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The purpose of this work is to study vector meson-octet baryon interactions with the aim to find

dynamical generation of resonances in such systems. For this, we consider s-, t-, u-channel diagrams

along with a contact interaction originating from the hidden local symmetry Lagrangian. We find the

contribution from all these sources, except the s channel, to be important. The amplitudes obtained by

solving coupled channel Bethe-Salpeter equations for systems with total strangeness zero, show the

generation of one isospin 3=2, spin 1=2 resonance and three isospin 1=2 resonances: two with spin 3=2 and

one with spin 1=2. We identify these resonances with �ð1900ÞS31, N�ð2080ÞD13, N
�ð1700ÞD13, and

N�ð2090ÞS11, respectively.
DOI: 10.1103/PhysRevD.83.114041 PACS numbers: 14.20.Gk, 11.10.St, 11.30.Ly

I. INTRODUCTION

Recent interests in hadron physics have been largely
motivated by experimental observations of new states in
the resonance region which are not easily explained by the
conventional constituent quark model. The strong interac-
tions among the ground state mesons and baryons not only
affect their properties but also, in some cases, generate
resonances dynamically (examples of some of the recent
related works are Refs. [1–10]). Therefore, it is of great
importance to investigate these dynamical aspects based on
reliable hadron-hadron interactions.

In a quark picture, an energy of several hundred MeV
which is a typical scale of one quanta of orbital excitation
is sufficient to create a �qq pair, making multiquark com-
ponents in a hadron. If they further develop color singlet
clusters of ground state hadrons near their threshold, they
may form a loosely bound or resonant state provided that
sufficiently strong attraction is available. This is what we
expect microscopically for the dynamical generation of
resonances. A spin zero configuration of �qq forms a
JP ¼ 0� pseudoscalar meson, and is the basic building
block of, for instance, �ð1405Þ [11–13]. Similarly, the
JP ¼ 1� configuration giving a vector meson could also
be an element of certain baryon resonances as indicated in
Refs. [14–19]. However, while the pseudoscalar meson-
baryon interaction is well dictated by the low energy
theorems of spontaneously broken chiral symmetry, the
interaction of vector mesons and baryons are not fully
studied. This is one of the issues that we would like to
discuss in this paper.

It is known that the theory of the hidden local symmetry
(HLS) [20] can accommodate vector mesons consistently
with the chiral symmetry. In fact, the HLS model has been

shown to share many important aspects of low energy
dynamics. Furthermore, a recent holographic approach to
QCD has derived the extended HLS model where an
infinite series of the vector mesons emerges as a conse-
quence of the dynamics in the extra fifth dimension
[21,22]. This HLS model forms the basis of our study
The vector meson-octet baryon interaction has been

studied within the HLS by assuming a vector meson ex-
change in the t channel [19] [Fig. 1(a)] as the lowest order
amplitude and several baryon resonances have been found
as a result of solving the Bethe-Salpeter equation in the
coupled channel formalism. However, in Ref. [19] all
the states are found to be spin 1=2-3=2 degenerate since
the leading order interaction obtained from the t-channel
exchange is spin independent. This latter finding is differ-
ent fromwhat one would expect from the interaction of two
particles of similar mass and nonzero spin, just as for the
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FIG. 1. Diagrammatical representation of the vector meson-
baryon interaction via a (a) t-channel exchange, (b) contact term,
(c) s-channel, and (d) u-channel exchange. The double lines in
these diagrams represent the vector mesons.
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nuclear force. In addition to this, the low energy theorems
cannot be applied to the vector meson-baryon systems
since the masses of the vector mesons are comparable to
those of the baryons. Hence one cannot rely alone on the
t-channel diagrams as in the case of pseudoscalar meson-
baryon interaction. There are many other diagrams which
could also make important contributions to the interaction
of the vector mesons and baryons and there is no a priori
reason to neglect such diagrams, for instance, s- and
u-channel (baryon) exchange [Fig. 1(c) and 1(d)] or a
contact interaction [Fig. 1(b)].

When naively applying the HLS model to the vector
meson-baryon interactions, as we will show in this work,
one naturally finds interactions corresponding to all the
diagrams of Fig. 1(a)–1(d). Moreover, in the diagrams
corresponding to the s, u channels and contact interaction,
we find a spin dependence, which seems also a natural
consequence for particles with finite spin. It is therefore of
great importance to see the role of the diagrams other than
the t channel for the dynamics of the system of a vector
meson and a baryon. As we will show in detail, such
interactions modify substantially the results which are
obtained by employing the spin-independent t-channel
interaction.

In the next section we will briefly summarize the basic
Lagrangians obtained within the HLS approach, in the
SU(2) limit first since we find it very instructive to look
at the different features and structure of the interactions
obtained from different diagrams. We will then discuss the
generalization of the same to SU(3). In the subsequent
section wewill show the results obtained on the real energy
axis and in the complex plane for the vector meson-baryon
systems with total strangeness zero. Finally, we will
present a summary of this article.

II. FORMALISM

As already mentioned in the previous section, unlike the
pseudoscalar meson-baryon systems, in case of the vector
meson-baryon interaction there is not much guidance
available from the low energy theorems. Further, the situ-
ation is slightly more complicated since both particles
possess nonzero spin. Thus, we make an assumption that
the minimal coupling between vector mesons and baryons,
based on the HLS model, occurs via a vector meson
exchange in the t channel, a contact interaction and an
octet baryon exchange in the s and u-channel [shown in
Figs. 1(a)–1(d), respectively].

A. Vector meson-baryon interaction within SU(2)

Before discussing the interactions in SU(3), we would
first like to show the structure of the contributions obtained
from different diagrams shown in Fig. 1, in the SU(2) limit
[which will serve as a guide in the discussion of the
generalization of these interactions to SU(3)] and in the

interpretation of the results finally obtained by solving the
scattering equations.
Our basic assumption is that the nucleon field transforms

as N ! hðxÞN when the hidden local symmetry is applied
to the system, where hðxÞ is an element of the HLS. Hence,
the corresponding gauge invariant HLS Lagrangian is
given by

L ¼ �Nði6@� gF1���
�ÞN; (1)

where F1ðq2Þ is a form factor normalized as Fð0Þ ¼ 1.
However, it is well known that to reproduce the anomalous
magnetic moments of the baryons, it is imperative to con-
sider the rho-nucleon tensor coupling. This phenomeno-
logical finding leads to a more complete �N HLS
Lagrangian

L�N ¼ �g �N

�
F1���

� þ F2

4M
����

��

�
N; (2)

where F2 ¼ �� at zero momentum transfer, and

��� ¼ @��� � @��� þ ig½��; ���: (3)

