replaced by the
gauge transformation gðt;xÞ, we have the transformation
for the spatial link variables,

U0
kðt;xÞ ¼ gðt;xÞUkðt;xÞgyðt;xþ k̂Þ: (5.29)

If we concentrate on colorless F̂ , the matrix F t will
depend on color only through the configuration of spatial
links Uk;t,

F t ¼ F ðUk;tÞ; (5.30)

where the matrices Uk;t are such that

ðUk;tÞx;y ¼ �y;xþk̂Ukðt;xÞ: (5.31)

In this case, by also introducing the matrices g and using
the matrix multiplication, (5.6) becomes

F ðU0Þ ¼ F ðgUgyÞ ¼ gF ðUÞgy (5.32)

and it is automatically satisfied. Therefore, as far as
gauge invariance is concerned, no compensating fields
are needed.
In all the cases mentioned above the effective action

respects the original symmetry term by term and the
quasiparticle vacuum is invariant, provided we perform
the symmetry transformations on the fermions and on the
compensating fields as well. Such a vacuum can be re-

garded as a condensate of the composites �̂F . We remark,
however, that for Kogut-Susskind fermions these compo-
sites have a structure different from that of the chiral
mesons,

�F � ����� þ �����; (5.33)
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and therefore the quasiparticle vacuum cannot be inter-
preted as a condensate of these physical particles. In this

case we will refer to the field �̂F as a background field. But
we should keep in mind that its fluctuations describe
F -type mesons which include the chiral ones.

B. Spontaneous chiral symmetry breaking

We will discuss spontaneous chiral symmetry breaking
in the saddle-point approximation. We will not derive any
new results. Our purpose is only to formulate this problem
in our formalism.

To evaluate the order parameter, at fixed gauge configu-
ration, we shall use the relation

h �c c iF ¼ @

@m
logZF (5.34)

and our saddle-point approximation for the partition func-
tion, that is,

h �c c iF ¼ � @

@m
�Sme; (5.35)

which, we remind the reader, is justified only for the
special gauge configurations we discussed earlier. By di-
rect calculation we get

h �c c iF ¼ tr� �R
�
½ð�0 
 1Þ �F y þ �F ð�0 
 1Þ�; (5.36)

and by substitution of �F ,

h �c c iF ¼ �2m tr�
�

1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
�
¼ �m tr

�
1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
�

(5.37)

which can be expressed in terms of the eigenvalues hn of
the Hamiltonian H by writing

h �c c iF ¼ �m
X
n

1

hn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2n

p ; (5.38)

where the largest contribution in the sum comes only from
the lowest eigenvalues.

In order to understand the meaning of this relation, let us
consider the direct evaluation h �c c iF in the functional
integral, that is (at least in the case U0 ¼ 1),

h �c c iF ¼ � 2

L0

XL0=2�1

k¼0

X
n

2m

h2n þ 1
4 p̂

2
0

; (5.39)

where

p̂ 0 ¼ 2 sin
2�k

L0

(5.40)

is the lattice momentum in the time direction. The sum
on k can be exactly performed (see, for example, [28],
Appendix B), and thus

h �c c iF ¼ �2m
X
n

1

hn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2n

p coth

�
L0

2
arcsinhhn

�

(5.41)

which, at zero temperature, that is, in the limit of an
infinitely large size in the time direction L0, is in perfect
agreement with (5.38).
But (5.41) is the starting point to derive a sort of Banks-

Casher relation [29] (see also [17], p. 119) for static gauge
configurations of the form we considered. Indeed, in the
limit of vanishing lattice spacing and infinite volume,

h �c c iF � �2m
X
n

1

hn
� �m

�

Z 1

0

dh

h
	ðhÞ; (5.42)

where 	ðhÞ is the density of energy eigenvalues.
Spontaneous symmetry breaking of chiral symmetry is
recovered if, in the limit of vanishing mass,

� lim
m!0

m

�

Z 1

0

dh

h
	ðhÞ � 0: (5.43)

This is the limit which is controlled by the density of
eigenvalues near the origin after averaging over the gauge
configurations.
In the absence of a gauge interaction (5.43) is exactly the

Banks-Casher relation. In the presence of the interaction
with the gauge fields, in the Banks-Casher relation the
spectrum of the Dirac operator is averaged in the full set
of gauge configurations (see [30] for a recent numerical
exploration). For our aim we are restricted instead to the
energy operator, which does not contain time derivatives,
in static gauge configurations of the form we considered. In
this case the number of dimensions is effectively reduced
by one unit and therefore the relation could be more easily
checked numerically. Signals that chiral symmetry is spon-
taneously broken within this restricted ensemble of gauge
configurations would be an important check for the effec-
tiveness of our approach.

