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Positivity constraints, derived initially assuming parity conservation, for the inclusive reaction of the

type Aðspin1=2Þ þ Bðspin1=2Þ ! Cþ X, where the spins of both initial spin-1=2 particles can be in any

possible directions and no polarization is observed in the final state, are generalized to the case of parity

violation. By means of a systematic method, we obtain nontrivial bounds involving all the spin

observables of the reaction and we discuss some relevant physics processes. Particularly, we discover a

nontrivial positivity constraint for the processes pp ! W�=Z0 þ X or pp ! ‘� þ X where ‘� decayed

from W�=Z0, which could be checked at the ongoing longitudinal spin program at Relativistic Heavy

Ion Collider.
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I. INTRODUCTION

Positivity constraints have been widely studied in spin
physics to pin down the smallest allowed domain for spin
observables. This powerful tool has a broad range of
applications for exclusive reactions as well as for inclusive
reactions. It can be used to test the consistency of a given
set of available measurements and also the validity of
specific dynamical assumptions in theoretical models.
Different methods can be used to establish these con-
straints and many interesting cases have been presented
in a recent review article [1].

In the present paper, we will focus on the single particle
inclusive production in polarized hadronic collisions,
Aðspin1=2Þ þ Bðspin1=2Þ ! Cþ X, where only initial
spins are observed and no polarization for the final state
particle C is measured. If parity is conserved, this reaction
is fully described in terms of eight independent spin ob-
servables. The positivity constraints for these parity-
conserving observables have been derived in Ref. [2].
However, if parity is not conserved, there are twice as
many spin observables and the positivity constraints be-
come much more involved. Nevertheless, such a case has
been partially studied in Ref. [3]. The derived positivity
constraint has been further used to put nontrivial bounds on
several Sivers functions [3], entering the theoretical de-
scription of single transverse spin asymmetry for various
processes [4–9]. However, the increasing complexity for a
parity-violation case requires a systematic method to ob-
tain all the positivity constraints. This will be the aim of
this paper, i.e., deriving all the positivity constraints for the
most general cases—including both parity-conserving and
parity-violating spin observables.

The longitudinal W� program at Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory is

currently successfully running, aiming to pin down the
polarized antiquark distribution in the proton [10,11].
The reason that W� boson production could provide
unique and clean access to the individual antiquark polar-
izations is due to the maximal violation of parity in the
elementary Wq �q0 vertex [12,13]. Because of the parity-
violation nature of this process, pp ! W� þ X or pp !
‘� þ X where ‘� decayed from W�, our newly derived
positivity constraints could have interesting and nontrivial
implications for the spin asymmetries measured in these
processes. Spin asymmetries for the process pp ! Z0 þ X
can be also measured, although the production rate is lower
than for W� production.
The remainder of this paper is organized as follows: in

the next section we review the derivation of positivity
constraints for the parity-conservation case to introduce
the notation and also to update the method which could
be easily used for the parity-violation case. In Sec. III, we
will derive all the general positivity constraints, which
involve both parity-conserving and parity-violating spin
observables, and are classified according to different de-
grees, linear, quadratic, cubic, and quartic. We then give
one phenomenological example of our derived positivity
bound in Sec. IV, when applying to the inclusive W�=Z0

production in longitudinal pp scatterings. We summarize
our results in Sec. V.

II. POSITIVITY CONSTRAINTS FOR
PARITY-CONSERVING PROCESSES

For single particle inclusive production Aðspin1=2Þ þ
Bðspin1=2Þ ! Cþ X with spin vectors Pa and Pb for
initial particles A and B, respectively, the spin-dependent
cross section �ðPa; PbÞ can be defined through the cross
section matrix M and the spin density matrix �

�ðPa; PbÞ ¼ TrðM�Þ; (1)
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where � ¼ �a � �b is the spin density matrix with �i ¼
ðI2 þ Pi � ~�Þ=2, i ¼ a, b. Here ~� ¼ ð�x; �y; �zÞ stands for
the three 2� 2 Pauli matrices and I2 is the 2� 2 unit
matrix; thus, � being the direct product of �a and �b will
be 4� 4 matrix. We will now study the parametrization of
the 4� 4 cross section matrix M. We first review the
existing study for the parity-conserving case. The purpose
is twofold: first to set up notation; and second, to update the
method for deriving the positivity constraints, which could
also be used in the parity-violation case.

