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O(a;v?) corrections to hadronic and electromagnetic decays of 1S0 heavy quarkonium
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We study O(a,v?) corrections to decays of ISO heavy quarkonium into light hadrons and two photons
within the framework of nonrelativistic QCD and find these O(a,v?) corrections to have significant
contributions especially for the decay into light hadrons. With these new results, experimental measure-
ments of the hadronic width and the yy width of 7. can be described more consistently. By fitting
experimental data, we find the long-distance matrix elements of 7. to be |me_ ) = 0.834f83%§% GeV?
and (v?), = 0.23270131. Moreover, 7.(25) is also discussed and the yy decay width is predicted to be

3.341306 KeV.
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I. INTRODUCTION

Heavy quarkonium plays an important role in establish-
ing and understanding quantum chromodynamics (QCD),
the fundamental theory of strong interactions. Because of
the existence of several energy scales involved with these
systems, heavy quarkonium provides an ideal laboratory
for testing the perturbative and nonperturbative effects of
QCD. An effective theory suitable for describing these
systems is nonrelativistic QCD (NRQCD) [1], which is
derived from QCD by considering the underlying nonrela-
tivistic properties. According to NRQCD factorization [2],
decays of heavy quarkonium into light hadrons or photons
can be organized in a hierarchy of long-distance matrix
elements (LDMEs), which are classified in terms of v, the
relative velocity of the heavy quarks in heavy quarkonium.

Decays of 'S, heavy quarkonium into light hadrons
(LH) and two photons are among the simplest processes.
The short-distance coefficients for corresponding LDMEs
at leading order in v have been computed previously to
next-to-leading order (NLO) in «, [2—-12]. Moreover, that
coefficient for yy decay has been calculated to next-to-
next-to-leading order (NNLO) in «, [13]. However, all
coefficients of LDMEs beyond leading order in v are
known at best to leading order in « [6,14-16]. It is well
known that the calculation at leading order in «, suffers
from large uncertainties due to strong renormalization
scale dependence. Therefore, to give a more precise de-
scription for 'S, heavy quarkonium decays beyond leading
order in v, QCD corrections to these coefficients are ap-
parently needed.

In this paper, we will study QCD corrections to the
coefficients of order v? LDME, namely, corrections at
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order a;v? for 'S, quarkonium decays. Up to this order
of corrections, there are two unknown LDMESs which
should be fixed. Unfortunately, lattice calculation of these
LDME:s [17,18], though based on first principles, suffers
from large uncertainties. In Refs. [19-21], a new method
was introduced to estimate LDMEs by combining potential
models, lattice calculation, and experimental data. This
method will also be used in this paper to determine the
two unknown LDMEs. Then with our calculated a,v?
corrections, we will be able to get updated estimates for
the decay widths of 'S, heavy quarkonium into light
hadrons and two photons.

The rest of this paper is organized as follows. We briefly
introduce the theoretical procedures for calculations of
heavy quarkonium decays in Sec. II. In Sec. III, we de-
scribe kinematics and method of calculation for these
processes. Results in perturbative QCD are summarized
in Sec. 1V, while corresponding results in perturbative
NRQCD are summarized in Sec. V. By using the matching
condition, we give the updated short-distance coefficients
in Sec. VI to include our new a,v? corrections. With these
newly obtained results, we determine the two unknown
LDME:s using potential models and make predictions for
relevant decay widths in Sec. VII. Finally, in Sec. VIII, we
present a brief summary.

II. DECAY OF HEAVY QUARKONIUM IN NRQCD

The Lagrangian of NRQCD is derived from the QCD
Lagrangian by integrating out the degrees of freedom of
order mg, the mass of the heavy quark. Local 4-fermion
operators are added to accommodate the inclusive annihi-
lation decay of heavy quarkonium which happens at scale
of order my. The Lagrangian of NRQCD is

Lxracp = Liigh + Lheavy + 6L (1)
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Here Ly, describes nonrelativistic heavy quarks and
antiquarks and is given by

D2 D2
Ly = 61 (iD, 4 5 )+ x4 (iDi = 50N @
where i is the Pauli spinor field that annihilates a heavy
quark, y is the Pauli spinor field that creates a heavy
antiquark, and D, and D are the time and space compo-
nents of the gauge-covariant derivative D#. Terms corre-

sponding to light quarks and gluons are given by L;,, and

1 .
Lijghe = — 2 trG,,G*" + Z qipq, (3)

where G, is the gluon field strength tensor, g is the Dirac
spinor field for light quarks, and the sum is over n; flavors
of light quarks. Relativistic corrections to the basic effec-
tive lagrangian L.,y + Ljjgn, are included in 6 L and its
leading terms are those bilinear in the heavy quark or
antiquark field,