VI. QUASIPARTICLE CONFINEMENT

In this section we study the propagation of quasiparticles
in the vacuum determined in the saddle-point approxima-
tion. We remind the reader that this assumes the dominance
of chromomagnetic fields, so that the following develop-
ments do not apply to the Abelian case.
At the saddle-point chromoelectric fields disappear

from the pure gauge-field and mesonic actions, so that
the temporal link variables survive only in the action of
quasiparticles. Or, in other words, the Gauss constraint still
has to be implemented in the presence of quasiparticles. As
we will see, this can be achieved by exactly performing the
integral on temporal link variables, and it leads to color
confinement in the quasiparticle sector.
The quasiparticle action at the saddle point, in the

U0 ¼ 1 gauge, if we distinguish the fields at initial and
final times, reads
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�Sqp ¼ 1

2
ð��

0�0 þ ��
L0=s

�L0=s � �0�
�
0 � �L0=s�

�
L0=s

Þ

þ XL0=s�1

t¼1

ð��
t �t � �t�

�
t Þ �

XL0=s�1

t¼0

ð��
t e

s� �Q�1�tþ1

� �tþ1e
�s� �Q�1��

t Þ: (6.1)

The evaluation of the trace on the Grassmann variables,
necessary at finite temperature, induces antiperiodic
boundary conditions for the fermion fields

��
L0=s

¼ ���
0; �L0=s ¼ ��0; (6.2)

��
L0=s

¼ ���
0; �L0=s ¼ ��0: (6.3)

The Gauss constraint can be implemented at a given time,

say t ¼ L0

s , because it is conserved by the time evolution.

For this purpose we perform a gauge transformation at that
time,

��
L0=s

! ��
L0=s

Uy; �L0=s ! U��
L0=s

; (6.4)

��
L0=s

! U��
L0=s

; �L0=s ! �L0=sU
y: (6.5)

The integration on U will induce the constraint (for a
discussion on the Gauss law in the transfer formalism of
lattice gauge theories, the interested reader can see [31]; a
full discussion for the propagation kernel in the continuum
is given in [32]). The fermion action becomes

�Sqp ¼ 1

2
ð��

0�0 þ ��
L0=s

�L0=s � �0�
�
0 � �L0=s�

�
L0=s

Þ

þ XL0=S�1

t¼1

ð��
t �t � �t�

�
t Þ � ð��

L0=s�1e
s� �Q�1U�L0=s

� �L0=sU
ye�s� �Q�1��

ðL0=sÞ�1Þ

� XL0=S�2

t¼0

ð��
t e

s� �Q�1�tþ1 � �tþ1e
�s� �Q�1��

t Þ; (6.6)

and using the boundary conditions,

�Sqp ¼
XL0=S�1

t¼0

ð��
t �t � �t�

�
t Þ �

XL0=S�2

t¼0

ð��
t e

s� �Q�1�tþ1

� �tþ1e
�s� �Q�1��

t Þ þ ð��
ðL0=sÞ�1e

s� �Q�1U�0

� �0U
ye�s� �Q�1��

ðL0=sÞ�1Þ: (6.7)

This expression shows that U can be interpreted as the

temporal link variable connecting time L0

s � 1 with the

initial time. The effect of all other temporal link variables
has been gauged away.