It should be stressed here that the commutator term of
Eq. (3) is essential for the gauge invariance of the tensor
term of the �N Lagrangian given by Eq. (2).
We use the Dirac representation of the gamma matrices

and in our normalization scheme,

�� ¼ ~�

2
� ~�: (4)

Using the above ingredients together with the Lagrangian
for three-rho vertices, which comes from the kinetic term
of the � meson,

L3� 2 �1
2h������i; (5)

where h. . .i denotes a trace in the isospin space, we obtain
the leading order contribution to the vector meson-baryon
T matrix, in the SU(2) limit, from a vector exchange in the
t channel as

Vt
�N ¼ � 1

2f2�
ðK0

1 þ K0
2Þ ~	1 � ~	2 for I ¼ 1=2; (6)

¼ 1

4f2�
ðK0

1 þ K0
2Þ ~	1 � ~	2 for I ¼ 3=2: (7)

In what follows, we shall refer to the leading order con-
tributions to the T matrices simply as interactions (kernels
for the Bethe-Salpeter equations). The subscripts 1 and 2 in
the above equations and, in general, in the present discus-
sions refer to the meson in the initial and final state,
respectively, [as shown in Figs. 1(a)–1(d)]. Further, ~	i in
Eqs. (6) and (7) denote the polarization vectors of �, and
the energies, K0

i , of the mesons are calculated as

K0
i ¼

sþm2
i �M2

i

2
ffiffiffi
s

p ; (8)
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where
ffiffiffi
s

p
, m, and M, here and throughout this article,

represent the total energy and masses of the meson and
the baryon, respectively. For this t-channel case, we find
that the contribution from the Pauli term of the Lagrangian
for the vector meson-baryon system [Eq. (2)], which is
related to the anomalous magnetic moment, is negligible
(as also found in [19]) and hence it can be approximated to

L�NN ’ �g �N���
�N: (9)

However, this anomalous magnetic part plays a very im-
portant role in giving another interaction term, a contact
term (CT) when the last term of the tensor field [Eq. (3)],
which is related to two meson fields, is used in Eq. (2)

LCT
�N�N ¼ �ig2 �N

��

2M
�����

��N: (10)

We find that the structure of the T matrix obtained from this
contact interaction, at the lowest order, in the nonrelativ-
istic approximation, is

VCT
�N ¼ g2��

M
~t� � ~tN ~s� � ~sN; (11)

which, in contrast to the structure of the interaction
proceeding through a t-channel vector meson exchange
[summarized from Eqs. (6) and (7)]

Vt
�N ¼ 1

2f2�
ðK0

1 þ K0
2Þ~t� � ~tN; (12)

possesses a spin-spin interaction [see also Eq. (26) and the
discussion following it]. Further using the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin relation [23,24]

g ¼ mffiffiffi
2

p
f�

; (13)

we find that the contact term of the vector meson-baryon
HLS Lagrangian is similar, in order of magnitude, to the
t-channel vector exchange contribution.

Furthermore, using Eq. (2) we obtain the interactions
corresponding to a nucleon exchange in the s- and
u-channel diagrams, which, in the nonrelativistic approxi-
mation, are given as

Vs
�N ¼ g2

4

�
1� ��m

2M

�
2 1

mþ 2M
ð1� 2~t� � ~tNÞ

� ð1� 2~s� � ~sNÞ; (14)

Vu
�N ¼ g2

4

�
1þ ��m

2M

�
2 1

m� 2M
ð1þ 2~t� � ~tNÞ

� ð1þ 2~s� � ~sNÞ: (15)

Once again, using the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin relation for the coupling constant g and pion
decay constant, and recalling the fact that the masses of the
mesons are very similar to those of baryons in the present
case, we can see that the contribution of the u-channel

diagram is not negligibly small as compared to the
t-channel vector meson exchange or the contact term of
the HLS Lagrangian. Moreover, the contact interaction and
the u-channel diagram lead to spin-spin interactions which
can play an important role in understanding the resonances
generated in these systems. However, it should be men-
tioned that the s-channel interaction is found to be rela-
tively weak but its contribution for other SU(3) channels
needs to be checked.
Before going ahead, we would like to remark here that

we have neglected possible momentum dependence in
deriving all the interactions in our work. Such an approxi-
mation is suitable to the studies of loosely bound systems.
As a consequence, the interactions are like delta functions
in the coordinate space and are treated as separable ones
while solving the scattering equations.

B. Generalization to SU(3)

Certainly, the coupled channel effect in the SU(3) sys-
tems can be very important. Hence, we generalize the
interactions discussed in the previous section to SU(3).
In this work we study the systems with total strangeness

zero. The relevant vector meson-baryon channels in SU(3)
are �N, !N, 
N, K��, and K��.
The SU(3) generalized form of the Lagrangian for the

vector-baryon interaction given by Eq. (2) is obtained,
following [25–27], as

LVB ¼ �g

�
h �B��½V�; B�i þ h �B��BihV�i

þ 1

4M
ðFh �B���½V��; B�i þDh �B���fV��; BgiÞ

�
;

(16)

where the tensor field of the vector mesons is given by

V�� ¼ @�V� � @�V� þ ig½V�; V��; (17)

and the constants D ¼ 2:4 and F ¼ 0:82. These values
were found to reproduce well the magnetic moments of
the baryons in Ref. [27]. Further, in our normalization
scheme,

V ¼ 1

2

�0 þ!
ffiffiffi
2

p
�þ ffiffiffi

2
p

K�þffiffiffi
2

p
�� ��0 þ!

ffiffiffi
2

p
K�0ffiffiffi

2
p

K�� ffiffiffi
2

p
�K�0 ffiffiffi

2
p




0
BB@

1
CCA (18)

and

B ¼
1ffiffi
6

p �þ 1ffiffi
2

p �0 �þ p

�� 1ffiffi
6

p �� 1ffiffi
2

p �0 n

�� �0 �
ffiffi
2
3

q
�

0
BBB@

1
CCCA: (19)

However, to obtain the right couplings for the physical!
and 
 meson at the meson-baryon-baryon vertices, we
need to consider the mixing of their octet and singlet
components. Under the ideal mixing assumption, we write
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! ¼
ffiffi
1
3

q
!8 þ

ffiffi
2
3

q
!0; 
 ¼ �

ffiffi
2
3

q

8 þ

ffiffi
1
3

q

0; (20)

and use only the octet part of these wave functions in
Eq. (16). In other words, the Lagrangian given by
Eq. (16) corresponds to the interaction between octet vec-
tor mesons and octet baryons. For the singlet states we have