5-Ebilinear =

g (D22 = )1 (D2)2)
Q

to 2(tﬂ*(D ¢E—gE-D)y

+X*(D~gE —gE-D)y)

8 2(¢ﬁ(zD><gE gE XiD) oy

+XT(1D><gE —gEXiD) - oy)

+2i(¢*(gB~a)</f—x*(gB-«r)x), (4)
mo

where E' = G% and B’ = ] €/*G/* are the electric and
magnetic components of the gluon field strength tensor
GH”.

Further corrections include the description of inclusive
annihilation decay of heavy quarkonium and can be
achieved by adding local 4-fermion interactions as

fn(lu“/\)
Q

0 -£4 fermion — z

O, (), (&)

where u, is the NRQCD factorization scale, O, (u,) is
the local 4-fermion operator, d,, is the naive scaling di-
mension of the operator, and f,(w,) is the short-distance
coefficient which can be calculated perturbatively.

Thus the decay width of heavy quarkonium can be given
by the following factorization formula

i = 32 G, (wim, ©)
n [¢]

where heavy quarkonium state in the Fock space can be
written as [2]
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o(1)|QOCS*'LEY)
+0W)|Q0S 1L =118 g)
+0(W)|QOCS ! LIY)g)
+0)|QOCSH L gy +..., ()

|H(ZS+1LJ)> —

and the relative importance of the 4-fermion operators
regarding v can be accessed through the velocity scaling
rules outlined in Ref. [2]. We conform to this standard
NRQCD power counting rules throughout this work,
although alternative power counting rules exist [22-24].
A detailed discussion of the influence of different power
counting rules can be found in Ref. [20]. For 'S, heavy
quarkonium decays at order v, we need only consider the
dominant 'S, Fock state and two singlet operators with
dimension 6 and 8:

oSty = ytxxty, (8a)
P(sl) = —[wxx ( ) v+ Hc] (8b)

for light hadron decay, and

Opm('SEh) = ¢ X100 x T 4, (%a)
P ('SH)) = l[w x|0><0|x*(—913)2¢ + He ] (9b)
0 3 < |,

for electromagnetic decay. For a generic color-singlet op-
erator of the form O, = ¢ K| xyxT K, ¥, applying the
vacuum-saturation approximation [2], we get

(H|0,|H) = Z<H|w*ﬂ< XIXXXIX K, | H)

~ (H|yt K, x|0XO0lx T K, | H), (10)

where the omitted terms are of relative order v* and are
irrelevant of our calculations here. Therefore, in the fol-
lowing we use the notations

(OC Sy = (HCSEHIOC Sy HIHC S5 )

~ (H(' i Opy (' SEDIHCSEDY, (1)
(PCSG N = HOSHIPCSTHIEC )
~ (H(' PO Pen (P Sy DIH(C S ). (11b)

Then the decay width of 'S, heavy quarkonium at order
v? is
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F(S[)
mg
L GUsy))
’”Q
w( S5)
mg

w(1S[l])
m

T(H('SI) — LH) = =20 2(0( sy,

Z 0 POSsE Yy (12a)

T(H(SH) — yy) = (O Sthy,

(P(SeNw,  (12)
where the leading order LDME is related to the wave
function at the origin as

(s, = YR 01, (13)
2

and a definition of the ratio of LDMEs is important in this
work [20]

©Olx" (— LDy y|H)
OlxTwlH)

where ¢ is half the relative momentum of the heavy quark
and antiquark and it is also convenient to define

(v = <qzr>H/mér- (15)

To calculate the short-distance coefficients F and G in
Eq. (12), we use the matching method [2]. Since the
short-distance coefficients are insensitive to the long-
distance dynamics, we can substitute the bound state with
a pair of on shell quark and antiquark separated by a small
relative momentum and exploit the equivalence of pertur-
bative QCD and perturbative NRQCD to determine the
short-distance coefficients

A(QQ — 00| pert e
zf"(““<QQ|@n<M>|QQ>|penNRQCD. (16)

<¢12r>H =

, (14)

The left side of this matching equation can be calculated
perturbatively in QCD, and the right side can be calculated
perturbatively in NRQCD. Then, we can get the short-
distance coefficients f,(w,), whose imaginary part gives
F and G in Eq. (12).

