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General helicity formalism for semi-inclusive deep inelastic scattering
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We study polarized and unpolarized semi-inclusive deep inelastic scattering processes, €(S;) + p(S) —
€'hX, within a QCD parton model motivated by a generalized QCD factorization scheme. We take into
account all transverse motions, of partons inside the initial proton and of hadrons inside the fragmenting
partons and use the helicity formalism. The elementary interactions are computed at leading order with
noncollinear exact kinematics, which introduces phases in the expressions of their helicity amplitudes.
Several transverse momentum dependent distribution and fragmentation functions appear and contribute
to the cross sections and to spin asymmetries. Our results agree with those obtained with different
formalisms, showing the consistency of our approach. The full expression for single and double spin
asymmetries Ag, ¢ is derived. Simplified, explicit analytical expressions, convenient for phenomenological
studies, are obtained assuming a factorized Gaussian dependence on intrinsic momenta for transverse

momentum dependent functions.

DOI: 10.1103/PhysRevD.83.114019

I. INTRODUCTION

Experiments with inclusive deep inelastic scattering
(DIS) processes, {N — ¢'X, have been performed for dec-
ades and have been interpreted as the most common way to
investigate the internal structure of protons and neutrons.
At large energy and momentum transfer the leptons inter-
act with the nucleon constituents; by detecting the angle
and the energy of the scattered lepton one obtains infor-
mation on the partonic content of the nucleons. This infor-
mation is encoded in the parton distribution functions
(PDFs) which give the number density of partons moving
collinearly with the nucleon and carrying a fraction x of its
momentum at a certain value of the squared momentum
transfer Q2. The prediction of the Q? dependence of the
PDFs has been one of the great successes of pQCD.
Although successful, such an approach only offers infor-
mation on the longitudinal degrees of freedom of quarks
and gluons, giving no information on the transverse mo-
tion, which is integrated over. This transverse motion—
transverse with respect to the parent nucleon direction—is
related to intrinsic properties of the partons, like orbital
motion, and reveals new aspects of the nucleon structure.

In the last years, driven by unexpected spin effects and
azimuthal dependences, the study of the intrinsic motion of
partons has made enormous progress; indeed, a new phase
in the exploration of the proton and neutron composition
has begun. The leading role in such an effort is played by
semi-inclusive deep inelastic scattering (SIDIS) processes,
{N — {¢'hX, in which, in addition to the scattered lepton,
also a final hadron is detected; this hadron is generated in
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the fragmentation of the scattered quark (or gluon)—the
so-called current fragmentation region—and, as such,
yields some new information on the parton primordial
motion. This new information is encoded in the so-called
transverse momentum dependent partonic distribution
and fragmentation functions (TMD-PDFs and TMD-FFs,
or, shortly, TMDs), f, /p(x, k) and D, /a(z, p1). The
TMD-PDFs give the number density of quarks (a = g),
antiquarks (a = @) or gluons (a = g) with light-cone mo-
mentum fraction x and transverse momentum k | inside a
fast moving proton; the TMD-FFs give the number density
of hadrons /4 resulting in the fragmentation of parton a,
with a light-cone momentum fraction z and a transverse
momentum p |, relative to the original parton motion. At
leading twist, taking into account the parton and the nu-
cleon spins, there are eight independent TMD-PDFs [1,2];
if the final hadron is unpolarized or spinless, say a pion,
there are two TMD-FFs. All these quantities combine into
physical observables and by gathering information about
them one accesses the momentum distribution of partons
inside the nucleons.

The theoretical framework used to analyze the experi-
mental data is the QCD factorization scheme, according to
which the SIDIS cross section is written as a convolution of
TMDs and elementary interactions:

do.{’p—»{”hx

= qu/p(x! k1;:0°)®ds'r~e D, (z p1;:0?).
q

o))
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FIG. 1 (color online).
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In the y*-p center of mass (c.m.) frame, see Fig. 1, the
measured transverse momentum, Py, of the final hadron is
generated by the transverse momentum of the quark in the
target proton, k,, and of the final hadron with respect to
the fragmenting quark, p,. At order k; /Q it is simply
given by

PTZZkJ_+pJ_. (2)

There is a general consensus [3—7] that such a scheme
holds in the kinematical region defined by

Pr=Aqgep < 0. 3)

The presence of the two scales, small P and large Q,
allows to identify the contribution from the unintegrated
partonic distribution (P; =~ k), while remaining in the
region of validity of the QCD parton model. At larger
values of P; other mechanisms, like quark-gluon correla-
tions and higher order pQCD contributions become impor-
tant [7-9]. Corrections at subleading order in 1/Q might
spoil the factorization scheme [10]. A similar situation
[4,6,11-17] holds for Drell-Yan processes, AB —
£7¢~ X, where the two scales are the small transverse
momentum, g7, and the large invariant mass, M, of the
dilepton pair.

Let us elaborate now on Eq. (1). We consider the SIDIS
cross section at the leading «., order—i.e. one-photon
exchange—and in the “‘standard” [18] kinematical con-
figuration of Fig. 1, which defines the azimuthal angles ¢,
and ¢y in the y*-p c.m. frame. The most general depen-
dence on these angles has been discussed in several semi-
nal papers [1,19-21], both in a model independent scheme
and in the parton model. According to the usual derivation,
the polarization states of the virtual photon, as emitted by
the lepton in a certain direction, contains azimuthal depen-
dences [19,20]; within the parton model, the virtual photon
scatters off a quark—which subsequently fragments into
the final hadron—and each term of the azimuthal depen-
dences can be written as a convolution of distribution and
fragmentation functions [1,20-23].

Kinematical configuration and conventions for SIDIS processes. The initial and final lepton momenta define

We re-derive here the same general expression of the
cross section, and its parton model content, by assuming
from the beginning the validity of the TMD factorization
(1); we use the helicity basis to compute the elementary
interaction and to introduce transverse momentum depen-
dent distribution and fragmentation functions. In such an
approach the full azimuthal dependence is simply gener-
ated by the properties of the helicity spinors and ampli-
tudes. Our final results coincide with the existing ones,
showing the full equivalence of the two procedures. Our
formalism is based on a physical and intuitive picture,
which somehow factorizes the physical process in different
steps: the “‘emission’ of a parton by the interacting hadron
(p — g + X), the interaction of the parton with the lepton
(g — €q), and the “‘emission” of the final hadron by the
scattered quark (¢ — h + X); each step is described by the
corresponding helicity amplitudes. For SIDIS processes
this factorization has been formally proven and expressed
in terms of TMDs, Eq. (1). Such a procedure can naturally
be extended to other processes, and indeed this has been
done for the large Py production of a single particle in
inclusive hadronic interactions, AB — CX [2]. The point,
however, is that, despite the natural simplicity of the ap-
proach, the TMD factorization has not been proven for
processes with a single large scale, like AB — CX.
Because of this, the study of dijet production at large Py
in hadronic processes was proposed [24-27], where the
second small scale is the total g7 of the two jets, which is of
the order of the intrinsic partonic momentum k. This
procedure leads to a modified TMD factorization ap-
proach, with the inclusion in the elementary processes of
gauge link color factors [28-31]. However, some doubts on
the validity of such a factorization scheme have been
recently cast [32-34]. A possible experimental test of the
TMD factorization for processes with only one large scale
has been proposed in Ref. [35]. We limit our discussion in
this paper to SIDIS processes, in the kinematical region (3)
for which TMD factorization holds, and obtain the most
general expression for the polarized cross section, with our
helicity formalism. A similar study can be done, with the
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same validity, for Drell-Yan processes [13,17,36]. We in-
troduce only leading-twist TMDs and take into account
exact kinematics, often simplifying results by only keeping
terms up to O(k, /Q).

The paper is organized as follows. In Sec. II we present
our formalism and compute the polarized SIDIS cross
section. In Sec. III we give the explicit general expressions
of all independent single and double spin asymmetries, in
terms of the TMDs. In Sec. IV we give explicit analytical
formulae for the spin and azimuthal asymmetries, assum-
ing a factorized Gaussian dependence of the TMDs on k|
and p . In Sec. V we draw our conclusions. Useful results
are derived and collected in Appendices A, B, C, D, and E.

II. CROSS SECTIONS IN POLARIZED SIDIS

According to Refs. [2,37] the full differential cross
section for the polarized SIDIS process, €(S¢) + p(S) —
€'hX, can be written, within TMD factorization, as

Ao 80+p(S)—~'nx

dxgdQ?dz,d*Prdes
1 08 /p.S
= - d2k J f/ qi P;
2“%%167()@;@2[ Lo PARPAA,
~ A A* /\ /\
Xf‘li/ﬁvs(x’kl)M’\f’A‘lf;/\k)‘q,'M)\u/\iif )\;A/ D/\h /h\' (Z’pl)’

“4)

where we adopt the kinematical configuration of Fig. 1,
and, as usual:

s=(+pP @ =-g =07

0 PPy )
B:2 ip = .

P q P q

The variables x, z and p; which appear under integra-
tion in Eq. (4) are related to the final observed variables
xp, z;, and P; and to the integration variable k. The
exact relations can be found in Ref. [37]; at O(k,/Q)
one simply has

X = Xp =2 pl=PT—thL. (6)

J includes some nonplanar kinematical factors [37]:

2 12
Xp ka)
J=—(1+ =~ ], 7

x( x? Q? @

where the last relation holds at O(k; /Q). At this order
Eq. (4) can be written as

PHYSICAL REVIEW D 83, 114019 (2011)

da.é(S{)+p(S)—>€’hX

deszthd2P7d¢S
1
= ———— |k d*p 5P (Pr—z,k
2#%%1677()635)2,/ 1d°p,8Y(Pr—z,k —py)
¢
Xp/\(sj'pi( /]).7’qu /ps(x, kl)M/\e/A M/\(,,M).K,Aqf LA,

x Dy A;, (zpL) ©)

where we have explicitly shown the integration over p | for
clarity and further use. In Eqgs. (4) and (8) the sums are
performed over all quark flavors (¢ = u, i, d, d, s, 5) and

all quark, lepton and hadron helicity indices; p{)i‘(slf2 is the
initial lepton helicity density matrix, which describes the
spin state of the lepton beam; for unpolarized leptons one
simply has pf\( N = 3 &x,a- It might be helpful, and useful
for physical interpretations, to recall that, in general, for a
spin 1/2 Dirac particle one has

_1( 1+ P, Px—iPy>

Par=ao\p.+iP, 1-P, ©

where P; = P,, P,, P, are the components of the particle
polarization vector in its helicity frame (throughout the
paper we follow the definitions and conventions for helicity
states of Ref. [38]).