LV0BB ¼ �g

�
h �B��BihV�

0 i þ
C0

4M
h �B���V

��
0 Bi

�
; (21)

where the constant C0 is chosen to be 3F�D such that the

NN vertex is null and the anomalous magnetic coupling
of the !NN vertex gives �! ’ 3F�D. These results,
together with the anomalous magnetic coupling at the
�NN vertex, which is Dþ F ¼ ��, lead to a consistent

formalism.
Thus, in general, the Lagrangian for the Yukawa type

vertices, needed for s-, t-, and u-channel diagrams, is
explicitly written as

LVBB ¼ �g

�
h �B��½V�

8 ; B�i

þ 1

4M
ðFh �B���½@�V�

8 � @�V
�
8 ; B�i

þDh �B���f@�V�
8 � @�V

�
8 ; BgiÞ

þ h �B��BihV�
0 i þ

C0

4M
h �B���V

��
0 Bi

�
; (22)

and the term related to the two vector fields of Eq. (17)
leads to a two meson-two baryon contact interaction when
plugged in Eq. (16), which is trivially null for singlet
meson-baryon interaction, thus giving

LVVBB ¼ � g

4M
fFh �B���½ig½V�

8 ; V
�
8 �; B�i

þDh �B���fig½V�
8 ; V

�
8 �; Bgig: (23)

Using the kinetic term of the hidden local symmetry
Lagrangian in SU(3) for the three-vector meson vertices,
we have

L3V 2 �1
2hV��V��i; (24)

which, in conjunction with Eq. (22), gives the t-channel
interactions which are in agreement with those given in
Ref. [19]. Thus, the corresponding T matrices at the lowest
order are

Vt
ij ¼ �Ct

ij

1

4f2�
ðK0

1 þ K0
2Þ ~	1: ~	2; (25)

which are scalars in the spin space. The coefficients Ct
ij are

the same as those obtained in Ref. [19].
Next we obtain the contact interaction in SU(3), using

the Lagrangian of Eq. (23) which leads to a spin dependent
T matrix as discussed in the previous subsection

VCT
ij ¼ iCCT

ij

g2

2M
~� � ~	2 � ~	1: (26)

It is interesting to reemphasize here on the spin structure of
the contact interaction which contains ~� � ~	2 � ~	1, where
~	2 � ~	1 works as a spin operator which acts on spin one

particles. Hence, ~� � ~	2 � ~	1 is equivalent to 2i ~s � ~S, a

spin-spin interaction, where ~sð ~SÞ denote the spin half (in-
tegral spin one) operator. It can be easily seen then that
Eq. (26) leads to

VCT
ij ¼ CCT

ij

g2

M
for s ¼ 1=2; (27)

VCT
ij ¼ �CCT

ij

g2

2M
for s ¼ 3=2: (28)

The coefficients CCT
ij for these potentials, projected on the

ispospin 1=2 and 3=2 bases, are listed in Tables I and II,
respectively. From these tables, one can speculate that
adding the isospin half, spin half contact interaction might
reduce the attraction given by the t channel and the addi-
tion of the isospin half, spin 3=2 contact interaction might
lead to an enhancement of the attractive contribution of the
t channel. It can also be speculated that an opposite situ-
ation may occur in the isospin 3=2 case.
Further, amplitudes for the diagrams involving the

s- and u-channel exchange have been calculated by using
the Lagrangian given by Eq. (22) for both the meson-
baryon-baryon vertices involved. It should be mentioned
that in the present formalism we consider only the octet
baryon exchange in these diagrams. In such a case, we
obtain the following forms of the interactions in the non-
relativistic approximations:

Vu
ij ¼ Cu

ij

�
� g2

m� 2M

�
~	1 � ~� ~	2 � ~�; (29)

Vs
ij ¼ Cs

ij

�
g2

mþ 2M

�
~	2 � ~� ~	1 � ~�; (30)

TABLE II. CCT
ij coefficients for the contact interaction in the

isospin 3=2 base.

CCT
ij �N K��

�N � ðDþFÞ
2

ðD�FÞ
2

K�� � ðDþFÞ
2

TABLE I. CCT
ij coefficients for the contact interaction in the

isospin 1=2 base.

CCT
ij �N !N 
N K�� K��

�N (Dþ F) 0 0 ðDþ3FÞ
4 � ðF�DÞ

4

!N 0 0 �ðDþ3FÞ
4
ffiffi
3

p �
ffiffi
3

p ðF�DÞ
4


N 0 ðDþ3FÞ
ð2 ffiffi

6
p Þ �

ffiffi
3
2

q ðD�FÞ
2

K�� D
2 � D

2

K�� ð2F�DÞ
2
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where once again we have a spin-spin interaction
like structure (for instance, ~	2 � ~� ~	1 � ~� ¼ ~	2 � ~	1
þi ~� � ~	2 � ~	1) leading to spin half contributions given by

Vu
ij ¼ �Cu

ij

�
g2

2M�m

�
; (31)

Vs
ij ¼ 3Cs

ij

�
g2

mþ 2M

�
; (32)

and spin 3=2 contributions

Vu
ij ¼ 2Cu

ij

�
g2

2M�m

�
; (33)

Vs
ij ¼ 0: (34)

The s-channel contribution to the spin 3=2 interaction
(and also isospin 3=2 interaction) is null due to the limita-
tion of inclusion of the octet baryon exchange in the
corresponding diagrams. The Cu

ij coefficients are given in

Tables III and IV for the interactions projected on
the isospin 1=2 and 3=2 bases, respectively. The Cs

ij

coefficients for the isospin 1=2 s-channel interaction are
given in Table V.
A comment concerning the s- and u-channel diagrams is

in order. In the present case, where we consider vector
meson-baryon s-wave interaction, only the negative energy
solution of the Dirac equation contributes to the s- and
u-channel exchange. The vector meson-N- �N vertices of
the resulting ‘‘z’’ diagrams are expected to be rather
suppressed due to the finite structure of the hadrons. In
order to take this fact into account we multiply the
s- and u-channel amplitudes by the following form factor
[28–31]:

Fð�; xÞ ¼ �4

�4 þ ðx2 �M2
xÞ2

; (35)

where x is the Mandelstam variable under consideration
(s or u), Mx is the mass of the baryon exchanged in such
diagrams, and � is a parameter which we fix as 650 MeV
since it corresponds to a reasonable, average size of
hadrons (� 0:6 fm).
We have now discussed all the interactions which we

will use in our study. To summarize, vector meson-baryon
interactions have been obtained for the diagrams

TABLE III. Cu
ij coefficients for the u-channel interaction in the isospin 1=2 base, where the potential has a general form

Vu
ij ¼ Cu

ijð� g2

m�2MÞ ~	1 � ~� ~	2 � ~�.

