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We study the phases and phase transition lines of the finite temperature G2 Higgs model. Our work is

based on an efficient local hybrid Monte-Carlo algorithm which allows for accurate measurements of

expectation values, histograms, and susceptibilities. On smaller lattices we calculate the phase diagram in

terms of the inverse gauge coupling � and the hopping parameter �. For � ! 0 the model reduces to G2

gluodynamics and for � ! 1 to SUð3Þ gluodynamics. In both limits the system shows a first order

confinement-deconfinement transition. We show that the first order transitions at asymptotic values of the

hopping parameter are almost joined by a line of first order transitions. A careful analysis reveals that

there exists a small gap in the line where the first order transitions turn into continuous transitions or a

crossover region. For � ! 1 the gauge degrees of freedom are frozen and one finds a nonlinear Oð7Þ
sigma model which exhibits a second order transition from a massive Oð7Þ symmetric to a massless Oð6Þ
symmetric phase. The corresponding second order line for large � remains second order for intermediate

� until it comes close to the gap between the two first order lines. Besides this second order line and the

first order confinement-deconfinement transitions we find a line of monopole-driven bulk transitions

which do not interfere with the confinement-deconfinment transitions.
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I. INTRODUCTION

Quarks and gluons are confined in mesons and baryons
and are not seen as asymptotic states of strong interaction.
Understanding the dynamics of this confinement mecha-
nism is one of the challenging problems in strongly
coupled gauge theories. Confinement is lost under extreme
conditions: when temperature reaches the QCD energy
scale or the density rises to the point where the average
interquark separation is less than 1 fm, then hadrons are
melted into their constituent quarks.

For gauge groups with a nontrivial center the Polyakov
loop

Pð ~xÞ¼ trP ð ~xÞ; P ð ~xÞ¼ 1

N
tr

�
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Z �T

0
A0ð�; ~xÞd�

�
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T
;

(1)

is an order parameter for the transition from the confined to
the unconfined phase in gluodynamics (pure gauge theo-
ries). Its thermal expectation value is related to the differ-
ence in free energy F due to the presence of an infinitely
heavy test quark in the gluonic bath as

hPi / e��TF; (2)

such that hPi � 0 in the unconfined high-temperature
phase and hPi ¼ 0 in the confined low-temperature phase.
Below the critical temperature P ð ~xÞ is uniformly distrib-
uted over the group manifold and above the critical tem-
perature it is in the neighborhood of a center element. Near

the transition point its dynamics is successfully described
by effective three dimensional scalar field models for the
characters of P ð ~xÞ [1–3]. If one further projects the
Polyakov loops onto the center of the gauge group, then
one arrives at generalized Potts models describing the
effective Polyakov loop dynamics [4].
With matter in the fundamental representation the center

symmetry is explicitly broken and for all temperatures
P has a nonzero expectation value, and points in the
direction of a particular center element. Thus, in the strict
sense the Polyakov loop ceases to be an order parameter for
the center symmetry. On a microscopic scale this is attrib-
uted to the breaking of the string connecting a static ’’quark
antiquark pair’’ when one tries to separate the static
charges [5]. It breaks via the spontaneous creation of
dynamical quark antiquark pairs which in turn screen the
individual static charges.
To clarify the relevance of the center symmetry for

confinement it suggests itself to study gauge theories for
which the gauge group has a trivial center. Then the
Polyakov loop ceases to be an order parameter even in
the absence of dynamical matter since the strings connect-
ing external charges can break via the spontaneous creation
of dynamical ‘‘gluons.’’ The smallest simple and simply
connected Lie group with a trivial center is the 14 dimen-
sional exceptional Lie groupG2. This is one reason whyG2

gauge theory with and without Higgs fields has been
investigated in series of papers [6–11]. Although there is
no symmetry reason for a deconfinement phase transition
in G2 gluodynamics it has been conjectured that a first
order deconfinement transition without an order parameter
exists. In this context confinement refers to confinement at
intermediate scales, where a Casimir scaling of string
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tensions has been detected in [12]. Although the threshold
energy for string breaking in G2 gauge theory is rather
high, string breaking has been seen in 3 dimensional G2

gluodynamics in [13].
The gauge group SUð3Þ of strong interaction is a sub-

group of G2 and this observation has interesting conse-
quences, as pointed out in [8]. With a Higgs field in the
fundamental 7 dimensional representation one can break
the G2 gauge symmetry to the SUð3Þ symmetry via the
Higgs mechanism. When the Higgs field in the action

S½A;��¼
Z
d4x

�
1

4g2
trF��F

��þ1

2
ðD��;D��ÞþVð�Þ

�

(3)

picks up a vacuum expectation value v, then 6 gauge
bosons acquire a mass proportional to vwhile the 8 gluons
belonging to SUð3Þ remain massless. The massive gauge
bosons are removed from the spectrum for v ! 1. In this
limit the G2 Higgs model reduces to SUð3Þ Yang-Mills
theory. Even more interesting, for intermediate and large
values of v the G2 Yang-Mills-Higgs (YMH) theory
mimics SUð3Þ gauge theory with dynamical ‘‘scalar
quarks.’’ The masses of these ‘‘quarks’’ and the length
scale at which string breaking occurs increase with increas-
ing v. The Polyakov loop serves as an approximate order
parameter separating the confined from the unconfined
phases with a rapid change at the transition or crossover.
This rapid change is depicted in Fig. 1 which shows the
expectation value of P for G2 gluodynamics as function of
the inverse gauge coupling � ¼ 7=g2. Figure 2 shows
histograms of the Polyakov loop in the vicinity of the
critical coupling �c. The double-peak structure points to
a first order transition.

In an earlier work we derived a 3 dimensional effective
theory for the dynamics of the Polyakov loop for finite

temperature G2 gluodynamics and analyzed the resulting
Landau-type theory with the help of elaborate Monte Carlo
simulations [14]. Already the leading order effective
Polyakov loop model exhibits a rich phase structure with
symmetric, ferromagnetic, and antiferromagnetic phases.
In the present paper we investigate the phase structure of

microscopic G2 YMH lattice theory with a Higgs field in
the 7 dimensional representation. The corresponding lat-
tice action for the G2 valued link variables and a normal-
ized Higgs field with 7 real components reads

SYMH½U;��¼�
X
h

�
1�1

7
trReUh

�
��

X
x;�

�xþ�̂Ux;��x;