We found it convenient to perform the change of
variables

��
t ¼ ��

t ; �t ¼ �
�
Uy�ðL0=sÞ�1 for t ¼ 0
�t�1 otherwise;

(6.8)

��
t ¼ ��

t ; �t ¼
���ðL0=sÞ�1U for t ¼ 0
�t�1 otherwise;

(6.9)

under which the quasiparticle action transforms into

�Sqp ¼ ���
0U

y
L0=s

�ðL0=sÞ�1 þ
XL0=S�2

t¼0

��
tþ1�t

� XL0=S�1

t¼0

��
t e

s� �Q�1�t þ �ðL0=sÞ�1UL0=s�
�
0

� XL0=S�2

t¼0

�t�
�
tþ1 þ

XL0=S�1

t¼0

�te
�s� �Q�1��

t : (6.10)

The integral over U can be performed by using the result
obtained in [33] (see also [34], p. 44) about the link
integral. For SUðNcÞ matrices

Z
dU exp½TrðKUy þ JUÞ� ¼ exp

�
Tr

�
Kcof

�
@

@J

���
WðJÞ;
(6.11)

where

WðJÞ ¼
Z

dU exp½TrðJUÞ� ¼ X1
n¼0

cnðdetJÞn: (6.12)

The cofactor of any matrix A is defined by

ðcofAÞab :¼ 1

ðNc�1Þ!
aa1...aNc�1

bb1...bNc�1

Aa1b1 . . .AaNc�1bNc�1

(6.13)

so that

½A 	 ðcofAÞT�ij ¼ �ij detA: (6.14)

In order to determine the coefficients cn, we first remark
that, if @ is the matrix with elements @=@Jij,

ðdet@ÞWðJÞ ¼
Z

dUðdetUÞ exp½TrðJUÞ� ¼ WðJÞ (6.15)

because U 2 SUðNcÞ. But detJ must satisfy the Cayley
identity (see [35] for a complete discussion on these iden-
tities)

ðdet@ÞðdetJÞn ¼ nðnþ 1Þ 	 	 	 ðnþ Nc � 1ÞðdetJÞn�1

(6.16)

so that the coefficients cn are determined by (6.15) to be

cn ¼ 1

n!

sfðNc � 1ÞsfðnÞ
sfðnþ Nc � 1Þ ; (6.17)

where sfðnÞ is the superfactorial of n, that is,

sf ðnÞ :¼ Yn
k¼1

k! ¼ Yn
k¼1

kn�kþ1: (6.18)

In our application we have an integral for each spatial site x
with sources
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Ja1;a2x ¼ �X
i

ð�a1
0;x;iÞ��a2

ðL0=sÞ�1;x;i; (6.19)

Ka1;a2
x ¼ X

i

�a1
ðL0=sÞ�1;x;ið�a2

0;x;iÞ�: (6.20)

Then since in the present case Jx is nilpotent, with the
index of nilpotency NJ equal to the number of quark
intrinsic degrees of freedom, excluding color, the sum
over n extends up to NJ. Then

detJx ¼ ð�1ÞNc

Nc!

a1;...;aNc ð�

a1
0;x;i . . .�

aNc
0;x;iÞ�
b1;...;bNc

� �b1
ðL0=sÞ�1;x;i . . .�

bNc
ðL0=sÞ�1;x;i (6.21)

which is a linear combination of products of two color

singlets at position x and times t ¼ 0, L0

s � 1, respectively.

We see that, at this zeroth order of our perturbative expan-
sion, at variance withF -type mesons which already have a
finite extension, only pointlike color singlets of quasipar-
ticle fields can propagate. Indeed, at time t ¼ 1 there are

only color singlets of particles, and at time t ¼ L0

s only

color singlets of antiparticles. Since color is conserved the
transfer matrix cannot create colored states.

This result can be obtained in a more concrete way
by defining the transfer matrix for quasiparticles. To this
end we first perform the change of variables � ! e�s� �Q�,
� ! es�� �Q, and rewrite the quasiparticle action accord-
ingly,

Sqp ¼ ���
0U

y
ðL0=sÞe

�s� �Q�ðL0=sÞ�1 þ
XL0=s�2

t¼0

��
tþ1e

�s� �Q�t

� XL0=s�1

t¼0

��
t �t þ �ðL0=sÞ�1UL0=se

s� �Q��
0

� XL0=s�2

t¼0

�te
s� �Q��

tþ1 þ
XL0=s�1

t¼0

�t�
�
t : (6.22)

Then we can write the quasiparticle partition function in
the form

Zqp ¼
Z

D½��
0; �0; �0; �0�hUL0=s�0; �0U

y
L0=s

jT qpj�0; �0i;
(6.23)

where hUL0=s�0; �0U
y
L0=s

j and j�0; �0i are coherent states

and

T qp ¼ detð �Q�1Þ expð�̂y lnð�e�s� �QÞ�̂
þ �̂y lnð�es� �QÞT�̂Þ (6.24)

is the quasiparticle transfer matrix. Integrating over U
using the above results, we conclude that the Fock space
of quasiparticles contains only pointlike color singlets.

