
Chiral properties of strong interactions in a magnetic background

Massimo D’Elia and Francesco Negro
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We investigate the chiral properties of QCD in the presence of a magnetic background field and in the

low temperature regime, by lattice numerical simulations of Nf ¼ 2 QCD. We adopt a standard staggered

discretization, with a pion mass around 200 MeV, and explore a range of magnetic fields ð180 MeVÞ2 �
jejB � ð700 MeVÞ2, in which we study magnetic catalysis, i.e. the increase of chiral symmetry breaking

induced by the background field. We determine the dependence of the chiral condensate on the external

field, compare our results with existing model predictions and show that a substantial contribution to

magnetic catalysis comes from the modified distribution of non-Abelian gauge fields, induced by the

magnetic field via dynamical quark loop effects.
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I. INTRODUCTION

The study of strong interactions in presence of a strong
background magnetic field has attracted increasing atten-
tion in the recent past. On one side the issue is of great
phenomenological relevance: magnetic fields of the order

of 1016 Tesla, i.e.
ffiffiffiffiffiffiffiffiffijejBp � 1:5 GeV) may have been pro-

duced at the cosmological electroweak phase transition [1]
and they may have influenced subsequent strong interac-
tion dynamics, including the confinement/deconfinement
transition. Slightly lower fields are expected to be pro-
duced in noncentral heavy ion collisions (up to
1014 Tesla at RHIC and up to �1015 Tesla at LHC
[2,3]), where they may give rise to new phenomenology,
the so-called ‘‘chiral magnetic effect,’’ capable of reveal-
ing the presence of deconfined matter and of nontrivial
topological vacuum fluctuations [4–6]. Finally, magnetic
fields of the order of 1010 Tesla are expected to be present
in a class of neutron stars known as magnetars [7] (for a
recent review see Ref. [8]).

On the other side, a background magnetic field (electro-
magnetic [e.m.] or chromomagnetic) may serve as yet
another parameter to probe the structure of the QCD vac-
uum and of the QCD phase diagram, on the same footing
with other interesting external conditions such as a baryon
chemical potential. Many studies [9–34] have investigated
the chiral properties of the theory and what is generally
known as magnetic catalysis, consisting in an enhancement
of chiral symmetry breaking and in spontaneous mass
generation induced by the magnetic field, a phenomenon
predicted from different low energy models and approx-
imations of QCD and related to the dimensional reduction
taking place in the dynamics of particles moving in a
strong external magnetic field [17,18,26]. More recently,
the issue of the influence of a magnetic field on the decon-
finement transition has been investigated by means of both
lattice QCD simulations and low energy models of strong
interactions [14,34–47]: there is converging evidence that a

magnetic field leads to an increase of both the strength and
the temperature of the transition; in the case of a chromo-
magnetic field, instead, numerical simulations show a de-
crease of the transition temperature [48,49]. Finally,
conjectures have been proposed according to which a
strong enough magnetic field may induce the appearance
of new superconductive phases [50–52].
In the present study we address the issue of magnetic

catalysis, presenting the first study of such phenomenon by
lattice QCD simulations which include the contribution of
dynamical quarks; previous numerical studies indeed have
only considered the effect of the magnetic field on
quenched configurations [53,54]. In particular, we have
considered QCD at zero or low temperature, with two
dynamical flavors carrying different electric charges, cor-
responding, respectively, to the u and d quark charges, and
coupled to a background constant and uniform magnetic
field. We have adopted a standard rooted staggered fermion
discretization, with a (Goldstone) pion mass of about
200 MeV.
One of the purposes of our investigation is to obtain

information about the dependence of the chiral condensate
on the magnetic field, and compare it with various existing
model and low energy predictions. A second purpose that
we have is to understand which part of magnetic catalysis
is a purely tree level effect, due to the fact that quarks
propagate in a modified background obtained by adding
theUð1Þ field to the non-Abelian gauge configurations, and
which part is due to a modification of the non-Abelian
fields themselves, induced by the loop effects of dynamical
quarks coupled to the magnetic background. Both effects
can in principle modify the spectrum of the Dirac operator,
leading to a larger density of eigenvalues around zero,
hence to an increase of the chiral condensate via the
Banks-Casher relation [55].
To that aim, one could compare with existing investiga-

tions of magnetic catalysis, based on SU(2) and SU(3)
gauge configurations sampled by pure gauge simulations
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[53,54]: however, that would not be completely satisfac-
tory and would also be difficult because of different scale
settings and renormalization effects. What we will do
instead is to try separating the two different effects, by
inserting alternatively the magnetic field only in the com-
putation of the quark propagator (sampling in this case
configurations without the presence of the magnetic field),
or only in the sampling measure, i.e. in the fermion deter-
minant, without affecting the quark propagator computa-
tion. We will call the first contribution ‘‘valence’’ catalysis
and the second ‘‘dynamical’’ catalysis: both of them will
be compared with the full increase of the chiral condensate,
obtained when the magnetic field is inserted directly both
in the fermion determinant and in the computation of the
quark propagator. As we will show, the purely dynamical
contribution corresponds to a considerable part of the total
increase in the quark condensate.

The paper is organized as follows. In Sec. II we give
some details about our lattice discretization of QCD in
presence of a magnetic field and about our numerical setup.
In Sec. III we present our numerical results and finally, in
Sec. IV, we give our conclusions.

