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We study Oð�sv
2Þ corrections to decays of 1S0 heavy quarkonium into light hadrons and two photons

within the framework of nonrelativistic QCD and find these Oð�sv
2Þ corrections to have significant

contributions especially for the decay into light hadrons. With these new results, experimental measure-

ments of the hadronic width and the �� width of �c can be described more consistently. By fitting

experimental data, we find the long-distance matrix elements of �c to be jR�c
ð0Þj2 ¼ 0:834þ0:281

�0:197 GeV3

and hv2i�c
¼ 0:232þ0:121

�0:098. Moreover, �cð2SÞ is also discussed and the �� decay width is predicted to be

3:34þ2:06
�2:10 KeV.
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I. INTRODUCTION

Heavy quarkonium plays an important role in establish-
ing and understanding quantum chromodynamics (QCD),
the fundamental theory of strong interactions. Because of
the existence of several energy scales involved with these
systems, heavy quarkonium provides an ideal laboratory
for testing the perturbative and nonperturbative effects of
QCD. An effective theory suitable for describing these
systems is nonrelativistic QCD (NRQCD) [1], which is
derived from QCD by considering the underlying nonrela-
tivistic properties. According to NRQCD factorization [2],
decays of heavy quarkonium into light hadrons or photons
can be organized in a hierarchy of long-distance matrix
elements (LDMEs), which are classified in terms of v, the
relative velocity of the heavy quarks in heavy quarkonium.

Decays of 1S0 heavy quarkonium into light hadrons

(LH) and two photons are among the simplest processes.
The short-distance coefficients for corresponding LDMEs
at leading order in v have been computed previously to
next-to-leading order (NLO) in �s [2–12]. Moreover, that
coefficient for �� decay has been calculated to next-to-
next-to-leading order (NNLO) in �s [13]. However, all
coefficients of LDMEs beyond leading order in v are
known at best to leading order in �s [6,14–16]. It is well
known that the calculation at leading order in �s suffers
from large uncertainties due to strong renormalization
scale dependence. Therefore, to give a more precise de-
scription for 1S0 heavy quarkonium decays beyond leading

order in v, QCD corrections to these coefficients are ap-
parently needed.

In this paper, we will study QCD corrections to the
coefficients of order v2 LDME, namely, corrections at

order �sv
2 for 1S0 quarkonium decays. Up to this order

of corrections, there are two unknown LDMEs which
should be fixed. Unfortunately, lattice calculation of these
LDMEs [17,18], though based on first principles, suffers
from large uncertainties. In Refs. [19–21], a new method
was introduced to estimate LDMEs by combining potential
models, lattice calculation, and experimental data. This
method will also be used in this paper to determine the
two unknown LDMEs. Then with our calculated �sv

2

corrections, we will be able to get updated estimates for
the decay widths of 1S0 heavy quarkonium into light

hadrons and two photons.
The rest of this paper is organized as follows. We briefly

introduce the theoretical procedures for calculations of
heavy quarkonium decays in Sec. II. In Sec. III, we de-
scribe kinematics and method of calculation for these
processes. Results in perturbative QCD are summarized
in Sec. IV, while corresponding results in perturbative
NRQCD are summarized in Sec. V. By using the matching
condition, we give the updated short-distance coefficients
in Sec. VI to include our new �sv

2 corrections. With these
newly obtained results, we determine the two unknown
LDMEs using potential models and make predictions for
relevant decay widths in Sec. VII. Finally, in Sec. VIII, we
present a brief summary.

II. DECAY OF HEAVY QUARKONIUM IN NRQCD

The Lagrangian of NRQCD is derived from the QCD
Lagrangian by integrating out the degrees of freedom of
order mQ, the mass of the heavy quark. Local 4-fermion

operators are added to accommodate the inclusive annihi-
lation decay of heavy quarkonium which happens at scale
of order mQ. The Lagrangian of NRQCD is

LNRQCD ¼ Llight þLheavy þ �L: (1)
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Here Lheavy describes nonrelativistic heavy quarks and

antiquarks and is given by

Lheavy ¼ c y
�
iDt þ D2

2mQ

�
c þ �y

�
iDt � D2

2mQ

�
�; (2)

where c is the Pauli spinor field that annihilates a heavy
quark, � is the Pauli spinor field that creates a heavy
antiquark, and Dt and D are the time and space compo-
nents of the gauge-covariant derivative D�. Terms corre-
sponding to light quarks and gluons are given byLlight and

Llight ¼ � 1

2
trG��G

�� þX
�q i 6Dq; (3)

where G�� is the gluon field strength tensor, q is the Dirac

spinor field for light quarks, and the sum is over nf flavors

of light quarks. Relativistic corrections to the basic effec-
tive lagrangian Lheavy þLlight are included in �L and its

leading terms are those bilinear in the heavy quark or
antiquark field,

�Lbilinear¼ c1
8m3

Q

ðc yðD2Þ2c ��yðD2Þ2�Þ

þ c2
8m2

Q

ðc yðD �gE�gE �DÞc

þ�yðD �gE�gE �DÞ�Þ
þ c3
8m2

Q

ðc yðiD�gE�gE� iDÞ ��c

þ�yðiD�gE�gE� iDÞ ���Þ
þ c4
2mQ

ðc yðgB ��Þc ��yðgB ��Þ�Þ; (4)

where Ei ¼ G0i and Bi ¼ 1
2 �

ijkGjk are the electric and

magnetic components of the gluon field strength tensor
G��.

