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We perform a study of the standard model fit to the mixing quantities �MBs
, and ��Bs

=�MBs
in order

to bound contributions of new physics (NP) to Bs mixing. We then use this to explore the branching

fraction of Bs ! �þ�� in certain models of NP. In most cases, this constrains NP amplitudes for

Bs ! �þ�� to lie below the standard model component.
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I. INTRODUCTION

We report here on a study of new physics (NP) predic-
tions for Bs ! �þ��. The standard model (SM) predic-
tion for Bs ! �þ�� is currently smaller than the

experimental branching fraction limit [1] of BðexptÞ
Bs!�þ��

by about a factor of 15. This presents a window of oppor-
tunity for observing NP effects in this mode.

This topic is particularly timely in view of experimental
indications of NP effects in both the exclusive decay Bs !
J=�þ� [2] (for recent CDF results, also see Ref. [3]) as
well as the inclusive like-sign dimuon asymmetry observed
in p �p ! ��þ X [4]. Moreover, future work at LHC-b,
eþe� Super B factories, and ongoing CDF and D0 mea-
surements at Fermilab [see the discussion followingEq. (6)]
is expected to markedly improve the current branching
fraction bound.

Our strategy in this paper is somewhat reminiscent of
our recent study [5] noting that in some NP models the D0

mixing and D0 ! �þ�� decay amplitudes have a com-
mon dependence on the NP parameters. If so, one can
predict the D0 ! �þ�� branching fraction in terms of
the observed �MD provided that much or all of the mixing
is attributed to NP. This is a viable possibility for D0

mixing because the SM signal has large theoretical uncer-
tainties and because many NP models can produce the
observed mixing [6].

For �MBs
the situation is very different. Here, the SM

prediction is in accord with the observed value (e.g. see
Refs. [7,8] and papers cited therein). In fact, the analysis
described below [cf. Eqs. (12) and (13)] gives

j�MðNPÞ
Bs

=�MðSMÞ
Bs

j � 0:20, which demonstrates just how

well the SM prediction agrees with the experimental value
of �MBs

. In view of this, our SM expression for �MBs
will

be given at next-to-leading order (NLO) [9,10] whereas LO
results will suffice for NP models. As regards the corre-
sponding width difference ��Bs

, the experimental and

theoretical uncertainties are still rather significant (viz.
Sec. II C).

In those NP models where mixing and Bs ! �þ��
arise from a common set of parameters, the severe con-
straint on any NP signal to Bs mixing places strong bounds
on its contribution to BBs!�þ�� .1 In fact, we shall find the

constraint can be so strong that for some NP models the
predicted Bs ! �þ�� branching fraction lies well below
the SM prediction.
The first step in our study (cf. Sec. II) will be to revisit

the SM predictions for mixing in the b-quark system by
using up-to-date inputs. We carry this out for the two
mixing quantities �MBs

and ��Bs
=�MBs

. The former in

turn yields phenomenological bounds on NP mixing con-
tributions which in certain models can be used to bound the
magnitude of the Bs ! �þ�� decay mode. We also up-
date the SM branching fraction for Bs ! �þ�� by using
the observed Bs mixing as input. Then, in Sec. III we
discuss general properties of NP models with tree-level
amplitudes. In Sec. IV, we explore various NP models such
as extra Z0 bosons, family symmetry, R-parity violating
supersymmetry, flavor-changing Higgs models, and mod-
els with the fourth sequential generation. Our concluding
remarks appear in Sec. IV, and some technical details are
relegated to the Appendix.

II. UPDATE OF Bs MIXING AND Bs ! �þ��
IN THE STANDARD MODEL

We begin by considering the SM predictions for Bs

mixing. This step is crucial to obtaining bounds on NP
contributions. We also use the Bs mixing signal as input to
a determination of the branching fraction for Bs ! �þ��.

A. Inputs to the analysis

The work in this section takes advantage of recent
progress made in determining several quantities used in

1In particular, Ref. [7] considers the possibility, not covered
here, on effects of the so-called minimal flavor violation which
affect the quark mixing-matrix elements.

PHYSICAL REVIEW D 83, 114017 (2011)

1550-7998=2011=83(11)=114017(13) 114017-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.114017


the analysis. We summarize our numerical inputs in
Table I, along with corresponding references. Included in
Table I is an updated determination of the top-quark pole

mass [11] m
ðpoleÞ
t which in turn is used to determine the

corresponding running mass �mtð �mtÞ [12] along with sev-
eral decay constants and B factors as evaluated in lattice
QCD. For definiteness, we have used values appearing in
Ref. [13]. This area is, however, constantly evolving and
one anticipates further developments in the near future
[14]. Our values for the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements jVtsj and jVtbj are taken from
Ref. [1]. Similar values occur for the global fits cited
elsewhere (e.g. Refs. [15,16]).

B. �MBs

The PDG value for �MBs
,

�M
ðexptÞ
Bs

¼ ð117:0� 0:8Þ � 10�13 GeV; (1)

is a very accurate one—the uncertainty amounts to about
0.7%. The NLO SM formula,

�MðSMÞ
Bs

¼ 2
G2

FM
2
WMBs

f2Bs
B̂Bs

12�2
jV�

tsVtbj2�Bs
S0ð �xtÞ; (2)

is arrived at from an operator product expansion of the
mixing Hamiltonian. The short-distance dependence in the
Wilson coefficient appears in the scale-insensitive combi-
nation �Bs

S0ð �xtÞ, where the factor S0ð �xtÞ is an Inami-Lin

function [17] ([with �xt � �m2
t ð �mtÞ=M2

W] and �mtð �mtÞ is the
running top-quark mass parameter in MS renormalization.
In particular, we have �mtð �mtÞ ¼ ð163:4� 1:2Þ GeV which
leads to S0ð �xtÞ ¼ 2:319� 0:028. Using the same matching
scale, we obtain �Bs

¼ 0:5525� 0:0007 for the NLO

QCD factor.