�x ��x¼1; (4)

and depends on the inverse gauge coupling � and the
hopping parameter �. For � ! 1 the gauge bosons de-
couple and the theory reduces to an Oð7Þ invariant non-
linear sigma model which is expected the have a second
order (mean-field) symmetry breaking transition down to
Oð6Þ. The mean-field prediction for the critical coupling is
�c;mf ¼ 7=8 and this value bounds �c from below [15]. In

the limit � ¼ 0 we recover G2 gluodynamics with a first
order deconfinement phase transition, in agreement with
the findings in [16]. In the other extreme case � ! 1 we
end up with SUð3Þ gluodynamics with a weak first order
deconfinement transition. The known transitions in the
limiting cases � ! 0, � ! 1, or � ! 1 are depicted in
Fig. 3. If � is lowered from 1 then in addition to the 8
gluons of SUð3Þ, the 6 additional gauge bosons of G2 with
decreasing mass begin to participate in the dynamics.
Similarly as dynamical quarks and antiquarks, they trans-
form in the representations f3g and f�3g of SUð3Þ and thus
explicitly break the Z3 center symmetry. As in QCD they
are expected to weaken the deconfinement phase transition.
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FIG. 1 (color online). Phase transition on a 163 � 6 lattice in
terms of the Polyakov loop in the fundamental representation of
G2. The rapid change of the Polyakov loop with � ¼ 7=g2

points to a first order transition.
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FIG. 2 (color online). Histograms of the Polyakov loop on a
163 � 6 for � in the vicinity of �c point to a first order transition.
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Thus, it has been conjectured in [6] that there may exist a
critical endpoint where the transition disappears.

In the following section we shall briefly recall those
facts about G2 representations which are relevant for the
present work. In Sec. III some algorithmic aspects are
reviewed. A more detailed presentation can be found in
our earlier paper [13]. Section IV contains our Monte-
Carlo results for the phase diagram in the ð�; �Þ plane.
We find that the two first order lines emanating from the
deconfinement transitons inG2 and SUð3Þ gluodynamics at
� ¼ 0 and � ¼ 1 end in the vicinity of ð�; �Þ ¼ ð9:4; 1:6Þ
on a 6� 163 lattice. Section VI contains the results of our
high-statistics simulations for histograms and susceptibil-
ities in the small region in parameter space where the two
first order lines are either connected by a second order line
or leave open a gap which smoothly connects the confined
and deconfined phases. Our data are consistent with the
conjectured critical endpoints attached to the two first
order lines. For large� a second order transition line which
separates the Oð7Þ and Oð6Þ sigma models comes close to
the first order deconfinement transition lines. Strictly
speaking the breaking is from Oð7Þ to Oð6Þ for � ¼ 1
whereas for �<1 it is from SOð7Þ to SOð6Þ. The phases
and transition lines are localized and analyzed with high-
statistics simulations of the Polyakov loop distribution and
susceptibility, plaquette and Higgs action susceptibilities,
and finally with derivatives of the mean action with respect
to the hopping parameter. Besides the transition lines in-
dicated in Fig. 3 there exists another line of monopole-
driven bulk transitions. This line emanates from the bulk
crossover in pure G2 gluodynamics at � ¼ 9:45 [16].

II. THE GROUP G2

The exceptional Lie group G2 is the smallest Lie group
in the Cartan classification which is simply connected and
has a trivial center. The two fundamental representations
are the 7 dimensional defining representation f7g and the

14 dimensional adjoint representation f14g. One may view
the elements of the representation f7g as matrices in the
defining representation of SOð7Þ, subject to seven indepen-
dent cubic constraints, see [8]. For example, the defining
representation f7g of SOð7Þ turns into an irreducible rep-
resentation of G2, whereas the adjoint representation f21g
of SOð7Þ branches into the two fundamental representa-
tions f14g and f7g of G2. The gauge group of strong
interaction is a subgroup ofG2 and the corresponding coset
space is a sphere [17],

G2=SUð3Þ � S6: (5)

This means that every element U of G2 can be written as

U ¼S �V with S2G2=SUð3Þ and V 2SUð3Þ; (6)

and we shall use this decomposition to speed up our
numerical simulations.
Quarks in G2 transform under the 7 dimensional funda-

mental representation, gluons under the 14 dimensional
fundamental (and adjoint) representation. To better under-
stand G2 gluodynamics we recall the decomposition of
tensor products

f7g�f7g¼f1g�f7g�f14g�f27g;
f7g�f7g�f7g¼f1g�4�f7g�2�f14g�3�f27g

�2�f64g�f770g;
f14g�f14g¼f1g�f14g�f27g�f77g�f770g;

f14g�f14g�f14g¼f1g�f7g�5�f14g�3�f27g� ...: (7)

These decompositions show similarlies to QCD: two
quarks, three quarks, two gluons, and three gluons can
build color singlets—mesons, baryons, and glueballs. In
G2 gauge theory three gluons can screen the color charge
of a single quark,

f7g � f14g � f14g � f14g ¼ f1g � . . . ; (8)

and this explains why the string between two external
charges in the f7g representation will break for large charge
separations. The two remnants are color blind glue lumps.
The same happens for two external charges in the adjoint
representation. In a previous work we did observe string
breaking at the expected separation between the two
charges [13].
TheG2 gauge symmetry can be broken to SUð3Þwith the

help of a Higgs field in the 7 dimensional representation.
For � ! 1 the factor S in the decomposition (6) is frozen
and we end up with an SUð3Þ gauge theory with rescaled
gauge coupling for the factor U. With respect to the
unbroken subgroup SUð3Þ the fundamental representations
f7g and f14g branch into the following irreducible SUð3Þ
representations:

f7g ! f3g � f�3g � f1g; f14g ! f8g � f3g � f�3g: (9)

The Higgs field branches into a scalar quark, scalar anti-
quark, and singlet with respect to SUð3Þ. Similarly, the G2
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FIG. 3 (color online). Expected phase diagram in the parame-
ter space ð7=g2; �Þ (taken from [6]).
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gluons branch into massless SUð3Þ gluons and additional
gauge bosons with respect to SUð3Þ. The latter eat up the
nonsinglet scalar fields such that the spectrum in the bro-
ken phase consists of 8 massless gluons, 6 massive gauge
bosons, and one massive Higgs particle.

III. ALGORITHMIC CONSIDERATIONS

A. Equations of motion for local hybrid Monte-Carlo

In this work we employ a local version of the hybrid
Monte-Carlo (HMC) algorithm where single site and link
variables are evolved in a HMC style [18]. The algorithm
assumes a local interaction and hence applies to all purely
bosonic theories. The implementation for the G2 Higgs
model is a mild generalization of the algorithm used in
our previous work on G2 gluodynamics [13]. We use a
local hybrid Monte-Carlo (LHMC) algorithm for several
good reasons: First, there is no low Metropolis acceptance
rate even for large hopping parameters. More precisely, in a
heat-bath algorithm combined with an overrelaxation we
would need two Metropolis steps in each update for � > 0
which for large � may lead to low acceptance rates. With
the LHMC algorithm we can avoid this problem and deal
with arbitrary values of �. Autocorrelation times can be
controlled (in certain ranges) by the integration time in the
molecular dynamics part of the HMC algorithm. Second,
the formulation is given entirely in terms of Lie group and
Lie algebra elements and there is no need to back-project
onto the group. For G2 it is possible to use a real repre-
sentation and in addition an analytical expression for the
involved exponential maps from the algebra to the group.
These maps allow for a fast implementation of the LHMC
algorithm.