Cu
ij �N !N 
N K�� K��

�N � ½ðDþFÞmþ2M�2
16M2

ffiffi
3

p
16M2 ½ðD� 3FÞm� 6M�½ðDþ FÞmþ 2M� 0 Dm½ðF�DÞmþ2M�

8M2
ðFmþ2MÞ½ðF�DÞmþ2M�

4M2
Dm½ðDþ3FÞmþ6M�

24M2

!N ½ðD�3FÞm�6M�2
16M2 0 � ðð3F�2DÞmþ6MÞ

24
ffiffi
3

p
M2 ððDþ 3FÞmþ 6MÞ �

ffiffi
3

p ððF�DÞmþ2MÞðFmþ2MÞ
8M2


N 0 � ððDþ3FÞmþ6MÞ2
ð24 ffiffi

6
p

M2Þ �
ffiffi
3
2

q ððF�DÞmþ2MÞ2
8M2

K�� ððD�3FÞm�6MÞ2
48M2 � ððD�3FÞm�6MÞ

16M2 ððDþ FÞmþ 2MÞ
K�� � ððDþFÞmþ2MÞ2

16M2

TABLE IV. Cu
ij coefficients for the u-channel interaction in the isospin 3=2 base, where the

potential has a general form Vu
ij ¼ Cu

ijð� g2

m�2MÞ ~	1 � ~� ~	2 � ~�.

Cu
ij �N K��

�N ½ðDþFÞmþ2M�2
8M2

1
8M2 f�Dm

3 ½ðDþ 3FÞmþ 6M� þ ½ðF�DÞmþ 2M�½Fmþ 2M�g
K�� ððDþFÞmþ2MÞ2

8M2

TABLE V. Cs
ij coefficients for the s-channel interactions which have the general form Vs

ij ¼ Cs
ijð g2

mþ2MÞ ~	2 � ~� ~	1 � ~�.

Cs
ij �N !N K�� K��

�N 3½ðDþFÞm�2M�2
16M2

3
ffiffi
3

p ½ðDþFÞm�2M�
8M

ððDþFÞm�2MÞ½ðDþ3FÞm�6M�
16M2 � 3

16M2 ½ðD� FÞmþ 2M�½ðDþ FÞm� 2M�
!N 9

4

ffiffi
3

p ððDþ3FÞm�6MÞ
8M � 3

ffiffi
3

p ððD�FÞmþ2MÞ
8M

K�� ððDþ3FÞm�6MÞ2
48M2 � ððDþ3FÞm�6MÞ

16M2 ððD� FÞmþ 2MÞ
K�� 3ððD�FÞmþ2MÞ2

16M2
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corresponding to the t-channel vector exchange, s- and
u-channel octet baryon exchange, and a contact interac-
tion. All these interactions come from the hidden local
symmetry Lagrangian and indeed we find them to be of
similar order of magnitude but with different spin struc-
ture. Hence, we must consider a sum of all these diagrams,

V total
ij ¼ VCT

ij þ Vt
ij þ Vu

ij þ Vs
ij; (36)

as the minimum contribution to the lowest order vector
meson-baryon interaction. We would like to state once
again that all the interactions in this work have been
obtained under the nonrelativistic approximation which is
adequate for the present study.

We use Vtotal of Eq. (36) as the Born term and solve the
Bethe-Salpeter equation,

T ¼ V þ VGT; (37)

in the coupled channel approach, which we shall carry out
in a method which is very similar to the work done in [19].
We do so because the results obtained in [19] provide us
with a point of reference with which we can compare our
findings.
To solve Eq. (37), we use the dimensional regularization

method to calculate the loop functions,

Gð ffiffiffi
s

p
;m2;M2Þ¼ i2M

Z d4q

2�4

1

ðP�qÞ2�M2þ i	

1

q2�m2þ i	

¼ 2M

16�2

�
að�Þþ ln

M2

�2
þm2�M2þs

2s
ln
m2

M2
þ �qffiffiffi

s
p ½lnðs�ðM2�m2Þþ2 �q

ffiffiffi
s

p Þ

þ lnðsþðM2�m2Þþ2 �q
ffiffiffi
s

p Þ� lnð�sþðM2�m2Þþ2 �q
ffiffiffi
s

p Þ� lnðs�ðM2�m2Þþ2 �q
ffiffiffi
s

p Þ�
�
; (38)

where �q ¼ �1=2ðs;M2; m2Þ=2 ffiffiffi
s

p
. We use the subtraction

constant að�Þ ¼ �2 following Ref. [19] and take the pion
decay constant, f�, as 93 MeV. Using the loop function
given by Eq. (38), we obtain the T matrices by solving
Eq. (37). Further, we find poles of these amplitudes in the
complex plane by solving

det½1� VG� ¼ 0: (39)

In order to find resonance poles, G is modified above a
given threshold as

GIIð ffiffiffi
s

p Þ ¼ Gð ffiffiffi
s

p Þ � i2 ImfGð ffiffiffi
s

p Þg;
where the superscript II on G indicates its calculation in
the second Riemann sheet.

There is still an issue remaining concerning the width of
the vector mesons, which is considerably large for the K�
and � mesons. We take care of this fact by making a
convolution of the loops over the varied mass of these
mesons, again following the method used in Ref. [19], as

Gð ffiffiffi
s

p Þ ¼ 1

N

Z ðmþ2�Þ2

ðm�2�Þ2
d ~m2

�
� 1

�

�

� Im

�
1

~m2 �m2 þ im�ð ~mÞ
�
Gðs; ~m2;M2Þ; (40)

where Gðs; ~m2;M2Þ is calculated using Eq. (38) and where

N¼
Z ðmþ2�Þ2

ðm�2�Þ2
d ~m2

�
� 1

�

�
Im

�
1

~m2�m2þ im�ð ~mÞ
�
; (41)

with

�ð ~mÞ ¼ �meson

�
m2

~m2

��
�1=2ð ~m2; m2

d; m
02
d Þ=2 ~m

�1=2ðm2; m2
d; m

02
d Þ=2m

�
3

� �ð ~m�md �m0
dÞ: (42)

In the above equation, md, m
0
d denote the masses of the

decay products of the vector mesons, i.e., pion masses in
the case of �, and kaon and pion mass in the case ofK�. We
use �� and �K� as 149.4 MeV and 50.5 MeV, respectively.