For the parity-conserving process, M could be parame-
trized in the following way

M ¼ �0½I4 þ AaN�ay � I2 þ AbNI2 � �by

þ ANN�ay � �by þ ALL�az � �bz þ ASS�ax � �bx

þ ALS�az � �bx þ ASL�ax � �bz�: (2)

Here I4 is the 4� 4 unit matrix and �0 stands for the
spin-averaged cross section. In other words, for a parity-
conserving process, there are eight independent spin-
dependent observables [1,2,14]: the unpolarized cross
section �0, two single transverse spin asymmetries, AaN

and AbN , and five double spin asymmetries, ANN , ALL, ASS,
ALS, and ASL. Here, the subscript L, N, S represents the
unit vectors along the spin directions of initial particles A
and B. Specifically, in the center-of-mass system of A and
B, L, N, S are along the incident momentum, along the
normal to the scattering plane which contains A, B, and C,
and along N � L, respectively. The expression in Eq. (2) is
fully justified, since we have explicitly

�ðPa; PbÞ ¼ �0½1þ AaNPay þ AbNPby þ ANNPayPby

þ ALLPazPbz þ ASSPaxPbx þ ALSPazPbx

þ ASLPaxPbz�: (3)

The positivity constraints for the parity-conserving pro-
cess have been derived in [2]. The crucial point is that the
cross section matrix M is a Hermitian and positive matrix.
The necessary and sufficient condition for a Hermitian
matrix to be positive is that all its eigenvalues are positive.
It is important to emphasize here that the eigenvalues of
a matrix are independent of the basis where it is written.
In other words, no matter what basis one chooses to express
the cross section matrixM, one should obtain the same set
of eigenvalues, from which one obtains the same set of
positivity bounds. Since this is the necessary and sufficient
condition, the bounds derived from this should be the
strongest constraints for the spin observables. Using this
fact about the eigenvalues, we thus could choose any
convenient basis such that the matrix has a simple form
and thus the eigenvalues could be easily derived from
there. For example, the original positivity bounds are
derived by choosing the transverse basis where �y is

diagonal, in which the matrix elements Mij of the cross

section matrix M are given by

M11¼ð1þANNÞþðAaNþAbNÞ;
M22¼ð1�ANNÞþðAaN�AbNÞ;
M33¼ð1�ANNÞ�ðAaN�AbNÞ;
M44¼ð1þANNÞ�ðAaNþAbNÞ;
M14¼M�

41¼ALL�ASS� iðASLþALSÞ;
M23¼M�

32¼ALLþASS� iðASL�ALSÞ;
M12¼M21¼M13¼M31¼M24¼M42¼M34¼M43¼0;

(4)

i.e., half of the matrix elements vanish in this basis. The
eigenvalues �i can be easily obtained and are given by

�1;2 ¼ 1þ ANN

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAaN þ AbNÞ2 þ ðALL � ASSÞ2 þ ðALS þ ASLÞ2

q

(5)

�3;4 ¼ 1� ANN

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAaN � AbNÞ2 þ ðALL þ ASSÞ2 þ ðALS � ASLÞ2

q
:

(6)

Then from all the eigenvalues �i � 0, we have the follow-
ing strongest positivity constraints

ð1�ANNÞ2�ðAaN�AbNÞ2þðALL	ASSÞ2þðALS�ASLÞ2;
(7)

which are exactly the same as those derived in [2].
It is nice to be able to derive the eigenvalues of the cross

section matrix and thus to obtain the strongest positivity
bounds directly. However, sometimes the eigenvalues turn
out to be very difficult to find, which is exactly the situation
we face for the parity-violation case in the next section.
In such situations, one could derive a complete set of
necessary constraints, which as a whole forms the suffi-
cient condition for positivity. This is the strategy of
J. J. Sylvester, so-called Sylvester’s criterion, which states
that the necessary and sufficient condition for a Hermitian
matrix to be semipositive is that all its principal minors
have to be non-negative. This is equivalent to say for the
4� 4 matrix M that:
(i) All the diagonal matrix elements Mii � 0;
(ii) The elements satisfy: MiiMjj � jMijj2;
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(iii) The determinant of any 3� 3 matrix formed by
removing from M its ith row and ith column are
nonnegative, where i ¼ 1, 2, 3, or 4;

(iv) The determinant of the matrix M itself is
nonnegative.