Let us discuss in detail the different “factors” in Eq. (4):
they represent the distribution of polarized partons (only
quarks at leading order [LO]) inside the proton, their
interaction with the lepton and the fragmentation of the
(polarized) final quark into the observed unpolarized had-
ron h. We follow, and adapt to the case of SIDIS, the
discussion of Ref. [2]. We describe the three stages of the
process—quark emission, interaction and fragmentation—
within the helicity formalism, which allows us to introduce
in a natural way, at each step, several phases; these, when
combined into the expression for the physical cross section
(4) give its full azimuthal dependence, in agreement with
results in the literature derived in a more formal and some-
what less intuitive way [23].

A. TMD partonic distribution functions

pj'/f\’, fql /ps(x, k) counts the number of polarized

quarks 1ns1de a polarized proton; it is the polarized distri-
bution function of the initial quark ¢g; with light-cone
momentum fraction x and intrinsic transverse momentum
k| , inside the target proton p in a pure spin state S. Using
Eq. (9) and parity invariance one can see that there are
eight independent distribution functions, which can be
defined as

P?fq/p,sr(x’ kJ_) =

= Af‘zf/ST(x’ kL)

AZ],/ST(X: kJ_) - fzsj/ST(xr kJ_)

(10)
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Pl s, ki) = Fi s k) = F2 5 (x ko)
= A (ky) (11)

Faips (k1) = Fopple ki) + 30 F s, (ke ), (12)
with
qu/ST(x: kJ_) = fq/ST(xy kJ_)
We define, for further use,
%[fs_‘./ST(x’ kJ.) - f‘s}./*ST(xr kJ_)] = A_fsy/ST(x’ kJ_)
(14)

— foros, (0 ky). (13)

In Egs. (10) and (11), j = x, y, z are the coordinate-axes in
the quark helicity frame and S; ; are, respectively, the
longitudinal and transverse components of the proton po-
larization vector, with respect to its direction of motion.

Different notations can be found in the literature for
these functions, in particular, those introduced by the
Amsterdam group [1,39,40], which are largely adopted.
The relationships between the two sets can be found
in Ref. [2], and will be repeated for convenience in
Egs. (22)-(25).

According to the physical interpretation of the factori-
zation scheme, as outlined above, these quantities can be
introduced by making use of the helicity amplitudes
j: ApAxiA,s which describe the soft process p — ¢ + X.
Since the partonic distribution is usually regarded, at LO,
as the inclusive cross section for this process, the helicity
density matrix of a quark ¢ inside the proton p with spin S
can be written as

s 7
p?\/i/ Farpsto ki) = P ,\/i :FA Axid, .'FA AgiAl

pS AL
/\Z}\/p/\p/\;F/\ AL (15)
P tp

having defined
P =Y FrooFinw, 09

where the iXA stands for a spin sum and phase-space

X
integration over all the undetected remnants of the proton,
considered as a system X, and the j-" ’s are the helicity
distribution amplitudes for the p— g + X process.
Equation (15) relates, via the unknown distribution ampli-
tudes, the helicity density matrix of the parton g,

aps _ 1 1+ P PL—iP]
Ay 2\ P? + l.P)qy 1—P?
L1+ P! Ple %
- . , 17
> ( Ple®s 1— Pl an
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to the helicity density matrix of the polarized parent
proton,

ps _ 1 1+S8, Sy—iSy
Pax, o\ Sy +iSy  1-S,
_ 1 1+ SL STe_i¢S
a 2( Sre®s  1-8; ) (1%
In  the above equations S=(Sx,Sy,S,) =

(Sycosgg, Sysingg, S;) is the proton polarization vector
and ¢y its azimuthal angle, defined in the helicity reference
frame of the proton p. Similarly, P4 = (P%, P}, P1) =
(P7cosg,, P7sing; , P?) is the quark polarization vector
defined in the quark helicity frame and ®s, its azimuthal
angle. For the kinematical configuration of Fig. 1, one has

@5 = 2m — ¢g (see Appendix B), so that
L1458,  Spels
pS L T
;== _ . 1
p)‘)‘ Z(STe is l_SL) ( 9)

Notice that, in general, we denote by ¢ angles defined
in the proton or quark helicity frames, while the symbol
¢ is used for the corresponding angles measured in the
v*-p c.m. frame.

The distribution amplitudes j-" depend on the parton
light-cone momentum fraction x and on its intrinsic trans-
verse momentum k,;, with modulus k; and azimuthal
angle ¢ |, in a precise way [2,38], which, again referred
to the kinematical configuration of Fig. 1, reads

.7:)\ ager, (k1) = Fa g, (6 k) expl—id, 1] (20)

so that
B (k) = Fy7 s k) explith), — A,)¢.1) 1)
F ;L\Zf\\’ (x, k1) has the same definition as ki A A, (x ki),

Eq. (16), with F replaced by F, and does not depend on
phases anymore. Notice that we have chosen, throughout
the paper, to denote with a hat all soft quantities which
depend on both the modulus and the phase of the k;, and
p . intrinsic momentum vectors, while we drop the hat for
quantities which only depend on the modulus of these
vectors and not on their phases.

Equations (15), (17), (19), and (21), together with parity
properties and the arguments collected in Appendix B,
allow to extract the explicit phase dependence of the
eight independent distribution functions which appear in
Egs. (10)-(12), with the result (more details can be found
in Ref. [2]):
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Faypsuk ) =FIT(x k) +Frr(x k)

=287 ImFI* (x, k) )sin(¢pg— 1)
=fq/p(x’ kJ_)
— 218 s, (5 K sin(bs — )

k
= filo k) +Spo s (o k) sin(gs — b 1)
(22)
Pif stk ) =S [FIi(x k) —Frr(xky)]
+2S;ReF Lt (x,k;)cos(ps— b))

= SLAf;]Z/SL(xy kJ_)
+ STAfZZ/sT(x’ ki)cos(¢ps— 1)
=S181.(x k)

ky
+Sr—

b1) (23)

ng(x ky)cos(¢pg—

=28, ReFIi(x, ki) — Se[FiZ(xky)
+Fi(x ky)]cos(ps— 1)

= _SLAffX/SL(X,kJ_)

- STAfZX/ST(X, ki)cos(ds— 1)

k
= —SLMth'L(x, ki)— STI:hl(X, ki)

2

k
o (k) Jeostas - 1) @24)

sz‘q/p,S(x:kJ_) =

ngq/p,S(xrk_L) =2ImF{(x, ky) + Sp[FIZ(x k)
— Fi2(x ky)]sin(¢ps — ¢ 1)
= —Af! k) + STAfffy/ST(X, ki)
X sin(¢ps — ¢ 1)

k
= —J'hll(x, ki) + ST[hl(x, ki)

hllr(x kl)]51n(¢s &)
(25)

C2M?

As already stated, ¢ and ¢ | are, respectively, the azimu-
thal angle of the proton polarization vector S and of the
quark intrinsic momentum k | measured in the y*-p c.m.
frame of Fig. 1. Also the quark polarization vector compo-
nents P?(i = x,y,z) refer to the helicity frame of the
quark, as reached from the y*-p frame: this explains the
sign differences between Egs. (22, 24, 25), and Egs. (B12,
B14, B15) of Ref. [2] (in the latter case the polarized
proton was moving along Z., rather than along —Z,.

PHYSICAL REVIEW D 83, 114019 (2011)

Further comments are given in Appendix B). Notice that,
while P{f,,, # 0, one has P{f,,, = Pif,,, =0.

The above equations, which will be soon used, deserve
some further explanation. In each equation the first two
lines express the partonic distributions in terms of the

)‘ A, (x k,)’s and show their exact phase dependence.

The followmg two lines give the same quantities using

our notations for the TMD-PDFs. According to our ‘“hat

convention,” quantities like Af? /S(x, k1) do not depend
“J

on phases anymore, as such dependence has been explicitly
extracted out; comparing with Egs. (10)—(12) one has
(always referred to the variables and kinematical configu-
ration of Fig. 1)

Af s, (k) = —Afys, (x ky)sin(s — 1) (26)
AFY s (o key) = =AfT o (x ky) 27)
AFY o (oky) = =Af7 o (k) cos(ds — b1)  (28)

AFY s k) = =AfL o (ki) = =AfL (nky)

(29)
AfZ,/ST(xrki) = _AfT /,,(x» ki)
+A” fsy/sr(x, ki)sin(ps— 1)
=—AfL (k) + AT g (k) (30)
MYy, (k) = AfY g (o ky) 31
AFY s (oder) = Af2L ¢ (x ky)cos(ds = d1). (32)

According to our choice the A f? /505 (x, k) introduced

here are the same as in Ref. [2].

The last line of Eq. (22) and the last two lines of
Egs. (23)—(25) give the connection with the Amsterdam
group notations; M is taken as the proton mass. These last
relationships hold at leading twist; notice also that, when
comparing with the results of the Amsterdam group, one
should take into account other differences in conventions
and notations. In particular,

(pT)Amsterdam =k, (33)
(_ZkT)Amsterdam =PL= (PT - thl) (34)
~ P ~
(h)Amsterdam = P_T = PT' (35)
T

Finally, we recall some other notations widely used in the
literature:
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AVE (k) = Af s, (xky) = 4ImFEE (x, ky)

2k
= LflT(x ky) (36)

AquT/p(xr kJ_) = Af;{ /p(X, kJ_) =

_ -k o k) (37)

—ZIij[I(x, kJ_)

STAF o (e k) + A7 F o (k)]

K3
21&2 h_L ()C kJ_)

= hy(x k1) (38)

= FiZ(xky) = p(x kp) +

1
E[Afgx/ST(x’ kJ_) - Aifgy/ST(x’ kl)]:F;t(x’ kJ_)

2M2h1lr(x k1) (39)

Arg(x) = hy(x) = [ P by (x k)

KA
jd kJ_I:th(x ki) + A/lehl (x, kl)] (40)
Equations (36), (37), and (40) refer, respectively, to the
Sivers, the Boer-Mulders and the transversity distributions.