Further corrections include the description of inclusive
annihilation decay of heavy quarkonium and can be
achieved by adding local 4-fermion interactions as

�L4-fermion ¼
X
n

fnð��Þ
mdn�4

Q

Onð��Þ; (5)

where �� is the NRQCD factorization scale, Onð��Þ is
the local 4-fermion operator, dn is the naive scaling di-
mension of the operator, and fnð��Þ is the short-distance
coefficient which can be calculated perturbatively.

Thus the decay width of heavy quarkonium can be given
by the following factorization formula

�ðHÞ ¼ X
n

2 Imfnð��Þ
mdn�4

Q

hHjOnð��ÞjHi; (6)

where heavy quarkonium state in the Fock space can be
written as [2]

jHð2Sþ1LJÞi¼Oð1ÞjQ �Qð2Sþ1L½1�
J Þi

þOðvÞjQ �Qð2Sþ1L�1½8�
J0 Þgi

þOðv2ÞjQ �Qð2S0þ1L½8�
J0 Þgi

þOðv2ÞjQ �Qð2Sþ1L½1;8�
J Þggiþ . . . ; (7)

and the relative importance of the 4-fermion operators
regarding v can be accessed through the velocity scaling
rules outlined in Ref. [2]. We conform to this standard
NRQCD power counting rules throughout this work,
although alternative power counting rules exist [22–24].
A detailed discussion of the influence of different power
counting rules can be found in Ref. [20]. For 1S0 heavy

quarkonium decays at order v2, we need only consider the
dominant 1S0 Fock state and two singlet operators with

dimension 6 and 8:

Oð1S½1�0 Þ ¼ c y��yc ; (8a)

P ð1S½1�0 Þ ¼ 1

2

�
c y��y

�
� i

2
D
$�2

c þ H:c:

�
; (8b)

for light hadron decay, and

OEMð1S½1�0 Þ ¼ c y�j0ih0j�yc ; (9a)

P EMð1S½1�0 Þ ¼ 1

2

�
c y�j0ih0j�y

�
� i

2
D
$�2

c þ H:c:

�
; (9b)

for electromagnetic decay. For a generic color-singlet op-
erator of the form On ¼ c yK0

n��
yKnc , applying the

vacuum-saturation approximation [2], we get

hHjOnjHi ¼ X
X

hHjc yK0
n�jXihXj�yKnc jHi

� hHjc yK0
n�j0ih0j�yKnc jHi; (10)

where the omitted terms are of relative order v4 and are
irrelevant of our calculations here. Therefore, in the fol-
lowing we use the notations

hOð1S½1�0 ÞiH :¼ hHð1S½1�0 ÞjOð1S½1�0 ÞjHð1S½1�0 Þi
� hHð1S½1�0 ÞjOEMð1S½1�0 ÞjHð1S½1�0 Þi; (11a)

hP ð1S½1�0 ÞiH :¼ hHð1S½1�0 ÞjP ð1S½1�0 ÞjHð1S½1�0 Þi
� hHð1S½1�0 ÞjP EMð1S½1�0 ÞjHð1S½1�0 Þi: (11b)

Then the decay width of 1S0 heavy quarkonium at order

v2 is
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�ðHð1S½1�0 Þ ! LHÞ ¼ Fð1S½1�0 Þ
m2

Q

hOð1S½1�0 ÞiH

þGð1S½1�0 Þ
m4

Q

hP ð1S½1�0 ÞiH; (12a)

�ðHð1S½1�0 Þ ! ��Þ ¼ F��ð1S½1�0 Þ
m2

Q

hOð1S½1�0 ÞiH

þG��ð1S½1�0 Þ
m4

Q

hP ð1S½1�0 ÞiH; (12b)

where the leading order LDME is related to the wave
function at the origin as

hOð1S½1�0 ÞiH ¼ Nc

2	
jRHð0Þj2; (13)

and a definition of the ratio of LDMEs is important in this
work [20]

hq2riH ¼ h0j�yð� i
2D
$Þ2rc jHi

h0j�yc jHi ; (14)

where q is half the relative momentum of the heavy quark
and antiquark and it is also convenient to define

hv2riH ¼ hq2riH=m2r
Q : (15)

To calculate the short-distance coefficients F and G in
Eq. (12), we use the matching method [2]. Since the
short-distance coefficients are insensitive to the long-
distance dynamics, we can substitute the bound state with
a pair of on shell quark and antiquark separated by a small
relative momentum and exploit the equivalence of pertur-
bative QCD and perturbative NRQCD to determine the
short-distance coefficients

AðQ �Q ! Q �QÞjpert QCD
¼ X

n

fnð��Þ
mdn�4

Q

hQ �QjOnð��ÞjQ �Qijpert NRQCD: (16)

The left side of this matching equation can be calculated
perturbatively in QCD, and the right side can be calculated
perturbatively in NRQCD. Then, we can get the short-
distance coefficients fnð��Þ, whose imaginary part gives
F and G in Eq. (12).