These conditions will enable us to derive all the general
positivity constraints, which are of different degree, linear,
quadratic, cubic, and quartic, respectively, and as a whole
they form the necessary and sufficient condition for the
positivity of M.

Let us use Sylvester’s criterion to revisit the positivity
bounds for parity-conserving case. First let us work again
in the transverse basis. With the expression ofM in Eq. (4)
in hand, from Mii � 0 we immediately derive

1� ANN > jAaN � AbNj: (8)

On the other hand, from MiiMjj � jMijj2, we further

derive

ð1�ANNÞ2�ðAaN�AbNÞ2þðALL	ASSÞ2þðASL�ALSÞ2:
(9)

It is also easy to find that going to the even higher-order
principal minors does not give any further constraints.
Thus we have derived the equivalent results from a slightly
different method.

We would also like to make some comments on the
positivity bound in Eq. (8). Although this is a weaker
bound and could be deduced from Eq. (7), its derivation
is much simpler in the sense that one only deals with the
diagonal matrix elements without looking for the eigen-
values which need extra (and difficult) mathematical work.
On the other hand, these kinds of linear bounds are also
very useful in the phenomenological studies because of the
limited accessibility and accuracy of the spin asymmetries
in the experimental measurements.

It is also important to realize that Sylvester’s criterion
holds true in any basis one chooses to express the cross
section matrix M. Thus choosing a different basis, one
could derive a different set of positivity bounds. Even
though these different sets are equivalent to each other
according to Sylvester’s criterion, one might obtain some
interesting positivity bounds by choosing a convenient
basis, which could be difficult to find directly in another
basis.

For example, if we choose the helicity basis where �z is
diagonal, the cross section matrix M becomes

M11 ¼ M44 ¼ 1þ ALL

M22 ¼ M33 ¼ 1� ALL

M14 ¼ M41 ¼ ASS � ANN

M23 ¼ M32 ¼ ASS þ ANN

M12 ¼ M�
21 ¼ ALS � iAbN

M13 ¼ M�
31 ¼ ASL þ iAaN

M24 ¼ M�
42 ¼ �ASL � iAaN

M34 ¼ M�
43 ¼ �ALS � iAbN:

(10)

Now Mii � 0 leads to the trivial bounds 1� ALL � 0.
However, using MiiMjj � jMijj2 leads to some new pos-

itivity bounds:

1� A2
LL � A2

LS þ A2
bN; (11)

1� A2
LL � A2

SL þ A2
aN; (12)

ð1� ALLÞ2 � ðASS 	 ANNÞ2; (13)

which are not very easy to derive in the transverse basis.
These are actually weaker bounds compared to the stron-
gest bounds in Eq. (7). It requires some extra work to
derive them in the transverse basis. If one uses the follow-
ing formula in Eq. (7)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ � � � þ a2n

q
� ja1 þ a2 þ � � � þ anj; (14)

one could derive all the inequalities (11)–(13). One could
continue to study the higher-order principal minors and
thus to obtain the cubic and quartic constraints. Then,
together with the linear and quadratic ones, they form the
complete set of positivity bounds which should be equiva-
lent to the bounds in Eq. (7), according to Sylvester’s
criterion.