Our evaluation for �MðSMÞ
Bs

then gives

�MðSMÞ
Bs

¼ ð117:1þ17:2
�16:4Þ � 10�13 GeV; (3)

which is in accord with the experimental value of Eq. (1).
The theoretical uncertainty in the SM prediction of Eq. (3)
is roughly a factor of 20 larger than the experimental
uncertainty of Eq. (2). The largest source of error occurs

in the nonperturbative factor B̂Bs
f2Bs

, followed by that in

the CKM matrix element Vts. The asymmetry in the upper

and lower uncertainties in �MðSMÞ
Bs

arises from the corre-

sponding asymmetry in the value of Vts cited in Ref. [1].
Finally, we note in passing that for the ratio

�MBd
=�MBs

the experimental value is 0:028 52�
0:000 34 whereas the SM determination gives 0:027 14�
0:001 93. This good agreement is not surprising since the
ratio �MBd

=�MBs
contains less theoretical uncertainty

than �MBd
or �MBs

separately.

C. The ratio ��Bs
=�MBs

The above discussion of �MðSMÞ
Bs

sets the stage for

analyzing NP contributions to Bs ! �þ��. There is, in
principle, a second approach which instead utilizes ��Bs

.

The PDG value for the Bs width difference is ��
ðexptÞ
Bs

¼
0:062þ0:034

�0:037 � 1012 s�1. Together with Eq. (1), this gives2

rðexptÞ � ��ðexptÞ
Bs

�MðexptÞ
Bs

¼ 0:062þ0:034
�0:037 � 1012s�1

ð17:77� 0:12Þ � 1012s�1

¼ ð34:9� 20:0Þ � 10�4; (4)

whereas the corresponding SM prediction from Ref. [8] is

rðSMÞ ¼ ð49:7� 9:4Þ � 10�4. In contrast to the mass split-
ting �MBs

, the theoretical uncertainty in the ratio

��Bs
=�MBs

is much smaller than in the current experi-

mental determination. Nonetheless, this situation is ex-
pected to change once LHC-b gathers sufficient data. As

such, we would expect a highly accurate value of ��
ðexptÞ
Bs

to eventually become available. We propose that it could be
applied to the kind of analysis used in this paper as follows.
We define a kind of mass difference DMBs

as

DMBs
� �MðthyÞ

Bs

��ðthyÞ
Bs

��ðexptÞ
Bs

: (5)

The point is that if NP contributions are neglected in�B ¼
1 transitions, then��ðthyÞ

Bs
is purely a SM effect. In addition,

the ratio �MðSMÞ
Bs

=��ðSMÞ
Bs

will be less dependent on had-

ronic parameters than either factor separately.

TABLE I. List of input parameters

MBs
¼ 5366:3� 0:6 MeV [1] �Bs

¼ ð1:425� 0:041Þ � 10�12 s [1]

�MBs
¼ ð117:0� 0:8Þ � 10�13 GeV ��Bs

=�Bs
¼ 0:092þ0:051

�0:054 [1]

xBd
¼ 0:776� 0:008 [1] xBs

¼ 26:2� 0:5 [1]

m
ðpoleÞ
t ¼ 173:1� 1:3 [11] �sðMZÞ ¼ 0:1184� 0:0007 [61]

fBs
¼ 0:2388� 0:0095 GeV [13] fBs

ffiffiffiffiffiffiffiffi
B̂Bs

q
¼ 275� 13 MeV [13]

jVtsj ¼ 0:0403þ0:0011
�0:0007 [1] jVtbj ¼ 0:999 152þ0:000 030

�0:000 045 [1]

2Using instead the recent CDF evaluation ��ðCDFÞ
Bs

¼ ð0:075�
0:035� 0:01Þ � 10�12s�1 implies rðexptÞ ¼ ð42:2� 20:5Þ �
10�4, consistent with the value in Eq. (4).
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This quantity is also important in the scenarios where
NP contributes a significant CP-violating phase to �MBs

.

In this situation, ��ðexptÞ
Bs

will be reduced compared to its

SM value��ðSMÞ
Bs

by a factor of cos2�, where � is related to

the relative phase between the SM and NP contributions to
�MBs

[18].

At the very least, the relation in Eq. (5) would be of
interest to analyze the NP issue using both quantities�MBs

and the above DMBs
.

D. Bs ! �þ��

PDG entries for BBs!‘þ‘� are

BðexptÞ
Bs!�þ�� < 4:7� 10�8 and

BðexptÞ
Bs!eþe� < 5:4� 10�5; (6)

with no experimental limit currently for the Bs ! �þ��
transition. Data collected by the D0 and CDF
Collaborations will improve the above brancing fraction
limit. For example, the D0 Collaboration reports

BðD0Þ
Bs!�þ�� < 5:1� 10�8, with an anticipated limit of 11

times the SM prediction and similarly for the CDF
Collaboration [19].

Since the long distance (LD) estimate for the branching

fraction of Bs ! �þ�� in the SM gives [20]BðLDÞ
Bs!�þ�� �

6� 10�11, we consider only the short distance (SD) com-
ponent in the following. Using Eq. (2) as input to the SD-
dominated Bs ! �þ�� transition (see also Ref. [7]) we
arrive at

BðSMÞ
Bs!�þ�� ¼ �MBs

�Bs

3G2
FM

2
Wm

2
�

4�Bs
B̂Bs

�3

�
1� 4

m2
�

M2
Bs

�
1=2 Y2ð �xtÞ

S0ð �xtÞ ;

(7)

where Yð �xtÞ is another Inami-Lin function [17]. Expressing

BðSMÞ
Bs!�þ�� in this manner serves to remove some of the

inherent model dependence. Numerical evaluation gives

B ðSMÞ
Bs!�þ�� ’ 3:3� 10�9: (8)

III. STUDY OF NEW PHYSICS MODELS

In this section, we first obtain a numerical (1�) bound on
any possible New Physics contribution to �MBs

. We then

use this to constrain couplings in a variety of NP models
and thereby learn something about the Bs ! �þ��
transition.