Thus, for the channels involving the � and the K� mesons,
we use Eq. (40) to calculate the Bethe-Salpeter equation
[Eq. (37)] and to find poles with Eq. (39). To carry out the
calculations in the second Riemann sheet the loop function
in the integral of Eq. (40) is modified as

GIIðs; ~m2;M2Þ ¼ Gðs; ~m2;M2Þ � i2 ImfGðs; ~m2;M2Þg:
(43)

III. RESULTS AND DISCUSSION

In the previous section we have discussed the interaction
of the vector meson with the octet baryon obtained from
four different diagrams corresponding to the t-, s-,
u-channel exchange and a contact term. We have tabulated
the lowest order amplitudes obtained from these diagrams
for the vector meson-octet baryon channels having a total
charge and strangeness zero. Using these contributions we
have solved Bethe-Salpeter equations in the coupled chan-
nel approach and in this section we will discuss the results
of our calculations.
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A. t-channel exchange

We will first discuss the results of the calculations done
by using the t-channel interaction only. The vector meson-
baryon system can have total isospin and spin 1=2 or 3=2.
However, as it was shown in Ref. [19] and as we have
already mentioned in the previous section, the structure of
the interaction obtained from the t-channel diagrams is
spin independent. Further, the interaction in the isospin
3=2 case is repulsive and, as expected, it does not result in
generation of any state.

The isospin 1=2 interaction does result in finding of
some states, which are spin degenerate in nature. We
present the squared amplitudes, jTj2, obtained in this
case, in Fig. 2. As can be seen in this (main) figure, very
much in agreement with the work of Ref. [19], we find two
peaks in the squared amplitude: one around 1700 MeVand
another around 2 GeV. These two peaks can be identified as
N�’s with mass around 1700 and 2000 MeV, with spin-
parity 1=2� and 3=2� since the calculations have been
done in s wave and the basic interaction is spin degenerate.
There do exist N� resonances with such properties [32] and
relating them to the peaks shown in Fig. 2 seems reason-
able as suggested in Ref. [19]. However we would not yet
make any such analysis since we expect these results to get
modified by the addition of more interactions.

We have also searched for poles in the complex plane for
the amplitudes depicted in Fig. 2. We find a bound state
pole corresponding to the lower energy peak, on the real
axis, at 1702� i0 MeV, when the width of the � and K�
mesons is not taken into account in the calculations.

A consideration of the mass distributions of these mesons
makes it difficult to look for poles, especially in the energy
region close to a threshold as is the case of this pole. This
problem was already discussed in Ref. [19]. This pole
seems to couple strongly to the �N channel as can be
seen in Fig. 2 and as the couplings calculated in
Ref. [19] indicate.
In case of the peak seen around the 2 GeV region, our

searching for a pole results in the finding of a double pole
structure as shown in Fig. 3, which, although not explicitly
mentioned, should also be seen in the work of Ref. [19]. In
this case, we could find poles in the amplitudes calculated
both with or without making convolution of the loops since
no channel open up in the vicinity of these poles. The pole
positions obtained without convoluting the loops are
1974� i44 MeV and 2051� i153 MeV and those ob-
tained on convolution of the loops are 1980� i58 MeV
and 2019� i164 MeV. We find the pole at higher energy
to couple strongly to the K�� channel, so much that it can
be generated even by making a single K�� channel calcu-
lation at 2072� i0 MeV (without convoluting the loops),
which shifts to 2082� i25 MeV by adding the 
N and
K�� coupled channels and finally to 2051� i164 MeV by
adding �N and !N. The other pole, which is found near
1970 MeV, gets generated due to the coupled channel
dynamics of 
N and K��. It is interesting that the diago-
nal interactions for these two channels are null in this case,
which makes the coupled channel effect imperative for the
generation of this pole.
These two poles seem to couple more to the 
N, K��,

and K�� channels. We will verify this later in the discus-
sions on the couplings calculated for different poles. We
have tried to show the effect of this two pole structure on
the real energy axis in the inset picture of Fig. 2 where we
have multiplied arbitrary factors to the !N, 
N, K��,
K�� diagonal T matrices to compare the peak positions in
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FIG. 2. Squared T matrices obtained by solving the Bethe-
Salpeter equation using t-channel interaction. Two clear peaks
can be seen in these amplitudes around 1700 MeV and
2000 MeV. The inset figure shows the same amplitudes multi-
plied by arbitrary factors in the 2 GeV energy region. The
purpose of the inset figure is to show that the peak in the
2 GeV region in the amplitudes for the !N and 
N channels
is slightly shifted as compared to the one in the K�� and K��
channels.

FIG. 3 (color online). Two pole structure of a possible N� with
mass �2000 MeV, spin parity 1=2� and 3=2�.
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these amplitudes around 2 GeV. It could be argued that one
out of these two poles is too wide and may not be important
in the sense that its effect cannot be easily seen in real
experimental data. Such a consequence might be close to
reality, however, the picture will change with the addition
of more interactions as we shall see in the following
sections, and this two pole structure will play a crucial
role in understanding the results.

B. Addition of more diagrams

The t-channel interaction leads to the generation of two
pairs of spin 1=2-3=2 degenerate resonances with isospin
1=2. These resonances have a mass �1700 MeV and
�2000 MeV with the latter one possessing a two pole
structure, one of which could be interpreted as aK�� bound
state and the other could be interpreted as a K���
N
resonance. We will now discuss the results obtained by
adding to the t-channel interactions, the contact term, the

s and u channels, where the resultant interaction has a ~s � ~S
structure (spin-spin interaction). We thus expect to lift the
spin degeneracy of the states obtained by considering the
t-channel diagrams as the tree-level amplitudes. Let us first
consider the case of total isospin 1=2 of the meson-baryon
systems.

1. Isospin ¼ 1=2

In Fig. 4 we show the squared amplitude, jTj2, for the
�N channel, for the spin half (left panel) and spin three-
half (right panel) case. The result obtained by considering
the t-channel interaction alone is shown by a dashed line
(which is same as the solid line of Fig. 2). In order to avoid
confusion here, we would like to call the attention of the
reader to the fact that the vertical axes of the left and the
right panels in Fig. 4 are different, which makes the
t-channel results appear different for spin 1=2 and 3=2

although they are same. The result of adding the contact
interaction is shown by a dash-dotted line, and that ob-
tained by further adding the s- and u-channel exchange is
shown by a solid line. All these calculations have been
carried out by using the procedure of the convolution of the
loops to take into account the fact that the � andK� mesons
possess a non-negligible width. Henceforth, we shall stick
to the discussion of the results obtained by convoluting the
loops unless otherwise stated.
It can be seen that the calculations done by adding the

contact term to the t-channel interaction give very different
results (dash-dotted lines) as compared to the ones ob-
tained by considering the t channel alone (dashed lines).
The left panel shows that the clear peak found in spin
degenerate t-channel calculations disappears upon adding
the spin half contact interaction. The magnitude of the
squared amplitude falls by about 2 orders of magnitude
in the 1700MeV region and no structure is found by adding
the contact term, VCT.
The results are quite different for the spin 3=2 case as