III. ALL GENERAL POSITIVITY CONSTRAINTS

We now study the general positivity constraints, which
involve also the parity-violating asymmetries where one
will have sixteen independent spin-dependent observables
[3]. Besides those in the parity-conserving processes, one
has four additional single spin asymmetries AaL, AbL, AaS,
and AbS, and four additional double spin asymmetries ALN ,
ANL, ANS, and ASN . In this case, the more general cross
section matrix M can be parametrized as

M ¼ �0½I4 þ AaN�ay � I2 þ AbNI2 � �by þ ANN�ay � �by þ ALL�az � �bz þ ASS�ax � �bx þ ALS�az � �bx

þ ASL�ax � �bz� þ �0½AaL�az � I2 þ AbLI2 � �bz þ AaS�ax � I2 þ AbSI2 � �bx þ ALN�az � �by

þ ANL�ay � �bz þ ANS�ay � �bx þ ASN�ax � �by�; (15)

which is fully justified since one has
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�ðPa; PbÞ ¼ �0½1þ AaNPay þ AbNPby þ ANNPayPby þ ALLPazPbz þ ASSPaxPax þ ALSPazPbx þ ASLPaxPbz�
þ �0½AaLPaz þ AbLPbz þ AaSPax þ AbSPbx þ ALNPazPby þ ANLPayPbz þ ANSPayPbx þ ASNPaxPby�:

(16)

Again to study the positivity constraints, we need to ex-
press the cross section matrix M in a basis and then study
the necessary and sufficient conditions forM to be positive.
Because of the complexity of the matrix M, it becomes
difficult to obtain the eigenvalues. Instead we will use
Sylvester’s criterion.

First, we will still work in the transverse basis where �y

is diagonal, in which the matrix elements ofM are given by

M11 ¼ ð1þ ANNÞ þ ðAaN þ AbNÞ
M22 ¼ ð1� ANNÞ þ ðAaN � AbNÞ
M33 ¼ ð1� ANNÞ � ðAaN � AbNÞ
M44 ¼ ð1þ ANNÞ � ðAaN þ AbNÞ
M14 ¼ M�

41 ¼ ALL � ASS � iðASL þ ALSÞ
M23 ¼ M�

32 ¼ ALL þ ASS � iðASL � ALSÞ
M12 ¼ M�

21 ¼ AbL þ ANL � iðAbS þ ANSÞ
M13 ¼ M�

31 ¼ AaL þ ALN � iðAaS þ ASNÞ
M24 ¼ M�

42 ¼ AaL � ALN � iðAaS � ASNÞ
M34 ¼ M�

43 ¼ AbL � ANL � iðAbS � ANSÞ:

(17)

Start with the linear positivity bounds. From Mii > 0, we
immediately obtain

1� ANN > jAaN � AbNj: (18)

The quadratic bounds are derived from MiiMjj � jMijj2.
Especially for fi; jg ¼ f1; 4g, and f2; 3g, one obtains

ð1� ANNÞ2 � ðAaN � AbNÞ2 þ ðALL 	 ASSÞ2
þ ðASL � ALSÞ2: (19)

Both Eqs. (18) and (19) are exactly the same as those in
Eqs. (8) and (9), which are derived for the parity-
conserving case. Since all the asymmetries involved in
these inequalities are parity-conserving ones, it is not
surprising that these positivity bounds are preserved. For
the case when fi; jg ¼ f1; 2g, f1; 3g, f2; 4g, and f3; 4g, we
obtain four extra positivity bounds

ð1� AaNÞ2 � ðAbN � ANNÞ2 þ ðAbL � ANLÞ2
þ ðAbS � ANSÞ2; (20)

ð1� AbNÞ2 � ðAaN � ANNÞ2 þ ðAaL � ALNÞ2
þ ðAaS � ASNÞ2; (21)

which involve both parity-conserving and parity-violating
asymmetries.
The cubic bounds are derived from the determinants of

all the 3� 3 matrix formed by removing from M its ith
row and column, which has to be non-negative. If we
remove the 4th row and column, i.e., keep the row 1, 2, 3
and column 1, 2, 3, this newly formed matrix denoted as
M123 is given by

M123 ¼
AaN þ AbN þ ANN þ 1 AbL þ ANL � iðAbS þ ANSÞ AaL þ ALN � iðAaS þ ASNÞ

AbL þ ANL þ iðAbS þ ANSÞ AaN � AbN � ANN þ 1 ALL þ ASS � iðASL � ALSÞ
AaL þ ALN þ iðAaS þ ASNÞ ALL þ ASS þ iðASL � ALSÞ �AaN þ AbN � ANN þ 1