A. Constraints on NP models from Bs mixing

As shown in Ref. [21], new physics in �B ¼ 1 inter-
actions can in principle markedly affect ��s. The logic is
similar to that used in Ref. [22] regarding the possible

impact of NP on ��D. Since, however, in Bs mixing
such models are not easy to come up with, one can simply
assume that �B ¼ 1 processes are dominated by the SM
interactions. Thus, we can write

�MBs
¼ �MðSMÞ

Bs
þ �MðNPÞ

Bs
cos�: (9)

If the �B ¼ 1 sector were to contain significant NP con-
tributions, then the above relation would no longer be valid
due to interference between the SM and NP components.
As can be seen from Eq. (9), interference between the

SM and NP components may also occur in the presence of
a CP-violating phase � in the NP part of the mixing
amplitude [23]. This large NP phase could markedly affect

��
ðexptÞ
Bs

even in the absence of a NP contribution to the on-

shell �B ¼ 1 transitions [recall that ��
ðexptÞ
Bs

depends ex-

plicitly on the cosine of the CP-violating phase � [8,18];
the explicit relation between � and � can be found in

[18] ]. It is therefore more reasonable to use ��ðexptÞ
Bs

in

studying those scenarios with a large NP phase. The ap-

propriate strategy here would be to use ��ðexptÞ
Bs

and ��ðSMÞ
Bs

to extract the phase �, eliminate cos� from Eq. (9), and

then extract �MðNPÞ
Bs

in order to relate it to the rare leptonic

decay rate. To do so, however, will require a significant

reduction in the experimental uncertainty of ��
ðexptÞ
Bs

.

Alternatively, CP-violating phases could be extracted at
LHC-b from the studies of Bs ! J=c� transition [23]. We
shall defer those studies to a future publication [24]. In this
paper we shall assume that the phase in the NP component
of �MBs

is sufficiently small (although not necessarily

negligible),

�MBs
¼ �MðSMÞ

Bs
þ �MðNPÞ

Bs
: (10)

Accounting for NP as an additive contribution,

�M
ðexptÞ
Bs

¼ �MðSMÞ
Bs

þ�MðNPÞ
Bs

; (11)

we have from Eqs. (1) and (3),

�MðNPÞ
Bs

¼ ð�0:1þ16:4
�17:2Þ � 10�13 GeV: (12)

The error in �M
ðexptÞ
s has been included, but it is so small

compared to the theoretical error in �MðSMÞ
s as to be

negligible. The 1� range for the NP contribution is thus,

�MðNPÞ
Bs

¼ ð�17:3 ! þ16:5Þ � 10�13 GeV: (13)

To proceed further without ambiguity, we would need to
know the relative phase between the SM and NP compo-
nents. Lacking this, we employ the absolute value of the
largest possible number,

j�MðNPÞ
Bs

j � 17:3� 10�13 GeV; (14)

to constrain the NP parameters.
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B. Generic NP models with tree-level amplitudes

New physics can affect both Bs mixing and rare decays
like Bs ! �þ�� by engaging in these two transitions at
tree level. In this section we will, for generality, consider a
generic spin-1 boson V or a spin-0 boson S with flavor-
changing and flavor-conserving neutral current interactions
that couple both to quarks and leptons. The bosons V and S
can be of either parity. This situation is frequently realized,
as in the interactions of a heavy Z0 boson or in multi-Higgs
doublet models, without natural flavor conservation.

Spin-1 Boson V: Assuming that the spin-1 particle V has
flavor-changing couplings, the most general Lagrangian
can be written as3

H V ¼ g0V1 �‘
0
L	�‘LV

� þ g0V2 �‘
0
R	�‘RV

�

þ gV1 �bL	�sLV
� þ gV2 �bR	�sRV

� þ H:c: (15)

Here V� is the vector field and the flavor of the lepton ‘0

might or might not coincide with ‘. It is not important
whether the field V� corresponds to an Abelian or non-

Abelian gauge symmetry group. Using methods similar to
those in Ref. [5], we obtain

�MðVÞ
Bs

¼ f2Bs
MBs

3M2
V

Re

�
C1ð�ÞB1 þ C6ð�ÞB6

� 5

4
C2ð�ÞB2 þ 7

8
C3ð�ÞB3

�
; (16)

where the superscript on �MðVÞ
Bs

denotes propagation of a

vector boson in the tree amplitude. The Wilson coefficients
evaluated at a scale � are related to the couplings gV1 and
gV2 as

C1ð�Þ ¼ rð�;MVÞg2V1;
C2ð�Þ ¼ 2rð�;MVÞ1=2gV1gV2;
C3ð�Þ ¼ 4

3½rð�;MVÞ1=2 � rð�;MVÞ�4�gV1gV2;
C6ð�Þ ¼ rð�;MVÞg2V2;

where (presuming that M>mt and � 	 mb),

rð�;MÞ ¼
�
�sðMÞ
�sðmtÞ

�
2=7
�
�sðmtÞ
�sð�Þ

�
6=23

: (17)

Similar calculations can be performed for the B0
s ! ‘þ‘�

decay. The effective Hamiltonian in this case is

H ðVÞ
b!q‘þ‘� ¼ 1

M2
V

½gV1g0V1 ~Q1 þ gV1g
0
V2

~Q7

þ g0V1gV2 ~Q2 þ gV2g
0
V2

~Q6�; (18)

where the operators f ~Qig can be read off from those in
Ref. [5] with the label changes c ! s and u ! b. This
leads to the branching fraction,

BðVÞ
B0
s!‘þ‘� ¼

f2Bs
m2

‘MBs

32�M4
V�Bs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

‘

M2
Bs

vuut jgV1�gV2j2jg0V1�g0V2j2:

(19)

Clearly, Eqs. (16) and (19) can be related to each other only
for a specific set of NP models.
Spin-0 Boson S: Analogous procedures can be followed

if now the flavor-changing neutral current (FCNC) is gen-
erated by quarks interacting with spin-0 particles. Again,
the most general Hamiltonian can be written as

H S ¼ g0S1 �‘L‘RSþ g0S2 �‘R‘LSþ gS1 �bLsRS

þ gS2 �bRsLSþ H:c: (20)