II. NUMERICAL SETUP

The discretization of Nf ¼ 2 QCD in presence of a

magnetic background field adopted in the present work is
similar to that reported in Ref. [42]. In particular, partition
function of the (rooted) staggered fermion discretized ver-
sion of the theory in presence of a nontrivial electromag-
netic background field and with different electric charges
for the two flavors, qu ¼ 2jej=3 and qd ¼ �jej=3 (jej
being the elementary charge), is written as

ZðT; BÞ �
Z

DUe�SG detM1=4½B; qu� detM1=4½B; qd�
(1)

Mi;j½B; q� ¼ am�i;j þ 1

2

X4
�¼1

�i;�ðuðB; qÞi;�Ui;��i;j��̂

� u�ðB; qÞi��̂;�U
y
i��̂;��i;jþ�̂Þ: (2)

DU is the functional integration over the non-Abelian
gauge link variables Un;�, SG is the discretized pure gauge

action (we consider a standard Wilson action); uðB; qÞi;�
are instead the Abelian gauge links corresponding to the
background e.m. field. The subscripts i and j refer to lattice
sites, �̂ is a unit vector on the lattice and �i;� are the

staggered phases. Periodic (antiperiodic) boundary condi-
tions (b.c.) must be taken, in the finite temperature theory,
for gauge (fermion) fields along the Euclidean time direc-
tion, while spatial periodic b.c. are chosen for all fields.

We shall consider a constant and uniform magnetic field
~B ¼ Bẑ. The presence of periodic b.c. in the x and y
directions imposes a constraint on the admissible values

of B, which get quantized, as illustrated in the following
subsection. Symmetry under charge conjugation imposes
that ZðT; BÞ as well as other charge even observables,
including the chiral condensate, be even functions of B.

A. Magnetic field on a torus

In presence of periodic b.c., the magnetic field in the
z direction goes through the surface of a torus in the x� y
directions, whose total extent is lxly. The circulation of A�

along any closed path, lying in the x� y plane and enclos-
ing an arbitrary region of area A (see e.g. Fig. 1), is
proportional, by Stokes’ theorem, to the flux of B through
the enclosed surface

I
A�dx� ¼ AB (3)

On the other hand, since we are on a torus, it is ambiguous
to state which is the enclosed surface: the complementary
region of area lxly � A can be chosen as well, therefore one

can equally state

I
A�dx� ¼ ðA� lxlyÞB: (4)

At the level of the gauge field the ambiguity is resolved by
admitting discontinuities in A� somewhere on the torus, or

alternatively by covering the torus with various patches
where different gauge choices are taken. In any case, one
has to guarantee that the ambiguity is not visible by
charged particles moving on the torus, and this is true
only if the phase factor taken by the charged particle
moving along the closed path is defined unambiguously

expðiqBAÞ ¼ expðiqBðA� lxlyÞÞ; (5)

i.e. if

qB ¼ 2�b=lxly (6)

FIG. 1 (color online). Surface with periodic b.c. orthogonal to
the direction of the magnetic field. The phase factor taken by a
particle moving around the plotted contour must be defined
unambiguously and this leads to magnetic flux quantization.
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where b is an integer. Notice that this line of argument is
exactly the same that applies on a sphere and that leads to
Dirac quantization of the magnetic monopole charge. The
quantization rule depends on the electric charge of the
particles feeling the presence of the magnetic field, in
particular, it is set by the smallest charge unit, which in
our case is brought by the d quark, qd ¼ �jej=3, hence

jejB ¼ 6�b=lxly ¼ 6�ba�2=LxLy (7)

where Lx and Ly are the system sizes in lattice units and a

is the lattice spacing.
Further details about the definition of a magnetic field on

a torus can be found in Ref. [56], where it is shown that
translational invariance on the torus is explicitly broken by
the presence of the magnetic field, due to the nontrivial
phases taken by particles winding around one of the direc-
tions of the torus (Wilson lines): only a discrete invariance
is left, by shifts which are integer multiples of

ax ¼ lx=b; ay ¼ ly=b; (8)

respectively, in the x and y directions. Such invariance is
reduced further on a lattice, since only shifts, if any, which
are multiples of both ax (ay) and the lattice spacing a leave

the system invariant: that may lead to additional discreti-
zation effects.

B. Discretization details

We have taken the following choice for the continuum
e.m. gauge field:

Ay ¼ Bx; A� ¼ 0 for � ¼ x; z; t: (9)

The corresponding Uð1Þ links on the lattice are

uðB; qÞn;y ¼ eia
2qBnx ; uðB; qÞn;� ¼ 1 for � ¼ x; z; t

(10)

In order to guarantee the smoothness of the background
field across the boundary and the gauge invariance of the
fermion action, the Uð1Þ gauge fields must be modified at
the boundary of the x direction:

uðB; qÞn;xjnx¼Lx
¼ e�ia2qLxBny (11)

and the magnetic field must be quantized as specified in
Eq. (7). That corresponds to taking the appropriate gauge
invariant b.c. for fermion fields on the torus [56] (with the
possible additional free phases �x and �y [56] set to zero).

We have considered a symmetric lattice, Lx ¼ Ly ¼
Lz ¼ Nt ¼ 16, a bare quark mass am ¼ 0:013 35 and an
inverse gauge coupling � ¼ 5:30. According to scale esti-
mates reported in Ref. [42], that corresponds to a lattice
spacing a ’ 0:3 fm, a (Goldstone) pion mass m� ’
200 MeV and a temperature T ¼ ðNtaÞ�1 ’ 40 MeV,
hence low enough that the system can be considered to
be effectively at zero temperature.