shown in the adjacent figure (right panel). In this case the
peak obtained from t-channel calculations gets enhanced by
a factor 10 but shifts by about 50MeV to the lower energies.
These results can be very well understood by looking at the
structure of the contact interaction given by Eqs. (27) and
(28) alongwith the coefficientsCCT

ij of Table I. It can be seen

that the contact term is repulsive for most channels in the
spin half case but is mostly attractive in the spin 3=2 case,
with the order of magnitude being similar to the t-channel
interaction always. Thus, the spin 1=2 contact term reduces
the attractive t-channel interaction in the vector-baryon
system but adds to the attraction in the spin 3=2 case. As a
result the spin degenerate peak at 1700 MeV in the ampli-
tudes obtained by the t-channel interaction disappears in the
spin 1=2 case, and the spin 3=2 results show the peak shifted
to lower energies with much larger magnitude. The further
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FIG. 4. Squared amplitude, jTj2 of the process �N ! �N as a function of the total energy: for spin 1=2 depicted in the left figure and
spin 3=2 in the right one (with different scales on the vertical axes). The labels s, t, u, CT refer to the calculations done by taking the s,
t, u channels and contact term, respectively, into account. The solid lines in these figures correspond to the calculations done by taking
a sum of all these diagrams, as explained in the text. The dashed lines are the results obtained by considering the t channel and the
dash-dotted lines show the effect of the addition of the contact term.
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addition of the s- and u-channel diagrams enhances the
effect produced by the contact term in the T matrices as
shown by the solid lines.

Next, we show the squared amplitude for the !N chan-
nel in Fig. 5. Here we see that the contact term added to the
t-channel diagram produces a slightly enhanced peak
structure in the spin half amplitude. In the spin 3=2 case,
the broad peak around 2 GeV changes into a narrower one
near 1960 MeV and a bump-like structure develops at
�1660 MeV. Further addition of the s- and u-channel
diagrams gives rise to a clear peak in the spin 3=2

amplitude, at about 1650 MeV. Thus, our total !N ampli-
tude shows two peaks in the spin 3=2 case. Another inter-
esting feature seen in the spin 3=2 T matrices is a broad
bump near 2050 MeV.
Figure 6 depicts the squared amplitude for the 
N

channel. Once again, for this channel too, the addition of
the contact term to the t-channel interaction produces quite
some changes in the results obtained without it. The spin
1=2 
N matrix element shows an enhancement of the
strength of squared matrix element, like in the !N case.
The spin 3=2 
N amplitude shows a sharper peak around
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FIG. 5. Squared amplitude of the process !N ! !N as a function of the total energy. The meaning of the panels, labels, and the
lines continues to be same as in Fig. 4.
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FIG. 6. Squared amplitudes for the spin 1=2 and 3=2 
N ! 
N process as a function of the total energy. The meaning of the lines,
labels, and the purpose of the inset figure is same as that in Fig. 4.
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1950 MeV by the addition of the contact term, s-, and
u-channel diagrams. In the total amplitude (solid line) one
can also see a bump around 1650 MeV.

It remains to discuss the results for K�� and K��
channels. The ones corresponding to the former channel
are shown in Fig. 7. This is the only channel which shows
two peaks in the squared amplitude calculated by taking
the t-channel interaction. Clearly, the lower energy peak
disappears upon adding the mostly repulsive, spin 1=2
contact interaction. The spin 3=2 case results in two dis-
tinct peaks (as shown by the dash-dotted line in the right
panel of Fig. 7). The strength of the squared amplitude in
this case gets enhanced by about a factor 5. The further
addition of the s and u channels, although it leaves the spin
1=2 amplitude almost unaltered, increases the magnitude
of the spin 3=2 amplitude by another factor �3 near
1950 MeV. This hints toward a larger coupling of the
K�� channel to the 3=2� state with mass close to
1950 MeV. We shall verify this in the subsequent subsec-
tion where we discuss the calculations of the couplings.

Finally, let us contemplate the K�� coupled channel.
The squared amplitude for this channel shows a well-
pronounced peak in the spin 1=2 case at �1975 MeV
(left panel of Fig. 8). It can be seen that the addition of
the contact term enhances the strength of the peak found in
the t-channel calculations (dashed line) by about an order
of magnitude (dash-dotted line). The full calculations de-
picted as solid lines show some reduction in strength.
Nevertheless, the strength of the spin 1=2 amplitude of
the K�� channel remains the largest, which indicates
toward its strong coupling to a possible corresponding state
with a 1=2� quantum number. The full spin 3=2 K��
amplitude, depicted as a solid line in the right panel of
Fig. 8, shows a peak at 2064 MeVand a bump around 1950
MeV. Interestingly, the spin 3=2 K�� and 
N amplitudes
show a clear peak at 1950 MeV, where the K�� amplitude
shows a weak bump.

To interpret these isospin 1=2 results on the real axis, we
have looked for poles in the complex plane. In the spin 1=2
case we find a pole at 1977� i22 MeV and in the spin 3=2
case we find two poles at 1642� i0 and 2071� i7 MeV.

We find that the peak structure seen in the 
N, !N, and
K�� amplitudes near 1960 MeV correspond to a 
N cusp
for which we see a pole extremely close to the real axis
near the 
N threshold.
To summarize our results in the isospin 1=2 case, we

study the strangeness zero vector meson-baryon system by
taking a contact term, t-, s-, and u-channel diagrams as
leading order interactions. A coupled channel calculation
with these interactions made on the real energy axis, leads
to finding of a peak close to 1970MeVwith total spin equal
to 1=2. We do not find any structure near 1700 MeV in the
spin 1=2 amplitude. In the spin 3=2 case we find a peak
near 1650 MeV and 2 GeV. We will come back to a more
detailed discussion of corresponding poles found in the
complex plane in a later section.

2. Isospin ¼ 3=2

In Fig. 9 we show the results of the calculation of the
vector meson-baryon amplitude in the isospin 3=2, spin
1=2 space where we have only two coupled channels: �N
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FIG. 8. Squared amplitude for the K�� channel.
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and K��. In this figure we show the results of the calcu-
lation done by considering the t-channel interaction alone
which is actually repulsive in nature. As a result, the
amplitudes in this isospin are much weaker and rather
flat as compared to the corresponding isospin half results.
One can see some kinks due to the opening of the channels:
the thresholds of the �N and K�� are 1709 MeV and
2085 MeV. The results for the �N system are shown as
thin solid and dashed lines and that for the K�� are shown
as thick lines. The dashed (solid) curves have been ob-
tained by calculating the loops with (without) the consid-
eration of the widths of the � and the K� mesons.