II1. KINEMATICS AND METHOD OF
CALCULATION

We work in the rest frame of the heavy quarkonium and
assume the following notations for the momenta of heavy
quark and antiquark

(17a)

"
1
I
~
+
=

~
|
=

(17b)

=
Q1
I
| = N =

PHYSICAL REVIEW D 83, 114038 (2011)

where

= (2E,,0),
q=(0,q),

— [2 2
and Eq = 4/mj + g~
In our calculation, we adopt the covariant spin-projector

method [25-27] to project out the spin-singlet amplitudes.
The projector we use is [27]

(18a)
(18b)

0 1 P .
1 ~ 2V2(E, +mQ)< . Q)
P+ 2FE, Y (=P 2E,
N >8E<% 2B ). 19

To expand the decay width in terms of q, we make the
following rescaling for any momentum k;

k— K'Eq/mo, (20)

which leads all momenta independent of q, that is, dk/ -
K’ /9dq = 0. Thus we can expand the amplitudes in q before

loop integration and phase space integration and extract the
S-wave contribution by making the replacement

2 / /!
q PP,
- [—g,w s ] @1)

Qudv —

where P), is the rescaled momentum of the heavy quark-
onium which equals (2my,0) in its rest frame.
Contributions coming from potential regions in perturba-
tive QCD and perturbative NRQCD cancel each other
exactly so we neglect these terms to simplify calculations.

IV. PERTURBATIVE QCD RESULTS

We use FEYNARTS [28,29] to generate Feynman dia-
grams and amplitudes and use self-written MATHEMATICA
codes to perform the remained calculations. Ultraviolet
and infrared divergences are regularized with dimensional
regularization and D = 4 — 2¢€ is assumed. Ultraviolet
divergences are removed by renormalization. We define
the renormalized heavy quark mass m, heavy quark field
o, and gluon field A, in the on-mass-shell scheme (OS)
and define the QCD coupling constant g in the MS scheme,
that is,

g0 = ZMSg’ = ZQQmQ, o)
hATFve M-

where terms with superscript O denote bare quantities and
Z; =1+ 6Z; with 6Z; given by
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8705 = —3Cr > fel: +‘3‘+ 21n(2)] (23a)

8795 = ff[ UV+%+6ln(2)+4] (23b)
1

6295 = f(Bolny) — 2cA>( — ) (230)

J— m2
52 = — % Poly) [—+1 ( §>+21n(2)], (23d)
dar 2 Eyy r
where fo = T(1+ e)[GrE51e, Bolng) =5 Co =4 Tpny,

w4, is the renormalization scale and n; is the number of
light quarks.

A s —LH

At leading order in «, there are two diagrams as shown
in Fig. 1. The corresponding Born level decay width and its
relativistic corrections are

1 16
1" ls[ ]_, - 47)2
x <1 - 2e)<1 — )OSy Mo, (24a)
R(1¢ll] 4 q 1¢l1]

g’y —gg) = _g—er( So —88), (24b)
Mo

where @) = - Fr((zljzee)) (-7)€ is the two-body phase space
Q

for @ = 0 in D dimension. Our results agree with those in
Refs. [6,7,9]. At next-to-leading order in «;, there are
virtual corrections and real corrections. Figure 2 corre-
sponds to Feynman diagrams of virtual corrections, where
only distinct forms of diagrams are shown. Contribution of

these virtual corrections reads
TTTTO
A 4 V%
E‘o‘m E
1 SE)l]

Feynman diagrams for

FIG. 1.

- N HE
DU IEN

FIG. 2. Representative Feynman diagrams for ISE)'] — gg at
one-loop level.

— gg at Born level.