We have explored different values of jejB which, ac-
cording to Eq. (7), can be changed only in units of
6�a�2=LxLy ’ ð180 MeVÞ2. Notice however that the

presence of an ultraviolet (UV) cutoff imposes also an
upper limit on the possible values of B that can be explored
on the lattice. To appreciate that, let us consider again the
phase factor picked up by a particle moving around a
closed path in the x� y plane, and which contains all the
relevant information about the effect of the magnetic field
on particle dynamics: there is a minimal such path on the
lattice, corresponding to a plaquette, around which the
particle takes the phase factor

expðiqa2BÞ ¼ exp

�
i2�b

LxLy

�
: (12)

The phase factor above, and therefore all other phase
factors associated to any closed lattice path, cannot distin-
guish magnetic fields such that qa2B differs by multiples of
2�. One can therefore define a sort of ‘‘first Brillouin
zone’’ for the magnetic field,

� �

a2
< qB<

�

a2
; (13)

i.e.

� LxLy

2
< b<

LxLy

2
; (14)

with all physical quantities being periodic in qB (b) with a
period 2�=a2 (LxLy); symmetry under b ! �b further

reduces the range of interesting values of b. Even before
reaching the limits reported in Eq. (13), one expects the
periodicity to induce saturation effects, which may distort
the true physical dependence of observables, like the chiral
condensate, on B. One should always worry about the
possible presence of such saturation effects, when trying
to extract information relevant to continuum physics.

C. Observables and simulation details

The quantity which is the subject of our investigation is
the chiral condensate. In presence of a nonzero B we can
define two different condensates

�u=dðBÞ � @ logZ

@mu=d

��������mu=d¼m

¼
Z

DUP ½m;U; B�TrðM�1½m;B; qu=d�Þ (15)

where the functional integral measure is (see Eq. (1)):

P ½m;U;B� / detM1=4½m;B; qu� detM1=4½m;B; qd�e�SG:

(16)

A quantity which is useful to discuss magnetic catalysis
is the relative increment of the quark condensate, which we
define as
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ru=dðBÞ �
�u=dðBÞ
�ð0Þ � 1 ¼ �u=dðBÞ � �ð0Þ

�ð0Þ : (17)

The advantage of rðBÞ is that it is a dimensionless quantity
and that most renormalizations appearing in the definition
of � cancels out in Eq. (17). Indeed, assuming that re-
normalizations have a negligible dependence on B, as
should be the case as long as B stays away from the scale
of the UV cutoff, the mass dependent additive renormal-
ization of � will cancel out in the numerator of Eq. (17). A
residual additive renormalization remains in the denomi-
nator, leading to an incorrect overall normalization of rðBÞ:
in the following we shall try to estimate the magnitude of
such systematic error.

We shall define flavor averaged quantities as well:

�ðBÞ ¼ �uðBÞ þ�dðBÞ
2

(18)

and

rðBÞ ¼ �ðBÞ
�ð0Þ � 1 ¼ ruðBÞ þ rdðBÞ

2
: (19)

Both �uðBÞ and �dðBÞ are, by charge conjugation sym-
metry, even functions of B. Moreover, according to that
discussed in Sec. II B, they are expected to be periodic in
B, with a period 2�a�2=qd [or alternatively with a period
LxLy in terms of the quantum number b defined in Eq. (6)].

One could expect the u quark condensate to have a peri-
odicity shorter by a factor 2, since jquj ¼ 2jqdj, however
this is not exactly true because of the measure P ½m;U; B�
appearing in Eq. (15), whose periodicity is set by the quark
with the lower charge.

In the limit m ! 0 the chiral condensate is an order
parameter for chiral symmetry breaking and is related by
the Banks-Casher relation [55] to the density �ð	Þ of
eigenvalues of the Dirac operator, D ¼ M�m Id, around
	 ¼ 0: � ¼ ��ð0Þ. On the contrary, for m � 0, the chiral
condensates defined in Eq. (15) are not related to the
densities of zero eigenvalues of the respective Dirac op-
erators, �u=dð0Þ, which instead can be obtained by taking

the limit m ! 0 only for the trace term appearing in
Eq. (15), i.e.

�u=dð0Þ¼ 1

�
lim
m0!0

Z
DUP ½m;U�TrðM�1½m0;qu=d�Þ (20)

where the dependence on B has been left implicit. We shall
consider also such quantities and the corresponding rela-
tive increments

~r u=d � �u=dð0; BÞ=�ð0; B ¼ 0Þ � 1: (21)

As discussed in the introduction, we are also interested
in studying contributions to magnetic catalysis coming
separately either from the change in the observable
TrðM�1½m;B; qu=d�Þ (’’valence’’ contribution), or from

that in the measure P ½m;U;B� (’’dynamical’’ contribu-
tion). For that reason we define also

�val
u=dðBÞ �

Z
DUP ½m;U; 0�TrðM�1½m;B; qu=d�Þ (22)

and

�dyn
u=dðBÞ �

Z
DUP ½m;U; B�TrðM�1½m; 0; qu=d�Þ: (23)

In the first case we look at the spectrum of the fermion
matrix which includes the magnetic field explicitly, but is
defined on non-Abelian configurations sampled at B ¼ 0.
In the second case we look at the spectrum of the fermion
matrix without an explicit magnetic field, but defined on
gauge configurations sampled in presence of the magnetic

field. From �val
u=dðBÞ and �dyn

u=dðBÞ we can define the corre-

sponding quantities, �val=dyn, r
val=dyn
u=d , rval=dyn, analogously

to that done in Eqs. (17)–(19).
On general grounds we may expect that, in the limit of

small fields, B acts as a perturbation for both the measure
term P ½m;U;B� and the observable TrðM�1½m;B; qu=d�Þ
in Eq. (15). Given that both functions are even in B and
assuming they are also analytic (this may not be true in
some limits, see discussion below), so that the first non-
trivial term in B is quadratic, one can write, configuration
by configuration:

P ½m;U; B� ¼ P ½m;U; 0� þ CB2 þOðB4Þ (24)

and

Tr ðM�1½B�Þ ¼ TrðM�1½0�Þ þ C0B2 þOðB4Þ (25)

where it is assumed implicitly that the two constants C and
C0 depend on the quark mass and on the chosen configu-
ration. Putting together the two expansions, one obtains

�u=dðBÞ
�ð0Þ � 1 ¼ rvalu=dðBÞ þ rdynu=dðBÞ þOðB4Þ: (26)

Therefore, at least in the limit of small fields, the separation
of magnetic catalysis in a valence part and in a dynamical
part is a well defined concept. As we will show in the
following, that continues to be true, within a good approxi-
mation, for a large range of fields explored in the present
study. Notice that an approximate additivity of rval and
rdyn, like in Eq. (26), would be true also for different small
field dependences, e.g. linear, in Eq. (24) and (25); hence
the assumption above is stronger and also implies that
magnetic catalysis should be a quadratic effect in B, at
least for small fields and if the partition function is analytic
in B ¼ 0.
We have made use of a rational hybrid Monte Carlo

algorithm to simulate rooted staggered fermions. Typical
statistics are of the order of 3k thermalized molecular
dynamics trajectories for each value of the magnetic field.
The trace of the inverse of the fermion matrix, appearing in
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Eq. (15), has been computed, for each quark flavor, by
means of a noisy estimator, extracting 10 random vectors
for each configuration and for each value of the parameters.
Numerical simulations have been performed on the
apeNEXT facilities in Rome.

III. NUMERICAL RESULTS

We report in Table I the relative increments of the u and
d quark condensates, respectively, including also measure-
ments of the valence and of the dynamical contribution.
Notice that rdynðBÞ is exactly the same, by definition, for u
and d quarks, since in this case the magnetic field affects
only the fermion determinants. One can also explicitly
verify from the table that rvalu ðB=2Þ ¼ rvald ðBÞwithin errors:
this is expected since jquj ¼ 2jqdj and since in this case the
sampling measure is independent of B.

As stressed in Sec. II C, all definitions of r are affected
by a systematic overall normalization factor, due to an
additive, mass dependent renormalization present in the
condensate computed at zero magnetic field, �ð0Þ [see
Eq. (17)]. In order to estimate the magnitude of such
systematic effect, we have performed simulations at
B ¼ 0 and different values of the quark mass, keeping
the lattice size unchanged, in order to determine the

dependence of �ðB ¼ 0; mÞ on m; results are reported in
Fig. 2. The expected leading order dependence on m in the
chirally broken phase is the following (see e.g. the discus-
sion in Ref. [57]):

�ðB¼0;mÞ¼�ð0;0Þþc1=2
ffiffiffiffi
m

p þc1mþOðm3Þ (27)

TABLE I. Relative increment of the u and d quark condensates for various magnetic field values. We report full data, as well as
valence and dynamical contributions separately.

b ruðbÞ rdðbÞ rvalu ðbÞ rvald ðbÞ r
dyn
u=dðbÞ

1 0.0005(18) �0:001ð2Þ 0.0017(20) 0.0008(20) �0:001ð2Þ
2 0.0077(19) 0.0022(20) 0.0070(19) 0.0027(18) 0.0003(21)

3 0.0202(16) 0.0077(18) 0.0151(20) 0.0037(19) 0.0046(21)

4 0.0356(22) 0.0162(23) 0.0266(19) 0.0052(19) 0.0097(23)

5 0.0567(18) 0.0274(20) 0.0407(19) 0.0121(19) 0.0162(26)

6 0.0760(19) 0.0358(20) 0.0579(20) 0.0165(18) 0.0182(23)

7 0.0996(16) 0.0481(16) 0.0759(20) 0.0217(19) 0.0273(18)

8 0.1246(17) 0.0613(18) 0.0949(19) 0.0281(19) 0.0361(20)

9 0.1474(16) 0.0717(18) 0.1144(19) 0.0352(18) 0.0413(18)

10 0.1736(17) 0.0864(17) 0.1340(19) 0.0412(18) 0.0470(19)

11 0.2005(18) 0.1021(18) 0.1554(19) 0.0503(19) 0.0594(23)

12 0.2258(16) 0.1173(16) 0.1765(19) 0.0584(19) 0.0655(19)

13 0.2501(17) 0.1312(17) 0.1983(20) 0.0676(18) 0.0733(22)

14 0.2737(18) 0.1450(17) 0.2192(20) 0.0762(20) 0.0802(25)

16 0.3227(19) 0.1769(18) 0.2568(20) 0.0957(19) 0.0971(21)

24 0.4636(23) 0.2830(25) 0.3809(21) 0.1777(19) 0.1399(34)

32 0.5462(22) 0.3727(22) 0.4472(24) 0.2594(21) 0.1722(28)

48 0.6485(22) 0.5053(22) 0.5308(23) 0.3816(21) 0.2027(28)

64 0.6855(23) 0.5790(23) 0.5652(24) 0.4460(21) 0.2199(30)

80 0.6545(22) 0.6198(23) 0.5317(23) 0.4924(22) 0.2159(28)

96 0.5726(21) 0.6504(22) 0.4480(22) 0.5297(22) 0.2128(26)

112 0.3868(19) 0.6589(22) 0.2603(21) 0.5549(23) 0.1876(22)

128 0.1333(18) 0.6376(22) 0.0000(19) 0.5642(22) 0.1358(25)

144 0.3828(21) 0.6567(22) 0.2583(21) 0.5558(22) 0.1848(23)

0 0.005 0.01 0.015 0.02 0.025 0.03
a m 

0.55

0.6

0.65

0.7

0.75

FIG. 2. Dependence of the chiral condensate on the bare quark
mass atB ¼ 0, together with a best fit curve according to Eq. (27).