Before showing the results obtained by adding more
diagrams to the t channel in the isospin 3=2 case, we would
like to discuss the results obtained by carrying out the
calculations assuming only the contact term. The results
of such a calculation are shown in Fig. 10. The results
obtained in this case are very different to the corresponding
t-channel calculations since the contact interaction is at-
tractive in nature, in the isospin 3=2 and spin 1=2 case [see
Eqs. (27) and (28) and Table II]. As can be seen in Fig. 10,
we find two sharp peaks: one near 1700 MeV and another
near 2100MeV. The former seems to couple strongly to the
�N channel and the latter to the K�� system. We would
like to add here that although we see two peak structures in
the amplitudes shown in Fig. 10, we do not find the
corresponding poles to be physical.

Finally, let us discuss the results we obtain by adding the
contact term, t- and u-channel interactions. We would like
to remark here again that in this case we have no contri-
bution from the s channel since in the present formalism
we assume the exchange of isospin 1=2 baryons only.

It should be also mentioned that the inclusion of the u
channel in the calculations does not change the results
obtained by considering the contact term and t channel,
except for a small increase in the magnitude and a shift in
the peak position by about 20 MeV. Hence, we do not show

the results of the calculations carried out by adding the
contact term to the t channel. We rather directly show the
results obtained by adding the u channel as well, in Fig. 11.
In this case, we find, one, rather broad peak around
1980 MeV which is about an order of magnitude bigger
in the K�� channel. We find a pole corresponding to it in
the second Riemann sheet at 2010� i112 MeV, when the
loops are convoluted. A pole search in the matrix elements
calculated without convoluting the loop does not give
very different results, in this case we find a pole at 2002�
i108 MeV.

C. Poles in the complex plane and their
couplings to different channels

In addition to finding the poles in the complex plane it is
also important to calculate the couplings of resonant/bound
states to different channels, which help in understanding
the behavior of the squared amplitude on the real energy
axis (and hence the cross sections). These couplings, gi,
can be calculated by finding residues of the poles of the
amplitudes in the complex plane. However, there is one
difficulty in making such a calculation in our work, which
is due to the convolution of loops that makes a fixed
threshold become a variable one when the widths of the
� and K� mesons are taken into account. This difficulty
was also confronted in [19] and the couplings were calcu-
lated using the amplitudes on the real axis. We avoid this
problem by calculating the residues of the poles in the
complex plane, which are found without making any con-
volution of the loops. We find the couplings, gi, in this way
for all the cases. We have seen that the couplings found
with or without convolution are similar when the poles can
be found in both approaches.
We shall first discuss the couplings obtained for the

poles found in the calculations with only t-channel inter-
action. In such a calculation, as mentioned in the previous
section, we find three poles corresponding to the two peaks
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found on the real axis. These poles are spin degenerate in
nature and possess an isospin 1=2. The couplings obtained
for these poles are listed in Table VI which shows that the
pole found at 1702� i0 MeV couples strongly to the �N
and K�� channels and indeed that is what we also find
from the behavior of the amplitudes calculated on the real
axis (shown in Fig. 3). Two more poles are listed in
Table VI: 1974� i44 MeV and 2051� i153 MeV, the
former of which is found to couple strongly to 
N, K��,
K�� channels, and the latter one, which was not discussed
in Ref. [19], seems to couple strongly to �N, 
N, and
K��.

Next, let us discuss the couplings of the poles found in
the calculations done with a sum of contact, t-, s-, and
u-channel interactions. As we have already seen, such a
calculation lifts the spin degeneracy of the results found in
the t-channel calculations. In Table VII we show the poles
found in the isospin 1=2 case. Once again, we find three
poles but two with spin parity 3=2�: at 1642� i0, 2001�
i7 MeV and one with 1=2� at 1977� i22 MeV (in the
amplitude calculated without convoluting the loops).

The spin 3=2 pole found at 1642� i0 MeV, which
acquires a width when the loops are convoluted and is
found at 1637� i35 MeV, seems to couple strongly to
the �N and K�� channels just like in the t-channel case.
However we do not find a spin 1=2 pole in this energy
region. We relate our spin 3=2 pole at 1637� i35 MeV
with N�ð1700ÞD13, for which the particle data group
(PDG) [32] lists a branching ratio of about 35% to the
�N channel and only 5%–15% to �N. Our results are
consistent with the findings of a study made by the
Juelich group [17], where N�ð1700ÞD13 has been found
to get dynamically generated basically by the �N interac-

tion and a very small coupling to the �N channel has been
found.
The other 3=2� pole found in our study at 2071�

i7 MeV is basically a K�� bound state. The reason for
its small width is its strong coupling to K�� which is a
closed channel (while neglecting the K� width) at this
energy and its very weak couplings to all other channels.
However, when the loops are convoluted, we find this pole
to shift to 2071� i70 MeV. There is a resonance listed by
the PDG with mass and spin parity strikingly similar to this
resonance: the N�ð2080ÞD13 for which a branching ratio of
21% is listed for the !N decay channel. This is indeed in
agreement with our findings since, although the couplings
of this pole to!N,
N, K�� are comparative,!N offers a
much larger phase space for the decay of the resonance.
Also, the several hundred MeV width of N�ð2080ÞD13

listed in [32] in comparison with our results is understand-
able since we have not taken pseudoscalar meson-octet
baryon or pseudoscalar-decuplet baryon channels into ac-
count which provide much larger phase space for the
decay. We thus identify the spin 3=2 resonance found at
2071� i70 MeV with N�ð2080ÞD13.
We find only one resonance with spin parity 1=2� at

1977� i22 MeV which couples strongly to K�� and 
N
channels. However, its properties can only be studied in the
latter one since it is open at these energies. This pole
appears at the same position even when the convolution
of the loops is made. It could be identified with
N�ð2090ÞS11 although the status of this resonance is rather
poor as found by the PDG [32]. However, there is not much
information available on the analysis of the 
N channel
near the 2 GeV, in the partial wave S11, which, according to
our study, might improve the status of the N�ð2090ÞS11

TABLE VI. Couplings gi of the isospin 1=2, spin degenerate poles obtained in t-channel calculations.

MR � i�=2 ! ðJ�Þ 1702� i0 MeV (1=2�, 3=2�) 1974� i44 MeV (1=2�, 3=2�Þ 2051� i153 MeV (1=2�, 3=2�Þ
Channels # Couplings (gi)

�N 2þ i0 �0:1þ i0:6 �1:9� i0:7
!N 0:1þ i0 �1þ i0:5 �1:4� i0:7

N �0:15þ i0 1:4� i0:7 2:1þ i1
K�� 1:7þ i0 2:1þ i0:8 1þ i1:4
K�� �0:4þ i0 3:7� i0:6 5:1þ i3:2

TABLE VII. Couplings gi for the isospin 1=2 poles obtained in a calculation done with all four interactions shown in Fig. 1.