In conclusion, ZF contains the actions of baryons,
antibaryons, and mesons, along with their interactions.
The purely mesonic term with the smallest number of
constituents contains, in the absence of colored mesons
of F -type, three quasiparticles and three antiquasipar-
ticles. We notice, however, that different mesonic struc-
tures can be constructed in other ways: in terms of
diquarks and antidiquarks, as shown in our next work
[22], or as bound states of F mesons and quasiparticle-
antiquasiparticles.

VII. FURTHER DEVELOPMENTS

The extraordinary results from lattice QCD push to-
wards the attempts to try to recover pieces of information
about baryonic interactions which are relevant to the phe-
nomenology of atomic nuclei, and which cannot be ob-
tained from phenomenology [36], such as three-body
forces and interactions between nucleons and strange bary-
ons. Our method offers a way to attack these problems.
Here we outline a derivation of an action for mesons and
nucleons.
In the study of the dynamics of baryons, we perform the

nonlinear change of variables in the Berezin integrals
defined in [37,38]. For Nc ¼ 3 it reads

�a1
t;x;i1

�a2
t;x;i2

�a3
t;x;i3

� 
a1a2a3hii1;i2;i3c t;x;i; (7.1)

where� means equality under the Berezin integral, hii1;i2;i3
are the baryonic structure functions [37], and c t;x;i are

color singlets from the triplets of Grassmann variables
coupled to quantum numbers i. The c t;x;i are the new

integration variables which are again odd elements of
Grassmann algebras.
The expansion is formulated in terms of mesonic and

baryonic variables only, quarks being altogether elimi-
nated. An application of this change of variables in a
slightly different context can be found in [37]. We remark
that, within the limitations of validity of the approximation
of that calculation, the resulting nucleon action contained a
Wilson term as a consequence of the Wilson term for
quarks. That effective action, therefore, did not require
any additional care to prevent fermion doubling.
For an illustration we evaluate the contribution quadratic

in the baryonic variables in the present case, neglecting
antibaryons and mesons of non-F -type. We must then
consider the expression

ZF � expð� �SmeÞ
Z

D½��; ��WðJÞ

� exp

� XðL0=sÞ�2

t¼0

��
tþ1�t �

XðL0=sÞ�1

t¼0

��
t
�Q�1�t

�
(7.2)

and expand it to third order in both the �� and �,
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ZF � expð� �SmeÞ
Z

D½��; ��ð1þ detJÞ YðL0=sÞ�1

t¼0

�
�
1� 1

3!
ð��

t
�Q�1�tÞ3

� YðL0=sÞ�2

t¼0

�
1þ 1

3!
ð��

tþ1�tÞ3
�
:

(7.3)

Now we can use the transformations (7.1), obtaining the
quadratic approximation in the baryon variables

Z F � expð� �SmeÞJ
Z

D½c �; c � expð�SbaryonsÞ; (7.4)

where J is the Jacobian of the transformation (7.1),
explicitly obtained in [37], and

Sbaryons ¼
XL0=s

t¼1

ð�Cijc �
tþ1;x;ic t;x;j þ c �

t;x;iMx;i;y;jc t;y;jÞ:

(7.5)

The matrices appearing in the above equations are

Cij ¼
X
i1i2i3

36ðhii1;i2;i3Þ�hji1;i2;i3

Mx;i;y;j ¼
X

i1i2i3;j1j2j3

ðhii1;i2;i3Þ�hjj1;j2;j3
a1a2a3
b1b2b3

� ð �Q�1Þa1b1xi1;yj1
ð �Q�1Þa2b2xi2;yj2

ð �Q�1Þa3b3xi3;yj3
: (7.6)

Needless to say, odd powers of Grassmann variables al-
ways have a nilpotency index of 1, and therefore their
action cannot be approximated by a nilpotency expansion.