00000

Q9Q00Q
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Iy('sH — gg)

Cha, 1 11  np\1
:7/;_ FB(ISE)I]_)gg)fE{[_?—}_(_7+7f)7

6 9/)€

1 ) 4my,
+ %<—44 + 197 + (4n; — 66) ln< . ))]
41 4 44
+ L (1~ 31) + = In(2
mQ [3 2 gzem AT g

324( 4(11 + 241n(2))n; + 24(33 — 2ny)

m
X ln< ) — 2677 + 874)]}
w

While other terms agree with those in Refs. [7,9], the result
of relativistic correction here is new. Feynman diagrams
for real corrections are drawn in Fig. 3 and 4, which
correspond to final states with three gluons and ¢ggg,
respectively. Results for these two sets of real corrections
are

(25)

Cya, 1 11 181
'Sy — S+ —+——
— /e ('S5 gg){é2 FPRET
2
§W2+q[_4 4,7
24 mé

TSt — ggg) =

L I
3¢2 € 54
X (—139 + 12772)]},

B o fe

XT<_2_16+q2<8+104))
"\ 3¢ 9 mi\oe 27))

(26b)

(26a)

While other terms agree with those in Refs. [7,9], the
results of relativistic corrections here are new. Adding
Egs. (25) and (26), we obtain the NLO QCD corrections
plus relativistic corrections for the light hadron decay

width of 'S, heavy quarkonium
C
A\

00000
C
00000

FIG. 3. Representative Feynman diagrams for 'SEI] — gg8.

L.

FIG. 4. Representative Feynman diagrams for

1551 — qas.
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NS ('St — LH)

_ Cua [1] { [
feFB(S gg) 16 64n,

2

4m
+12(2n, — 33) 1n<

r

) - 9372 + 1908]

2 16 1 2
+ q—z[ (24(1n<m ) + 21n(2))(33 ~2ny)
mg L27€ 324 w?

+ 164n, + 237 7% — 4964)]}. (27)

Adding these terms together, we get the 'S, decay width
into light hadrons in perturbative QCD

Tocp('SHI—LH) =T('sh— gg)

+TR('SH— gg) + TNES (1S5 — LH),

(28)

B. st — yy

For QCD corrections to the electromagnetic decay, there
is no real correction. Diagrams at Born level and one-loop
level are the same as those in Fig. 1 and 2 except that the
final state gluons are substituted with photons and dia-
grams containing three-gluon or four-gluon vertexes are
excluded. We then get the results

4
I 1]_, 1 1 2@
I (S YY) = 21 22my) Dop) (4 ) p”
X (O(' si) o, (292)
2
TROSE — yy) = =2 L1080 — yy), (29b)
3 ny
w2 —20
Ty(Sh) — yy) = TSl — yy)f. 2 [ 3
2 2
@ (16 196 — 157 >]
+ (242 27N (29
m (9e 27 (299

where e is the electric charge of the heavy quark. Results
of relativistic corrections in Eq. (29c) are new and the other
results agree with those previously calculated as summa-
rized in Ref. [6]. Adding Eqs. (292)—(29¢), we get the result
for the yy decay width of 'S, heavy quarkonium in per-
turbative QCD

Tocn('SET — )
= Ta('Sy) = yy) + TR(Sy = ¥)
+ Ty SH — yy). (30)
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V. PERTURBATIVE NRQCD RESULTS

Order a,v? corrections to the leading order LDME

((90(15%]])) in perturbative NRQCD have been calculated
in Ref. [2], where a cutoff was introduced to regularize the
ultraviolet divergences. We rewrite it in dimensional regu-
larization,

<(90(1SE)1])>NLO = (00(1551])>L0

LS - HE]
3 MZA €uv  €R m2Q'

(3D

We define the renormalized operator Cf)R(lSEl]) using the
MS scheme

00 s = ZMSOR('sY), (32)
where
— 4a,C 2\er 1 2
Z%ISZI— C;S F(’uz’) <—+1n47r—7E)q—2. (33)
a ILLA €Eyv mQ
Therefore

<@R(ISB1])>NLO = [ 4a CF(Mr) (1 + Ind7 — YE)

3 /'LA
1 ]<(9< S )co. (34)
mg
Considering that
(PO SH Mo = a0 Si o, (35)

the decay width into light hadrons in perturbative NRQCD
becomes

FNRQCD(ISE)IJ - LH)

{F(lSm) 4 [G(lsm) Mt CF(“’)
mp 37 \ui

1 . [1 <(9(IS%1])>L0
X (; + Indm ’}/E)F(ISO )]}TZQ (36)

The electromagnetic decay rate can be obtained by replac-
ing F('SE) and G('shY) with F,,('Si") and G, (*shY),
respectively.