MR � i�=2 ! ðJ�Þ 1642� i0 MeV (3=2�) 2071� i7 MeV (3=2�) 1977� i22 MeV (1=2�)
Channels # Couplings (gi)

�N 3:9þ i0 0:02� i0:4 0:04þ i0:2
!N 0:9þ i0 �0:1� i0:1 �0:7þ i0:2

N �0:8þ i0 0:14þ i0:2 1:1� i0:5
K�� 2:2þ i0 �0:3þ i0:35 0:6þ i0:08
K�� �0:3þ i0 2:4þ i0:3 4:4� i0:1
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resonance. Indeed an enhancement of the cross section is
seen near the 2 GeV region, in the photo production of the

 meson on a nucleon studied by the LEPS group [33].
This enhancement could possibly be explained in terms of
the spin 1=2� resonance found in our work. In fact a
phenomenological analysis of the �N ! 
N reaction
showed that a better fit to the LEPS data [33] was found
when a J� ¼ 1=2� resonance was included in their study
as compared to the one obtained by including a 1=2þ
resonance [34]. It should be interesting to clarify this
with more detail in future.

Finally, we discuss the couplings of the pole found in the
isospin 3=2. We find a pole in the spin 1=2 case, in
the 2 GeV region with a width of about 100 MeV. We
show the precise pole positions and couplings found for
this pole, in the calculations done with and without con-
voluted loops, in Table VIII. There are only two coupled
channels contributing to this isospin and the resulting pole
is found to couple strongly to the K�� channel. We relate
this state with �ð1900ÞS31.

D. Pole flow

It is intriguing that we started calculating vector meson-
baryon amplitudes by taking a t-channel interaction and we
found six poles in the isospin 1=2, which were spin degen-
erate in nature. However, by adding more interactions we
obtain three poles only. What happened to the other three
poles? To understand this, we have made a study of the
movement of the poles near the 2 GeV region, in the
complex plane, as the other interactions are added little
by little to the one obtained from the t-channel diagram.
In this way we can trace the poles and understand our
results better. We trace these poles always when the cal-
culations are done without convoluting the loops since
otherwise we loose the poles sometimes.

The spin 1=2, 3=2 pole at 1974� i44 MeV, which is
found in the calculations carried out by taking the
t-channel interaction, is indicated by a boxed point in
Fig. 12. By adding the contact interaction with very small
coupling, to the t channel, we find the degenerate poles at
1974� i44 MeV to split. We find that the spin 1=2 pole
moves closer to the real axis and the spin 3=2 pole moves
away from the real axis. By increasing the coupling of the
contact interaction from 0 to 1 slowly, we find that the spin
1=2 pole keeps moving toward the real axis whereas the

spin 3=2 pole crosses the
N threshold and becomes a
N
virtual state. The direction of the trajectories of the two
poles are indicated by arrows in Fig. 12 and a dashed line
shows the 
N threshold. The physical poles are always
shown as filled circles and unphysical ones are indicated as
empty circles. The poles obtained by adding the contact
interaction with the coupling equal to 1, to the t-channel
interaction, are also indicated in Fig. 12 by CT. These
poles, however, move further in the complex plane due to
the addition of the s- and u-channel diagrams. As is clear
from Fig. 12, only the spin 1=2 pole finally appears as a
physical one, the spin 3=2 pole ends up as a 
N virtual
pole.
Let us study yet another pole, the one we find at 2051�

i153 MeV when the calculations are done using the

TABLE VIII. Same as Table VII but for the case of isospin
3=2, spin 1=2.

MR � i�=2 ! 2006� i112 MeV
(with convolution)

2002� i108 MeV
(without convolution)

Channels # Couplings (gi)

�N �1:6þ i1:4 �1:7þ i1:2
K�� 4:5þ i0:7 4:5þ i1:3
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FIG. 12. This figure shows how the pole position changes as
more diagrams are added to the t-channel vector meson-baryon
interaction. The arrows indicate the direction in which the
pole moves. The filled (empty) circles represent physical
(unphysical) poles.
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FIG. 13. Study of the pole trajectories for yet another pole
found in the t-channel calculations. This figure shows the thresh-
olds of 
N, K��, and K�� channels as dashed lines. The
meaning of filled and empty circles is same as in Fig. 12.
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t-channel interaction. This pole is shown as a boxed point
in Fig. 13. The conventions followed in this figure are the
same as those in Fig. 12. Once again we add the contact
interaction with a very small coupling to the t channel and
vary this coupling from 0 to 1. In this case we see that spin
3=2 pole starts moving closer to the real axis, turns into a
unphysical pole (appearing on the first Riemann sheet for
the K�� channel) and later appears as a physical pole
below the K�� threshold. The spin 1=2 pole also starts
moving closer to the real axis but turns into a K�� virtual
pole. In Fig. 13, various thresholds have been marked as
dashed lines and the corresponding channels are labeled
against these lines. Thus, in this case too, we find only one
pole to end up as a physical pole, the one with spin 3=2.

This explains why we start with more poles but end with
fewer ones. This is so because we find some poles to
become unphysical due to addition of more diagrams to
the t channel. However, it should be mentioned that the
virtual poles shown in Figs. 12 and 13 might become
physical bound states if, for instance, more attraction is
added to the system by adding more coupled channels.

IV. SUMMARY

This work deals with the finding of a dynamical genera-
tion of resonances in the coupled systems made of vector
mesons and octet baryons. The leading order contributions
to the scattering equations have been obtained from a sum
of diagrams corresponding to a vector meson exchange in
the t channel, octet baryon exchange in s, u channels, and a
contact interaction obtained within the hidden local and
chiral symmetries. It is found that the sum of these dia-
grams gives rise to an interaction which has a similar
structure as the nucleon-nucleon interaction. However,
we find a posteriori that the s-channel diagrams are

negligibly weak in the present case. The t channel gives
a central potential and the contact interaction and
u-channel exchange lead to spin-spin interactions. A solu-
tion of scattering equations results in the finding of some
resonances which can be identified with known states listed
in Ref. [32] as summarized in Table IX.
Finally, we have shown that the information obtained

from the studies of hadron-hadron interactions relying on
the widely used t-channel interaction alone might be in-
complete sometimes. In the present work, we have shown
this for the case of vector meson-baryon systems. Yet, there
are still more questions to be addressed such as the im-
portance of including more coupled channels like the
pseudoscalar/vector-octect/decuplet baryon systems. We
should answer to these questions in the future.
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