B. TMD fragmentation functions
The quantity DAi"')‘j’V (z, p1) describes the hadronization
ap Ny

of the quark g into the observed final hadron h, which
carries, with respect to the fragmenting quark, the light-
cone momentum fraction z and the intrinsic transverse
momentum p1. Similarly to the distribution functions,

also D )‘” Ai’ (z, p1) can be written as the product of frag-

mentation amplztudes for the ¢ — h + X process:
N /\h,/\z _ 2 )
CIED M W PR

where the ix stands for a spin sum and phase-space
X

integration over all undetected particles, considered as a
system X. The usual unpolarized fragmentation function
Dy;,(z), i.e. the number density of hadrons & resulting
from the fragmentation of an unpolarized parton ¢ and
carrying a light-cone momentum fraction z, is given by

D=5 3 [@n

Ag i

DYz py).  (42)

We consider only the cases in which the final particle is
either spinless (A;, = 0) or its polarization is not observed,

PHYSICAL REVIEW D 83, 114019 (2011)

DY, (@ p1) =YDy po). (43)
)‘h

In such a case, parity invariance reduces to two the number
of independent D} ha (Z, p1). These, in general, may de-
pend on the a21mutha1 angle of the final hadron momentum
P, around the direction of the fragmenting quark ¢, as

defined in the quark q helicity frame, which we denote by
@l (it was actually denoted as ¢” in Ref. [2])

D"z p1)=D"i(zp)) = Dy (2 p1) (44)

D"z, p) = DYi(z p))eie 45)

DMz pu) = D1 p)I = =D(z pu)e ¥,
(46)

In Appendix C it is shown how to express gog in terms of
integration and external variables (defined in the y*-p c.m.
frame), with the result, at leading order in the (k;/Q)
expansion:

P k
cosgy = Pi [COS(¢h —¢1) — 2z, P—l] (47)
T

sing! = p_ sin(¢), — ¢ ). (48)

In Eq. (44) Dy,(z py) is the unintegrated unpolarized
fragmentation function. Other common notations used in
the literature are

AND,, iz, py) = =2iD"4(z p1) = 2ImD"/(z, p1)

_2py

1
o, ——Hi (z, p1), (49)

referred to as the Collins fragmentation function. M), is the
mass of the produced hadron.

C. Elementary interaction

The M).{,,).,,f;)\ff\qi
elementary process {q; — ¢'q; computed at LO in the
v*-p c.m. frame, taking into account the quark intrinsic

motion; the amplitudes are normalized so that the unpo-
larized cross section, for a collinear collision, is given by

are the helicity amplitudes for the

dota—tey 1 1o - i
T e ag ol G0
A
where 7 = —Q? and § = xps.

Helicity conservation for massless particles requires
Ag=Ag, Ay = Ay, = Ay, which implies that there are
only two independent nonvanishing amplitudes, explicitly
computed in Appendix A, with the result
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1 . 1 - , T—7vyk
=eq62|:—A+e+l¢l_—yAfe_l¢l—47y—li|
y y y 0
(51)
Mz = M+—;+— - M*—+ —+
1—y 1 . JI=vk
= e e [—A eTiPL —_A_eTidL —4—y _i]’
y y y Q0
(52)
where y % and
k2
A, = (1 + 41+ 4—5). (53)
o

These are exact LO results, holding at all orders in the
k1 /Q expansion. By truncating this expansion at first order

d0.€(S«)+p(S)—>€/hX 1 1

dxgdQ?dz, > Prdds E% 167(xps)>

+ nggfq/p,S(x’ kl)(lMIP -
— Im(M, M3) singlt) —
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in k; /Q, one obtains much simpler expressions, which

will be useful later,

N - 1 . VI —yk

My =M, ;= Zequ[_eﬂm —p¥ 2L
y y

o

A N 1 - .
My=M,;_ ., _= 26‘[162[@6_1%- —

2vl_yk—i]
y olf
(55)

We can now assemble the expression of the different
factors—each corresponding to a physical step—into
Egs. (4) or (8) to obtain the SIDIS cross section in terms
of the TMDs. This can be done in several ways. The most
direct one is that of performing the helicity sums in Eq. (4)
taking into account Eqgs. (17), (44)-(46), (49), (51), and
(52). It yields

z 1.4 . .
[ @k 205 st kDU + W PIDy )
h

IWEP)Dy (2 p o) + [PEF s K1) (Re(H ME3) cosel
P75 k1) (M, 8T3) cos @l + Re(NT, 113) sing)JAYD, (2, p o),

(56)

which expresses the cross section in terms of the lepton and the quark polarization vectors, the helicity amplitudes of the
elementary interaction and either the unpolarized or the Collins fragmentation functions. The intrinsic transverse
momentum of the produced hadron, p |, is related to k; and the other kinematical variables as shown in Eq. (28) of
Ref. [37]. The exact expressions of cosgo’,} and singoZ can be obtained from Eqgs. (C3) and (C4).

We now continue our computation, in this section, at O(k; /Q). From Eqgs (54), (55), (47), and (48), we have

2,4
1,2 + P2 = 20 [1 + (1= yP 42— yWT = y% cosm] (57)
i = = 247 11— g - TR 7 cosd ] (58)
Pr4elet ky
Im(M, M) COSgoq + Re(M, M) sinpy = — {(1 - y)l:sm(qﬁ,, +¢))—z,— sm2d)l]
P1 Pr
T30~ ) b [sing, — 2 5 sing, | (59)
4 2,4
Re(M, Mz)cosqoq — Im(M, M) sing! = Pr 2eqge {(1 - y)[cos(¢h +¢))— Zhl;— cos2q§l:|
—2JT—y(2 - y)all:cosd)h - th—lT cosm]}. (60)

Inserting these results, together with Egs. (22)—(25), into Eq. (56), gives, at order k | /Q, the following expression for the
SIDIS cross section in the TMD factorization scheme:
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do.e(sé)m(s)—»e'hx 1 ) ) @ 46264 1 )
dedQZdzhdzPTd¢S=2wzm/d kid’p,6¥(Pr—z,k; —p1)—5— { farpl1+ (1 =y)°1Dy ),
1 k|
_EA ?/p (1 —y)[cos(q&h +é1) —th—c0s2¢i]A Dy

_2(2_)’)V 1 _yi[fq/pcos‘ﬁLDh/q

ki
fq v (cos¢h—zhp—cos¢l)A Dh/qr]

T

1 . ki .
+7SL[ (l_y)AfY /S, (Sln(¢h+¢l)_ZhFSln2¢L)ANDh/qT
T

J. p . ky .
—2Q2—yW1— “LA fs /S, (smd)h—th—Tsdel)ANDh/qy

k
+ P€<[1 —(1— )Z]Afs /SLDh/q —4y4f1 —yELAfi/SL cosd)th/q):I

+1ST[3[1 + —y)ZJqu/ST Sin( 1 — 5Dy + P~ (1= YPIAF? ¢ cos(b1 — bs)Dy,

— P€2y -

2p

P
+7T<1 —MAFL e —A

Afs /s, (cosgpg+cos(2gp | —

$s))Dy,

(=AY s, + A1 5 )sintehy + )~z sin s+ 69))ADy

A5 (sin 201 — )~z pEsinG 0L~ 69))AVDy

k|
(2 YW= —(Afs s, TATSY JSr )(Sln(¢h b1 +¢s)_ZhP—SIH¢S))A Dygi

—(2 W=y f(Af? s AT )(sm<¢h+m s)— zh—sm(zm %))ANDh/qr

2T T s, sinds —sin2 - ¢s)>Dh/q]}. 61)

The first three lines of Eq. (61) correspond to the con-
tribution of the unpolarized proton to the SIDIS cross
section; they contain either the unpolarized or the Boer-
Mulders distribution functions. The following three lines
correspond to the longitudinally polarized proton contri-
butions; they depend either on the helicity distribution
qu/s[ Ag = g,] or on the qu/s[ (ky/M)hi;
transverse momentum dependent distribution. Finally, the
last seven lines correspond to the transversely polarized
proton contributions; they may originate from the Sivers
function, from A f7 s, [= (kp/M)gi;], and from the trans-
versity distribution’ functions, related to the combinations
(Aff Js T A f! Sr ) as shown in Egs. (38) and (39). The
partonic dlstrlbutlons couple either to the unpolarized or to
the Collins fragmentation functions, depending on whether
they are, respectively, chiral even or odd.

Notice that we have intentionally grouped all terms
according to their phases, so that this expression can be
easily compared with the analogous formulae of Ref. [23],
which have the same structure. To make the comparison
fully explicit, apart from converting our notation to
the Amsterdam group notation, we need to extract from

the integration over the intrinsic transverse momentum
k| the dependence on the azimuthal angles ¢, and ¢g.
On the basis of a simple tensorial analysis, which is de-
scribed in detail in Appendices D and E, we can recover
Egs. (4.2)—(4.19) of Ref. [23], without formulating any
particular assumption on the x(z) and k; (p,) dependence
of the distribution (fragmentation) functions.