This algorithm has been essential for obtaining the
accurate results in the present work. Since we developed
and used the first implementation forG2 it may be useful to
sketch how it works for this exceptional group. More de-
tails can be found in [13]. For G2 YMH lattice theory the
(L)HMC algorithm is based on a fictitious dynamics for the
link variables on the G2 manifold and the normalized
Higgs field on the six-sphere. The ‘‘free evolution’’ on a
semisimple group is the Riemannian geodesic motion with
respect to the Cartan-Killing metric

ds2G ¼ � trðdUU�1 � dUU�1Þ: (10)

In a (L)HMC dynamics the interaction term is given by the
YMH action (4) of the underlying lattice gauge theory and
hence it is natural to derive the HMC dynamics from a
Lagrangian of the form

LHMC¼�1

2

X
x;�

trð _Ux;�U�1
x;�Þ2þKð�; _�Þ�SYMH½U;��;

(11)

where ‘‘dot’’ denotes the derivative with respect to the

fictitious time parameter � and Kð�; _�Þ is a kinetic term

for the Higgs field. To update the normalized Higgs field
we set

�x ¼ Ox�0 with Ox 2 SOð7Þ (12)

and constant �0. The change of variables �x ! Ox

converts the induced measure on S6 � R7 into the Haar
measure of SOð7Þ. Without interaction the rotation matri-
ces Ox will evolve freely on the group manifold SOð7Þ
such that in terms of the ðU;OÞ variables we choose as
Lagrangian for the HMC dynamics

L¼�1

2

X
x;�

trð _Ux;�U�1
x;�Þ2�1

2

X
x

trð _OxO�1
x Þ2�SYMH½U;O�:

(13)

The Lie algebra valued fictitious momenta conjugated to
the link variable Ux;� and site variable Ox are given by

Px;� ¼ @L

@ð _Ux;�U�1
x;�Þ

¼ � _Ux;�U�1
x;�;

Qx ¼ @L

@ð _OxO�1
x Þ ¼ � _OxO�1

x :
(14)

The Legendre transform yields the following pseudo-
Hamiltonian:

H ¼ � 1

2

X
x;�

trP2
x;� � 1

2

X
x

trQ2
x þ SYMH½U;O�: (15)

Note that for real Ux;� and Ox the momenta are antisym-

metric such that both kinetic terms are positive. The equa-
tions of motion for the momenta are obtained by varying
the Hamiltonian. The variation of SYMH½U;O� with re-
spect to a fixed link variableUx;� yields the staple variable

Rx;�, the sum of triple products of elementary link varia-

bles closing to a plaquette with the chosen link variable.
Setting

�Px;�¼ _Px;�d�; �Ux;�¼ _Ux;�d�¼�Px;�Ux;�d�

(16)

with similar expressions for the momentum and field
variables Qx and Ox in the Higgs sector yields for the
variation of the HMC Hamiltonian

�H¼�X
x;�

trPx;�f _Px;��Fx;�g�
X
x

trQxf _Qx�Gxg; (17)

with the following ‘‘forces’’ in the gauge and Higgs sector:

Fx;� ¼ �

14
ðUx;�Rx;� � Ry

x;�Uy
x;�Þ þ kðUx;��xÞ�T

xþ�;

Gx ¼ ��x

�X
y:x

Uxy�y

�
T
; (18)

where the last sum extends over all nearest neighbors y of x
and Uxy denotes the parallel transporter from y to x. The

variational principle implies that the projection of the
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terms between curly brackets onto the Lie algebras g2 and
soð7Þ vanish,

_P x;� ¼ F�;xjg2 ; _Qx ¼ Gxjsoð7Þ: (19)

Equations (14) and (19) determine the fictitious dynamics
of the lattice fields in the (L)HMC algorithm. Choosing a
trace-orthonormal basis fT�g of g2 the LHMC equations in
the gauge sector read

_U x;y¼�Px;�Ux;� and _Px;�¼X
�

trðFx;�T�ÞT�; (20)

with force Fx;� defined in (18). In the Higgs sector they

take the form

_O x ¼ �QxOx and _Qx ¼
X
b

trðGx
~TbÞ ~Tb; (21)

with trace-orthonormal basis f ~Tbg of soð7Þ and force Gx

defined in (18).

B. Numerical solutions of YMH-dynamics

We employ a time reversible leap frog integrator which
uses the integration scheme

Px;�ð�þ 1
2��Þ ¼ Px;�ð�Þ þ 1

2��
_Px;�ð�Þ

Ux;�ð�þ ��Þ ¼ expf���Px;�ð�þ 1
2��ÞgUx;�ð�Þ

Px;�ð�þ ��Þ ¼ Px;�ð�þ 1
2��Þ þ 1

2��
_Px;�ð�þ ��Þ;

(22)

and similarly for the variables ðOx;QxÞ in the Higgs sector.
The ‘‘time’’ derivative of Pð�þ ��Þ in the last step is
given in terms of the already known group valued field at
�þ �� via the equations of motion. Clearly, to calculateU
andO at time �þ �� a fast implementation of exponential
maps is required. In the Higgs sector the map soð7Þ !
SOð7Þ is computed via the Cayley-Hamilton theorem. For
small values of the hopping parameter � the step size and
integration length for the integration may be chosen as in
the gauge field integrator. For an efficient and fast compu-
tation of the exponential map g2 ! G2 we exploit the real
embedding V of the representation 3 � �3 of SUð3Þ into
G2,

U¼S �V ðW Þ with S2G2=SUð3Þ; W 2SUð3Þ: (23)

For a given time step �� the factorization will be expressed
in terms of the Lie algebra elements with the help of the
exponential maps,

expf��ug¼expf��sg�expf��vg withgenerators u2g2;

v2V 	ðsuð3ÞÞ: (24)

The exponential maps for the two factors can be calculated
efficiently, see [13]. But in the numerical integration we
need the exponential map for elements u 2 g2. These
elements are related to the generators s and v used in the
factorization by the Baker-Campbell-Hausdorff formula,

��u ¼ ��ðsþ vÞ þ 1
2��

2½s;v� þ . . . : (25)

For a second order integrator the approximation (25) may
be used in the exponentiations needed to calculate V and
S. This approximation leads to a violation of energy con-
servation which is of the same order as the violation one
finds with a second order integrator. To sum up, a LHMC
sweep consists of the following steps:
(1) Gaussian draw for the momentum variables on a

given site and link,
(2) Integration of the equations of motion for the given

site and link,
(3) Metropolis accept/reject step,
(4) Repeat these steps for all sites and links of the

lattice.