Evaluation of �MðSÞ
Bs

at scale � ¼ mb gives

�MðSÞ
Bs

¼ 5f2Bs
MBs

24M2
S

Re

�
7

5
C3ð�ÞB3 � ðC4ð�ÞB4

þ C7ð�ÞB7Þ þ 12

5
ðC5ð�ÞB5 þ C8ð�ÞB8Þ

�
(21)

with the Wilson coefficients defined as

C3ð�Þ¼�2rð�;MSÞ�4gS1gS2 � �C3ð�ÞgS1gS2;
C4ð�Þ¼�

��
1

2
� 8ffiffiffiffiffiffiffiffi

241
p

�
rþð�;MSÞ

þ
�
1

2
þ 8ffiffiffiffiffiffiffiffi

241
p

�
r�ð�;MSÞ

�
g2S2 � �C4ð�Þg2S2;

C5ð�Þ¼ 1

8
ffiffiffiffiffiffiffiffi
241

p ½rþð�;MSÞ� r�ð�;MSÞ�g2S2 � �C5ð�Þg2S2;

C7ð�Þ¼�
��

1

2
� 8ffiffiffiffiffiffiffiffi

241
p

�
rþð�;MSÞ

þ
�
1

2
þ 8ffiffiffiffiffiffiffiffi

241
p

�
r�ð�;MSÞ

�
g2S1 � �C7ð�Þg2S1;

C8ð�Þ¼ 1

8
ffiffiffiffiffiffiffiffi
241

p ½rþð�;MSÞ� r�ð�;MSÞ�g2S1 � �C8ð�Þg2S1;

(22)

where for notational simplicity we have defined r� �
rð1�

ffiffiffiffiffiffi
241

p Þ=6. Note that Eq. (21) is true only for the real
spin-0 field S. If S is a complex field, then only operator
Q3 will contribute to Eq. (21).
The effective Hamiltonian for the B0

s ! ‘þ‘� decay via
a heavy scalar S with FCNC interactions is then

H ðSÞ
b!s‘þ‘� ¼ � 1

M2
S

½gS1g0S1 ~Q9 þ gS1g
0
S2

~Q8

þ g0S1gS2 ~Q3 þ gS2g
0
S2

~Q4�; (23)

and from this, it follows that the branching fraction is

3Throughout, our convention for defining chiral projections for
a field qðxÞ will be qL;RðxÞ � ð1� 	5ÞqðxÞ=2.
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BðSÞ
B0
s!‘þ‘� ¼ f2BM

5
Bs

128�m2
bM

4
S�Bs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘

M2
Bs

vuut jgS1 � gS2j2

�
�
jg0S1 þ g0S2j2

�
1� 4m2

‘

M2
Bs

�
þ jg0S1 � g0S2j2

�
:

(24)

Note that if the spin-0 particle S only has scalar FCNC
couplings, i.e., gS1 ¼ gS2, no contribution to B0

s ! ‘þ‘�
branching ratio is generated at tree level; the nonzero
contribution to rare decays is instead produced at one-
loop level. This follows from the pseudoscalar nature of
the Bs meson.

Let us now consider specific models where the correla-
tions between the Bs � �Bs mixing rates and (in particular)
the Bs ! �þ�� rare decay can be found.

C. Z0 boson
Bs Mixing: The Bs mixing arising from the Z0 pole

diagram has the same form as in D0 mixing [6],

�MðZ0Þ
Bs

¼ MBs
f2Bs

BBs
r1ðmb;MZ0 Þ
3


 g
2
Z0s �b
M2

Z0
; (25)

where r1ðmb;MZ0 Þ is a QCD factor which we take to be

r1ðmb;MZ0 Þ ’ 0:79: (26)

This is a compromise between r1ðmb; 1 TeVÞ ¼ 0:798 and
r1ðmb; 2 TeVÞ ¼ 0:783. Solving for the Z0 parameters, we
have

g2
Z0s �b
M2

Z0
¼ 3j�MðNPÞ

Bs
j

MBs
f2Bs

BBs
r1ðmb;MZ0 Þ � 2:47� 10�11 GeV�2

(27)

upon using the constraint from Bs mixing.
Bs ! �þ�� Decay: This has already been calculated

for D0 ! �þ�� decay in Ref. [5]. Inserting obvious
modifications for D0 ! Bs, we have from the branching
fraction relation Eq. (39) of Ref. [5],

BðZ0Þ
Bs!�þ�� ¼ GFf

2
Bs
m2

�MBs

16
ffiffiffi
2

p
��Bs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2
Bs

vuut g2
Z0s �b
M2

Z0

 M

2
Z

M2
Z0
: (28)

Upon inserting numbers, we obtain

B ðZ0Þ
Bs!�þ�� � 0:25� 10�9 


�
1 TeV

MZ0

�
2
: (29)

This value is already below the corresponding SM predic-

tion [BðSMÞ
Bs!�þ�� ¼ 3:3� 10�9] even if we take a Z0 mass

as light as MZ0 ’ 1 TeV.

D. R parity violating supersymmetry

One of the models of new physics that has a rich flavor
phenomenology is R-parity violating supersymmetry
(RPV-SUSY). The crucial difference between studies of
RPV-SUSY contributions to phenomenology of the up-
quark (see [5]) and down-type quark sectors is the possi-
bility of tree-level diagrams contributing to Bs mixing4 and
Bs ! ‘þ‘� decays [25–28]. If one allows for R-parity
violation, the following terms should be added to the
superpotential:

W 6R ¼ 1
2
ijkLiLjE

c
k þ 
0

ijkLiQjD
c
k þ 1

2

00
ijkU

c
i D

c
jD

c
k: (30)

Here Q and L denote SUð2ÞL doublet quark and lepton
superfields, and U, D, and E stand for the SUð2ÞL singlet
up-quark, down-quark, and charged lepton superfields.
Also, fi; j; kg ¼ 1, 2, 3 are generation indices. We shall
require baryon-number symmetry by setting 
00 to zero.
Also, we will assume CP conservation, so all couplings

ijk and 
0

ijk are treated as real.