1
’}’7(

VI. MATCHING

Finally we obtain the short-distance coefficients by
equating results from perturbative QCD in Egs. (28) and
(30) with that from perturbative NRQCD in Eq. (36)
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4m?
AmalT. a. —64n; + 1220, — 33)In(-) — 9372 + 1908
F(1st =—S[1+—S : £ ] 37
(S =5 p 72 (372)
2
[y _ 47TC¥S 4 A 1
le ,uz
+24(33 — 2n)) 1n<—§) - 1921n(—§) - 237772]}, (37b)
Uo\wg mg
220
Fyy(lsgl]) = 27&262(1 + % WT), (370)
G, (18t =2 Y T DT KA —961n(2) — 1572 + 196 37d
v ((857) = 2ma’e, 3t 57 nm—2 n( T , (37d)

where QCD corrections for G('SQ]) and GW(ISEIJ) are
new while the other results agree with those in
Refs. [2,6,7,9]. With these short-distance coefficients, we
can update the decay widths of 'S, heavy quarkonium into
light hadrons and two photons.

VII. PHENOMENOLOGY

The above obtained result can be used in 'S, charmo-
nium and bottomonium decays. In the following we will
focus on the 7, decay width into light hadrons (approxi-
mately the total width) and decay width into two photons.
In these decays there are two unknown LDMEs. In princi-
ple, one can fix these LDMEs either through direct fit with
experimental data [30] or calculation from lattice QCD
[17,18]. The order v> LDME is ultraviolet divergent and
needs to be regularized [20]. For lattice calculations this is
performed by imposing a hard cutoff regulator. However,
due to slow convergence of this regularization, the results
available from lattice calculations of order v> LDME
suffer from large uncertainties [17,18]. On the other
hand, we find that direct fit of the two LDMEs using
experimental measurements of yy width and total width
of 7. can not give reliable values due to the approximate
linear dependence of the two theoretical predictions for
these two decays.

Therefore, we determine the two LDMEs using the
potential model method recently introduced in Refs.
[19-21]. A widely accepted potential model, the Cornell
potential [31]

V() = —g + or, (38)

is chosen in this work. Since the spin dependent effect is
not included in this potential, the LDMEs calculated this
way are accurate up to corrections of relative order v?.
However, as argued in Ref. [20], this error is in fact much
less than the order v? (about 30%), thus we attach an
uncertainty of 30% to the central value of the order v?
LDME:s to account for the error due to this static potential

approximation.

0

In solving the Schrodinger equation [32], there are three
unknown parameters. o = 0.1682 = 0.0053 GeV? is
taken from the average of lattice calculations [20] and
the mass parameter is expressed in terms of the 15-2§
mass splitting [19,20]. Here we take m(y(25)) —
m(J/ ) = 589.188 + 0.028 MeV [33]. The last remain-
ing parameter is fixed by equating theoretical predictions
to experimentally measured results. When we use the
decay width formula, we resum a class of relativistic
corrections at leading order in «, for vy decay as in
Refs. [20,21]. For the experimental input, we make use
of this approximation I''H(%.(nS)) = I'°@(x (nS)). For
1., we use I'77(n,) (or I'"H(7,)) as input to obtain one set
LDMEs, which are then utilized to obtain I'*H(%,) (or
I'(n,)). For 5.(2S), we use the total width as input and
make predictions for the yy decay width. We take m,. to be
1.4 £ 0.2 GeV [20], @ = 1/137, Agep = 0.39 GeV and
vary the renormalization scale w, and NRQCD factoriza-
tion scale w, separately from 1 GeV to 3 GeV with 2 GeV

TABLE I. LDMEs obtained from potential model for 7, and
the predicted total width of 7., the superscript y+y indicates that
the observed width of . — vy is used as input. The second row
gives central values while the followed rows give variations with
respect to related parameters.

Case IRIVO)(GeV?)  (v»))7  T%(n.) (MeV)
Central 0.881 0.228 31.4
+A(?), 0.078 0.068 ~35
N ~0.075 ~0.068 26
+Am, 0.187 —0.065 0.3
—Am, —-0.167 0.102 —3.4
+Ao 0.022 0.020 —-0.9
—Ao —0.021 —-0.019 0.8
+Ap, ~0.059 0.005 —9.2
—Au, 0217 ~0.018 273
+Aup ~0.036 0.003 —0.6
—Apy 0.064 —0.005 1.1
+AT,, 0.232 ~0.019 103
—AT —0.243 0.021 -9.9
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R (0)A(GeV?)