In analogy with the Amsterdam notation, Ref. [23], we
define the convolution on transverse momenta in the
following way:

ClwfD] = ¥é2 j Pk dp, 5D(Py — 2k, — p1)
q

X wik, Pr)f(xp, ki)D(zp po). (62)

Notice that this definition differs from Eq. (41) of Ref. [23]
by a factor x5 and for the definition of the parton momenta,
see Egs. (33)—(35). The convolutions on intrinsic trans-
verse momenta in the single terms of Eq. (61) can in fact be
written as

FUU = Zeé /dsz_fq/pDh/q = C[lel] (63)
q
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COS k
C0s2¢h, FS? P = —Ze faﬂkLAfs T [cos(qﬁh +é1)— G p cosZcﬁJ_]A D,

(Pr-ky) —2z,(Pr - ky)* + 2k
= cos2 c[ thL] 64
cos2¢y, MM (64)
oSy Fendh = 22 &k, — cos¢ farnD Pr cosg, — k—cos¢ Af?  AND
h e J_ 1Jq/p~h/qg — 2 DL h ZhP L sy/p h/q'
2 . K (Pr — z,Pr - k)
- cosm(—a)C[(Prknlel e ] (©5)
Sll'l k
sin2¢, F3n20r = Ze [ d’k I Pr A fls, (s1n(¢h +é)— th— sin2¢ l)A D,
. (Pr-ky) — 2z,(Pr - k1) + 2,k
= s1n2¢»hC[ a Z:M;;V[ k7L hliLHi] (66)
in k, P ) k; .
sing, Fin ¥ = —ZZe fdzk J‘ —L AfT s, (smd)h - th—lT SIHQSL)AND}[/(]I
. 2\ [k (P —Zh(l3 k1))
= sm¢h<—§)6[ L7 thhMT hf-LHf-] (67)
sing, F SLi[lljbh = 0 (no contribution from twist-2 TMDs) (68)
Fro =2 fdzklAfi/sLDh/q =Clg1.D] (69)
q
cose), 2 2 kJ— q 2 p
cosd Fi* = =23} [ @k AfL g, cosb Dy, = cost (= ) ClPy ki )zD] (70)
q
, sind—d9) _ 15 2 [ 2 , : (Pr k)
sin(¢, — ¢s)Fyr = Ezeq /d kiAf,s, sin(p — 5Dy, = sin(p), — ¢s) [7f1r ] (71)
q
cos(dy— bs) _ > _ (Pr-ky) |
cos(¢y, — ¢ps)Fiy Ze dhLAS j5, c05(b1 = sIDyyg = cos(by = s)C| === girDi | (72)
cosd)s 2 ") kJ. q 1 ki 1
cosgpsF, 7 ° = —Zeq fd k| aAfsz/Sr cospsDy/, = cosqbs(— E)C[ﬁgITDI] (73)
q
cos(2p), — by )FCOS(2¢” ) — Zeqfdzk qu/s cos(2¢p| — ¢ps)Dyy,
(K2 —2(Pr - k1)?)
= cos(2¢), — ¢s)— [ MT = gD, ] (74)

N _ . ky .
sin(dy + 9RO = 5) [ s A+ A7) sin(@ + ) 5 sintds + 89 )AMD

(Pr — zpk) (P 'kl))thIJ_] (75)

= sin(d + bs) C[ T
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sin(3¢y, — pg) Fy o » =" =3 ¢? [ d2kl (Afs s, AT )(sm<¢h+2m ¢s>—zh%sin<3¢l—¢>s>)ANDh/qT
q

, K2{—P;+2Pr(Pr k) — 2,k [4(P k) +3(Pr-k )]
=sm(3d)h—¢s)C[L T 7(Pr-ky nky 7 k1 7 k1 hf_THlJ_]

2z,M,M?
(76)
sindsFii = =36 / Pyt PT ke TR (sintés — 61 + &) —zhl’;—jsincﬁs)ANDh/qx
+§§eg f d*k lk—lA fass, singsDy,
_ sin(i)S( §> c[(PT IZ:M_;, uki )thll + % fllTDl] 77)

sin(2q§h _ ¢S)F§Jir}(2¢h_¢5)

Pr k ki
=->¢ ]dzk i = Aff 5 —Af] /S )(Sln(¢h T b1 — bs) — ZhP—lT sin(2¢ | — ¢s))ANDh/q1
q
1 .
- Ezeé fdzkl Elqu/s,‘ sin(2¢ | — ¢s)Dyy,
q

ki(<PT ku) + 2k (1= 2Py - 1&)2))
ZthM2

(Z(PT : kl)z -
M

= sin(2, — 45)(- é) q

These “Fg, g structure functions™ are the same as those defined in Ref. [23], apart from an overall factor xz which appears
in the latter. In the comparison one should consider only leading-twist TMDs and remember the different notations of
Ref. [23], Egs. (33)—(35). Using the above F’s in Eq. (61) one obtains the full expression of the SIDIS polarized cross
section, valid with leading-twist TMDs and at kinematical order k, /Q:

da.((Sg)+p(S)—>€’hX 20(2 1+ (1 _ y)2
dxzdQ%dz,d*Prdds ?{ 2

- SL[U — y)sin2¢, Fyp % + 2 — T —y sin¢hF?§"L¢”]

nipgl kzi) 1
Tty f1TD1 . (78)

Fuy + (2 — YW1 = ycosd, Fin + (1 — y) cos2¢p, Feos?

1-q
+ SLP€|: (2 Fr; + yJ1 — ycosg, °°s¢h:|
1+ (1—y)?
+ ST[M sin(gy, = ) Fyp ™™ + (1= y)(sin(d, + ps)Fpy ™

+5in(3¢p;, — ) Fyp ") + (2 — YT = y(singpsFiy™ + sin(2¢p, — ¢5>F§}f;@¢h‘¢“>]
1- (1 - )2 cos(¢, — COS
+ STPEI:% - ¢5)FLT(¢h ¢s) + vl — Y(COS¢SFLT¢S

+ cos(2¢py, — ¢S)FZ°T‘“<2"’“¢“)]}. (79)

cos(¢y

This expression agrees with Eq. (2.7) of Ref. [23], bearing
in mind Eqgs. (2.8-2.13) and that, at leading twist, Fyy, =

F3"%4 = 0. In general, our results agree with the leading
order results of Refs. [1,23,39] and reproduce part of the
subleading order results of Refs. [1,23], in particular, those
obtained in the so-called Wandzura-Wilczek type approxi-

mation [41].

In obtaining the general cross section structure of
Eq. (79) we started from the TMD factorization, Eq. (4);
then we have simply exploited the properties of the helicity
amplitudes, which essentially originate from the phase
dependence of the Dirac spinors and their non collinear
kinematics. Each step of the factorization scheme contrib-
utes some phases, including the elementary interactions.
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Some of the final azimuthal dependences have a clear
and direct physical interpretation. For example, the phase
of F ;}'}(¢h7¢3), EAlq. (71), originates from the phase depen-
dence of the Af, /s, (x, k | ) distribution, Eq. (26). This is
the Sivers effect [42,43], which relates the number of
unpolarized quarks with intrinsic momentum k; to the
spin of the proton; such an effect, due to parity invariance,
can only be of the form S - (p X k) = Sy sin(¢| — by).
Similarly, the phase in the first term of Fin’", Eq. (65),
being associated with unpolarized distribution and
fragmentation functions, can only come from the k|

do.{’(Sg)+p(S)—>€’hX 1 1

dxgdQ?dz, 2 Prdds E% 167 (xps)>

+ PE(SLAfZZ/SL(xrkJ_) + SpAfe

sZ/ST(x’ k))(IM, 12 - |M2|2)Dh/q(z, pL) —[(Af?

PHYSICAL REVIEW D 83, 114019 (2011)

dependence of the elementary interaction, the so-called
Cahn effect [37].

II1. SINGLE AND DOUBLE SPIN ASYMMETRIES
IN SIDIS

From the expression of the SIDIS polarized cross section
we can now compute all spin asymmetries which have
been, or can be, measured. We can restart from Eq. (56),
inserting into it the expressions of the polarized quark
distributions, as given in Eqgs. (22)-(32):

z 1 1 A . .
[k S a3 (Furntoe ko) + 5 SrAT s, (o) YA + 1K) Di (5 )
h

Xy/]’ (xv kJ_)

= SpAJ7 ¢ (K1) (Re(M 115) cosgl — (N, M13) singl) + (S, Af? . (5, ky)

+ STA]?ZY/ST(X’ k1)) (Im(MM3) cosls + Re(M M) sing)JAVD, iz, pl)}. (80)

Notice that this expression, at leading twist, is exact at all
orders in k; /Q. We list here some properties of the polar-
ized distribution functions which are useful in computing
the asymmetries [2]:

Fars, k) + foms, (k) =2f,,(x k1)

fq/sT(X, ki) - fq/—sT(X, k)= qu/sT(X, ki)

Afs,,/sr(x, k)= _Af‘sx/*ST(x’ ki)

A}?s}./sr(x, ki) - AfAs}./—ST(x’kJ_) = ZA_]?Z./ST(X, ki)
Afs s, (v kp) + Afy s, (o k) = =2Af] ) (v k1)
A.f‘sZ/ST(x’ k)= —Afsz/,sr(x, ki)

Afyss, ki) =Af s, (k) (=xy2 @D

Let us now consider Eq. (80) in several particular cases. In
the sequel, transverse and longitudinal always refer, both

T I pt
da.€p O'hX _ do_fp €hX 1

1
dxzdQ?dz,d*Prdds Zr% 167 (xps)?

for the protons and the leptons, to their (different) direc-
tions of motion in the y*-p c.m. frame. Longitudinal states
coincide with helicity states.

A. Nucleon transverse single
spin asymmetry, A ;r
Let us start with one of the most common SIDIS single
spin asymmetries, Ag, g, with unpolarized leptons (U) and
transversely polarized protons (7):

6 UépT—»e'hx — 5 0.€p1—>€’hX
Ayr

T S tP =X 1 g6 tp—0hX

d6a.€+p(ST)—>€’hX _ d60.€+p(—ST)—>€’hX

St PS—=URX L 46 b+ p(=Sp)—ChX (82)

For the numerator of Ayr we have

z (1, 4 A .
J s a5 8y e kDU + LDy )
h

+ [A’ffy/sr(x, k) (Re(M,M:;) cospl — Im(M, M) sing”t)

— AP g (k) (Re(,BT3) singy + Im(M 113) cos ) IAVD, 1, pl)}. (83)

The first term in Eq. (83) corresponds to the Sivers effect, whereas the second and the third terms correspond to the Collins

effect, coupled to the transversity distributions.
Similarly, for the denominator we find
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d0.€p7—>€’hX + d0.€p1—>€’hX 1 Z
dxpdQ?dz,d*Prd o 274 167(xps)?
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Z A ~
f Phy Sy 5 KU P+ 11Dy (2 )
h

= AfL,, (kL) (Re(M, M3) cosgy — Im(M M3) sing) AVDy (2, pu)}- - (84)

Here, the first term corresponds to the usual unpolarized
cross section (which survives in the collinear limit)
whereas the second term is an effect obtained combining
the Boer-Mulders distribution function, A f ‘. /p(x ki),

with the Collins fragmentation function, AN Dy (z p1).
If we insert the exact relations for M fy and Mz—glven in
Egs. (51) and (52)—and for cosgoq, s1n<pq—glven in
Eq. (C3)—into Egs. (83) and (84), we obtain an exact
expression for the Ay asymmetry. As already mentioned,
the numerator is given by two different contributions, the
J

Sivers and the Collins effect. Similarly, the denominator,
which is simply twice the unpolarized cross section for the
€p — €'hX process, receive most contribution from the
first term, proportional to the unpolarized distribution and
fragmentation functions, with a further contribution from a
combination of the Boer-Mulders and Collins effects.