B0
s � �B0

s Mixing: Neglecting the baryon-number violat-
ing contribution, the Lagrangian describing the RPV-
SUSY contribution to B0

s � �B0
s mixing can be written as

L R ¼ �
0
i23 ~�iL

�bRsL � 
0
i32~�iL

�sRbL þ H:c:; (31)

where i ¼ 1, 2, 3 is a generational index for the sneutrino.
Matching to Eq. (20) implies that the only nonzero con-
tribution comes from the operator Q3. Taking into account
renormalization group running, we obtain for �Ms from
the R-parity violating terms,

�Mð6RÞ
Bs

¼ 5

24
f2Bs

MBs
FðC3; B3Þ

X
i


0
i23


0�
i32

M2
~�i

; (32)

where M~�i
denotes the mass of the sneutrino of i-th gen-

eration and the function,

FðC3; B3Þ ¼ 7
5
�C3ð�;M~�i

ÞB3; (33)

is defined in terms of the reduced Wilson coefficient of
Eq. (22) and the B factor is defined in Table II of the
Appendix.
Bs ! �þ�� Decay: In RPV-SUSY, the underlying tran-

sition for Bs ! �þ�� is sþ �b ! �þ þ�� via tree-level
u-squark or sneutrino exchange. In order to relate the rare
decay to the mass difference contribution from RPV-SUSY

�Mð6RÞ
Bs
, we need to assume that the up-squark contribution is

negligible. This can be achieved inmodelswhere sneutrinos
are much lighter than the up-type squarks, which are phe-
nomenologically viable. Employing this assumption leads
to the predicted branching fraction

4We assume that there is no strong hierarchy between the
RPV-SUSY couplings that favors possible box diagrams.

RELATING Bs MIXING AND . . . PHYSICAL REVIEW D 83, 114017 (2011)

114017-5



Bð6RÞ
Bs!�þ�� ¼

f2Bs
M3

Bs

64��Bs

�
MBs

mb

�
2
�
1�2m2

�

M2
Bs

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

�

M2
Bs

vuut

�
���������

X
i


�
i22


0
i32

M2
~�i

��������
2þ

��������
X
i


i22

0�
i23

M2
~�i

��������
2
�
: (34)

In order to relate Bs ! �þ�� to�Ms in the framework of
RPV-SUSY, we need to make additional assumptions. In
particular, we shall assume that the sum is dominated by a
single sneutrino state, which we shall denote by ~�k. In
addition, we will assume that 
0

k23 ¼ 
0
k32, which will re-

duce the number of unknown parameters. This assumption
is not needed, however, if one wishes to set a bound on a
combination of coupling constants directly from the
experimental bound on BBs!�þ�� . Then, neglecting CP

violation,

Bð6RÞ
Bs!�þ�� ¼ k

f2Bs
M3

Bs

64��Bs

�

i22


0
i32

M2
~�i

�
2
�
MBs

mb

�
2
�
1� 2m2

�

M2
Bs

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2
Bs

vuut ; (35)

where k ¼ 2 if an assumption that 
0
k23 ¼ 
0

k32 is made, and

k ¼ 1 otherwise.
Since no Bs ! �þ�� signal has yet been seen, we can

use the experimental bound to obtain an updated constraint
on the RPV couplings,


k22

0
k32 � 5:5� 10�6

�
M~�k

100 GeV

�
2
: (36)

Now, assuming 
0
k23 ¼ 
0

k32, one can relate the branching

ratio BBs!�þ�� to xð6RÞBs
,

B ð6RÞ
Bs!�þ�� ¼ 3

20�

M2
Bs

FðC3; B3Þ
�
MBs

mb

�
2
�
1� 2m2

�

M2
Bs

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2
Bs

vuut xð6RÞBs


2
k22

M2
~�i

: (37)

It is possible to plot the dependence of BBs!�þ�� on 
k22

for different values of M~�i
, which we present in Fig. 1.

E. Family (horizontal) symmetries

The gauge sector in the standard model has a large global
symmetrywhich is broken by theHiggs interaction [30]. By
enlarging the Higgs sector, some subgroup of this symme-
try can be imposed on the full SM Lagrangian and the
symmetry can be broken spontaneously. This family sym-
metry can be global [31] as well as gauged [32]. If the new
gauge couplings are very weak or the gauge boson masses
are large, the difference between a gauged or global sym-
metry is rather difficult to distinguish in practice [33]. In
general there would be FCNC effects from both the gauge
and scalar sectors. Here we study the gauge contribution.

Consider the family gauge symmetry group SUð3ÞG acting
on the three left-handed families. Spontaneous symmetry
breaking renders all the gauge bosons massive. If the SU(3)
is broken first to SU(2) before being completely broken, we
may have an effective ‘‘low’’ energy symmetry SUð2ÞG.
This means that the gauge bosons G � fGigði ¼ 1; . . . ; 3Þ
are much lighter than the fGkgðk ¼ 4; . . . ; 8Þ. For simplicity
we assume that after symmetry breaking the gauge boson
mass matrix is diagonal to a good approximation. If so, the
light gauge bosons G are mass eigenstates with negligible
mixing.
The left-handed (LH) doublets

u0

d0

 !
L

;
c0

s0

 !
L

;
t0

b0

 !
L

; (38)

transform as IG ¼ 1=2 under SUð2ÞG, as do the lepton
doublets

�0
e

e0

 !
L

;
�0
�

�0

 !
L

�0
�

�0

 !
L

: (39)

and the right-handed fermions are singlets under SUð2ÞG.
In the above, the superscript ‘‘0’’ refers to the fact that
these are weak eigenstates and not mass eigenstates. The
couplings of fermions to the light family gauge bosonsG is
given by

L ¼ f½ �c d0;L	�� 
G�c d0;L þ �c u0;L	�� 
G�c u0;L

þ �c ‘0;L	�� 
G�c ‘0;L�; (40)

where f denotes the coupling strength and � are the gen-
erators of SUð2ÞG
The fermion mass eigenstates are given by, first for

quarks,

1 sigma Excluded

0.00 0.01 0.02 0.03 0.04
0

2. 10 8

4. 10 8

6. 10 8

8. 10 8

k22

B
B

s

FIG. 1 (color online). Branching ratio of BB0
s!�þ�� as a

function of RPV leptonic coupling 
k22 and sneutrino mass
M~�i

¼ 100 GeV, 150 GeV, and 200 GeV (solid, dashed, and

dash-dotted lines). The yellow shaded area represents excluded
parameter space.