This local version of the HMC does not suffer from an
extensive �H / V problem such that already a second
order symplectic (leap frog) integrator allows for suffi-
ciently large time steps ��. For a large range of couplings
ð�; �Þ in our simulations an integration length of T ¼ 0:75
with a step size of �� ¼ 0:25 is optimal for minimal
autocorrelation times and a small number of thermalization
sweeps. Acceptance rates of more than 99% are reached.
To compare the performances of our LHMC algorithm
with the usually used heat-bath algorithm we estimated
the computation time of the different parts in the LHMC
algorithm in units given by the average computation time
for one staple in�SU. On an Intel Core i7 CPU the latter is
approximately 4 �s for a 123 � 6 lattice.
In Table I we listed the times needed to change the gauge

or Higgs action during a single update of one link or one
Higgs field variable, the time for both integrators without
an exponential map and separately the computation time
for a single exponential map. Most time is spent with
calculating the exponential maps for SOð7Þ. Note that
during the calculation of one exponential map for SOð7Þ
the CPU calculates about 10 exponential maps for G2.
Table II compares the total time-contributions to one

TABLE I. Computation times normalized to �SU (staple).

Part �ðSU; SOÞ Integrator ðU;OÞ expðG2; SO7Þ
Pure gauge (1.00, � � � ) (1.34, -) (0.42, -)

Gauge Higgs (1.03, 0.43) (1.74, 1.00) (0.40, 4.97)

TABLE II. Totaltime contribution to one LHMC configuration
compared to heat-bath algorithm. Upper line: pure gauge, lower
line: gauge Higgs.

�ðSU; SOÞ Integrator ðU;OÞ expðG2; SO7Þ total time
V�d�Config Heat-bath

(1.00, � � � ) (1.34, -) (1.26, � � � ) 3.60 
 2
(1.03, 0.11) (1.74, 0.25) (1.20, 3.72) 8.05 � � �
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configuration with those of the heat-bath algorithm with
overrelaxation. We see that for pure gauge theories the
standard heat-bath algorithm with overrelaxation is only
2 times faster as the LHMC algorithm. The total amount of
time for a typical histogram in this work on a 163 � 6
lattice with about 100 000 configurations is approximately
one week on a single core CPU.

IV. THE PHASE DIAGRAM OF THE G2 HIGGS
MODEL: OVERVIEW

With the help of the local HMC algorithm sketched
previously we calculated several relevant observables to
probe the phases and phase transition lines in the ð�; �Þ
plane. First we present the phase diagram obtained on
small lattices. For vanishing � we are dealing with G2

gluodynamics which shows a first order finite temperature
deconfinement phase transition. The transition is discon-
tinuous since there is a large mismatch of degrees of free-
dom in the confined and unconfined phases. At the other
extreme value � ¼ 1 six of the 14 gauge bosons decouple
from the dynamics and we are left with SUð3Þ gluodynam-
ics, which shows a first order deconfinement phase tran-
sition as well. The question arises whether the first order
transitions in G2 and SUð3Þ gluodynamics are connected
by an unbroken line of first order transitions or whether
there are two critical endpoints. In the latter case the
confined and unconfined phases could be connected con-
tinuously. On the other hand, for arbitrary � but� ! 1 the
gauge degrees of freedom decouple from the dynamics and
one is left with a nonlinear Oð7Þ sigma model. We expect
that the Oð7Þ symmetry is spontaneously broken to Oð6Þ
for sufficiently large values of the hopping parameter and
that this transition is of second order.

In order to localize the confinement-deconfinement tran-
sition line(s) we first measured the Polyakov loop expec-
tation value as the (approximate) order parameter for
confinement on a small 123 � 2 lattice in a large region
of parameter space (� ¼ 5 . . . 10, �¼0...104). For � � 1
the Polyakov loop takes its values in the reducible repre-
sentation f3g � f�3g � f1g of SUð3Þ and

hPi 
 1þ hPþ �PiSUð3Þ: (26)

Thus, for large � we should find hPi 
 1 in the confining
phase and hPi 
 7 or hPi 
 �2 in the unconfined phase
where P is near one of the three center elements of SUð3Þ.
We eliminate the ambiguity of assigning a value to the
Polyakov loop in the unconfined phase by mapping values
with hPi< 1 to 3� 2hPi.

The result for hPi is depicted in Fig. 4. We see that in the
confining phase the expectation value varies from 0 to 1
when the hopping parameter increases. For large values of
� in the unconfined phase the Polyakov loop is near the
identity or (for large �) near one of the three center
elements of SUð3Þ. On the small lattice the Polyakov
loop jumps along a continuous curve connecting the

confinement-deconfinement transitions of pure G2 and
pure SUð3Þ gluodynamics. This suggests that there exists
a connected first order transition curve all the way from
� ¼ 0 to � ¼ 1. To see whether this is indeed the case we
performed high-precision simulations on larger lattices. A
careful analysis of histograms and susceptibilities for
Polyakov loops and the Higgs action shows that the first
order lines beginning at � ¼ 0 and at � ¼ 1 do not meet.
This happens in a rather small region in parameter space
such that the two first order lines almost meet. They may be
connected by a line of continuous transitions or in-between
there may exist a window connecting the confined and
unconfined phases smoothly.
For � ! 1 we are left with a nonlinear Oð7Þ sigma

model with action

S	 ¼ ��
X
x;�

�xþ�̂�x; (27)

and this model shows a second order transition at a critical
coupling �c from a Oð7Þ symmetric to a Oð6Þ symmetric
phase. To see how this transition continues to finite values
of � we measured the expectation values hOPi and hOHi of
the (averaged) plaquette variable and Higgs action

O P¼ 1

7 �6 �V
X
h

RetrUh and OH¼ 1

V

X
x�

�xþ�̂Ux;��x;

(28)

and the corresponding susceptibilities


ðOÞ ¼ VðhO2i � hOi2Þ: (29)

The finite size scaling theory predicts that near the tran-
sition point the maximum of the susceptibilities scales with
the volume to the power of the corresponding critical
exponent �


ðOÞ � aL�=� þ b; (30)
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FIG. 4 (color online). Expectation values of P in the coupling
constant plane and on a small 123 � 2 lattice.
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where � is the critical exponent related to the divergence of
the correlation length. For a first order phase transition we
expect the susceptibility peak to scale linearly with the
spatial volume (sinceNt is fixed). More precisely, for a first
order transition one expects � ¼ 1 and � ¼ 1=3while for a
second order transition � � 1 [19].