Much simpler, and often quite accurate, expressions can
be obtained at O(k | /Q), neglecting higher order correc-
tions. Using Egs. (57)-(60) and (26)—(32) in Egs. (83) and
(84), one has

- Ze [ 387, sinb1 = 6901 + (1 =371y,

k
+ i(l - )’)(Af:i/sT + A_fz‘,/sT)(Sin(Sf)h + ¢s) — Zh}Tl sin(¢ | + 9155))ANDh/qrT

F o (U= AF g = A ) sy + 281 = d5) — 2 sin(dL — o) JAVD,

Ch INT=T AL s, + A2 5 sy = b1+ d5) -

smq/)S)A Dy g

<z T3 T )(sm<¢h+m é5)

#9)AD, 5 + 2= NT=3, A s sinds —sin2by — #9)Dy,|

— p)Fur ™% 1 2(1 = y)[sin(¢y, + ) Fpyp ™%

+sin(3ehy, — b)) Fin 3991 1 2(2 — y)JT— y[sinsFn?s + sin(2¢h), — ¢S)F§}’;<2‘/’h“/’s>]}

d0.€p1—>€’hX _ da.€p1—>€’hX
deszthdZPTd¢S
k
- ZhP—T Sln(z(bl
207 27 s
= or {1+ (= sin(,
and

da.é’p‘—%’hx + da.{’pl—»(?/hx
dxgdQ*dz,d*Prd

(85)

Q4 ze Jardra]1 a2 -ae -y —cosm]Dh/q

= ot [0 cos@n + 1)~ 2 5 cost20))

k k
— 22—yl — y—l<cos¢h — = cos¢l)i|—TANDh/qw}
0 Pr PL

2a?

= Q—{[l + (1 = y)2Fyy + 2(1 = y) cos2¢, Fy, Coszd”’ +2(2 — y)4/1 — ycose, °°S¢”}, (86)

where we have also exploited the definitions of the F' structure functions, Eqgs. (63)—(78). These last expressions, Egs. (85)
and (86), can also be obtained directly from Eq. (79). We recall that, at O(k,/Q), one has x = xz, z =z,

pL=Pr—z;k; andJ = 1.

The first term in Eq. (85) corresponds to the SIDIS Sivers asymmetry, which we analyzed in Refs. [37,44—46] for the
extraction of the Sivers function, while the second term corresponds to the SIDIS Collins asymmetry, studied in
Refs. [47,48] and used for the simultaneous extraction of the Collins and transversity functions.
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B. Nucleon longitudinal single spin asymmetry, A
This asymmetry is defined for unpolarized leptons and a
longitudinally polarized proton target:

d6 a.@p"—»f’hX _ d6d0.€p‘_—>€’hX

Ayp = = =
do_ép —{'hX + d6d0.€p —{'hX

A0 U+ PS—EhX 6 0+ p(=S)—'hX

T o PSO—OIX g6t p(—S)—UhX " 87)

We give explicit results, for this and the next asymmetries,
only valid at @(k; /Q). The denominator, as in the pre-
vious asymmetry, is twice the unpolarized cross section
and is given in Eq. (86). For the numerator we have

do.€+p(SL)—>€/hX

dXBdQZthdZPTd(]SS

4
Qa4 {(1 — y)sin2¢, Fy; “nzd’h

+41—y2—y) sm¢hF““¢"},

as can be easily checked from Eq. (79).

— dotp(=S)—tnx

(88)

C. Nucleon longitudinal double spin asymmetry, A;

This asymmetry is defined by keeping fixed the longi-
tudinal polarization of the lepton, while flipping the direc-
tion of the proton target longitudinal polarization:

dO oY 6 0 pm— X

A = ——T —]
d6a.€ P —>€hX+d6a.€ p~—t'hX

d60.€(S{)+p(SL)—>€’hX _ d6o.€(S(,)+p(—SL)—v€’hX

T ST PSO—RX 1 g6 S0+ p(—S)—0hX * (89)

The denominator is the same as given in Eq. (86), while for
the numerator we have
do{SOTPS)—hX _ g 1 0(S)+p(=S,)—~'hX

deszthdzPTd¢S

{[1 — (1= y)2JFy + 25Ty cosgs, FEs

+2(1 = y)sin2e, Fi2 % +2(2 — y){/1— ysing, Fy % }

(90)
|

do {80+ pS—ChX _ g €80)+p(—Sp)—hX
dxpdQ*dz,d*Prd o
a0

+ 2y4/1 — [cosqﬁSFcows + cos(2¢,, —
+ sin(3¢p, —

PHYSICAL REVIEW D 83, 114019 (2011)

D. Lepton longitudinal double spin asymmetry, A LL

This asymmetry is defined by keeping fixed the longi-
tudinal polarization of the proton target, while flipping the
Iepton longitudinal polarization:

_ Ao P UhX 16 U pT—EhX
AL =

dOot P =X £ g6 - p —ChX

d60.€(S@)+p(SL)—>€’hX — d60.€(—S€)+p(SL)—>€’hX

T SO pSO—X 1 g6 U=S0)+p(S,)—hX O
For the numerator we have
do{SOFTPS)—hX _ g o b(=S)+p(s,)—~C'hX
dxgdQ?dz,d*Prd o
— 207 2 cose,
= ?{[1 — (1= y)2IFp; + 29T = ycosep, Fiy }
92)

Notice that, in this case, the denominator differs from that
given in Eqgs. (86), as it acquires additional terms (gener-
ated by Af] ¢ ):

Ao+ PS—EMX | g =S+ p(S,)—'hX

dxpdQ*dz,d*Prd

2
=2Qi4{[1 + (1= )2 Fuy

+2(1 —y)[cos2¢, Fy, Coszd’h +sin2¢), Fsmwh]

+2(2 —y)y/1—y[cosp,F C°S¢”+sm¢h S”’QS”]}. (93)

E. Nucleon longitudinal-transverse double
spin asymmetry, A;

This asymmetry is defined by keeping fixed the longi-
tudinal polarization of the lepton, while flipping the proton
target transverse polarization:

d6 0.{’_'p7—>€’hX _ d6 O.Z“pl—%’hX

A =
LT 46 o P =X {6 € p'—C'hX

d60.€(S()+p(ST)—v€’hX _ d60.€(5()+p(—ST)—>€’hX

T ST PSI—RX 1 g6 S0+ p(—S)—0hX * 4)

The denominator is given in Eq. (86), while for the nu-
merator we have

—Q—{[1+<1—y>2]sm<¢h $s)Fyr " +[1 = (1= yPlcos(y — b Fig ¥
GOFFCM 4 2(1 — y)[sin(gy + pg)Fip P
Bg)Fn3P =95 1 22 — )T = ysingsFin?s + sin(2¢b), —

$OFy " R 99)
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F. Lepton longitudinal-transverse double
spin asymmetry A;r

This asymmetry is defined by flipping the direction of
the longitudinal polarization of the lepton, while keeping
fixed the proton target transverse polarization:

4ot p—=0hX _ 40 gt P'—=ehX

LT — dO TP =X g6t pl—ChX

6 SO PS—UhX _ g6 H(=Se)+ p(Sp)—E'hX

T B SO pSI—IX 1 g6 =S+ p(Sp— X (96)

For the numerator we have

Ao tSO+pSI—ERX | g l(=S0)+p(Sp)—E'hX

dXBszthd2P7d¢S

a2
- y{[l + (1 = y)l[Fyy + sin(¢, —

+ sin(3¢;, —

G. Other asymmetries

All the other single and double spin asymmetries are
either zero or related to those already shown above. In
particular, all the single spin asymmetries generated by the
lepton polarization vanish: A;;; = 0 as F;; = 0 to leading
order in k; /O (and restricting to twist-2 TMDs) and
Arpy = 0 as we have no access to the transverse polariza-
tion of the lepton and therefore there are no terms propor-
tional to either Pf or Pf, in Egs. (4) or (79). For the same
reason we have Ay = Ayr and Ay, = Ayp. Despite its
possible presence, the transverse polarization of the lepton
plays no role in SIDIS P! and Pf, appear in the off-

diagonal terms of p oA f, in Eq. (4), but, due to helicity

conservation and the fact that the final lepton polarization
cannot be observed, one is forced to have Ay = Ay = Aj.

IV. PHENOMENOLOGY OF
SPIN ASYMMETRIES

To leading order in (k| /Q), all terms contributing to the
polarized SIDIS cross section and to the spin asymmetries
can be integrated analytically, provided we adopt a simple
k| and p | dependence for the distribution and fragmenta-
tion functions. As usual, we assume the x and k, depen-
dences to be factorized and we assign the k| dependence a
Gaussian distribution with one free parameter to fix the
Gaussian width. For the unpolarized and helicity distribu-
tion functions and for the fragmentation function we sim-
ply use

R NR)

fq/p(xr kJ_) = W

Tarp(x) 99)

¢S)F51"(3¢” #9914+ 202 — )T = Ylcosg, Fen?n + singgFin®s + sin(2¢h, —
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Aol SO+PSI—ChX _ g (=S)+p(Sp)—'hX

deszthd2P7d¢S
— 2&2 1—(1-— 2 Fcos(qﬁh bs)
= E{[ ( y) ]COS(¢h ¢S)
+ 2y41 — y[cos¢5Fz(;§¢5
+ cos2epy, — P Fip 2P~ 1), 97)

The denominator differs from that given in Eq. (86), as it
acquires several additional terms, which also appear in the
numerator of Ay y:

$IFP P+ 21 = Ycos2ep, Fy ™ + sin(ey, + ) Fy

B Fin4= 9971 (98)

[
e—kzl/(kih

Afe Lk —
Fos. k1) .