III. KINEMATICS AND METHOD OF
CALCULATION

We work in the rest frame of the heavy quarkonium and
assume the following notations for the momenta of heavy
quark and antiquark

pQ ¼ 1

2
Pþ q; (17a)

p �Q ¼ 1

2
P� q; (17b)

where

P ¼ ð2Eq; 0Þ; (18a)

q ¼ ð0;qÞ; (18b)

and Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q þ q2
q

.

In our calculation, we adopt the covariant spin-projector
method [25–27] to project out the spin-singlet amplitudes.
The projector we use is [27]

�0 ¼ 1

2
ffiffiffi
2

p ðEq þmQÞ
�
P

2
þ qþmQ

�

� ½ðPþ 2EqÞ�5ð�Pþ 2EqÞ�
8E2

q

�
P

2
� q�mQ

�
: (19)

To expand the decay width in terms of q, we make the
following rescaling for any momentum k;

k ! k0Eq=mQ; (20)

which leads all momenta independent of q, that is, @k0i �
k0j=@q ¼ 0. Thus we can expand the amplitudes in q before

loop integration and phase space integration and extract the
S-wave contribution by making the replacement

q�q� ! q2

D� 1

�
�g�� þ

P0
�P

0
�

4m2
Q

�
; (21)

where P0
� is the rescaled momentum of the heavy quark-

onium which equals ð2mQ; 0Þ in its rest frame.

Contributions coming from potential regions in perturba-
tive QCD and perturbative NRQCD cancel each other
exactly so we neglect these terms to simplify calculations.

IV. PERTURBATIVE QCD RESULTS

We use FEYNARTS [28,29] to generate Feynman dia-
grams and amplitudes and use self-written MATHEMATICA

codes to perform the remained calculations. Ultraviolet
and infrared divergences are regularized with dimensional
regularization and D ¼ 4� 2� is assumed. Ultraviolet
divergences are removed by renormalization. We define
the renormalized heavy quark mass mQ, heavy quark field

c Q, and gluon field A� in the on-mass-shell scheme (OS)

and define the QCD coupling constant g in theMS scheme,
that is,

g0 ¼ ZMS
g g; m0

Q ¼ ZOS
mQ

mQ;

c 0
Q ¼

ffiffiffiffiffiffiffiffi
ZOS
2

q
c Q; A0

� ¼
ffiffiffiffiffiffiffiffi
ZOS
3

q
A�;

(22)

where terms with superscript 0 denote bare quantities and
Zi ¼ 1þ �Zi with �Zi given by
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�ZOS
mQ

¼�3CF

�s

4	
f�

�
1

�UV
þ4

3
þ2lnð2Þ

�
; (23a)

�ZOS
2 ¼�CF

�s

4	
f�

�
1

�UV
þ 2

�IR
þ6lnð2Þþ4

�
; (23b)

�ZOS
3 ¼ �s

4	
f�ð
0ðnfÞ�2CAÞ

�
1

�UV
� 1

�IR

�
; (23c)

�ZMS
g ¼��s

4	


0ðnfÞ
2

f�

�
1

�UV
þ ln

�m2
Q

�2
r

�
þ2lnð2Þ

�
; (23d)

where f� ¼ �ð1þ �Þ½ 4	�2
r

ð2mQÞ2��, 
0ðnfÞ ¼ 11
3 CA � 4

3TFnf,

�r is the renormalization scale and nf is the number of

light quarks.

A. 1S½1�
0 ! LH

At leading order in �s, there are two diagrams as shown
in Fig. 1. The corresponding Born level decay width and its
relativistic corrections are

�Bð1S½1�0 !ggÞ¼ 1

2!

1

2ð2mQÞ�ð2DÞð�s4	Þ2 16

9mQ

�ð1�2�Þð1��ÞhOð1S½1�0 ÞiLO; (24a)

�R
Bð1S½1�0 !ggÞ¼�4

3

q2

m2
Q

�Bð1S½1�0 !ggÞ; (24b)

where�ð2DÞ ¼ 1
8	

�ð1��Þ
�ð2�2�Þ ð 	

m2
Q

Þ� is the two-body phase space
for q ¼ 0 in D dimension. Our results agree with those in
Refs. [6,7,9]. At next-to-leading order in �s, there are
virtual corrections and real corrections. Figure 2 corre-
sponds to Feynman diagrams of virtual corrections, where
only distinct forms of diagrams are shown. Contribution of
these virtual corrections reads