The expectation values and logarithms of susceptibilities
on a small 63 � 2 lattice are depicted in Fig. 5. The
expectation value of a plaquette variable jumps at the
deconfinement transition line and the corresponding sus-
ceptibility is peaked. This is in full agreement with the
jump of the Polyakov loop across this transition line. The
expectation value of the Higgs action and the correspond-
ing susceptibility both spot the deconfinement transition
well. But they also discriminate between the Oð7Þ unbro-
ken and broken phases. The data on the small lattice point
to a second order Higgs transition line in the YMH model
for all �>�deconfð�Þ. This could imply that the second
order line ends at the first order deconfinement transition
line. To determine the order of the Higgs transition line we
consider the finite size scaling of


ðOHÞ ¼ @

@�
hOHi and

@2

@2�
hOHi; (31)

for lattices up to 203 � 6. The results presented below
show that the Higgs transitions are second order transi-
tions. Unfortunately we cannot exclude the possibility that
the second order line turns into a crossover near the de-
confinement transition line.

Our results on the complete phase diagram in the ð�; �Þ
plane as calculated on a larger 163 � 6 lattice are summa-
rized in Fig. 6. We calculated histograms and susceptibili-
ties near the marked points on the transition lines in this
figure. If the triple point exists then an extrapolation to the
point where the confined phase meets both unconfined
phases leads to the couplings �trip ¼ 9:62ð1Þ and �trip ¼
1:455ð5Þ. Near this point the deconfinement transition is
very weak, continuous, or absent and thus we performed
high-statistics simulations on larger lattices to investigate
this region in parameter space more carefully. Some of our
results are presented in the following sections. Up to a
rather small region surrounding ð�trip; �tripÞ we can show

that the deconfinement transition is first order and the Higgs
transition is second order. But we shall see that in a small
region around this point the deconfinement transition is
either second order or absent. For a comparison with the
results of Pepe and Wiese, we included their work [6] at 2
(� ¼ 1:3), 7 (� ¼ 1:5), and 3 (� ¼ 4). We find a qualitative
agreement between our results and their findings, although
they performed simulations on different lattices.

The bulk transition

The existence of a bulk transition in lattice gauge theo-
ries at zero temperature can influence its finite temperature
behavior. Such transitions are almost independent of the

0.5

1.0

1.5

2.0

2.5

3.0

8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.5

1.0

1.5

2.0

2.5

3.0

8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0
0

0.5

1

1.5

2

2.5

3

0.5

1.0

1.5

2.0

2.5

3.0

8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0
-1

-0.5

0

0.5

1

1.5

2

FIG. 5 (color online). Average plaquette, Higgs action, and
susceptibilities near the critical point on 63 � 2 lattice.
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size of the lattice and are driven by lattice artifacts [20].
Bulk transitions between the unphysical strong coupling
and the physical weak coupling regimes in lattice gauge
theories is the rule rather than the exception. The strong
coupling bulk phase contains vortices and monopoles
which disorder Wilson loops down to the ultraviolet length
scale given by a2	�Oð1Þ [21,22]. In the weak coupling
phase the short distance physics is determined by asymp-
totic freedom and a2	 � 1. Both SUð2Þ and SUð3Þ lattice
theories exhibit a rapid crossover between the two phases
which becomes more pronounced for SUð4Þ [21]. For
SUðNÞ with N  5 the bulk transition is first order [21].

SUð3Þ lattice gauge theory with mixed fundamental (f) and
adjoint (a) actions shows a first order bulk transition for
large �a and small �f. For decreasing �a the transition

line terminates at a critical point and turns into a crossover
touching the line �a ¼ 0. On lattices with Nt ¼ 2 the
deconfinement transition line joins the bulk transition
line smoothly from below and for Nt  4 from above
[23,24]. More relevant for us is the finding in [16] that
the bulk transition in pureG2 gauge theory at� ¼ 9:45 is a
crossover [16].
We have scanned the values for the plaquette variables

and Polyakov loops from the strong to the weak coupling
regime to find a bulk transition that might interfere with
the finite temperature deconfinement transition. For vari-
ous values between � ¼ 0 and � ¼ 1 on a 123 � 6 and
163 � 6 lattice we determined the position and nature of
the bulk transitions. In full agreement with [16] we see a
crossover at ð�; �Þ 
 ð9:44; 0Þ which is visible as a broad
peak in the plaquette susceptibility depicted in the lower
panel of Fig. 7. The Polyakov loop does not detect this
crossover. Note that for small � the position of the bulk
transition does not depend on the hopping parameter which
means that the bulk transition line hits the line � ¼ 0

FIG. 6 (color online). Phase transition lines on a 163 � 6
lattice. The solid line corresponds to the first order deconfine-
ment transitions, the dashed line to the second order Higgs
transitions, and the dotted line to the left of the first order line
to the bulk transitions. The plot on the lower panel shows the
details inside the small box in the plot on the upper panel where
the transition lines almost meet. The dotted line between the first
order lines corresponds to a window where the transition is a
crossover or a continuous one. The points 1–7 are discussed in
the text and the points 2, 3, and 7 have been investigated
previously by Pepe and Wiese [6].
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FIG. 7 (color online). Plaquette and susceptibility for small
values of � near the bulk transition on a 123 � 6 lattice.
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vertically. Despite the broad peak in the susceptibility of
the plaquette density, the bulk and deconfinement transi-
tion are clearly separated and this agrees with the results in
[25]. In the region 1:3 � � � 1:6 the critical coupling �c

decreases with increasing �c but the nature of the transition
does not change much as can bee seen in Fig. 8. The
plaquette density seems to be a continuous function of �
and � and we conclude that the transition is still a
crossover.