= Af 5, () (100)

o P/
P
where f,/,(x), Af? /s, (x) and Dy/,(z) can be taken from

Dyy4(2) (101)

Dy (2 p1) =

the available fits of the world data. In general, we allow for
different widths of the Gaussians for the different distribu-
tions, but take them to be constant and flavor independent.
For the Sivers and Boer-Mulders functions, we assume a
similar parametrization, with an extra multiplicative factor
k, to give them the appropriate behavior in the small k|
region [44]:

ke 2 /03)
A k) =A 2 kLM
Fasse ki) = Ayys (WOV2e g e =
k =K /3)s
= Afys, (OV2e 2 © (102)
Mg w(i3)
R
” _ Apq Loz, € "
Afxy/,,(x,ki) Af‘y),/,, e 7T<k>
k2/<k YBMm
= Af,p0VZe kL e (103)

Mpy ()
where the x-dependent functions Af, /s (x) and Af? /p(x)

are not known, and should be determined phenomenolog—
ically by fitting the available data on azimuthal asymme-
tries and moments; the k; dependent Gaussians have been
assigned a reduced width to make sure they fulfill the
appropriate positivity bounds [49]:
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(k3 yM3
W=y (109

B <k2 >M2
(kg = 70( v (105)

Similarly, for the distribution of longitudinally polarized
quarks inside a transversely polarized proton, A f;{ /5, and

of transversely polarized quarks inside a longitudinally
polarized proton, A fs /s, » e set

,k2 /<k2>
ki _jpp e
qu/S (-x kl) qu/s (x)\/_— X /M 7T<k >
=K/ e
= Afs /Sr (x)v2e ir ¢ ) (106)
AFY g G ks) = AFL g (0VEe b ek eTH/ED
/8L 1 /S MTL 7T<k >
k =k /D
- Afs /SL (.X)\/_ ;‘L ¢ <k > , (107)
with
k M7
* >LT:<I<<>+M (108)
2 2
(k) = (kM7 (109)

(K)+ M3,

For the transversity distribution function, it is most conve-
nient to parametrize the following combinations

1 -
S(870 5 kD) A1 k) = k)

e/
=1 (x) (110)
B3 )y
YRR R)
2
2M2 h{'T(x kJ_)
2
— i (1) KL R, € sy
1T MZ <k2 >
ki —kz /(k Yrr
= hip(x) (111)

My w(3)
as these are the quantities which appear in the polarized
cross section and in the spin asymmetries. Notice that for
hi(x, k) and h7(x, k), as for each of the other TMDs, we
introduce their own reduced Gaussian widths
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(K3 )M,

K)r —<kJ_> T,

(K3 )rr = (112)

Finally, for the Collins fragmentation function we choose

PP
AND : = AND Ve Pt p-rimp
h/qT(Z pL) h/qT(Z) th e 7T<pi>
e P/ Pl)e
= AVD,, (V2e P T (113)
A4 M, mpy
having defined
(pIM;,
(Pl)c = . (114)
G + M

Using the parametrizations in Egs. (99)—(114) we can per-
form the & | integrations analytically in Egs. (63)—(78), and
re-express all the F structure functions in terms of the
Gaussian parameters (some of these results were already
given in Refs. [1,50]):

o= P3P

Zeqfq/p(xB)Dh/q(zh) <P >

(115)

s/p(xB) AN Dy (z1) '™ P2/(P2gn

cos2¢~,, _ _Pz 2
TZ Mpy My, 7T<PT>BM
Zh<k >BM<pJ_>2
X = = 116
&) (1o
Ccos, T T/<P2>
Fyy™" = _Z_Zeqfq/p xB)Dh/q(Zh) <P2>2 Zh<kJ_>
Zﬁz , s /p(xB) AN Dy, i(zp) €'~ PL/(PL)sm
0% Mpy M, TP bm
(K22, (P2 2
—W%%qwmm<wm
+{(p1)c{PT)pu] (117

s/S (XB) A Dh/qT(Zh) 1= PT/<P v

FSin2¢h PZ 2
vt TZ My, M, (P71,
Zh<k (P10 (118)
(K Xp1)
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ffx/SL (XB) ANDh/qT(Zh)

Fsmqﬁh _ 2
z My M,
R @
7T<PT TL <k ><pL>
<[ AU P = P + PePr,
(119)
F ?'{fi”' = 0 (no contribution from twist-2 TMDs)  (120)
5 e~ PH/PIL
egAfL o (xg)Dyy(z ) (121)
Z /St B h/q\<h <P >L
. P _P;/< >L
onfm = —25262qu /s, (xB)Dh/q(Zh)WZhU{J_)L
q
(122)
sinl — P Af T()C )
FUTwsh bs) _ lZe§$Dh/q(zh)
Q2P P 5 (2
. 2k (123)
7T<PT>S <k >
e AFY ¢ (k)
FLT((bh #s) = PTZE?] 7]}//1; Dh/q(Zh)
*P2/<P or k2
ez (124)
7T<PT LT <k >
2 2
cos S /Sr B) —P~/<P~>LT
FLT¢S — Z 2 Dh/q Z T
/LT
NG N + 3P 125

(k1)

ponCo-o) _ _ 5T
ur

2 lT(xB) AN Dh/qI(Zh) 32 P/ P Zh<k >3T<Pl> [Z <ki>TT(P2
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— P2 Af(i S (xB)
R = B Dul@)
LT

T/<PT>LT Zz <k2

(126)
7T<PT>LT <ki>
- AND,, i(z5)
F5|n(¢h+¢s) 62/’1 ( ) h/q
vt \/_Z 8 Mh
/2= PL/(PL)r 2
! (P1)e (127)
7T<PT>T <PJ_>
Fsin(3¢/, ¢s) PT %T(XB) ANDh/‘IT(Zh)
v 25 ‘i M3, M,
£3/2=P3/ PRy Zh<k >TT<pJ_>2 (128
7T<PT T <k ><PJ_>
™ = Ze (g 2 Pt @) €20
5 My, (P33
y Zh<k Xp)e (PP — P7)
<pJ_>
1 Zez qu/ST('xB)D : e1/2-P1/PDs
— =Ll D (z) ———
ToMy T (P
<k >2(<p IXPT)s + 2 PE(KkT )s) (129)
(k7)

- <P2 >TT) + 2<pi>C<P%">TT]

e
Q 7 ! Miy M, m(PLr (k7 ><PJ_>
1P 2 qu/ST(xB)D G ) e!/2=PHPDs 22(k3 )3 130,
EEEEry—
V2O My M APy ()

|
where The unpolarized SIDIS cross section and all the asym-
metries presented in Sec. III can now be rewritten in terms
p2 2y — L2 of the Gaussian-integrated F’s, which depend on the
( (p1)+ k1) TMDs. In order to single out information on a particular
(Pqy=(pi)+z(ki); (I=S,LLT) TMD. from the measurements of the.: asymmetries, one has
(P2, = <pJ_>C +2 2042 ), (J=T.BM.TL.TT). (131) to disentangle the different azimuthal dependences.

For example, the unpolarized cross section, see Eq. (86),
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includes the usual unpolarized collinear SIDIS cross sec-
tion, the Cahn effect proportional to cos¢;, (studied in
Ref. [37]), and a contribution generated by a combined
Boer-Mulders and Collins effect, which appears in terms
proportional to cos2¢;, and cos¢,. Similarly, in the

J

A

Wignbe) — » ] dPrdds [dot(S0+pS—~Chx _

PHYSICAL REVIEW D 83, 114019 (2011)

numerator of the Ayr single spin asymmetry, Eq. (85),
the Sivers and Collins effects are both simultaneously at
work, together with other azimuthal modulations. To ex-
tract single effects, one introduces appropriate azimuthal
moments of the asymmetries, defined as

dat (S0 P=S—=UTy(g,, §)

" [dppdpg[datSOTrS—=UhX 4 gatSa+p(=—thX]

) (132)

where the function W(¢,, ¢s) is an appropriate “weighting phase” which, upon integration, singles out one individual

term of the asymmetry. For instance, to isolate the Sivers effect one can consider the sin(¢,;, —

the Ayr asymmetry:

¢ ) azimuthal moment of

sin(¢p, —bs) _
Ao

The W weight selects the Sivers term of the asymmetry in
the numerator, while the integration over the azimuthal
angles ¢ and ¢, leaves only the first term of the unpo-
larized cross section, Eq. (86), in the denominator: thus,
this azimuthal moment is simply proportional to the ratio
ngm(d)h ¢S/I‘F U

Furthermore, experimental data deliver these azimuthal
moments as a function of one variable at a time, either x5,
7y, or P7. Therefore, one has to integrate the numerator and
denominator separately over all variables but one, in order
to obtain the appropriate expression to be compared with
the data. Clearly, no simplification of common terms in
the numerator and denominator can be made before the
integrations have been performed (notice also that y is a
function of both xz and Q?).

Let us consider, as an explicit example, the Sivers azi-

siné1=¢5)(z,), as function of z, alone.

Using the Gaussian- 1ntegrated expression of F3m®~%s) of
Eq. (123) and integrating analytically over P, we obtain

muthal moment Aj;

A;i/nT(%—(i’s)(Zh)
—v)2
Jdxpd QU205 AN, g (xp)Dyyy(2n)

fdedQ2 H(éi;yp Zq ezzij/p(xB)Dh/q(Zh)
(134)

= Ag

where Ag is a factor which only depends on z;, and on the
free parameters which give the Gaussian widths for the
distribution and fragmentation functions

2y [2em (k7)3
Ag = 5
AMg \(PP)s (k)
Notice the further dependence on zj, hidden in (P%)s,
Eq. (131).

Repeating similar procedures one can extract informa-
tion on the other TMDs. The azimuthal moment

(135)

o Jdbidgslda'? =" — do'r—""X]sin(, — ¢s) (133)
]'dd)hdqss[do.f]ﬂ—%’hx + d0.€p —»@’hX] :
[
A?}I}(‘b“%), obtained using the weighting phase

Wy, ¢g) = sin(¢;, + ¢s) in Eq. (132) with unpolarized
leptons, selects the Collins effect, coupled to the trans-
versity distribution F1~(x) = Apq(x) = h;(x). In this
case, the azimuthal moment is sensitive to the ratio

Fyp %99 [Fyy, and precisely

Asin(¢,, +és) (Z )

[dxy dQﬁ“QJ)zq e2hy(xp)AVD,, 1(z))
fdx dQ2l+(] y)zzq qfq/p(xB)Dh/q(Zh)

(136)

with

1 [2em (P32
(PYe (p2)

One can further exploit the A7 asymmetry, to isolate
and measure the transverse distribution function F*(x) =
hlLT(x), by weighting the single spin asymmetry numerator
with the phase W(¢y,, ¢g) = sin(3¢;, — ¢y), obtaining

AC=

(137)

A?;;Qd’h*tﬁs)(zh)
J dxpd Q2 WDy i (xp) AN D,,/qI(zh)

T 2
[ dxpdQ? H%—4y) p eqfq/p(xB)Dh/q(Zh)
(138)

where

3ez; 2em (K1 )ir (P1)e
8M7 M (PR (PP rr (K1) (p1)

One can write similar expressions for all other asymme-

Arr = (139)

tries, which we do not report here. From Ah®" and AJ">%
one can obtain information on Af, 5, while Aco”ﬁé,

Aco@(‘f’h bs) d Acoe(2¢/, o) d d A Asinds
LT an LT epend on Af, /5. Ayr
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and A;i,'}(z‘ﬁ’“*%) are more complicated to analyze as they
receive contributions from the Sivers distribution function
(both of them) and, in addition, from the transversity
distribution A, (x) (A“mf’s) and from hllT(Ai}nT(z"S”_d"“)).