GOLOWICH et al. PHYSICAL REVIEW D 83, 114017 (2011)

114017-6



d

s

b

0
BB@

1
CCA

L

¼ Ud

d0

s0

b0

0
BB@

1
CCA

L

and

u

c

t

0
BB@

1
CCA

L

¼ Uu

u0

c0

t0

0
BB@

1
CCA

L

; (41)

and then for leptons,

e

�

�

0
BB@

1
CCA

L

¼U‘

u0

�0

�0

0
BB@

1
CCA

L

and

�1

�2

�3

0
BB@

1
CCA

L

¼U�

�0
e

�0
�

�0
�

0
BB@

1
CCA

L

: (42)

The four matricesUd,Uu,U‘, andU� are unknown, except
for

Uy
uUd ¼ VCKM and Uy

�U‘ ¼ VMNSP; (43)

where VMNSP is the Maki-Nakagawa-Sakata-Pontcorvo
lepton mixing matrix. The couplings of the gauge bosons
relevant for the Bs system in the mass basis are

L ¼ f½G�
1 :ðUb1U

�
s2
�bL	�sL þUs1U

�
b2 �sL	�bL

þUb2U
�
s1
�bL	�sL þUs2U

�
b1 �sL	�bLÞ

þ iG�
2 ð�Ub1U

�
s2
�bL	�sL �Us1U

�
b2 �sL	�bL

þUb2U
�
s1
�bL	�sL þUs2U

�
b1 �sL	�bLÞ

þG�
3 ðUb1U

�
s1
�bL	�sL þUs1U

�
b1 �sL	�bL

�Ub2U
�
s2
�bL	� �sL �Us2U

�
b2 �sL	�bLÞ�: (44)

The contribution to B0
s � �B0

s mixing is given by

�MðFSÞ
Bs

¼ 2MBs
f2Bs

BBs
rðmBs;MÞ

3
f2
�
A

m2
1

þ C

m2
3

þ B

m2
2

�
; (45)

where the superscript FS stands for family symmetry and

A ¼ Re½ðUb1U
�
s2 þUb2U

�
s1Þ2�;

B ¼ �Re½ðUb1U
�
s2 �Ub2U

�
s1Þ2�;

C ¼ Re½ðUb1U
�
s1 �Ub2U

�
s2Þ2�: (46)

In a simple scheme of symmetry breaking [34], one
obtains m1 ¼ m3 and the square bracket in Eq. (45)
becomes �

Aþ C

m2
1

þ B

m2
2

�
: (47)

Although the matrices Uiði ¼ d; u; ‘Þ in principle are un-
known, it has been argued that a reasonable ansatz [35],

which is incorporated in many models is Uu ¼ I; Uy
d ¼

VCKM. In this case5 one can simplify A, B, and C further:

A;B � C ’ 1:6� 10�3: (48)

Thus, the Bs mixing becomes

�MðFSÞ
Bs

’ 2MBS
f2Bs

BBs
rðmb;MÞ

3

f2

m2
1

1:6� 10�3; (49)

so that, substituting experimental bound �MðFSÞ
Bs

¼
�MðNPÞ

Bs
,

f2

m2
1

� 3j�MðNPÞ
Bs

j
2MBS

f2Bs
BBs

rðmb;MÞ1:6� 10�3
: (50)

The same above ansatz also implies that Uy
‘ ¼ UMNSP and

U� ¼ 1. Then the coupling of the gauge bosons to muon
pairs is given by

LG�þ�� ¼ f½ðU�
�1U�2 þU�1U

�
�2ÞG


1

þ ið�U�1U
�
�2 þU�

�1U�2ÞG

2

þ ðU�1U
�
�1 �U�2U

�
�2ÞG


3 � ��L	
�L: (51)

The branching ratio for Bs ! �þ�� is given by

BBs!�þ�� ¼MBS
f2Bs

m2
�

32��Bs

f4

�
��������
ðUb1U

�
s2þUb2U

�
s1ÞðU�1U

�
�2þU�

�1U�2Þ
m2

1

�ðUb1U
�
s2�Ub2U

�
s1ÞðU�1U

�
�2�U�2U

�
�1Þ

m2
2

þðUb1U
�
s1�Ub2U

�
s2ÞðU�1U

�
�1�U�2U

�
�2Þ

m2
3

��������
2

:

(52)

Next we employ the approximation (well-supported em-
pirically) that UMNSP ’ UTBM, where UTBM is the tri-bi-
maximal matrix [36]. Then Eq. (51) becomes

L G�þ�� ¼ �f

� ffiffiffi
2

p
3

G
�
1 þ 1

6
G

�
3

�
��L	��L: (53)

With this, the contribution to the branching ratio for
Bs ! �þ�� becomes

BBs!�þ��¼MBs
f2Bs

m2
�f

4

32��Bs

� ffiffiffi
2

p
3
ð1:1�10�2Þþ1

6
�0:04

�
2 1

m4
1

’MBs
f2Bs

m2
�f

4

32��Bs

1:4�10�4

m4
1

: (54)

The dependence on unknown factors in Eq. (54) [i.e.,
ðf=m1Þ4] can be entirely removed by using the bound in
Eq. (50) to yield

BðFSÞ
Bs!�þ�� � 3:85m2

�

�MBS
f2Bs

�Bs
B2
Bs
r2ðmb;m1Þ

j�MðNPÞ
Bs

j2: (55)

From the bounds of Eqs. (12) and (13), we obtain

B ðFSÞ
Bs!�þ�� � 0:5� 10�12: (56)

5Here, we use values listed in Ref. [1].

RELATING Bs MIXING AND . . . PHYSICAL REVIEW D 83, 114017 (2011)

114017-7



F. FCNC Higgs interactions

Many extensions of the standard model contain multiple
scalar doublets, which increases the possibility of FCNC
mediated by flavor nondiagonal interactions of neutral
components. While many ideas exist on how to suppress
those interactions (see, e.g., [37–39]), the ultimate test of
those ideas would involve direct observation of scalar-
mediated FCNC.