Between � ¼ 1:6 and � ¼ 1:65 the peak in the bulk
transition becomes pronounced. In this region the distance
between the bulk and deconfinement transitions becomes
very small. Nevertheless we expect that the much localized
bulk transition still does not interfere with the weak de-
confinement transition. For values of � between 1.65 and
approximately 2.5 the position of the bulk transition gets
more sensitive to the hopping parameter and the distance to
the deconfinement transition line increases again. The
nature of the transition changes at the same time—a large
gap in the action density separates the strong coupling from
the weak coupling region. This is depicted in Fig. 9. The
many data points taken at � ¼ 1:8 show that the size of the
gap does not depend on the volume and this points to a first

order transition. The plots for the plaquettes and plaquette
susceptibilities look very much like the plots in Fig. 7. For
� * 2:5 the situation changes again. The gap in the pla-
quette density closes and the position of the bulk transition
tends to that of the bulk transition in SUð3Þ gluodynamics
which again is a crossover.
There is ample evidence that bulk transitions are driven

by monopoles on the lattice [20]. Thus, we calculated the
density of monopoles [24] as a function of � for � ¼ 0 and
� ¼ 1:8. The density M together with the plaquette vari-
able are plotted in Fig. 10. For � ¼ 0 they vary smoothly
with �, as expected for a crossover, but for � ¼ 1:8 they
jump at the same � 
 9:25. The height of the jump does
not depend on the lattice size, see Fig. 10, lower panel.
Thus, we find strong evidence that the bulk transition is
intimately related to the condensation of monopoles in the
strong coupling G2 Higgs model.
Finally, we would like to comment on the behavior near

� ¼ 1:6. Here the G2 Higgs model behaves similar to
SUð3Þ gluodynamics with mixed fundamental and adjoint
actions. The latter shows a first order bulk transition which
turns into a crossover for small �a. It seems that for
� * 1:6 the massive G2 gluons are heavy enough such
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FIG. 8 (color online). Plaquette and susceptibility for inter-
mediate values of � near the bulk transition on a 123 � 6 lattice.
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that the approximate center symmetry of the unbroken
SUð3Þ is at work. This could explain why we find a first
order transition for � * 1:6.

V. THE TRANSITION LINES AWAY FROM THE
TRIPLE POINT

In this section we come back to the confinement-
deconfinement transition. Sufficiently far away from
the suspected triple point at �trip ¼ 9:62ð1Þ and �trip ¼
1:455ð5Þ the signals for first and second order phase tran-
sitions are unambiguous and are presented in this section.
The measurements taken near the would-be triple point are
less conclusive and will be presented and analyzed in the
following section.

A. The confinement-deconfinement transition line

Already the histograms for the Polyakov loop show that
the deconfinement transition is first order for values of the
hopping parameter � in the intervals [0, 1.4] and ½1:7;1�.
Two typical distributions for � ¼ 1:0 and � ¼ 1:3 corre-
sponding to the points 1 and 2 in the phase diagram in

Fig. 6 are depicted in Fig. 11 (upper panel). These and
other histograms with � & 1:4 show a clear double-peak
structure near the transition line and are almost identical to
the histogram for � ¼ 0. Similar results are obtained for
larger hopping parameters � * 1:7.
In Fig. 11 (lower panel) we plotted histograms of the

Polyakov loops for � ¼ 9 and hopping parameters in
the vicinity of � 
 2:6, corresponding to point 3 in
Fig. 6. The histograms with � � 2:6525 show peaks at
almost the same positions. The systems with these small
values of � are in the confined phase. For larger � values
the peak moves toward the would-be center elements of the
subgroup SUð3Þ and a second peak appears. Again the
double-peak structure of the distribution points to a first
order transition. We varied the spatial sizes of the lattices
and observed no finite size effects in the distributions for
Ns  16.
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FIG. 10 (color online). Plaquette and monopole density for
� ¼ 0 and � ¼ 1:8 on a 123 � 6 and 163 � 6 lattice.
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B. The Higgs transition line

For � ! 1 the gauge degrees of freedom are frozen and
we are left with a nonlinear Oð7Þ sigma model which
shows a second order transition from a Oð7Þ symmetric
massive phase to a Oð6Þ symmetric massless phase. With
the help of a cluster algorithm [26] we updated the con-
strained scalar fields and calculated the susceptibility of

O 	 ¼ 1

V

X
x;�

�xþ�̂�x; (32)

which is proportional to the sigma model action S	 in (27),


ðO	Þ ¼ � 1

�V
@�hS	i: (33)

The results of our simulations on lattices with varying
spatial sizes are depicted in Fig. 12, upper panel.

The susceptibility of the action becomes steeper as the
spatial volume increases while the peak of the (normalized)
second derivative also increases. This means that the system
undergoes a second order transition at �c ¼ 1:075ð5Þ (cor-
responding to point 4 in Fig. 6) from a massive Oð7Þ
symmetric phase with vanishing vacuum expectation value
to a massless Oð6Þ symmetric phase with the nonvanishing
expectation value. Actually the mean-field theory for OðnÞ
models in d dimensions predicts a second order transition at
the critical coupling �c;mf ¼ n=2d. For our model in 4

dimensions the mean-field prediction is �c;mf ¼ 7=8 

0:875 and is not far from our numerical value.
For smaller values of � the gauge degrees of freedom

participate in the dynamics and @�hSi is now proportional to
the susceptibility ofOH in (28). The plots in Figs. 13 and 14
show a similar behavior of the first and second derivatives
of the average Higgs action for� ¼ 30 and 12, correspond-
ing to the points 5 and 6 in the phase diagram in Fig. 6.
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FIG. 12 (color online). The first and second derivative of the average sigma model action for different spatial lattice sizes.
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Even for the smaller value � ¼ 12 we see that the sus-
ceptibility becomes steeperwith increasing lattice sizewhile
the second derivative of the average action increases. This
already demonstrates that the second order transition at the
aymptotic region � ! 1 extends to smaller values of �.

VI. THE TRANSITION LINES NEAR THE
TRIPLE POINT

When the first order transition becomes weaker it be-
comes increasingly difficult to distinguish it from a second
order transition or a crossover. For example, the four histo-
grams in Fig. 15 show distributions of the Polyakov loop at
point 7 in the phase diagram depicted in Fig. 6, correspond-
ing to � ¼ 1:5 and � varying between 9.5525 and 9.5550.
All histograms are computed from 400 000 configurations
on a medium size 163 � 6 lattice. The histogram on the top
left shows a pronounced peak at P 
 0:1, corresponding to
the value in the confined phase. With increasing� a second

peak builds up at P 
 0:25 corresponding to a value in the
unconfined phase. We have calculated more histograms
and conclude that the well separated peaks in the distribu-
tion are of equal heights for �c 
 9:5535. At this point the
Polyakov loop jumps from the smaller to the larger value.
For even larger values of � the second peak at larger P
takes over and the system is in the unconfined phase.
Although the histograms point to a weakly first order
transition we cannot rule out the possibility that the tran-
sition at � ¼ 1:5 and � 
 9:5535 is of second order. Later
we shall see that it is a first order transition. If we slightly
decrease the value of �, then the signal for a first order
transition is more pronounced. This is illustrated in the
Polyakov loop histograms depicted in Fig. 16. If we again
increase the value from � ¼ 1:5 to � ¼ 1:55 the peak of
the Polyakov loop does not jump at the transition point at
� 
 9:4885. Instead it increases smoothly from P 
 0:12
in the confinement phase to P 
 0:24 in the deconfinement
phase, see Fig. 17. We conjecture that in this region of
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parameter space the first order transition turns into a con-
tinuous transition or a crossover which is later confirmed
by an even more careful analysis.