0
@

1
A: (22)

Then the determinant jM123j � 0 leads to the following inequality

jM123j ¼ ð1þ ANN þ AaN þ AbNÞ½ð1� ANNÞ2 � ðAaN � AbNÞ2 � ðALL þ ASSÞ2 � ðASL � ALSÞ2�
� ðAaN � AbN � ANN þ 1Þ½ðAbL þ ANLÞ2 þ ðAbS þ ANSÞ2� � ð�AaN þ AbN � ANN þ 1Þ
� ½ðAaL þ ALNÞ2 þ ðAaS þ ASNÞ2� þ 2ðALL þ ASSÞ½ðAbL þ ANLÞðAaL þ ALNÞ þ ðAbS þ ANSÞðAaS þ ASNÞ�
þ 2ðALS � ASLÞ½ðAbS þ ANSÞðAaL þ ALNÞ � ðAbL þ ANLÞðAaS þ ASNÞ� � 0: (23)

Likewise, from jM124j, jM134j, jM234j � 0, we have

jM124j ¼ ð1� ANN þ AaN � AbNÞ½ð1þ ANNÞ2 � ðAaN þ AbNÞ2 � ðALL � ASSÞ2 � ðASL þ ALSÞ2�
� ð1þ ANN � AaN � AbNÞ½ðAbL þ ANLÞ2 þ ðAbS þ ANSÞ2� � ð1þ ANN þ AaN þ AbNÞ
� ½ðAaL � ALNÞ2 þ ðAaS � ASNÞ2� þ 2ðAaL � ALNÞ½ðAbL þ ANLÞðALL � ASSÞ þ ðAbS þ ANSÞðASL þ ALSÞ�
þ 2ðAaS � ASNÞ½ðAbL þ ANLÞðASL þ ALSÞ � ðAbS þ ANSÞðALL � ASSÞ� � 0; (24)
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jM134j ¼ ð1� ANN � AaN þ AbNÞ½ð1þ ANNÞ2 � ðAaN þ AbNÞ2 � ðALL � ASSÞ2 � ðASL þ ALSÞ2�
� ð1þ ANN � AaN � AbNÞ½ðAaL þ ALNÞ2 þ ðAaS þ ASNÞ2� � ð1þ ANN þ AaN þ AbNÞ
� ½ðAbL � ANLÞ2 þ ðAbS � ANSÞ2� þ 2ðAbL � ANLÞ½ðAaL þ ALNÞðALL � ASSÞ þ ðAaS þ ASNÞðASL þ ALSÞ�
þ 2ðAbS � ANSÞ½ðAaL þ ALNÞðASL þ ALSÞ � ðAaS þ ASNÞðALL � ASSÞ� � 0; (25)

and

jM234j ¼ ð1þ ANN � AaN � AbNÞ½ð1� ANNÞ2 � ðAaN � AbNÞ2 � ðALL þ ASSÞ2 � ðASL � ALSÞ2�
� ð1� ANN � AaN þ AbNÞ½ðAaL � ALNÞ2 þ ðAaS � ASNÞ2� � ð1� ANN þ AaN � AbNÞ
� ½ðAbL þ ANLÞ2 þ ðAbS þ ANSÞ2� þ 2ðAbL � ANLÞ½ðALL þ ASSÞðAaL � ALNÞ þ ðASL � ALSÞðAaS � ASNÞ�
þ 2ðAbS � ANSÞ½ðALL þ ASSÞðAaS � ASNÞ � ðASL � ALSÞðAaL � ALNÞ� � 0: (26)

Finally, the quartic bounds are given by the determinant
of M itself jMj � 0. With the matrix elements given in
Eq. (17), it is easy to write down the determinant of M,
which we do not write out explicitly here. The linear,
quadratic, cubic and quartic bounds form the complete
set of positivity bounds according to Sylvester’s criterion.
We have found that all the bounds derived from the parity-
conserving case are preserved in this more general case.