�Vð1S½1�0 ! ggÞ
¼ CA�s

	
�Bð1S½1�0 ! ggÞf�

��
� 1

�2
þ

�
� 11

6
þ nf

9

�
1

�

þ 1

36

�
�44þ 19	2 þ ð4nf � 66Þ ln

�4m2
Q

�2
r

���

þ q2

m2
Q

�
4

3

1

�2
� 4

27�
ðnf � 31Þ þ 44

9
lnð2Þ

þ 1

324
ð�4ð11þ 24 lnð2ÞÞnf þ 24ð33� 2nfÞ

� ln

�m2
Q

�2
r

�
� 267	2 þ 874Þ

��
: (25)

While other terms agree with those in Refs. [7,9], the result
of relativistic correction here is new. Feynman diagrams
for real corrections are drawn in Fig. 3 and 4, which
correspond to final states with three gluons and q �qg,
respectively. Results for these two sets of real corrections
are

�ð1S½1�0 ! gggÞ ¼ CA�s

	
f��Bð1S½1�0 ! ggÞ

�
1

�2
þ 11

6�
þ 181

18

� 23

24
	2 þ q2

m2
Q

�
� 4

3�2
� 4

�
þ 7

54

� ð�139þ 12	2Þ
��
; (26a)

�ð1S½1�0 ! q �qgÞ ¼ nf�Bð1S½1�0 ! ggÞ�s

	

f�
�ð1þ �Þ�ð1� �Þ

� TF

�
� 2

3�
� 16

9
þ q2

m2
Q

�
8

9�
þ 104

27

��
:

(26b)

While other terms agree with those in Refs. [7,9], the
results of relativistic corrections here are new. Adding
Eqs. (25) and (26), we obtain the NLO QCD corrections
plus relativistic corrections for the light hadron decay
width of 1S0 heavy quarkonium

FIG. 2. Representative Feynman diagrams for 1S½1�0 ! gg at
one-loop level.

FIG. 1. Feynman diagrams for 1S½1�0 ! gg at Born level.

FIG. 3. Representative Feynman diagrams for 1S½1�0 ! ggg.

FIG. 4. Representative Feynman diagrams for 1S½1�0 ! q �qg.
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�NLO
QCDð1S½1�0 ! LHÞ
¼ CA�s

	
f��Bð1S½1�0 ! ggÞ

�
1

216

�
�64nf

þ 12ð2nf � 33Þ ln
�4m2

Q

�2
r

�
� 93	2 þ 1908

�

þ q2

m2
Q

�
16

27�
þ 1

324

�
24

�
ln

�m2
Q

�2
r

�
þ 2 lnð2Þ

�
ð33� 2nfÞ

þ 164nf þ 237	2 � 4964

���
: (27)

Adding these terms together, we get the 1S0 decay width

into light hadrons in perturbative QCD

�QCDð1S½1�0 !LHÞ¼�Bð1S½1�0 !ggÞ
þ�R

Bð1S½1�0 !ggÞþ�NLO
QCDð1S½1�0 !LHÞ:

(28)

B. 1S½1�
0 ! ��

For QCD corrections to the electromagnetic decay, there
is no real correction. Diagrams at Born level and one-loop
level are the same as those in Fig. 1 and 2 except that the
final state gluons are substituted with photons and dia-
grams containing three-gluon or four-gluon vertexes are
excluded. We then get the results

�Bð1S½1�0 ! ��Þ ¼ 1

2!

1

2ð2mQÞ�ð2DÞð�4	Þ2
8e4Q
mQ

� hOð1S½1�0 ÞiLO; (29a)

�R
Bð1S½1�0 ! ��Þ ¼ � 4

3

q2

m2
Q

�Bð1S½1�0 ! ��Þ; (29b)

�Vð1S½1�0 ! ��Þ ¼ �Bð1S½1�0 ! ��Þf� �s

	

�
	2 � 20

3

þ q2

m2
Q

�
16

9�
þ 196� 15	2

27

��
; (29c)

where eQ is the electric charge of the heavy quark. Results

of relativistic corrections in Eq. (29c) are new and the other
results agree with those previously calculated as summa-
rized in Ref. [6]. Adding Eqs. (29a)–(29c), we get the result
for the �� decay width of 1S0 heavy quarkonium in per-

turbative QCD

�QCDð1S½1�0 ! ��Þ
¼ �Bð1S½1�0 ! ��Þ þ �R

Bð1S½1�0 ! ��Þ
þ �Vð1S½1�0 ! ��Þ: (30)

V. PERTURBATIVE NRQCD RESULTS

Order �sv
2 corrections to the leading order LDME

hO0ð1S½1�0 Þi in perturbative NRQCD have been calculated

in Ref. [2], where a cutoff was introduced to regularize the
ultraviolet divergences. We rewrite it in dimensional regu-
larization,

hO0ð1S½1�0 ÞiNLO ¼ hO0ð1S½1�0 ÞiLO
�
�
1� 4�sCF

3	

�
�2

r

�2
�

�
�
�

1

�UV
� 1

�IR

�
q2

m2
Q

�
:

(31)

We define the renormalized operator ORð1S½1�0 Þ using the

MS scheme

O 0ð1S½1�0 Þ ¼ ZMS
O ORð1S½1�0 Þ; (32)

where

ZMS
O ¼1�4�sCF

3	

�
�2

r

�2
�

�
�
�

1

�UV
þ ln4	��E

�
q2

m2
Q

: (33)

Therefore

hORð1S½1�0 ÞiNLO ¼
�
1þ 4�sCF

3	

�
�2

r

�2
�

�
�
�
1

�
þ ln4	� �E

�

� q2

m2
Q

�
hOð1S½1�0 ÞiLO: (34)

Considering that

hP ð1S½1�0 ÞiLO ¼ q2hOð1S½1�0 ÞiLO; (35)

the decay width into light hadrons in perturbative NRQCD
becomes

�NRQCDð1S½1�0 ! LHÞ

¼
�
Fð1S½1�0 Þ þ q2

m2
Q

�
Gð1S½1�0 Þ þ 4�sCF

3	

�
�2

r

�2
�

�
�

�
�
1

�
þ ln4	� �E

�
Fð1S½1�0 Þ

�� hOð1S½1�0 ÞiLO
m2

Q

: (36)

The electromagnetic decay rate can be obtained by replac-

ing Fð1S½1�0 Þ and Gð1S½1�0 Þ with F��ð1S½1�0 Þ and G��ð1S½1�0 Þ,
respectively.

VI. MATCHING

Finally we obtain the short-distance coefficients by
equating results from perturbative QCD in Eqs. (28) and
(30) with that from perturbative NRQCD in Eq. (36)
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Fð1S½1�0 Þ ¼ 4	�2
s

9

�
1þ �s

	

�64nf þ 12ð2nf � 33Þ lnð4m2
Q

�2
r
Þ � 93	2 þ 1908

72

�
; (37a)

Gð1S½1�0 Þ ¼ 4	�2
s

9

�
� 4

3
þ �s

	

1

108
½48 lnð2Þð25� 2nfÞ þ 164nf � 4964

þ 24ð33� 2nfÞ ln
�m2

Q

�2
r

�
þ 192 ln

�
�2

�

m2
Q

�
þ 237	2

��
; (37b)

F��ð1S½1�0 Þ ¼ 2	�2e4Q

�
1þ �s

	

	2 � 20

3

�
; (37c)

G��ð1S½1�0 Þ ¼ 2	�2e4Q

�
� 4

3
þ �s

	

1

27

�
48 ln

�
�2

�

m2
Q

�
� 96 lnð2Þ � 15	2 þ 196

��
; (37d)

where QCD corrections for Gð1S½1�0 Þ and G��ð1S½1�0 Þ are
new while the other results agree with those in
Refs. [2,6,7,9]. With these short-distance coefficients, we
can update the decay widths of 1S0 heavy quarkonium into
light hadrons and two photons.

VII. PHENOMENOLOGY

The above obtained result can be used in 1S0 charmo-

nium and bottomonium decays. In the following we will
focus on the �c decay width into light hadrons (approxi-
mately the total width) and decay width into two photons.
In these decays there are two unknown LDMEs. In princi-
ple, one can fix these LDMEs either through direct fit with
experimental data [30] or calculation from lattice QCD
[17,18]. The order v2 LDME is ultraviolet divergent and
needs to be regularized [20]. For lattice calculations this is
performed by imposing a hard cutoff regulator. However,
due to slow convergence of this regularization, the results
available from lattice calculations of order v2 LDME
suffer from large uncertainties [17,18]. On the other
hand, we find that direct fit of the two LDMEs using
experimental measurements of �� width and total width
of �c can not give reliable values due to the approximate
linear dependence of the two theoretical predictions for
these two decays.

Therefore, we determine the two LDMEs using the
potential model method recently introduced in Refs.
[19–21]. A widely accepted potential model, the Cornell
potential [31]

VðrÞ ¼ ��

r
þ �r; (38)

is chosen in this work. Since the spin dependent effect is
not included in this potential, the LDMEs calculated this
way are accurate up to corrections of relative order v2.
However, as argued in Ref. [20], this error is in fact much
less than the order v2 (about 30%), thus we attach an
uncertainty of 30% to the central value of the order v2

LDMEs to account for the error due to this static potential
approximation.