We studied the size dependence of the average Polyakov
loop, plaquette variable, and Higgs action per lattice site
together with their susceptibilities. The following results
are obtained on lattices with Nt ¼ 6 and spatial extents
Ns 2 f12; 16; 20; 24g and for � ¼ 9:5535. This corre-
sponds to points in the neighborhood of point 7 in the
phase diagram in Fig. 6.

Figure 18 shows the � dependence of the Polyakov loop
and its susceptibility for the four different lattices. The
measurements have been taken at 20 different values
of the hopping parameter in the vicinity of � ¼ 1:5. This
way we cross the phase transition line vertically in the �
direction at the transition point 7 in the phase diagram in
Fig. 6. The � dependence has been calculated with the
reweighting method. Later we shall see that the peak of
the susceptibility at �c 
 1:501 scales linearly with the

volume. This linear dependence is characteristic for a first
order transition.
The plots in Fig. 19 show the � dependence of the

average plaquette variable and the corresponding suscep-
tibility for the four lattices. Again we observe that the
susceptibility peak at �c 
 1:501 increases linearly
with the volume of the lattice. Also note that on the
small 123 � 6 lattice the peak in the susceptibility can
hardly be seen.
The two plots in Fig. 20 show the � dependence of the

average Higgs action per lattice point and corresponding
susceptibility. Similarly as for the Polyakov loop and the
plaquette we observe a peak of the susceptibility at the
same value �c 
 1:501.
To check for finite size scaling we investigated the

susceptibilities corresponding to the Polyakov loop, pla-
quette variable, and Higgs action per site as a function of
the volume. The results are plotted in Fig. 21. For an easier
comparison we normalized the data points by the peak
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FIG. 17 (color online). Distributions of the Polyakov loop at � ¼ 1:55 where the transition is probably not first order on a 163 � 6
lattice with 800 000 configurations for each histogram. Top left � ¼ 9:4875, top right � ¼ 9:4885, bottom left � ¼ 9:4895 and bottom
right � ¼ 9:4905 (�c 
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value for the largest lattice with lattice size Ns ¼ 24. The
linear dependence of the peak susceptibilities on the vol-
ume is clearly visible for the larger three lattices and this
linear dependence is predicted by a first order transition

[19]. In recent studies of the lattice SUð2Þ Higgs model in
[25] it turned out that for Ns ¼ Nt & 18 the maxima of the
susceptibilities are well described by a function of the form
aL4 þ b, so that they seem to scale linearly with volume,

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.3

1.496 1.497 1.498 1.499 1.500 1.501 1.502 1.503 1.504
400

600

800

1000

1200

1400

1600

1800

1.496 1.497 1.498 1.499 1.500 1.501 1.502 1.503 1.504
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FIG. 20 (color online). Finite size scaling of Higgs action and its susceptibility for � ¼ 9:5535 are shown.
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as expected for a first order transition at zero temperature.
Simulations on larger lattices revealed however, that the
susceptibility peaks all saturate at larger values of L and no
singularities seem to develop in the thermodynamic limit.
For the lattice G2 Higgs model considered in the present
work we see no flattening of the peaks for larger lattices
with Ns up to 24 and we interpret this as a signal for a true
first order transition.

Table III shows the extrapolation of the critical hopping
parameter to infinite volumes. To that end we calculated for
each lattice size the value �cðVÞ at which the Polyakov
loop, plaquette, and Higgs action susceptibilities take their
maxima. Note that on the larger lattices with Ns ¼ 20 and
24 the three critical hopping parameters are the same
within statistical errors and the resolution of the reweight-
ing grid (�� ¼ 0:0004). The infinite volume extrapolation
yields the critical value �c ¼ 1:5008.

The first order lines do not meet

The previous results on the 163 � 6 lattice leave a small
region in parameter space near ð�; �Þ 
 ð9:4; 1:6Þ, where
the transition may be continuous or where we can cross
smoothly between the confined and unconfined phases.
Since a jump of the Polyakov loop expectation values in

the infinite volume limit points to a first order transition we
investigated the quantity

�P ¼ hPideconfined � hPiconfined (34)

more carefully. In the small parameter region we localized
the critical curve ð�c; �cÞ with the histogram method. At
the critical point is the height of the confinement peak
equal to the height of the deconfinement peak. For fixed
�c we crossed the transition line by increasing the inverse
gauge coupling. Then we measured the maximal jump as a
function of the step size �� for one step size below and
one above �c. For a first order transition the jump should
not depend much on �� whereas for a continuous tran-
sition or a crossover �P should decrease with decreasing
��. The results on a 163 � 6 lattice are depicted in Fig. 22.
We see that for 9:35 & �c & 9:52 corresponding to 1:52 &
�c & 1:72 the jump approaches zero with shrinking step
size and this clearly points to second order confinement-
deconfinement transitions or crossovers in these small
parameter regions. Simulations on a larger 203 � 6 lattice
confirm these results. Figure 23 shows histograms of the
Polyakov loop for � values between 1.5 and 1.7. At
� ¼ 1:5 we still observe a weakly first order transition
which turns into a continuous transition or crossover for
1:5< � � 1:7. Within the given resolution in parameter
space the window is the same as on the 163 � 6 lattice.
Since the critical couplings for spatial volumes beyond 203

do not change we conclude that the gap will not close in the
infinite volume limit. This shows that the two first order
lines emanating from � ¼ 0 and � ¼ 1 do not meet.
Here the question arises whether such a gap in the first

order line between the confined and unconfined phases is

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1 2 3 4 5 6 7 8

FIG. 21 (color online). Finite size scaling of the three suscep-
tibilities at the transition point with � ¼ 9:5535. The lines are
fits to the peak values, 
maxðVÞ ¼ aV þ b.

TABLE III. Critical coupling �c obtained from the maximum
of the susceptibility peaks of Polyakov loop, plaquette, and
Higgs action for different spatial volumes at � ¼ 9:5535.
The errors are given by the density of the reweighting grid
(�� ¼ 0:0004).