0.7F ]
Q6= = = s =
0.5 : n n n n 1 n n n n 1 n n n n 1 n n n n
1.0 1.5 2.0 2.5 3.0
Hr(GeV)
(a)p, dependence of |'jo(0)|2
257y
<P
28— 1 —
r maa. LO
. NLO*
0261 NLO

] S

o L5 20 25 3.0
1 (GeV)
(b)p dependence of ('UQ)ZZ

FIG. 5 (color online). u, dependence of LDMEs for 7, using
the observed yy width as input. LO represents values without
QCD corrections, NLO* includes QCD corrections only for
terms at leading order in v, and NLO takes into account our
new QCD corrections to order v? terms.

as the central value. The LDMEs are expressed in terms of
the wave function at the origin |R (0)|?> and (v?) as defined
in Egs. (13) and (15). In each determination of these
LDMEs and the corresponding decay width, we evaluate
the variations caused by the uncertainties of the parameters
and summarize them in the tables. Because the potential
does not take into account of the spin effects, we attach
each v> LDME an uncertainty {(v*) of 30% of the central
value. In each case, various uncertainties are added in
quadrature to give the total uncertainty.

For 7., with the yy width I'""?(n,) =72 =*=0.7 =
2.0 KeV [33] as input, the determined LDMEs are

|R}7(0)]*> = 0.88170:382 Ge V3, (39a)
()3 = 0228743, (39b)
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where the superscript y7y indicates that we use the yy
decay width as input. Various uncertainties are summa-
rized in Table I. The most significant uncertainty comes
from the experimental data. At order a,v?, another depen-
dence on NRQCD factorization scale w, is introduced.
However, as we can see from Table I, variations of LDMEs
are small when we change w, from 1 GeV to 3 GeV. In
Fig. 5, we present w, dependence of three sets of LDMEs
in terms of |R.,, (0)|* and (v?),, , where the other parame-
ters are fixed to their central values. Of these three sets of
lines, LO represents calculation without any QCD correc-
tions, NLO* corresponds to that including QCD correc-
tions but only for terms at leading order in v, and NLO
means our new result with order a;v? correction taken into
account. The LDMEs corresponding to NLO* have been
computed earlier in Ref. [20] and can be compared here
with the values including the new order a v corrections.
We can see from this figure that these two lines are close to
each other, which reflects the fact that the effect of the new
order a,v? correction is not large. Utilizing this set of
LDME:s as input, we get the total decay width for 7.

[wl(y,.) = 31.47233 MeV. (40)

This value is in consistency with experimental measure-
ment 28.6 £ 2.2 MeV [33], although there are large un-
certainties. The details of the uncertainties are summarized
in Table 1. Here, the uncertainty induced by the w, depen-
dence predominates over that from the experimental input
of the yy width of 7.

If, on the other hand, we use the total width of 7,
rewl(y.) =28.6 + 2.2 MeV [33] as input, then we get
another set of LDMEs

TABLE II. LDMEs obtained from potential model for 5. and
the predicted yy width of 7., where the superscript LH indicates
that the observed total width of 7, is used as input. The second
row gives the central values while the followed rows give
variations with respect to related parameters.

Case IREAO)? (GeV?) (@) T(n.— yy) (KeV)
Central 0.814 0.234 6.61
+A(V?),, 0.194 0.070 0.90
—A(v?),, —-0.131 —0.070 —0.54
+Am, 0.163 —0.065 —-0.07
—Am, —0.090 0.095 0.71
+Ao 0.042 0.018 0.19
—Ao —0.038 —-0.018 —-0.16
+Au, 0.201 —-0.017 247
—Au, —0.189 0.016 —2.73
+Au, —0.020 0.002 0.13
—Auy 0.036 —0.003 —-0.21
+Al, 0.052 —0.004 0.46
—AT —0.053 0.005 —0.47
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|REH(0)|* = 0.81470332 GeV?,
(2ot = 02347505,

(41a)
(41b)

where the superscript LH indicates that we use the total
width of 7. as input. Variations with respect to the pa-
rameters are summarized in Table II. The experimental
uncertainty in this case is small and the main uncertainty
comes from the relatively strong w, dependence of the
theoretical prediction. The u, dependence of the two
LDME:s is shown in Fig. 6. As in previous case, we display
another two sets of LDMEs, where only QCD corrections
at leading order in v are taken into account or no QCD
correction is considered. The two sets with QCD correc-
tions show great improvement of u, dependence with