It is reasonable to assume that at low energy the
important mesons are of F -type. Their interaction with
baryons is

�c

�
@

@’ðKÞM’ðKÞ þ @

@’�ðKÞM’�ðKÞ
�
c (7.7)

so that the mesons-nucleons action is

Smn ¼ Sme þ Sbaryons þ �c

�
@

@’ðKÞM’ðKÞ

þ @

@’�ðKÞM’�ðKÞ
�
c ; (7.8)

where Sme must be expanded in powers of ’�, ’.

VIII. SUMMARYAND OUTLOOK

In previous works we developed a method of bosoniza-
tion of theories with fermions whose low energy excita-
tions are dominated by bosonic modes. We were able to
generate composite bosonic fields by transforming the
action of any such theory into another exactly equivalent
action. The transformed action can be studied in the frame-
work of a nilpotency expansion, assuming as an asymptotic
parameter the index of nilpotency of the composites. The
leading approximation is given by saddle-point equations,

which determine the properties of the vacuum. In the
absence of gauge fields we solved these equations for
both Kogut-Susskind and Wilson fermions.
In the present work we considered the saddle-point

equations for the case of gauge theories. This time we
found one exact, gauge covariant solution only for
Kogut-Susskind fermions. Such a solution is relevant pro-
vided the vacuum is dominated by chromomagnetic fields.
From the fermionic point of view this vacuum appears as a
condensate of composite bosons which, however, do not
have the quantum numbers of chiral fields. We refer to the
field of such condensed composites as a background field.
Fluctuations of this background field describe dynamical
mesons which we call F -type mesons. They describe
chiral mesons, but also other mesons, including colored
mesons which should not be observable at zero tempera-
ture and baryon density, because of a mechanism which we
have not investigated. In such a vacuum live, in addition to
mesonic F -type fields, fermionic quasiparticles with the
quark quantum numbers. Thanks to the background field,
quasiparticles do not have any direct coupling with anti-
quasiparticles but are coupled by gauge-field interactions.
We then explored some properties of such a vacuum.

First we considered the spontaneous breaking of chiral
symmetry, and got an expression for the order parameter
which is accessible only in the nonperturbative regime, but
could be evaluated in a standard Monte Carlo simulation.
Second we considered the quasiparticle action. The tem-
poral link variables appear in this action in a peculiar way,
which allowed us to integrate them out exactly. The result
is that only pointlike color singlets of the quasiparticle
fields can propagate and therefore have a particle interpre-
tation. They have baryonic or mesonic quantum numbers.
Therefore, color is confined in the quasiparticle spectrum.
This is a remarkable result in itself, and also because it
allows us to introduce such color singlets as integration
variables, and therefore as fundamental fields, in the
Berezin integral which defines the partition function, using
a formalism previously developed. Our approach, borne to
introduce bosonic composites, has also provided a way to
introduce fermionic composites and, therefore, the possi-
bility of formulating QCD in terms of physical fields. In
particular, we outlined a derivation of a meson-nucleon
action from QCD.
Further investigation of our approach can proceed along

several lines. An important issue is the study of the action
of mesons. A calculation of this kind has already been done
for a four-fermion model [4]. Its extension in the presence
of gauge fields should allow us to tackle the problem of
Goldstone fields, of the chiral anomaly, and, of the utmost
importance for us, the fate of colored mesons of F -type. If
we could show that in the saddle-point approximation these
mesons are also confined, the nilpotency expansion could
be used to describe confinement and dynamics in QCD at
the same time and on the same footing.
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Related to the above is the study of the effective action
of baryons. This includes interactions of baryons between
themselves and with mesons, among which those of
F -type should dominate. All these interactions should
also give the baryons a finite structure. They are instead
pointlike in the saddle-point approximation, at variance
with F -type mesons of particles-antiparticles, which are
already extended objects.

Another important issue concerns the theory at finite
chemical potential. We already have some results on this
subject, which we will publish separately [22], but we have
anticipated them in short form [9]. We derived an expres-
sion of the free energy whose numerical simulation is free
of the sign problem. If we make the assumption of the
standard theory of color superconductivity that at suffi-
ciently high values of the chemical potential an expansion
with respect to the gauge coupling constant can be justi-
fied, we get results compatible with the standard ones.
This finding adds support to the physical relevance of the
vacuum we have studied.