In solving the Schrödinger equation [32], there are three
unknown parameters. � ¼ 0:1682� 0:0053 GeV2 is
taken from the average of lattice calculations [20] and
the mass parameter is expressed in terms of the 1S-2S
mass splitting [19,20]. Here we take mðc ð2SÞÞ �
mðJ=c Þ ¼ 589:188� 0:028 MeV [33]. The last remain-
ing parameter is fixed by equating theoretical predictions
to experimentally measured results. When we use the
decay width formula, we resum a class of relativistic
corrections at leading order in �s for �� decay as in
Refs. [20,21]. For the experimental input, we make use
of this approximation �LHð�cðnSÞÞ ¼ �totalð�cðnSÞÞ. For
�c, we use �

��ð�cÞ (or �LHð�cÞ) as input to obtain one set
LDMEs, which are then utilized to obtain �LHð�cÞ (or
���ð�cÞ). For �cð2SÞ, we use the total width as input and
make predictions for the �� decay width. We takemc to be
1:4� 0:2 GeV [20], � ¼ 1=137, �QCD ¼ 0:39 GeV and

vary the renormalization scale �r and NRQCD factoriza-
tion scale �� separately from 1 GeV to 3 GeV with 2 GeV

TABLE I. LDMEs obtained from potential model for �c and
the predicted total width of �c, the superscript �� indicates that
the observed width of �c ! �� is used as input. The second row
gives central values while the followed rows give variations with
respect to related parameters.

Case jR��
�c
ð0Þj2ðGeV3Þ hv2i���c

�totalð�cÞ (MeV)

Central 0.881 0.228 31.4

þ�hv2i�c
0.078 0.068 �3:5

��hv2i�c
�0:075 �0:068 2.6

þ�mc 0.187 �0:065 0.3

��mc �0:167 0.102 �3:4

þ�� 0.022 0.020 �0:9

��� �0:021 �0:019 0.8

þ��r �0:059 0.005 �9:2

���r 0.217 �0:018 27.3

þ��� �0:036 0.003 �0:6

���� 0.064 �0:005 1.1

þ���c
0.232 �0:019 10.3

����c
�0:243 0.021 �9:9
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as the central value. The LDMEs are expressed in terms of
the wave function at the origin jRð0Þj2 and hv2i as defined
in Eqs. (13) and (15). In each determination of these
LDMEs and the corresponding decay width, we evaluate
the variations caused by the uncertainties of the parameters
and summarize them in the tables. Because the potential
does not take into account of the spin effects, we attach
each v2 LDME an uncertainty hv2i of 30% of the central
value. In each case, various uncertainties are added in
quadrature to give the total uncertainty.

For �c, with the �� width ���ð�cÞ ¼ 7:2� 0:7�
2:0 KeV [33] as input, the determined LDMEs are

jR��
�c
ð0Þj2 ¼ 0:881þ0:382

�0:313 GeV3; (39a)

hv2i���c
¼ 0:228þ0:126

�0:100; (39b)

where the superscript �� indicates that we use the ��
decay width as input. Various uncertainties are summa-
rized in Table I. The most significant uncertainty comes
from the experimental data. At order �sv

2, another depen-
dence on NRQCD factorization scale �� is introduced.
However, as we can see from Table I, variations of LDMEs
are small when we change �� from 1 GeV to 3 GeV. In
Fig. 5, we present �r dependence of three sets of LDMEs
in terms of jR�c

ð0Þj2 and hv2i�c
, where the other parame-

ters are fixed to their central values. Of these three sets of
lines, LO represents calculation without any QCD correc-
tions, NLO� corresponds to that including QCD correc-
tions but only for terms at leading order in v, and NLO
means our new result with order �sv

2 correction taken into
account. The LDMEs corresponding to NLO� have been
computed earlier in Ref. [20] and can be compared here
with the values including the new order �sv

2 corrections.
We can see from this figure that these two lines are close to
each other, which reflects the fact that the effect of the new
order �sv

2 correction is not large. Utilizing this set of
LDMEs as input, we get the total decay width for �c

�totalð�cÞ ¼ 31:4þ29:3
�14:4 MeV: (40)

This value is in consistency with experimental measure-
ment 28:6� 2:2 MeV [33], although there are large un-
certainties. The details of the uncertainties are summarized
in Table I. Here, the uncertainty induced by the �r depen-
dence predominates over that from the experimental input
of the �� width of �c.
If, on the other hand, we use the total width of �c,

�totalð�cÞ ¼ 28:6� 2:2 MeV [33] as input, then we get
another set of LDMEs

1.0 1.5 2.0 2.5 3.0
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0.6

0.7

0.8

0.9

1.0

1.1

1.2

r GeV

c
0 2 GeV3

NLO
NLO
LO

1.0 1.5 2.0 2.5 3.0
0.20

0.22

0.24

0.26

0.28

r GeV

v2
c

NLO
NLO
LO

FIG. 5 (color online). �r dependence of LDMEs for �c using
the observed �� width as input. LO represents values without
QCD corrections, NLO� includes QCD corrections only for
terms at leading order in v, and NLO takes into account our
new QCD corrections to order v2 terms.

TABLE II. LDMEs obtained from potential model for �c and
the predicted �� width of �c, where the superscript LH indicates
that the observed total width of �c is used as input. The second
row gives the central values while the followed rows give
variations with respect to related parameters.