IRLH(0)P(GeV?)
1.8 " T T T T T T T T T T T T T T
e - LO e
1.6 T Lol NLO® //_,
14 F NLO e ]
r '/
F _/
L _/
1.2 r .~ -

2 _LH
<V >,7L
0.28 T T T T 1 ]
026 F  TT==—l__ 1
024 s 0 TTTee—l
022}
[ t~.
\h
[ - ]
020 ~o. 1
F \h\
o8 -m--- - Lo Seell .
[ ———— NLO e ]
[ NLO =3
0.16 | b
[ 1 1 1 ]
10 15 20 2.5 3.0
1(GeV)

LH

(b)ur dependence of (v?)L!

FIG. 6 (color online). u, dependence of LDMEs for 7, using
the observed total width as input. LO represents values without
QCD corrections, NLO* includes QCD corrections only for
terms at leading order in v, and NLO takes into account our
new QCD corrections to order v? terms.
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respect to the one without QCD corrections, and they are
almost parallel to each other. The only difference between
the two sets of values is that the a,v? correction enhances
IR, (0)|* by about 30%. This enhanced LDME coincides
with previously obtained value using I'?”(7,.) as input. The
value of (v?),_is relatively stable. With this set of LDMEs,
we obtain the yy decay width

I (n.) = 6.617277 KeV, (42)

which is also consistent with the experimental measure-
ment 7.2 = 0.7 = 2.0 KeV [33].

Since now we have two sets of values for the two
LDMEs for 7, in Egs. (39) and (41), we can combine
these values to get a better estimation. The uncertainties in
Table I and II are correlated, and we use the method in
Ref. [20] to treat these correlations. First, we construct a
two-by-two covariance matrix for ((9(1SB]]))Z,Z and
<(9('S%1])>E,fl. It describes correlations between the varia-
tions in the two tables and is defined as Cj, = 3, A ;A
with A, = %(0; — 0;;). The indexes j, k refer to these
two leading order LDMEs and i runs through every item in
Table I and II. 0;; and Oj; correspond to the plus and
minus variations of the LDME:s. For the i-th item in Table I
or Table II, we define the x? as

X:= Z(Oji - Oi)(cil)jk(oki - 0) (43)
ik

and minimize it to get the average value O; for (O(! Sgl])m.

Once we obtain the values of (Cf)(lS([)l]),h, we use the

potential model to get the values of (’P(ngl])m. We per-

form this calculation for each of the items in Table I and II,

treat the renormalization scale p, and NRQCD factoriza-

tion scale u, simply as the same quantities in the two
tables and express the results in terms of |R, (0)] and

(v?),,.. The results are

IR, (0)*> = 0.8347538! GeV?,
(@), = 0232743,

(44a)
(44b)

with the details of the uncertainties given in Table ITI. We
note that the uncertainties here for I’Rm (0)|? are smaller
than those in Egs. (39) and (41).

For 7.(25), we use the observed total width 14 = 7 Mev
[33] as input and get the LDMEs for 7,.(2S)

IR, ()2 = 042350383 GeV?, (452)
(V)5 = 0.255133 (45b)

Some potential model calculations of the squared wave
function at the origin in Ref. [34] give 0.418 for the
logarithmic potential [35], 0.529 for the QCD-motivated
potential model proposed by Buchmiiller and Tye[36], and
0.559 for the power-law potential [37]. Our result is con-
sistent with their values. Table IV gives details with various

114038-8



O(a,v?) CORRECTIONS TO HADRONIC AND ...

TABLE III. The averages of the LDMEs for 7.. The second
row gives the central values and subsequent rows give variations
with respect to various uncertainties.

Case IR, (0)? (GeV?) (vz),h

Central 0.834 0.232
+A@Y),, 0.159 0.070
A2, —0.115 —-0.070
+Am, 0.170 —0.065
—Am, —-0.113 0.097
+Ao 0.036 0.019
—Ao —0.033 —-0.018
+Au, 0.124 —-0.010
—Apu, —0.069 0.006
+Apy —0.025 0.002
—Apy 0.044 —0.004
+ATYY 0.069 —0.006
—ATYY —-0.072 0.006
+Al 0.037 —0.003
— AT —0.037 0.003

TABLE IV. LDME:s obtained from potential model for 7.(2S)
and the predicted yy width of 7.(2S), where the superscript LH
indicates that the total width of 7.(2S) is used as input. The
second row gives the central values while the followed rows give
variations with respect to related parameters.