Let us consider in more details the unpolarized cross

PHYSICAL REVIEW D 83, 114019 (2011)

For instance, weighting the unpolarized cross section with
W(¢),) = cos2¢;, one can gain direct access to the Boer-
Mulders function, coupled to the Collins function (on
which independent information can be obtained):

section, to which, remarkably, a similar “weighting” pro- (cos26)
cedure can be applied. In fact, one can introduce the f dx a’QZ(1 Zq eZAf? /p(xB)AN Dh/qx(zh)
average value of W(¢;,) with an expression similar to = Y +(1 17012
Eq. (132) in which the unpolarized cross section appears f dxpdQ > qf a/p\X8)D h/q(zh)
in the numerator as well as in the denominator (141)
with
ddds[dat?'="X + datr'=CIXTw(p,) 242 212
<W(¢h)> = f (;};'(f) zd) [do_pr_,g/hX + do_fpl_,glhx]d)h ABM _ ez <kl§ <pJ§>C (142)
WS MBMMh<P e K1) (p1)
(140)
Analogously, using W(¢,,) = cos¢,, one has
J
2- \/
fd sz y 2[Aunpfq/p(xB)Dh/q(Zh) + BBMAf? (xB)ANDh/ T(Zh)]
(coseh,) = /P g (143)
h 2
jdx dQ2 1+(1 LAt Zq qfq/])(xB)Dh/q(Zh)
I
with dences are precisely generated by the properties of the
2 helicity amplitudes, which we use to describe the factor-
Aup = — Zh< D — ized steps of the process: the partonic distributions, the
<P Y elementary interaction and the quark fragmentation.
I e ﬁ ( kz 2., ¢ pL>2 [( Pﬁc + (P2 >BM] We have obtglned explicit expressions fqr all the SIDIS
B oMM, (K 2y () TG/ spin asymmetries and the cross section azimuthal depen-
BM™h Pl (PT)m dences which allow to extract information on the TMDs.

(144)

V. CONCLUSIONS AND FURTHER REMARKS

The study of the three-dimensional structure of
protons and neutrons is one of the central issues in hadron
physics, with many dedicated experiments, either running
(COMPASS at CERN, CLAS at JLab, STAR and PHENIX
at RHIC), approved (JLab upgrade) or being planned
(ENC/EIC Colliders). The transverse momentum depen-
dent partonic distribution and fragmentation functions,
together with the generalized parton distributions, play a
crucial role in gathering and interpreting information to-
wards a true three-dimensional imaging of the nucleons.
TMDs can be accessed in several experiments, but the
main source of information is semi-inclusive deep inelastic
scattering of leptons off polarized nucleons. The theoreti-
cal framework in which the experimental information is
analyzed is the QCD factorization scheme.

We have used here an intuitive approach to TMD facto-
rization in SIDIS and shown that one can re-derive, at
leading order, the most general expression of the polarized
cross section, obtained within the QCD factorization
scheme by other authors [1,20,23]. All azimuthal depen-

Indeed, some of them have already been used to study the
Sivers [42,43], the Cahn [51,52] and the Collins [3] effects.
Simplified expressions, based on a Gaussian k; and p |
dependence of the distribution and fragmentation func-
tions, recently supported by data [53], have been given;
they might be useful for fast and simple analyses of the
experimental data.

We wonder, at this stage, whether the same approach can
be used for other processes. It works, with the same valid-
ity as for SIDIS, for Drell-Yan processes (D-Y) [36], where
our helicity amplitudes for the different factorized steps
reproduce the most general azimuthal structure of the cross
section as obtained in the TMD factorization [16]. As
commented in the Introduction, both in SIDIS and D-Y
the presence of two different natural scales, a small and a
large one, is crucial for the validity of the QCD TMD
factorization.

Our approach was actually first introduced for processes
with a single large scale, like pp — 7X, with large Py
pions [2]. These are the processes for which the largest
single spin asymmetries have been observed and might be
generated by TMDs [54-56]. However, TMD factorization
has not been proven in these cases. Despite that, an exten-
sion of the intuitive approach used for SIDIS—and shown
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to be perfectly equivalent to the QCD TMD factorization
scheme—is natural. That was the guiding idea in Ref. [2];
each proton “‘emits’ a parton, the two partons interacts and
one of the final parton fragments into the observed hadron.
All intrinsic motions are taken into account and phases
appear in the helicity amplitudes. The difference with
SIDIS processes is that, in this case, the measured large
P of the final hadron is generated by the hard elementary
scattering, and all intrinsic motions are integrated over. As
a consequence, the phase integrations strongly suppress the
relevance of most TMDs, with the exception of the Sivers
and Collins effects [57,58], which combine into the ob-
served asymmetry, and cannot be separated unless one
could resolve the internal structure of the final jet [59].

A global simultaneous phenomenological analysis of
single spin asymmetries in SIDIS and pp interactions is,
at the moment, rather difficult. Apart from the validity of
the factorization scheme in both cases, another important
open point is the universality of the Sivers functions; it is
not clear whether or not they should be the same in the two
processes or should be corrected by some gauge color
factors [30,31]. In any case it is worth trying to explore
the possibility to have a unique description of SSAs in
different processes, based on TMDs; work in this direction
is in progress and will be presented elsewhere.
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APPENDIX A: HELICITY AMPLITUDES

We show the explicit computation of the helicity ampli-
tudes MMM:MM for the nonplanar process €(kj, A;) +
q(ky, Ay) — €'(k3, A3) + g'(k4, A4), in the y*-p c.m. frame
of Fig. 1. We exploit the spinor helicity technique, adopting
the conventions of Ref. [38]. At LO in QED, when neglect-
ing all masses, there are two independent helicity ampli-
tudes:

2
eye
t

(@ ly*lg X Ly, 1€7)

Miiir =

eqez + +\/2+ +
=T<4 ly#127)3 |y, l17) (Al)
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2
. e, e
My o= "? (@ ly*lg X" |y, 1)
2
e, e
= qf Gy 27)3  yull ™), (A2)
which can be written as
. eqe2
My =2 7 [43K(12) (A3)
. e, e?
My . =12 1 [23)(14), (A4)

i
where

i (kiuy(kj) = (ij) = —[ijI"

= k;ij_e_"(d’f_d’f)/z — /ki—kjfrei(¢;—¢,-)/2

(AS)

iy (ku—(k;) = [ij] = —Gj)", (A6)

with k= = k0 + &3.
In the y*-p c.m. frame we have (see Ref. [37] for details)

k, = E(1, sind, 0, cosh)

1 2 2
q=f(W—Q—,O,O,W+Q—)
2 W w
= (o + KLk —apy "i) (A7)
2 0 4XP(), L 0 4XPO
k3=k1_q k4=k2+q
13 =0, bo4 =1,
where, neglecting the proton mass,
1 ’ K>
X=EXB(1+ 1+4Q_L2>
E_S_Qz_\/g 1 — xpy
2w 2 Vy(1 = xp)
0 = xpys
W = /y(1 = xp)s
1 O\ _ s [y
Py=—-|W+—=— -
0 2( W) 21—« (A8)
1 O\ _ Vs [
—\W—-—=)=-= 1-2
2( W) R AR
+ —
cosf = 10~ 2 O = 2)xs
1 —yxp
g = V)T
1 — yxp

These relations allow us to express all the k;~ components
in terms of xz and y [37]:
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ki = E(1 + cos) = \/_"

k; = E(1 — cosf) = /s xB(l

Vy(1 — xp)

ki = E(1 + cosf) — W = \/— (1—)

w

7_%/7(1—@)

ky = E(1 — cosf) —

pr_ KLk - (A9)
2 2)CPO x\/_
ky = 2xPy = Y
> = 2xPy = x/s
1- Xp
k> 1 —xp[k
=L L= B[_i + ]
4 2xP, Vs y xS
0° y
k, =2xPO—W=\/_ l—xB[x_xB]
b1 =¢3=0, b=y =¢].
From Egs. (A3)—(A6) we get
N e e’ — —
Miy =2 qf [Vkl ky _karkz elm]
X I:‘[k;kj — ﬂk;k;e—"m] (A10)
N e e’ — [T.=.,
M+7;+7 = 2 qf [ k2 k; - k;k3 eld}l]
X I:ch’k; - \/kl‘k;’e""/ﬂ ] (A11)

Exploiting Eqgs. (A9) we can finally compute the ampli-
tudes as function of y, Q* and k| :
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APPENDIX B: HELICITY FORMALISM AND
HELICITY TRANSFORMATIONS

All our analytical and numerical computations of the
SIDIS cross section, Eq. (4), are performed in the y*-p
c.m. frame, with the kinematics represented in Fig. 1.
However, in our helicity formalism all components of the
polarization vectors [like in Egs. (17) and (18)] and of
the transverse momenta which enter the definition of the
TMDs, refer to the appropriate helicity frame of the cor-
responding particle. Then, in order to perform our calcu-
lations, we have to express the helicity frame variables in
terms of the c.m. ones, which requires some care.

For the proton, which moves along —Zcm, the helicity
frame (Xp, Y, 2p), as reached from the y*-p c.m. frame,
is given by (as discussed in Appendix D of Ref. [2])

X,=Xn Y, =Y., Z,=-Z.,, (B
so that

I«:,L = cosgoLXp + singoll?p = cosd)lf(cm + singbLIAfcm

= cosgalXcm — sing | ch
K\,
ky=k, — (xBPO - m)zcm
Sr = cosgosi’p + singosf'p = cospg Xy + sings¥ o
= cos@sX.m — sings Yo (B2)

which implies ¢ ¢ =27 — ¢ . As long as there is no
ambiguity we use ¢ for angles defined in the helicity
frames and ¢ for angles defined in the c.m. frame, follow-
ing the notations of Fig. 1.