As we have emphasized in the previous section, we
could also derive a different set of positivity bounds by
choosing a different basis. These new bounds might also be
useful and interesting for the phenomenological studies.
Let us study the positivity bounds by choosing the helicity
basis, in which the explicit form of M is given by

M11 ¼ ð1þ ALLÞ þ ðAaL þ AbLÞ
M22 ¼ ð1� ALLÞ þ ðAaL � AbLÞ
M33 ¼ ð1� ALLÞ � ðAaL � AbLÞ
M44 ¼ ð1þ ALLÞ � ðAaL þ AbLÞ
M14 ¼ M�

41 ¼ ASS � ANN � iðANS þ ASNÞ
M23 ¼ M�

32 ¼ ASS þ ANN � iðANS � ASNÞ
M12 ¼ M�

21 ¼ AbS þ ALS � iðAbN þ ALNÞ
M13 ¼ M�

31 ¼ AaS þ ASL � iðAaN þ ANLÞ
M24 ¼ M�

42 ¼ AaS � ASL � iðAaN � ANLÞ
M34 ¼ M�

43 ¼ AbS � ALS � iðAbN � ALNÞ:

(27)

Now from Mii � 0, we have

1� ALL > jAaL � AbLj: (28)

This is a very interesting positivity bound. Particularly, it
involves both parity-conserving (ALL) and parity-violating
(AL) asymmetries. Since this bound involves only the
longitudinal asymmetries, it might be very useful and
relevant to the ongoing longitudinal W�=Z0 program
at RHIC.

Then from MiiMjj � jMijj2, one could derive the fol-

lowing quadratic bounds

ð1� ALLÞ2 � ðAaL � AbLÞ2 þ ðASS 	 ANNÞ2
þ ðANS � ASNÞ2; (29)

ð1� AaLÞ2 � ðAbL � ALLÞ2 þ ðAbS � ALSÞ2
þ ðAbN � ALNÞ2; (30)

and

ð1� AbLÞ2 � ðAaL � ALLÞ2 þ ðAaS � ASLÞ2
þ ðAaN � ANLÞ2: (31)

These bounds are stronger than the linear ones. For ex-
ample, specifically from the bounds in Eq. (29), one could
deduce those in Eq. (28). One could continue to study the
bounds in even higher order, and the procedure is straight-
forward. We decide to stop here, and turn to discuss some
phenomenological applications.

IV. PHENOMENOLOGICAL EXAMPLE:
W�=Z0 PRODUCTION AT RHIC

In the last two sections, we have derived quite a few
positivity constraints that involve both parity-conserving
and parity-violating spin asymmetries. They could have
broad applications in testing the consistency of the experi-
mental measurements, or studying the validity of the theo-
retical models. However, due to the experimental limited
accessibility and accuracy, only a few could be reachable in
the near future. In this section, we study one such example:
the positivity bound (28) in theW�=Z0 or ‘� production in
pp collisions, pp ! W�=Z0 þ X or pp ! ‘� þ X where
‘� decayed fromW�=Z0. It is important to realize that for
identical initial particles scattering, one has

AaLðyÞ ¼ AbLð�yÞ; (32)

where y is the rapidity of the final-state particle. Thus
Eq. (28) becomes
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1� ALLðyÞ> jALðyÞ � ALð�yÞj: (33)

These bounds have a very simple form, and should be very
interesting to test them in RHIC experiments.

To have an idea, let us check whether these bounds
are satisfied for W� or Z0 production in longitudinal
pp collisions, ~p ~p ! W�=Z0 þ X. In perturbative QCD
formalism, at leading order and restricting to only up and
down quarks, one has the following simple expressions for
the single spin asymmetries [12,13,15–17]

AWþ
L ðyÞ ¼ ��uðxaÞ �dðxbÞ þ � �dðxaÞuðxbÞ

uðxaÞ �dðxbÞ þ �dðxaÞuðxbÞ
; (34)

AW�
L ðyÞ ¼ ��dðxaÞ �uðxbÞ þ ��uðxaÞdðxbÞ

dðxaÞ �uðxbÞ þ �uðxaÞdðxbÞ ; (35)

and

AZ0

L ðyÞ ¼
P
q
ð2vqaqÞ½��qðxaÞ �qðxbÞ þ ��qðxaÞqðxbÞ�
P
q
ðv2

q þ a2qÞ½qðxaÞ �qðxbÞ þ �qðxaÞqðxbÞ�
;