CHIRAL PROPERTIES OF STRONG INTERACTIONS IN A . . . PHYSICAL REVIEW D 83, 114028 (2011)

114028-5



where the nonanalytic square root term is expected from
the presence of Goldstone mode fluctuations [58–60],
while the leading order, quadratically divergent contribu-
tion to the additive renormalization affects the linear term
in m. A fit according to Eq. (27) gives �ðB ¼ 0; 0Þ ¼
0:565ð6Þ, c1=2 ¼ 0:61ð9Þ and c1 ¼ 2:9ð4Þ, with


2=d:o:f: ¼ 5:7=7, from which we infer that the linear
term in m accounts for about 6% of the total signal mea-
sured at the quark mass explored in our investigation,
i.e. am ¼ 0:013 35.

We conclude that our determinations of r, rval and rdyn

are distorted by a common and B independent overall
normalization factor, which leads to a systematic effect
of the order of 10% and does not affect issues such as the
separation of magnetic catalysis into a valence and dy-
namical contribution, as discussed later in this section.

A. Periodicity and saturation effects

In Fig. 3 we report results for the normalized conden-
sates�u=dðBÞ=�ðBÞ (i.e. 1þ ru=dðBÞ) over the whole range
of possible independent values of B, i.e. for b=ðLxLyÞ
ranging from 0 to 1 (see discussion at the end of
Sec. II B). Notice that data reported for b=ðLxLyÞ �
0:625 are not the result of direct simulations, but have
been obtained by enforcing the expected invariances under
b ! bþ LxLy (i.e. the above mentioned periodicity) and

under b ! �b, which put together mean invariance under
b=ðLxLyÞ ! 1� b=ðLxLyÞ. However, such invariance has

been verified explicitly for a couple of points, b=ðLxLyÞ ¼
0:4375 and b=ðLxLyÞ ¼ 0:5625, for which independent

simulations have been performed.
Saturation effects, which are present for large values of

B, are clearly visible from Fig. 3, where we have also
reported for comparison the results of two fits to the small
B region. In particular, we infer from the figure that one
should keep b=ðLxLyÞ well below 0.1 in order that such

effects stay negligible: that means jejB below 1=a2 �
ð700 MeVÞ2 in our case. In the following only data ob-
tained for b � 16 will be considered as reasonably free of
saturation effects.
Notice that the u quark condensate shows an approxi-

mate periodicity in B which is halved with respect to the d
quark. That comes from the fact that jquj ¼ 2jqdj and is
only approximate since instead the measure term has the
usual periodicity. For instance ruðbÞ has a minimum but is
not exactly zero at b=ðLxLyÞ ¼ 1=2, where the effective

magnetic field felt by u quarks is zero: there is a residual
catalysis induced by dynamical d quarks, which instead at
b=ðLxLyÞ ¼ 1=2 feel the maximum possible magnetic

field; for the same reason rdðbÞ does not reach its maxi-
mum at b=ðLxLyÞ ¼ 1=2. Such effects, which are absent

for the purely valence contribution as can be checked from
Table I, are a first example of the dynamical contribution to
magnetic catalysis, which we discuss in detail in the next
subsection.

D. Dynamical and Valence contributions
to magnetic catalysis

In Fig. 4 we report the functions rðBÞ, rvalðBÞ, rdynðBÞ
[see Eqs. (22) and (23)] as well as the sum rvalðBÞ þ
rdynðBÞ, in order to appreciate the amount of magnetic
catalysis caused by the modified distribution of the
non-Abelian gauge fields, induced by the coupling of

0 0.2 0.4 0.6 0.8 1

b / (L
x
L

y
)

1

1.2

1.4

1.6

1.8

Σ(
B

) 
/ Σ

(0
)

u quark
d quark

FIG. 3 (color online). Normalized u and d quark condensates
as a function of the magnetic field for the whole range of
independent possible values of B. Data for b=ðLxLyÞ> 0:6

have been obtained by enforcing the expected symmetry of the
chiral condensate under b=ðLxLyÞ ! 1� b=ðLxLyÞ, while such

symmetry has been verified for a couple of points, b=ðLxLyÞ ¼
0:4375 and b=ðLxLyÞ ¼ 0:5625. We also report two curves

corresponding to best fits in the small field region, to better
show the presence of saturation effects.
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FIG. 4 (color online). Relative increment of the average of the
u and d quark condensates as a function of the magnetic field.
We report separately rðBÞ, rvalðBÞ, rdynðBÞ and rvalðBÞ þ rdynðBÞ.

MASSIMO D’ELIA AND FRANCESCO NEGRO PHYSICAL REVIEW D 83, 114028 (2011)

114028-6



dynamical quarks to the magnetic field (dynamical contri-
bution). We have limited our analysis to b � 16, for which
saturation effects do not play a significant role.

The first thing that we notice is that the dynamical and
valence contributions are roughly additive, in the sense that
their sum gives back to full signal, in the range of fields
shown in the figure. The additivity, which is expected in the
limit of small fields (see discussion in Sec. II C), is verified
within errors for b � 8 (jejB � ð500 MeVÞ2), while small
deviations appear beyond. Notice that this threshold
coincides with that above which a purely quadratic fit for
rðBÞ does not work (see next subsection) and quartic terms
in B become important, in agreement with the argument
given in Sec. II C.