Volume 123 163 203 243


ðPÞ 1.5012 1.5016 1.5008 1.5008


ðOHÞ 1.4992 1.5012 1.5008 1.5008


ðOPÞ 1.4980 1.5008 1.5008 1.5008

0.00

0.05

0.10

0.15

0.20

0.25

9.3 9.4 9.5 9.6 1.4 1.5 1.6 1.7 1.8

FIG. 22 (color online). Difference of the Polyakov loop in
confined and unconfined phase at the phase transition point for
various critical couplings �c, �c and various intervals around the
critical coupling �c, red: �� ¼ 0:0005, green: �� ¼ 0:0015,
blue: �� ¼ 0:0025, pink: �� ¼ 0:0035, � is fixed (�� ¼ 0).
The region in which �P ! 0 indicates a crossover or continuous
transition.
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expected. The celebrated Fradkin-Shenker-Osterwalder-
Seiler theorem [27,28], originally proven for the SUðNÞ
Higgs model with scalars in the fundamental representa-
tion, says that there is no complete separation between
the Higgs and the confinement regions. Any point deep
in the confinement regime and any point deep in the Higgs
regime are related by a path such that Green’s functions of
local, gauge invariant operators vary analytically along the
path. Thus there is no abrupt change from a colorless to a
color-charged spectrum. This is consistent with the fact
that there are only color singlet asymptotic states in both
’phases’.
The proof of the theorem relies crucially on using a

completely fixed unitary gauge. A complete gauge fixing
is not possible with scalars in the adjoint representation of
SUðNÞ since these scalars are center blind. Thus, the
theorem does not hold for adjoint scalars and indeed,
with adjoint scalars there exits a phase boundary separating
the Higgs and confined phases. It is not completely obvious
what these results tell us about the phase diagram of theG2

Higgs model. The center of G2 is trivial and the 14 dimen-
sional adjoint representation is just one of the two funda-
mental representations. Since there is no need to break the
center one may conclude that the confinement-like regime
and the Higgs-like regimes are analytically connected. In
addition, for large values of the hopping parameter the
center of the corresponding SUð3Þ gauge theory is explic-
itly broken by the scalar fields, similarly as for the SUð3Þ
Higgs model with scalars in the fundamental representa-
tion. These arguments suggest that there exist a smooth
crossover between the confining and Higgs phases. But one
important assumption of the Fradkin-Shenker theorem is
not fulfilled for the G2 Higgs model. The theorem assumes
that there exists no transition for large �. Then at large �
one can move from large to small � and then at small �
further on to small values of � without hitting a phase
transition. Clearly this is not possible for the G2 Higgs
model such that not all assumptions of the theorem hold
true.

VII. CONCLUSIONS

With a new and fast LHMC implementation for the
exceptional G2 Higgs model we calculated the full phase
diagram in the coupling constant plane spanned by the
hopping parameter � and inverse gauge coupling �. First
we confirmed the proposed and earlier seen [6,16] first
order transition for pure G2 gluodynamics which corre-
sponds to the line � ¼ 0 in the phase diagram of the Higgs
model. A first analysis on smaller lattices indicated that
this first order transition is connected to the first order
deconfinement transition in SUð3Þ gluodynamics, corre-
sponding to the limit � ! 1, by a smooth curve of first
order transitions. The same analysis spotted another curve
of second order transitions emanating from � ! 1 and
meeting the first order line at a triple point. For this first
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FIG. 23 (color online). Distribution of Polyakov loop near the
phase transition point for � ¼ 1:5, � ¼ 1:55, � ¼ 1:65, and � ¼
1:7 (from top to bottom) on a 203 � 6 lattice.
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analysis we calculated histograms for the Polyakov loop,
Higgs action, and plaquette action. To identify the second
order transition line we studied the finite size scaling of
various susceptibilities and the second derivative of the
action with respect to the hopping parameter. The final
result of our analysis on a 163 � 6 lattice is depicted in
Fig. 24. Note that the tiny region in the vicinity of the
would-be triple point is very much enlarged in this figure.
In this tiny region in the ð�; �Þ plane where the order of the
transition could not be decided we studied the slope of hPi
in the vicinity of the suspected transition. The simulations
show that the two first order curves emanating from the
lines with � ¼ 0 and � ¼ 1 end before they meet. The two
curves could be connected by a line of second order
transitions or they could end at two (critical) endpoints in
which case the confined and unconfined phases are
smoothly connected. If indeed there exists a crossover in

the G2 Higgs model at a finite value of the hopping
parameter then the gauge model behaves very similar to
QCD with massive quarks.
To finally answer the question about the behavior of the

G2 Higgs model theory in the vicinity of the would-be
triple point at ð�; �Þ 
 ð9:4; 1:6Þ further simulations with
an even higher statistics and a more sophisticated analysis
of the action susceptibilities may be necessary. Since we
already used an efficient (and parallelized) LHMC algo-
rithm and much CPU time to arrive at the results presented
in the work this will not be an easy task. Earlier studies of
the susceptibility peaks in the simpler SUð2Þ Higgs model
on smaller lattices pointed to a first order transition at
� & 2:5. Recent simulations on larger lattices in [25]
showed that the susceptibility peaks do not scale with the
volume such that there is actually no first order transition
for these small values of �. We have seen no flattening of
the peaks with the increasing volumes for Ns � 24 and
conclude that the solid line in Fig. 24 is a first order line.
But of course we cannot exclude the possibility that the
correlation length is larger than expected and that simula-
tions on even larger lattices are necessary to finally settle
the question about the position and size of the window
connecting the confined with the unconfined phase. This
will not be an easy task and thus it would be very helpful to
actually prove, if possible and under weaker assumptions,
that the confining and Higgs phases ofG2 can be connected
analytically, perhaps with similar arguments as they apply
to SUðNÞ Higgs models with matter in the fundamental
representations [27,28].
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[3] C. Wozar, T. Kästner, A. Wipf, T. Heinzl, and B. Pozsgay,
Phys. Rev. D 74, 114501 (2006).

[4] A. Wipf, T. Kaestner, C. Wozar, and T. Heinzl, SIGMAP
bulletin 3, 006 (2007).

[5] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).
[6] M. Pepe and U. J. Wiese, Nucl. Phys. B768, 21 (2007).

[7] K. Holland, M. Pepe, and U. J. Wiese, Nucl. Phys. B694,
35 (2004).

[8] K. Holland, P. Minkowski, M. Pepe, and U. J. Wiese, Nucl.
Phys. B668, 207 (2003).

[9] J. Greensite, K. Langfeld, S. Olejnik, H. Reinhardt, and T.
Tok, Phys. Rev. D 75, 034501 (2007).

[10] J. Danzer, C. Gattringer, and A. Maas, J. High Energy
Phys. 01 (2009) 024.

[11] A. Maas and S. Olejnik, J. High Energy Phys. 02 (2008)
070.

0

0.5

6 7 8 9
0

0.5

6 7 8 9 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 20 30 6020 30 60

1

1.2

1.4

1.6

1.8

2
10

100

1000

10

100

1000

FIG. 24 (color online). Complete phase diagram in the ð�; �Þ
plane on a 163 � 6 lattice. The neighborhood of the would-be
triple point is very much enlarged and the variable scale in the
diagram is responsible for the cusps in the transition lines. The
solid line indicates a first order transition, the dashed line (blue)
a second order transition, and the dotted line (red) a second order
transition or a crossover.
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