Consider a generic Yukawa interaction consisting of a
set of N Higgs doublets Hn (n ¼ 2; . . . ; N) with SM
fermions,

H Y ¼ 
U
ijn

�QLiURj
~Hn þ 
D

ijn
�QLiDRjHn

þ 
E
ijn

�LLiERjHn þ H:c:; (57)

where ~Hn ¼ i�2H
�
n and QLi (LLi) are, respectively, the

left-handed weak doublets of an i-th generation of quarks
(leptons). Restricting the discussion to Bs mixing and
Bs ! �þ�� decay, we find that Eq. (57) reduces to

H H
Y ¼ 
D

23n �sLbR�
0
n þ 
D

32n
�bLsR�

0
n

þ 
E
22n ��L�R�

0
n þ H:c:; (58)

where �0
n � ð�0

n þ ia0nÞ=
ffiffiffi
2

p
. Bringing this to the form of

Eq. (20) and confining the discussion only to the contribu-
tion of the lightest �0

n and a0n states, we obtain

H H
Y ¼ 
Dy

23ffiffiffi
2

p �bRsL�
0 þ 
D

32ffiffiffi
2

p �bLsR�
0 þ 
E

22ffiffiffi
2

p ��L�R�
0

� i

Dy
23ffiffiffi
2

p �bRsLa
0 þ i


D
32ffiffiffi
2

p �bLsRa
0 þ i


E
22ffiffiffi
2

p ��L�Ra
0

þ . . .þ H:c:; (59)

where ellipses stand for the terms containing heavier �0
n

and a0n states whose contributions to �MBs
and BBs!�þ��

will be suppressed.
If the matrix of coupling constants in Eq. (59) is

Hermitian, e.g., 
Dy
23 ¼ 
D

32, then we can identify the cou-

plings of Eq. (20) as

gS1 ¼ gS2 ¼

D
32ffiffiffi
2

p ; g0S1 ¼ g0S2 ¼

E
22ffiffiffi
2

p ; (60)

for scalar interactions and

gS1 ¼ �gS2 ¼
i
D

32ffiffiffi
2

p ; g0S1 ¼ �g0S2 ¼
i
E

22ffiffiffi
2

p (61)

for pseudoscalar interactions.
To proceed, we need to separate two cases: (i) the light-

est FCNC Higgs particle is a scalar, and (ii) the lightest
FCNC Higgs particle is pseudoscalar.

1. Light scalar FCNC Higgs

The case of a relatively light scalar Higgs state is quite
common, arising most often in Type-III two-Higgs doublet

models (models without natural flavor conservation)
[40–42].
B0
s- �B

0
s Mixing: Given the general formulas of Eq. (21), it

is easy to compute the contribution to �Mð�Þ
Bs

of an inter-

mediate scalar (�) with FCNC couplings,

�Mð�Þ
Bs

¼ 5f2Bs
MBs

f�ð �Ci;mbÞ
48

�

D
32

M�

�
2
;

f�ð �Ci;mbÞ � 7

5
�C3ðmbÞB3 � ð �C4ðmbÞB4 þ �C7ðmbÞB7Þ

þ 12

5
ð �C5ðmbÞB5 þ �C8ðmbÞB8Þ; (62)

with reducedWilson coefficients f �Cið�Þg given in Eq. (22).
B0
s ! �þ�� Decay: Comparing Eq. (60) to Eq. (24), we

can easily see that the branching fraction for the rare decay
B0
s ! ‘þ‘� is zero for the intermediate scalar Higgs,

B ð�Þ
B0
s!‘þ‘� ¼ 0: (63)

This is consistent with what was already discussed in
Sec. III B and implies that the FCNC Higgs model does
not produce a contribution toB0

s ! �þ�� at tree level. The
nonzero contribution to B0

s ! �þ�� decay is produced at
one-loop level [43].

2. Light pseudoscalar FCNC Higgs

The case of a lightest pseudoscalar Higgs state can occur
in the nonminimal supersymmetric standard model
[44–47]. or related models [48]. In the nonminimal super-
symmetric standard model, a complex singlet Higgs is
introduced to dynamically solve the � problem. The re-
sulting pseudoscalar can be as light as tens of GeV. This
does not mean, however, that it necessarily gives the domi-
nant contribution to both B0

s � �B0
s mixing and the B0

s !
�þ�� decay rate since there can be loop contributions
from other Higgs states. In the following, we shall work in
the region of the parameter space where it does.

B0
s- �B

0
s Mixing: The contribution to �MðaÞ

Bs
due to inter-

mediate pseudoscalar with flavor-changing couplings can
be computed using the general formula in Eq. (21) along
with the identification given in Eq. (61),

�MðaÞ
Bs

¼ 5f2Bs
MBs

fað �Ci;mbÞ
48

�

D
32

Ma

�
2
;

fað �Ci;mbÞ ¼
�
7

5
�C3ðmbÞB3 þ ð �C4ðmbÞB4 þ �C7ðmbÞB7Þ

� 12

5
ð �C5ðmbÞB5 þ �C8ðmbÞB8Þ

�
; (64)

with reduced Wilson coefficients �Cið�Þ again being de-
fined in Eq. (22).
B0
s ! �þ�� Decay: The branching ratio for rare decay

can be computed with the help of the general formula of
Eq. (24),
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B ðaÞ
B0
s!‘þ‘� ¼ 1

32�

f2BM
5
Bs

m2
b�Bs

�
1� 4m2

‘

M2
Bs

�
1=2
�

D
32


E
22

M2
a

�
2
: (65)

We can now eliminate one of the three unknown parame-
ters (
D

32, 

E
22, andMa) which appear in Eqs. (64) and (65).

We choose to eliminate 
D
32, so

BðaÞ
B0
s!‘þ‘� ¼

3

10�

 M4

Bs
xðaÞs

m2
bfað �Ci;mbÞ

�
1�4m2

‘

M2
Bs

�
1=2
�

E
22

Ma

�
2
; (66)

where xðaÞs ¼ �MðaÞ
Bs
=�Bs

. As one can see, the unknown

factors enter Eq. (66) in the combination 
E
22=Ma. It is,

however, more convenient to plot the dependence on Ma

for different values of 
E
22, which we present in Fig. 2.