Once clarified that it is sensible, in the explored range of
fields, to divide magnetic catalysis into a valence and a
dynamical contribution, from Fig. 4 we learn that the
dynamical one is roughly 40% of the total signal, at least
for the discretization and quark mass spectrum adopted in
our investigation. That means that numerical studies in
which the magnetic field is not included in the sampling
distribution (quenched or partially quenched) may miss a
substantial part of magnetic catalysis, in a measure larger
than other systematic effects due to quenching, which are
typically of the order of 20%.

In Fig. 5 we have also plotted results for the difference
between the u and the d condensates, which increases as a
function of B, indicating an increasing breaking of flavor
symmetry. The fact that the dynamical contribution is
equal for the two quarks and the approximate additivity
discussed above implies that such difference should be
roughly unchanged if we consider just the valence contri-
bution: that can be verified again from Fig. 5.

C. Comparison with �PT and model predictions

One of the purposes of our investigation is to compare
our results with various analytic studies based on low
energy or model approximations of QCD. Most of those
studies make reference to the average quark condensate
and not to the u or d condensates separately. Among the
various existing predictions, one of the first was based on
the analysis of the Nambu–Jona-Lasino model [12] and
predicted a quadratic increase of the condensate as a
function of the magnetic field, i.e. rðBÞ / B2.
A first prediction based on chiral perturbation theory has

been proposed in Ref. [19]

rðBÞ ¼ logð2ÞjejB
16�2F2

�

(28)

and is valid only in the chiral limit, i.e. m� ¼ 0, and for
jejB � �2

QCD; in the limit of strong fields, instead, the

authors of Ref. [19] have predicted a power law behavior

rðBÞ / jBj3=2 [19]. Corrections to Eq. (28), based on a two-
loop computations, have been given in Ref. [23].
The authors of Ref. [27] have gone beyond the limitation

m� ¼ 0, presenting a 
PT computation which is valid for
generic values ofm2

�=ðjejBÞ, even if still for jejB � �2
QCD.

The prediction in this case is

rðBÞ ¼ logð2ÞeB
16�2F2

�

IH

�
m2

�

jejB
�

(29)

where

IHðyÞ ¼ 1

log2

�
logð2�Þ þ y log

�
y

2

�
� y

� 2 log�

�
1þ y

2

��
: (30)

Notice that IHðyÞ ! 1 as y ! 0, i.e. in the chiral limit, in
agreement with Eq. (28).
Recently various predictions have been proposed, based

on the holographic AdS/CFT correspondence [28,30–32]:
the increase in chiral symmetry breaking is confirmed in all
cases, with a dependence of the chiral condensate on B
which ranges from quadratic [31] to a power law, e.g.

rðBÞ / jBj3=2 [32].
Existing lattice determinations have reported a linear

behavior for SU(2) pure gauge theory [53] and a power
law behavior rðBÞ / B� (with �� 1:6) for the SU(3) pure
gauge theory [54].
Regarding the small field behavior, one can state on

general grounds that, since by charge conjugation symme-
try the chiral condensate must be an even function of B, if
the theory is analytic at B ¼ 0 then the chiral condensate
can be written as a Taylor in expansion in B2, hence for
small enough fields the dependence must be quadratic.
That is indeed in agreement with many model predic-

tions and is not true only in some particular cases: for
instance, the prediction from 
PT in Eq. (28) [19] is linear,
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FIG. 5 (color online). Difference of the u and d quark con-
densates, normalized by the zero field condensate, as a function
of the magnetic field and computed, respectively, on configura-
tions sampled by taking or not taking into account the magnetic
field in the fermion determinant.
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since the analyticity requirement is violated in this case
due to the fact that the pion mass is set to zero. Let us
consider instead the prediction from Ref. [27], which is
valid for generic values of m2

�=ðjejBÞ. While for
m2

�=ðjejBÞ ! 0 Eq. (29) gives back a linear behavior as
in Eq. (28), in the opposite limit jejB � m2

�, i.e. (
1
y � 1),

we find, by expanding Eq. (30) in powers of powers of 1
y ,

that

rðBÞ ’ ðjejBÞ2
96�2F2

�m
2
�

(31)

in agreement with the general expectation. Such behavior,
quadratic for small fields and linear for larger fields, has
been found also in a recent study based on the linear sigma
model [33].

In Fig. 6 we report the relative increment of the u and d
condensates and of their average in a restricted region for
which we expect that saturation effects are not important.
We remind that in our case the variable representing the
magnetic field is the dimensionless parameter b, and the
conversion to physical units is given by Eq. (7), which
for our lattice size reads jejB ¼ ð6�=256Þb=a2, with
a ’ 0:3 fm, i.e. jejB ’ bð180 MeVÞ2.

It is apparent by eye that Eq. (28) badly fits with our
data, indeed a linear fit gives unacceptable values for the

2=d:o:f: test (e.g. 
2=d:o:f: ’ 190=6 for 1 � b � 7). This
is expected, since in our case m� � 0. However, data at
larger values of B show an approximate linear behavior and
if we discard the smallest values of b a function rðbÞ ¼
a0 þ a1b reasonably fits our data: for instance, a fit includ-
ing bmin ¼ 6 and bmax ¼ 16 gives a0 ¼ �0:063ð2Þ, a1 ¼
0:0195ð2Þ and 
2=d:o:f: ’ 0:68.

Next we have tried to check if a quadratic behavior
rðBÞ ¼ ðjejB=�2

BÞ2 fits better, at least for small enough
fields. Results are reported in Table II. For b < 8, i.e.

jejB< ð500 MeVÞ2, the quadratic fit looks good and sta-
ble, with �B � 900 MeV. That is in agreement with the
general expectation for the case of small fields discussed
above (even if 500 MeV is not small with respect to�QCD).