(36)

and for the double spin asymmetries,

AWþ
LL ðyÞ ¼ ��uðxaÞ� �dðxbÞ þ � �dðxaÞ�uðxbÞ

uðxaÞ �dðxbÞ þ �dðxaÞuðxbÞ
; (37)

AW�
LL ðyÞ ¼ ��dðxaÞ��uðxbÞ þ ��uðxaÞ�dðxbÞ

dðxaÞ �uðxbÞ þ �uðxaÞdðxbÞ ; (38)

and

AZ0

LLðyÞ ¼ �
P
q
ðv2

q þ a2qÞ½�qðxaÞ��qðxbÞ þ��qðxaÞ�qðxbÞ�
P
q
ðv2

q þ a2qÞ½qðxaÞ �qðxbÞ þ �qðxaÞqðxbÞ�
;

(39)

where �qðxÞ and qðxÞ are the helicity distribution and
unpolarized parton distribution function, respectively. vq

and aq are the vector and axial couplings of the Z
0 boson to

the quark. xa;b are the parton momentum fractions given by

xa ¼ mQ=
ffiffiffi
s

p
ey; xb ¼ mQ=

ffiffiffi
s

p
e�y; (40)

withmQ; y the mass and rapidity of theW (or Z) boson andffiffiffi
s

p
the center-of-mass energy.
To estimate these asymmetries numerically, we choose

BBS2001 polarized and unpolarized parton distribution
functions based on a statistical approach [18]. At

ffiffiffi
s

p ¼
500 GeV, our calculations plotted as a function of rapidity
y are shown in Fig. 1 for Wþ (left) and W� (right), and in
Fig. 2 for Z0 boson, respectively. The solid curves are the
single longitudinal spin asymmetry AL, the dashed curves
are the double longitudinal spin asymmetry ALL, while the
dotted curves are the following combination

1þ ALLðyÞ � jALðyÞ þ ALð�yÞj; (41)

which must be positive according to the positivity bounds
in Eq. (33). As we can see from both plots that even
though jALðyÞ þ ALð�yÞj could become quite sizable, it
is still smaller than 1þ ALLðyÞ, thus the bound is satisfied
in this leading-order calculation for both W� and Z0. The
other bound 1�ALLðyÞ�jALðyÞ�ALð�yÞj could become
even more sizable and is also satisfied within BBS2001
parameterization.
We have also checked other popular parametrizations

of polarized parton distribution functions, to see whether
they satisfy our bounds. Particularly we have checked
GRSV2000 [19], AAC2008 [20], DSSV [21,22], and
LSS2010 [23]. For the unpolarized parton distribution
functions, we use exactly the same set as the one when
the global fitting was performed. That is, we use GRV98
[24] for both GRSV2000 and AAC2008, while MRST2002
[25] for both DSSV and LSS2010. It turns out that both
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FIG. 1 (color online). Longitudinal asymmetries are plotted as a function of rapidity y of the W boson in ~p ~p collisions: Wþ (left)
and W� (right). The solid curves are the single longitudinal spin asymmetry AL, the dashed curves are the double longitudinal spin
asymmetry ALL, and the dotted curves are the combination of 1þ ALLðyÞ � jALðyÞ þ ALð�yÞj.

ZHONG-BO KANG AND JACQUES SOFFER PHYSICAL REVIEW D 83, 114020 (2011)

114020-6



GRSV2000 and AAC2008 satisfy our bounds, while
both DSSV and LSS2010 could have violation at large
rapidity jyj. The violations are shown in Fig. 3, in which
we plot 1þ ALLðyÞ � jALðyÞ þ ALð�yÞj as a function
of rapidity y for Wþ, W�, and Z0. Since for identical
incoming hadrons ALLð�yÞ ¼ ALLðyÞ, the combina-
tion 1þ ALLðyÞ � jALðyÞ þ ALð�yÞj is symmetric under
y $ �y and we thus only plot for positive y. We immedi-
ately find that when rapidity becomes large y * 1:5 where
xa * 0:7 and xb & 0:04 (or vice verse for y & �1:5),
the combination 1þ ALLðyÞ � jALðyÞ þ ALð�yÞj could
become negative for both DSSV and LSS2010, and for
all W�=Z0 bosons. Since our bounds are very general,
coming from the positivity conditions of the cross section
matrix, they should always be satisfied. Thus, our newly
derived bounds, though very simple, immediately put non-
trivial constraints on the parametrizations of the polarized
parton distributions, for both DSSV and LSS2010.