We expect that by increasing the chemical potential
and/or the temperature, an increasing number of compo-
nents of the background field must be set equal to zero,
according to a mechanism observed in the absence of
gauge fields [5,8], until chiral symmetry is recovered and
color is deconfined. If this expectation is verified, the
background field will result in a relevant parameter
for the definition of QCD phases in the nilpotency
expansion.

Finally, we would like to emphasize that in comparing
the present results with the previous results in the literature,
it should be kept in mind that the contribution of dynamical
fermions is crucial for the vacuum structure in our
saddle-point approximation: it changes the QCD vacuum
altogether. More explicitly, one cannot compare with cal-
culations in which the energy of the quarks is evaluated in
the vacuum of the pure gauge-field theory. In particular,
instantons are not dominant in the saddle-point approxi-
mation, where, instead, magnetic dipole condensation can
occur.
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APPENDIX A: THE MATRICES M, N OF THE
TRANSFER MATRIX

In this appendix we report the expressions of the matri-
ces M, N appearing in the definition of the transfer matrix
for the Kogut-Susskind and Wilson regularizations. Their
common feature is that they depend only on the spatial link
variables.

We write the ~� matrices in terms of the Pauli matrices,
adopting a convention different from that of Lüscher [20]:

�0 ¼ 1 0
0 �1

� �
; ~�¼ 0 �i ~�

i ~� 0

� �
; �5 ¼ 0 1

1 0

� �
:

(A1)

Our ~� matrices have, indeed, opposite sign.

1. Kogut-Susskind’s regularization

Kogut-Susskind fermions in the flavor basis are defined
on hypercubes whose sides are twice the basic lattice
spacing. While in the text intrinsic quantum numbers and
spatial coordinates were comprehensively represented by
one index i, here we distinguish the spinorial index
� ¼ f1; . . . ; 4g, the taste index a ¼ f1; . . . ; 4g, and the fla-
vor index i ¼ f1; . . . ; Nfg, while x ¼ ft; x1; . . . ; x3g is a

four-vector of even integer coordinates ranging in the
intervals ½0; Lt � 1� for the time component and
½0; Ls � 1� for each of the spatial components. We distin-
guish summations over basic lattice and hypercubes ac-
cording to

X0

x

:¼ 2d
X
x

: (A2)

The projection operators over fermion-antifermion states
are

P� ¼ 1
2ð1 
 1� �0�5 
 t5t0Þ: (A3)

The matrix M ¼ 0, while N, neglecting an irrelevant con-
stant, is

N ¼ �2

�
ðmþ �Þð�0 
 1Þ

þ X3
j¼1

ð�0�j 
 1Þ½Pð�Þ
j rðþÞ

j þ PðþÞ
j rð�Þ

j �
�
; (A4)

where � is a scalar field and

rðþÞ
j ¼ 1

2ðUjT
ðþÞ
j � 1Þ; (A5)

rð�Þ
j ¼ 1

2ð1� Tð�Þ
j Uy

j Þ (A6)

are the lattice covariant derivative and1

Pð�Þ
j ¼ 1

2ð1 
 1� �j�5 
 t5tjÞ: (A7)

The lattice Hamiltonian H is related to N by

H2 ¼ 1
4N

yN: (A8)

Then [4]

A ¼ ð2HÞ�1ðHþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
Þ; (A9)

and using this expression, we derive

1There is a misprint in formula (A.6) of [8].
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�H ¼ es�Hð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
�HÞ

�H
�

¼ e�s�Hð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þH2

p
�HÞ

so that in the formal continuum limit

�H � �H
�

� H (A10)

both approach the same value.

2. Wilson’s regularization

The projection operators over fermions-antifermions are

P� ¼ 1
2ð1� �0Þ: (A11)

The matrices M, N are

M ¼ 1

2
ln

�
B

2K

�
; (A12)

N ¼ 2KB�ð1=2ÞcB�ð1=2Þ; (A13)

where

B ¼ 1� K
X3
j¼1

ðUjT
ðþÞ
j þ Tð�Þ

j Uy
j Þ; (A14)

K is the hopping parameter, and

c ¼ 1

2

X3
j¼1

iðUjT
ðþÞ
j � Tð�Þ

j Uy
j Þ�j: (A15)
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