We notice that, in agreement with the argument given in
Sec. II C, the range of validity of the quadratic fields
roughly coincides with the range in which the dynamical
and the valence contribution are additive (see Sec. III B).
We have then tried to fit our data with the prediction of

Ref. [27], as reported in Eq. (29). We have obtained
reasonable fits only if both m� and F� are treated as
independent free parameters, results are reported in
Table III. Data are well described by the prediction in
Eq. (29) over a wide range of values of jejB, including
b ¼ 14 (i.e. jejB� 700 MeV), even if the fitted values of
F� and m� are not very stable as the range is modified.
Typical values of the fit parameters are m� �

300–400 MeV and F� � 60–70 MeV. The fitted pion
mass is somewhat larger than the value obtained,
with the same discretization settings, by measuring meson

0 4 8 12 16 20 24

b
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0.1

0.2

0.3

0.4

0.5

u quark
d quark
average

FIG. 6 (color online). Relative increment of the quark conden-
sate as a function of the magnetic field. We report separately data
for the u and d quarks as well as for the average of the two,
together with our best fit reported in the sixth line of Table III.

TABLE II. Results from a quadratic fit rðBÞ ¼ ðjejB=�2
BÞ2 to

our data. bmin and bmax indicate, respectively, the minimum ad
maximum values of the magnetic fields included in the fit.

bmin bmax 
2=d:o:f �B (MeV)

1 4 0.45 903(11)

1 5 0.52 892(6)

1 6 0.67 899(5)

1 7 0.98 907(4)

1 8 1.7 914(4)

1 9 4.6 923(5)

1 10 8.4 933(5)

1 11 12 940(5)

1 12 21 950(6)

1 13 32 960(6)

1 14 48 969(7)

1 16 86 983(8)

TABLE III. Results from a fit of our data to Eq. (29). The
notation for bmin and bmax is as in Table II.

bmin bmax 
2=ndf m� (MeV) F� (MeV)

1 8 0.63 457(59) 54.7(5.6)

1 9 0.93 392(39) 61.7(4.2)

1 10 0.89 374(27) 63.8(2.9)

1 11 0.80 369(20) 64.3(2.1)

1 12 0.79 359(15) 65.6(1.6)

1 13 0.97 344(14) 67.2(1.4)

1 14 1.40 328(14) 69.1(1.4)

1 16 1.92 310(13) 71.1(1.3)

1 24 17.4 227(22) 80.8(2.3)

4 14 1.00 320(12) 69.9(1.2)

6 14 0.97 313(13) 70.6(1.3)

8 14 0.83 298(15) 72.2(1.5)
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correlators, i.e.m� � 200 MeV [42]; however, that is quite
reasonable if we take into account the many discretization
systematic effects which affect our simulations. The most
relevant comes from the explicit flavor symmetry breaking
induced by the staggered discretization: the three pions are
not degenerate in mass and what is determined by meson
correlator measurements is just the lowest pion mass: it is
therefore likely that the 
PT prediction still holds, but with
an heavier effective pion mass.

Regarding F�, the fitted values are about �20–30%
lower than the expected physical value, F� ’ 93 MeV.
We notice that F� enters Eq. (29) only in the prefactor,
hence its value is surely affected by the systematic uncer-
tainty in the overall normalization factor for rðBÞ, which is
of the order of 10%. There are also corrections expected
from the fact that we are not at zero temperature: the
authors of Ref. [61] predict F2

�ðTÞ ’ F2
� � T2=6, however

in our case T ’ 40 MeV and that can account for at most a
2% discrepancy from the physical value. The nonphysical
large value of m� can also affect F�, but 
PT would
predict an increased value of F� [62].

There are however many other possible sources of sys-
tematic uncertainties, including the fact that the 
PT pre-
diction of Ref. [27] has been obtained in the low energy
limit jejB � �2

QCD, a condition which is violated in our

explored range of fields. We have verified that other two-
parameter functions, which allow to fix independently the
curvature at B ¼ 0 and the asymptotic linear behavior for
larger fields (like Eq. (29) when F� and m� are treated as
independent parameters) work equally well. For instance
the function

rðbÞ ¼ c0b arctanðc1bÞ (32)

fits well in the whole range of explored fields, bmin ¼ 1 and
bmax ¼ 16, with c0 ¼ 0:0136ð2Þ, c1 ¼ 0:140ð5Þ and

2=d:o:f: ’ 0:77.

To compare with the analysis performed in Ref. [54], we
have also investigated if a power law behavior rðBÞ ¼
ðjejB=�2

BÞ� can fit our data. Results are reported in
Table IV. Reasonable fits are obtained only for a range of
fields including b ¼ 8. That coincides more or less with the
range for which also the quadratic fit works well, and
indeed values obtained for � in this range are roughly
compatible with � ¼ 2.
We are not able to say much about the strong field

regime, jejB 	 �2
QCD, since saturation effects make such

a regime inaccessible to our present investigation: much
smaller lattice spacings should be used to that aim.