According to next-to-leading-order calculations in
[16,17], the QCD radiative corrections for the asymmetries
are small. We thus expect our findings and conclusions for

the specific parametrizations of polarized parton distri-
bution functions will not alter in higher-order QCD calcu-
lations, for both W�=Z0, and for the leptons decayed from
them. It will be very interesting to check our bounds in the
forward or backward regions (when jyj becomes large) in
the experiments.
We notice that there are already published data for single

spin asymmetry AL at midrapidity y ¼ 0 from both STAR
[26] and PHENIX [27] for the leptons decayed from
W�=Z0 bosons.

STAR : Aeþ
L ¼ �0:27� 0:10; Ae�

L ¼ 0:14� 0:19

(42)

and

PHENIX : Aeþ
L ¼ �0:86þ0:30

�0:14; Ae�
L ¼ 0:88þ0:12

�0:71:

(43)

On the other hand, at y ¼ 0 our bound becomes

1þ ALLð0Þ � 2jALð0Þj: (44)

At the same time, ALLð0Þ is very small (a few percents) for
the current parametrization of polarized parton distribution
functions. If one takes ALLð0Þ 
 0 in Eq. (44), we obtain

jALð0Þj � 1

2
: (45)

Comparing with both STAR and PHENIX data, we imme-
diately find that STAR data is consistent with our bounds,
while PHENIX data (central value) is certainly out of the
bound. Of course, so far the data has very large uncertainty
at the moment. Nonetheless, it will be important to check
all our bounds in the future experiments. We look forward
to the future experimental measurements to test these
bounds.
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FIG. 2 (color online). Same as Fig. 1, but for Z0 boson.
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FIG. 3 (color online). Asymmetry 1þ ALLðyÞ � jALðyÞ þ ALð�yÞj are plotted as a function of rapidity y for the parametrization of
DSSV [21,22] (left) and LSS2010 [23] (right). The solid, dashed and dotted lines are for Wþ, W�, and Z0, respectively.
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V. SUMMARY

We derive all the general positivity constraints for the
spin observables in the single particle inclusive production,
Aðspin1=2Þ þ Bðspin1=2Þ ! Cþ X, where the spins of
both initial spin-1=2 particles can be in any possible direc-
tions and no polarization is observed in the final state. By
means of a systematic method, we generalize the previous
positivity constraints derived for the parity-conserving
processes to the most general processes including also
the parity-violating ones. We find that the positivity con-
straints involving only the parity-conserving asymmetries
are preserved in the parity-violating case.

With the help of Sylvester’s criterion, we derive all
the general positivity constraints, which are of different
degree, linear, quadratic, cubic and quartic, respectively.
These constraints form a complete set of necessary and
sufficient condition for positivity. As a special example, we
discover a very interesting nontrivial bound for the parity-
conserving and parity-violating longitudinal asymmetries
ALL and AL. This could be relevant to the processes,
pp ! W�=Z0 þ X or pp ! ‘� þ X where ‘� decayed
from W�=Z0 in longitudinal pp scatterings, which are
currently under active investigation at RHIC.

The positivity constraints derived here could have broad
applications in testing the consistency of the experimental

measurements, or studying the validity of the theoretical
models. We look forward to the future experimental data to
test these positivity bounds.
Before closing, let us mention another possible

application of our results in polarized deep inelastic scat-
tering at high energies where weak interactions contribu-
tions, both neutral and charged current processes are taken
into account, as well as the parity-violating polarized
nucleon structure functions. The explicit expressions of
the charged lepton asymmetry AeLðyÞ and the proton asym-
metry ApLðyÞ can be obtained from Ref. [28] and our

bounds can be used to put new constraints on the helicity
distributions. These parity-violating asymmetries are also
expected to be modified by effects beyond the Standard
Model, e.g. scalar and vector leptoquarks [29], and our
bounds could be used to put further constraints on existing
models.
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