Case jRLH
�c
ð0Þj2 (GeV3) hv2iLH�c

�ð�c ! ��Þ (KeV)
Central 0.814 0.234 6.61

þ�hv2i�c
0.194 0.070 0.90

��hv2i�c
�0:131 �0:070 �0:54

þ�mc 0.163 �0:065 �0:07

��mc �0:090 0.095 0.71

þ�� 0.042 0.018 0.19

��� �0:038 �0:018 �0:16
þ��r 0.201 �0:017 2.47

���r �0:189 0.016 �2:73

þ��� �0:020 0.002 0.13

���� 0.036 �0:003 �0:21

þ���c
0.052 �0:004 0.46

����c
�0:053 0.005 �0:47
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jRLH
�c
ð0Þj2 ¼ 0:814þ0:332

�0:256 GeV3; (41a)

hv2iLH�c
¼ 0:234þ0:121

�0:099; (41b)

where the superscript LH indicates that we use the total
width of �c as input. Variations with respect to the pa-
rameters are summarized in Table II. The experimental
uncertainty in this case is small and the main uncertainty
comes from the relatively strong �r dependence of the
theoretical prediction. The �r dependence of the two
LDMEs is shown in Fig. 6. As in previous case, we display
another two sets of LDMEs, where only QCD corrections
at leading order in v are taken into account or no QCD
correction is considered. The two sets with QCD correc-
tions show great improvement of �r dependence with

respect to the one without QCD corrections, and they are
almost parallel to each other. The only difference between
the two sets of values is that the �sv

2 correction enhances
jR�c

ð0Þj2 by about 30%. This enhanced LDME coincides

with previously obtained value using ���ð�cÞ as input. The
value of hv2i�c

is relatively stable. With this set of LDMEs,

we obtain the �� decay width

���ð�cÞ ¼ 6:61þ2:77
�2:83 KeV; (42)

which is also consistent with the experimental measure-
ment 7:2� 0:7� 2:0 KeV [33].
Since now we have two sets of values for the two

LDMEs for �c in Eqs. (39) and (41), we can combine
these values to get a better estimation. The uncertainties in
Table I and II are correlated, and we use the method in
Ref. [20] to treat these correlations. First, we construct a

two-by-two covariance matrix for hOð1S½1�0 Þi���c
and

hOð1S½1�0 ÞiLH�c
. It describes correlations between the varia-

tions in the two tables and is defined as Cjk ¼ P
i�ji�ki

with �ji ¼ 1
2 ðOþ

ji �O�
ji Þ. The indexes j, k refer to these

two leading order LDMEs and i runs through every item in
Table I and II. Oþ

ji and O�
ji correspond to the plus and

minus variations of the LDMEs. For the i-th item in Table I
or Table II, we define the �2

i as

�2
i ¼

X
j;k

ðOji � �OiÞðC�1ÞjkðOki � �OiÞ (43)

and minimize it to get the average value �Oi for hOð1S½1�0 Þ�c
.

Once we obtain the values of hOð1S½1�0 Þ�c
, we use the

potential model to get the values of hP ð1S½1�0 Þ�c
. We per-

form this calculation for each of the items in Table I and II,
treat the renormalization scale �r and NRQCD factoriza-
tion scale �� simply as the same quantities in the two
tables and express the results in terms of jR�c

ð0Þj and
hv2i�c

. The results are

jR�c
ð0Þj2 ¼ 0:834þ0:281

�0:197 GeV3; (44a)

hv2i�c
¼ 0:232þ0:121

�0:098; (44b)

with the details of the uncertainties given in Table III. We
note that the uncertainties here for jR�c

ð0Þj2 are smaller

than those in Eqs. (39) and (41).
For �cð2SÞ, we use the observed total width 14� 7 Mev

[33] as input and get the LDMEs for �cð2SÞ
jRLH

�cð2SÞð0Þj2 ¼ 0:423þ0:245
�0:230 GeV3; (45a)

hv2iLH�cð2SÞ ¼ 0:255þ0:130
�0:109: (45b)

Some potential model calculations of the squared wave
function at the origin in Ref. [34] give 0.418 for the
logarithmic potential [35], 0.529 for the QCD-motivated
potential model proposed by Buchmüller and Tye[36], and
0.559 for the power-law potential [37]. Our result is con-
sistent with their values. Table IV gives details with various
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c
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FIG. 6 (color online). �r dependence of LDMEs for �c using
the observed total width as input. LO represents values without
QCD corrections, NLO� includes QCD corrections only for
terms at leading order in v, and NLO takes into account our
new QCD corrections to order v2 terms.
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uncertainties. In the �cð2SÞ case, both the �r dependence
of theoretical result and the experimental input of the total
width have large uncertainties and therefore the LDMEs
are subject to relatively large uncertainties. In Fig. 7, we
present �r dependence of this set of LDMEs. The shape of
the lines is similar to Fig. 6 except the value for
jR�cð2SÞð0Þj2 here is smaller by about a factor of 2.