Case IREEO)* (GeV?) (HE T'(.(25) — yy) (KeV)
Central 0.423 0.255 3.34
+AW?), 0s) 0.121 0.076 0.58
—AW?), (s) —0.077 —-0.076 —-0.33
+Am, 0.077 —0.069 —0.08
—Am, —0.035 0.099 0.47
+Ag 0.024 0.019 0.11
—Ac —0.022 —-0.019 —-0.10
+Ap, 0.102 —0.016 1.22
~Au, —0.091 0.014 —1.33
+App —0.012 0.002 0.07
—Auy 0.022 —0.003 —0.11
+AT, o) 0.167 —0.026 1.47
—AT,, (s —-0.192 0.029 —1.58

uncertainties. In the 7,.(2S) case, both the u, dependence
of theoretical result and the experimental input of the total
width have large uncertainties and therefore the LDMEs
are subject to relatively large uncertainties. In Fig. 7, we
present u, dependence of this set of LDMEs. The shape of
the lines is similar to Fig. 6 except the value for
IR, 25)(0)]* here is smaller by about a factor of 2.
Exploiting this set of LDMEs, we can make predictions
for the yy decay width of 7.(25),

[77(n.(25)) = 3.3473% KeV. (46)

This prediction is consistent with the experimental
observation that the branching fraction of yy decay is

PHYSICAL REVIEW D 83, 114038 (2011)
LH 2 3
IR (OF(GeV?)

T T T T T T T

0.9 ————

4(GeV)

(a)p, dependence of \R2§2S)(0)|2

030———————T 1
0.28
0.265
0.245
0.225

0.20f

018' L L L L 1 L L L L 1 L L L L 1

ur(GeV)

(b)pr dependence of (02>2§2S)

FIG. 7 (color online). u, dependence of LDMEs for 7.(25)
using the total width as input. LO represents values without QCD
corrections, NLO" includes QCD corrections only for terms at
leading order in v, and NLO takes into account our new QCD
corrections to order v? terms.

smaller than 5X 10™* [33]. Another experiment
measured I, (n.(28))B(n.(2S) — {('1377) =(0.18 =
0.05 = 0.02)I',,,,(0.(15))B(n.(1S) — KK ) [38] and as-
sumed that the branching fractions of 7, and 71.(2S)
decays into K¢K7 were equal and made use of I'(n, —
vy) =74 %04+ 23 KeV and then derived
I'(n.(25)) = 1.3 = 0.6 KeV [33,38]. Our result is not in
contradiction with their measurement within errors.

VIII. SUMMARY

Within the framework of NRQCD, we calculate order

a,v? corrections to decays of 'S, heavy quarkonium into

light hadrons and two photons. In both processes, infrared
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divergences are found to be canceled through the matching
of perturbative QCD and perturbative NRQCD results.
There are two unknown NRQCD LDMEs, which are de-
termined using potential model method [19-21] either with
the observed total width or two photon width as input.
When using I'7?(n,.) as input, we get |R}7(0)]* =
0.881793%2 GeV? and (v?)}) = 0.228*51%¢, from which
we predict I'@(yn.) =31.47303 MeV. Alternatively,
when using I'°%(7.) as input, we get |REH(0)]* =
0.814%033% GeV? and (v*)LH = 023470130, and we pre-
dict the yy width of 7, to be ['"?(n,) = 6.61731] KeV.
All these predictions agree well with experimental data.
We then combine these two kinds of determination of
LDMEs and get the average values |R, (0)]* =
0.8347038) GeV? and (v?), = 0.23273431. For 1.(29),

we use the observed total width as input and
find [R5 (0)17 = 0.4231335 GeV? and (v*)Mq) =

0.255+3139. With this set of LDMEs, we predict the yy
width of 7,.(2S) to be 3.34*39 KeV, which is not in

PHYSICAL REVIEW D 83, 114038 (2011)

with data
2

contradiction within  uncertainties.
Consequently, the order a v~ corrections (especially the
one to the decay into light hadrons) are found to have
significant effects on improving the consistency between
theoretical predictions and experimental measurements.
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Note added.—When we finished the calculations and are
preparing this paper, a related work appears [39] that also
gives a,v? corrections to the yy decay width. We find our
results for this channel agree with theirs, while we have
also calculated the light hadron decay width.
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