It is less straightforward to deal with the quark polar-
ization vector, P4 = (P, P{, P?), which describes intrinsic
properties of the proton constituents, and is defined in the
quark helicity frame. In order to keep the same definitions,
through the helicity formalism, of the polarized TMDs as
in Ref. [2], we have to define P? in the quark helicity frame
as reached from the proton helicity frame. The axes X, y,,
2z, of the quark helicity frame are then given by [2,38]

=k, (B3)

Jo=Z2,%xky = ~Zn ¥k, (B4)

fq=ﬁq><24=(ZApXI€J_)XI€2=—(ZAcmXIEJ_)XIEZ.

(B5)

Notice that the quark helicity frame as reached from the
c.m. frame (Zcm) is different from the quark helicity frame
as reached from its parent proton helicity frame Z »)s
although the Z, axes obviously coincide, £, and y, have
opposite signs, Egs. (B5) and (B4). Therefore, when refer-
ring to the kinematical configuration of Fig. 1, which we
use throughout the paper, we have to take the x and y
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component of the quark polarization vector, P{ and P{,
with opposite signs with respect to those obtained from
Eq. (15); this has been done in Egs. (24) and (25).

APPENDIX C: ANALYSIS OF THE
FRAGMENTATION PROCESS

Let us now focus on the azimuthal angle ¢! involved in
the fragmentation process. This is the azimuthal angle of
the momentum P, of the final hadron around the direction
k4 of the fragmenting quark ¢, as defined in the quark ¢
helicity frame, see Fig. 2. Notice that the fragmenting
quark, in the y*-p c.m. frame, has a longitudinal compo-
nent along the positive Z., axis. Its helicity frame, as
reached from the y*-p c.m. frame, is given by Ref. [2]

2=k, §=Zn,Xk, E=39X3% (Cl
where k| is the unit transverse component—with respect
to the Z,,, direction—of the outgoing quark, 134.

In the quark helicity frame, gog coincides with the
azimuthal angle which identifies the hadron transverse
momentum p |, therefore

cospl =p) - & sing = p - § (C2)
By using the SIDIS kinematics as reported in Ref. [37], one
finds

1
cosph = m[l’rkf cos(¢, — ¢ 1) — Pik,]

. Py . (C3)
sing!t = ﬁ sin(g), — ¢ 1),

where the superscript Z refers to the y*-p c.m. frame,
where one measures P, = (Pr cos¢,, Prsing,, P%), and

PZ_Z%,W2—P% Z_W(l—x_i_kai)
h 2z,W o2\l —xp x Q7

2 _ k2 \2 (C4)
Jes| = K(1 x+x—3—l2) + i3,

4 \1—x3 x Q

as derived in Ref. [37].

FIG. 2. Kinematics of the fragmentation process.
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At O(k, /Q) one simply has

P k
COS€02 = i[COS(dm —¢1)—z Pflil
T
. Pr . (©5)
singg = i sin(¢), — ¢ 1),

having neglected terms O(k% /W?) and O(P%/W?).

APPENDIX D: TENSORIAL ANALYSIS

Equations (63)—(78) are obtained using a simple
Euclidean tensorial analysis, as outlined in what follows.
In general, the tensorial structure of each of the F functions
defined in Egs. (63)—(78) can be reduced to a linear combi-
nation of the convolutions

T = f Pk Af(x, kK AD(z, p)  (DI)

T — f Pk Af(x kK K, AD(z p) (D2

Tl = [ Pley Af(x, kKK, K AD(z, py),  (D3)

where we have denoted by A f(AD) any distribution (frag-
mentation) function appearing in the definition of the
particular F' function one is considering, while the kj_,
i =X,Y (X and Y refer to the y*-p c.m. frame, we have
dropped the cm subscript) are the components of the
k| transverse momentum vector, k’j =k, cos¢ |,
kf_ = k| sin¢ | . One should bear in mind that p, is not
an independent quantity, as it can be expressed in terms of
k and P7. Notice that T, T" and T/ are symmetric, rank
1, 2, 3 Euclidean tensors, respectively. Once the integration
over d’k, is performed, the T¢, T and T"' can only
depend on the observable quantities Py and ¢, i.e. the
measured modulus and azimuthal phase of the final ob-
served hadron transverse momentum P;. Therefore, in a
completely general way, it must be

T! = PLS,(Py) (D4)

T = P}P}Sy(Py) + 8'7S3(Pr) (DS)
Tl = PLPLP5S,(Py) + (P87 + P& + PL8Y)Ss(Py),
(D6)

where the P; components (P§ = Pycose¢,, PY =
Prsing,,) give the proper tensorial structure, while S;—Ss
are five scalar functions which can only depend on Pr
(modulus), and can easily be determined by contracting
Egs. (D1)—~(D3) with some symmetric tensorial structures
(Pi., 8, etc., as appropriate) to obtain simple scalar rela-
tions. Finally, one finds

1

1(Pr)=5- f Pk (k- P)Af(uk)AD(Gp1) (D)
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% [ &k [2(k - Pr)? — K3 JAf(x, k )AD(z, 1)

T

Sz(PT):

(D8)

Sy(Py) = [ Pk [ — (ky - PrRIAS Gk )ADG, py)

(DY)
1 N N
SuPr) = gy [ @Phu[alhy - Pp)* — 36k - Py)
T
X Af(x k)ADG, p1) (D10)
— 1 2 2 p p \3
$5(Pr) = 5 [ LI ey - Pr) — ey Py
X Af(x, ky)AD(z, py). (D11)

As a consequence, we have

]deJ_ COS(ﬁJ_AfAD = COS¢h /dzkl(kAJ_ . PT)AfAD
(D12)

[dsz sing | AfAD = sing, fdzkl(léL -P;)AFAD
(D13)
[d2klcosz¢LAfAD
= % [d2kl{1 + cos2,[2(k) - Pr)? — 1]}AfAD
(D14)
[ &Pk sin’ | AFAD
= % fdzkl{l — cos2¢,[2(k, - Pp)? + 1]}AfAD
(D15)
fdzkl cos¢ | sing | AfAD
= cos¢,, sing, f &k [2(k, - Pr)? — 1]}A fAD
(D16)
[d2klcos3¢lAfAD
= cos'y, [ dhuld(ky - Pp)* = 3k, - PrIASAD
+ 3cosy [ Pk, [k, - Py) — (k1 - PrPIAFAD

(D17)
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[d2kLsin3¢lAfAD
= sin'ey, [ k[ - Pr) = 30k, - Pr)IASAD
+ 3sing, f Pk [k, - Py) — (R, - PrIAfAD
(D18)
fa’szcoszd)l sing | AfAD
=cos ¢, sing,, [ &k [4(k | - P;)® =3k, - P;)]JAfAD

+sing, [ P L[k, Pp)—(ky - PPIAFAD
(D19)

jdsz cos¢ | sin’p | AfAD
=cos¢,sin’ ¢, fdsz[4(l€l -P;)3 =3k, -P;)]AfAD

+ coseh, ] Pk [k, - Py)— (k- Py JAFAD.

(D20)
From these equations one can easily reconstruct
[dzkl cos2¢ | AfAD

— cos2¢b, f Pk 206, - Py — 1JAfAD (D21

[ d’k | sin2¢ | AfAD

— sin2gh, / Pk [206, - Py — 1JAfAD  (D22)

[d2kL cos3¢  AfAD
— cosdeby ] Pk [4(R | - By) — 3, - Pr)IASAD

(D23)

[dsz_ sm3¢J_AfAD
= sin3¢, f d*k [4(k, - Py)® —3(k, - P;)JAfAD.

(D24)

All of these terms are easily recognizable in Eqs. (63)—(78).
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APPENDIX E: INTEGRATION BY ROTATION IN
THE HADRONIC PLANE

Equations (63)—(78) can also be obtained in a simple
way looking to a slightly different reference frame. Let us
define the production plane as the plane containing the
virtual photon y*, the proton momentum and the produced
hadron i. We can define a new y*-p c.m. frame where the
X'-Z' plane is the production plane. This new frame is
rotated by an angle ¢, with respect to the c.m. frame
(X, Y, Z) depicted in Fig. 1 (we drop for simplicity the
subscript cm):

A

X = X'cos¢p, — Y'sing,, (El)

Y = X'sing,, + Y’ cosd,,. (E2)

Notice that X' = P, = h. Any integration in Eqgs. (63)—(78),
at fixed values of the external variables, can be recast as the
sum of one or more contributions of this kind

fdszki cos¢ | flki,py) fdzkiki sing | f(ky,py)
(E3)

[ Pk K cos2 f(ky, p1) [ P K sin2 f(ky,py)

(E4)
[ Pk K cosdeby f(kypy) ] Pk, K sin3e L flky, po).
(E5)

where
pt =P+ 2k —2z,(ky - Pp). (E6)

Let us consider, for instance, Eq. (E3); using Eq. (E1), we
have

jdzkj_kj_ cos | f(ky, pyi)
_ [ Pk KX f(k L, p)
— [ Pk (ky - R)fky, py)

= f Pk [(ky - X)) cosb,

— (ky - Y)sing,1f(ky, ki - X') (E7)
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— cos [ Pk (k- Ppfkip.),  (ES)

where in the step (E7) we have underlined that f is a
function of (k, - P;) = (k| - X') by means of Eq. (E6).
With similar arguments we have, for all integrals of the
kind (E3)—(ES)

fdszkL cos¢p | = cos, j.dsz(kl -P;)  (E9)
[d2klkl SiIl(ﬁJ_ = sin(i)h fdzkl(kL : ﬁT) (E10)

fdsz_kﬁ_ cos2¢p | = cos2q, fdzkl[Z(kJ_ P -3

(E11)

[ Pk K} sin2¢ ) = sin2¢, f Pk [2(ky - Pr)? — i3]
(E12)

/dszki cos3¢ |

= cos3¢,, / d’ky (k) - P[4k, -Pr)>—3K2]  (E13)

[dsz_ki Sil’l3¢l

=sin3¢,, f d’ky (k) - Pp)[4(k, -Pr)>—3K3],  (El4)

which coincide with Egs. (D12), (D13), (D21), and (D24).
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