D. Density of zero modes

Let us finally discuss our results for the densities of zero
modes of the Dirac operator, �uð0Þ and �dð0Þ, obtained for
the u and d quarks, respectively. We have determined such
densities following Eq. (20), i.e. determining on our en-
semble of configurations, sampled with a dynamical quark
mass am ¼ 0:01335, the average of TrðM�1ðam0ÞÞ for
various different values of m0 and then extrapolating to
am0 ¼ 0. In particular we have chosen am0 ¼ 0:007,
0.013 35, 0.02, and 0.03. A quadratic extrapolation in m0
works well in all cases.
In Table V we report data for the relative increments ~ru

and ~rd of �uð0Þ and �dð0Þ as a function of B, also for the
cases in which only the valence or the dynamical contri-
butions are taken into account; the average quantities are
plotted in Fig. 7. We notice, comparing Table V with
Table I, that the relative increment of the zero mode
density, ~r, is generally larger than the corresponding incre-
ment in the condensate, r. Moreover Fig. 7 shows that,
similarly to what happens for the condensate, it is possible

TABLE IV. Results from a fit rðBÞ ¼ ðjejB=�2
BÞ�. The nota-

tion for bmin and bmax is as in Table II.

bmin bmax 
2=ndf �B (MeV) �

1 4 0.23 784(54) 2.33(19)

1 5 0.19 817(25) 2.23(9)

1 6 0.84 900(42) 2.00(12)

1 7 0.92 940(31) 1.90(8)

1 8 0.97 965(24) 1.85(6)

1 9 1.7 1006(26) 1.75(6)

1 10 1.9 1031(21) 1.70(5)

1 11 1.9 1045(18) 1.67(4)

1 12 2.3 1064(15) 1.63(4)

1 13 3.1 1083(15) 1.59(4)

1 14 4.3 1104(16) 1.55(4)

1 16 6.4 1131(16) 1.50(4)

1 24 35.8 1254(30) 1.29(5)

TABLE V. Relative increment of the density of zero modes of
the Dirac operator for the u and d quarks and for various
magnetic field values. We report full data, as well as valence
and dynamical contributions separately.

b ~ruðbÞ ~rdðbÞ ~rvalu ðbÞ ~rvald ðbÞ ~rdynu=dðbÞ
1 0.003(4) 0.000(4) 0.002(3) 0.002(3) 0.002(3)

2 0.013(4) 0.002(5) 0.007(3) 0.003(3) 0.003(3)

3 0.026(4) 0.014(5) 0.022(4) 0.007(4) 0.009(4)

4 0.042(3) 0.024(4) 0.034(4) 0.010(5) 0.012(4)

5 0.069(3) 0.034(5) 0.047(3) 0.016(3) 0.018(3)

6 0.080(3) 0.040(7) 0.068(3) 0.021(4) 0.027(4)

7 0.117(3) 0.062(4) 0.087(3) 0.031(4) 0.036(3)

8 0.144(5) 0.076(5) 0.113(6) 0.037(5) 0.045(5)

9 0.173(5) 0.088(4) 0.138(5) 0.044(4) 0.050(3)

10 0.201(3) 0.101(7) 0.158(5) 0.052(5) 0.056(3)

11 0.236(5) 0.124(4) 0.185(5) 0.063(5) 0.069(4)

12 0.264(4) 0.142(5) 0.207(4) 0.074(5) 0.076(3)

14 0.319(5) 0.178(8) 0.256(4) 0.091(4) 0.097(3)

16 0.372(5) 0.211(5) 0.302(6) 0.115(4) 0.110(3)
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to make a separation of the total increment into a valence
and a dynamical contribution, which sum approximately to
the total increment. Also in this case the change in the
distribution of the non-Abelian gauge fields (dynamical
contribution) accounts for about 30–40% of the total
increase.

IV. CONCLUSIONS

In this study we have approached the issue of magnetic
catalysis by numerical lattice simulation of Nf ¼ 2 QCD.

We have adopted a rooted standard staggered discretization
of the fermion action and a plaquette pure gauge action on
a symmetric 164 lattice, corresponding to a lattice spacing
a ’ 0:3 fm, a (Goldstone) pion massm� ’ 200 MeV and a
temperature well below the deconfinement/chiral restoring
one (T � 40 MeV). We have studied the breaking of chiral
symmetry as a function of a constant and uniformmagnetic
field directed along the ẑ axis. Explored magnetic fields,
allowed by the toroidal geometry and for which distortion
(saturation) effects due to the lattice discretization are not
significant, range from jejB� ð180 MeVÞ2 to jejB�
ð700 MeVÞ2.

We have shown that, in the range of explored fields, it is
possible to divide magnetic catalysis into a contribution
coming from the modified distribution of non-Abelian
gauge fields, induced by dynamical quark loop effects,
that we have called dynamical contribution, and a valence
contribution, determined by measuring the condensate on
gauge configurations sampled with the unmodified distri-
bution. The first term, which is missed by quenched or
partially quenched studies, accounts for about 40% of the
total increase in the quark condensate. Results obtained for
the density of zero modes looks quite similar.
Regarding the dependence of the condensate on the

magnetic field, we have shown that a quadratic behavior,
which is expected in the limit of small magnetic fields,
describes well our data for jejB up to �ð500 MeVÞ2. The

PT prediction of Ref. [27] fits data over a wider range, but
only if the pion decay constant is treated as an independent
free parameter.
Our investigation can be improved in several respects.

Lattice artifacts may affect our results in various different
ways, ranging from the presence of a distorted meson
spectrum in the adopted rooted staggered fermion formu-
lation, to residual renormalization effects and possible
residual saturation effects in the explored range of fields.
An improved lattice formulation and a finer spacing a
would allow to check for such artifacts, to test the correct
scaling to the continuum limit of our results and to explore
larger values of the magnetic field. A larger spatial volume
would instead allow for a finer quantization of jejB and a
better investigation of the small field region. It would be
also interesting to explore different choices of the quark
mass spectrum, in order to see how the separation of
magnetic catalysis into a dynamical and a valence contri-
bution depends on the dynamical quark masses. We plan to
address such issues in future studies.
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