Exploiting this set of LDMEs, we can make predictions
for the �� decay width of �cð2SÞ,

���ð�cð2SÞÞ ¼ 3:34þ2:06
�2:10 KeV: (46)

This prediction is consistent with the experimental
observation that the branching fraction of �� decay is

smaller than 5� 10�4 [33]. Another experiment
measured ���ð�cð2SÞÞBð�cð2SÞ ! K �K	Þ ¼ ð0:18�
0:05� 0:02Þ���ð�cð1SÞÞBð�cð1SÞ ! K �K	Þ [38] and as-

sumed that the branching fractions of �c and �cð2SÞ
decays into KSK	 were equal and made use of �ð�c !
��Þ ¼ 7:4� 0:4� 2:3 KeV and then derived
�ð�cð2SÞÞ ¼ 1:3� 0:6 KeV [33,38]. Our result is not in
contradiction with their measurement within errors.

VIII. SUMMARY

Within the framework of NRQCD, we calculate order
�sv

2 corrections to decays of 1S0 heavy quarkonium into

light hadrons and two photons. In both processes, infrared
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NLO
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0.28

0.30
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v2
c 2 S

LH

NLO
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FIG. 7 (color online). �r dependence of LDMEs for �cð2SÞ
using the total width as input. LO represents values without QCD
corrections, NLO� includes QCD corrections only for terms at
leading order in v, and NLO takes into account our new QCD
corrections to order v2 terms.

TABLE III. The averages of the LDMEs for �c. The second
row gives the central values and subsequent rows give variations
with respect to various uncertainties.

Case jR�c
ð0Þj2 (GeV3) hv2i�c

Central 0.834 0.232

þ�hv2i�c 0.159 0.070

��hv2i�c
�0:115 �0:070

þ�mc 0.170 �0:065

��mc �0:113 0.097

þ�� 0.036 0.019

��� �0:033 �0:018

þ��r 0.124 �0:010

���r �0:069 0.006

þ��� �0:025 0.002

���� 0.044 �0:004

þ����
�c 0.069 �0:006

�����
�c

�0:072 0.006

þ��total
�c 0.037 �0:003

���total
�c

�0:037 0.003

TABLE IV. LDMEs obtained from potential model for �cð2SÞ
and the predicted �� width of �cð2SÞ, where the superscript LH
indicates that the total width of �cð2SÞ is used as input. The
second row gives the central values while the followed rows give
variations with respect to related parameters.

Case jRLH
�c
ð0Þj2 (GeV3) hv2iLH�c

�ð�cð2SÞ ! ��Þ (KeV)
Central 0.423 0.255 3.34

þ�hv2i�cð2SÞ 0.121 0.076 0.58

��hv2i�cð2SÞ �0:077 �0:076 �0:33
þ�mc 0.077 �0:069 �0:08

��mc �0:035 0.099 0.47

þ�� 0.024 0.019 0.11

��� �0:022 �0:019 �0:10
þ��r 0.102 �0:016 1.22

���r �0:091 0.014 �1:33

þ��� �0:012 0.002 0.07

���� 0.022 �0:003 �0:11

þ���cð2SÞ 0.167 �0:026 1.47

����cð2SÞ �0:192 0.029 �1:58
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divergences are found to be canceled through the matching
of perturbative QCD and perturbative NRQCD results.
There are two unknown NRQCD LDMEs, which are de-
termined using potential model method [19–21] either with
the observed total width or two photon width as input.
When using ���ð�cÞ as input, we get jR��

�c
ð0Þj2 ¼

0:881þ0:382
�0:313 GeV3 and hv2i���c

¼ 0:228þ0:126
�0:100, from which

we predict �totalð�cÞ ¼ 31:4þ29:3
�14:4 MeV. Alternatively,

when using �totalð�cÞ as input, we get jRLH
�c
ð0Þj2 ¼

0:814þ0:332
�0:256 GeV3 and hv2iLH�c

¼ 0:234þ0:121
�0:099, and we pre-

dict the �� width of �c to be ���ð�cÞ ¼ 6:61þ2:77
�2:83 KeV.

All these predictions agree well with experimental data.
We then combine these two kinds of determination of
LDMEs and get the average values jR�c

ð0Þj2 ¼
0:834þ0:281

�0:197 GeV3 and hv2i�c
¼ 0:232þ0:121

�0:098. For �cð2SÞ,
we use the observed total width as input and
find jRLH

�cð2SÞð0Þj2 ¼ 0:423þ0:245
�0:230 GeV3 and hv2iLH�cð2SÞ ¼

0:255þ0:130
�0:109. With this set of LDMEs, we predict the ��

width of �cð2SÞ to be 3:34þ2:06
�2:10 KeV, which is not in

contradiction with data within uncertainties.
Consequently, the order �sv

2 corrections (especially the
one to the decay into light hadrons) are found to have
significant effects on improving the consistency between
theoretical predictions and experimental measurements.
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Note added.—When we finished the calculations and are

preparing this paper, a related work appears [39] that also
gives �sv

2 corrections to the �� decay width. We find our
results for this channel agree with theirs, while we have
also calculated the light hadron decay width.
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