It must be emphasized that the discussion above as-
sumed the absence of large destructive interference of the
NP and SM contributions to B0

s � �B0
s mixing. Concrete

models where such interference is present (and thus the
new physics contribution is larger than the SM one) can be
constructed [49]. In such models the possible contribution
to Bs ! �þ�� could be large.

G. Fourth generation models

One of the simplest extensions of the standard model
involves addition of the sequential fourth generation of
chiral quarks [50–52], denoted for the lack of the better
names by t0 and b0. The addition of the sequential fourth
generation of quarks leads to a 4� 4 CKM quark mixing
matrix [53]. This implies that the parametrization of this
matrix requires six real parameters and three phases.
Besides providing new sources of CP violation, the two
additional phases can affect the branching ratios consid-
ered in this paper due to interference effects [54].

There are many existing constraints on the parameters
related to the fourth generation of quarks. In particular, a fit
of precision electroweak data (S and T parameters)
[55–57] implies that the masses of the new quarks are
strongly constrained to be [58]

mt0 �mb0 ’
�
1þ 1

5

mH

ð115 GeVÞ
�
� 50 GeV; (67)

with mt0 > 400 GeV. Here mH is the SM Higgs mass,
which we take for simplicity to be 120 GeV. We also
used updated constraints on CKM matrix elements [59].
The relationship between �MBs

and BBs!�þ�� in the

model with four generations of quarks has been previously
studied in detail in [60]. Here we update their result. The
branching ratio of Bs ! �þ�� can be related to the
experimentally measured6 xBs

as [60]

B Bs!�þ�� ¼ 3�2m2
�xBs

8�B̂Bs
M2

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

m2
Bs

vuut jCtot
10 j2
j�0j ; (68)

where the parameter �0 is a Bs-mixing loop parameter
[60],

�0 ¼ �tS0ðxtÞ þ �t0R
2
t0tS0ðxt0 Þ þ 2�t0Rt0tS0ðxt; xt0 Þ; (69)

and Rt0t ¼ Vt0sV
�
t0b=VtsV

�
tb. B̂Bs

can be obtained from

Table I. The definition of the function S0ðxt; xt0 Þ can be
found in Ref. [60]. TheWilson coefficientCtot

10 is defined as

Ctot
10 ð�Þ ¼ C10ð�Þ þ Rt0tC

t0
10ð�Þ; (70)

with Ct0
10 obtained by substituting mt0 into the SM expres-

sion for C10 [62]. The results can be found in Fig. 3. As one
can see, the resulting branching ratios are still lower than
the current experimental bound of Eq. (6), but for the

values of the four-generation CKM matrix 
t0
bs ¼

jVt0sV
�
t0bj of about 0.01, disfavored by [59], but still favored

by [63], can be quite close to it.

1 sigma Excluded
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0
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FIG. 2 (color online). Branching ratio of BB0
s!�þ�� as a function of pseudoscalar Higgs mass Ma. Left: 


E
22 ¼ 1, 0.5, 0.1 (solid,

dashed, dash-dotted lines). Right: 
E
22 ¼ 0:1, 0.05, 0.01 (solid, dashed, dash-dotted lines). In each figure, the yellow shaded area

represents excluded parameter space.

6Here we use �MBs
from Table I, as the separation of NP and

SM contributions used in the rest of this paper, xBs
¼ xSM3 þ

xSM4, is not possible due to loops with both t0 and t, c, or u
quarks.
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IV. CONCLUSION

Experiment has determined �MBs
exceedingly well.

The standard model determination provides a consistent
value, although with a markedly greater uncertainty (due
mainly to the dependence on the nonperturbative quantity

f2Bs
B̂Bs

and to a lesser extent on the CKM mixing element

Vts). We have argued that this fact can be used to constrain
NP predictions for other processes, such as the Bs !
�þ�� transition considered here.

We expect this kind of correlation to be a rather general
feature of new physics models, provided there is an overlap
between the NP parameters which describe �MBs

and (for

our purposes here) Bs ! �þ��. However, given the abun-
dance of New Physics scenarios, each with its particular
structure, it is not reasonable to expect any universal
correlation between Bs mixing and Bs ! �þ��.
Instead, what we have done in this paper is to analyze
several NP models in detail. In each case, we have first
determined the set of unknown NP parameters and then,
using dynamical assumptions, have been able to reduce (or
entirely eliminate) the arbitrariness. Analyzing specific NP
models this way has two purposes: to serve as an instruc-
tive example for further study and to see what kinds of
numerical predictions these particular models yield.

Not surprisingly, the simplest model (with a single Z0
boson) provides a strong correlation between �MBs

and

Bs ! �þ�� in which the latter is determined in terms of
MZ0 . An even stronger prediction occurs in the particular
version of the family symmetry model discussed earlier,
where a clean determination of Bs ! �þ�� is obtained.
In this instance, a set of reasonable assumptions allows for
the initial presence of unknown parameters to be totally
overcome. A similar, but not quite as fortunate, situation
occurs for R-parity violating supersymmetry, wherein a
reasonable assumption partially reduces the NP parameter

set. In this case, Bs ! �þ�� can be expressed in terms of
a ratio of a coupling constant and sneutrino mass M~�. The
flavor-changing Higgs model turns out to be less accom-
modating in that no set of assumptions known to us can
reduce the original set of three unknown parameters. Thus,
the constraint from Bs mixing still leaves one with two
unknowns (see Fig. 2). We also updated constraints on the
models with a fourth sequential generation of quarks. Of
course, additional NP models are available for study, e.g.,
R-parity conserving supersymmetry [24], and work pro-
ceeds on these.
Finally, as discussed in Sec. III, it would be of interest to

address the impact of NP CP-violating contributions to Bs

mixing. Indeed, we plan do so in a future project, but first
await more accurate data on��s or studies of Bs ! J=c�
transition at LHC-b.
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APPENDIX: CHOICE OF THE BASIS AND
MIXING-MATRIX ELEMENTS

There are eight �b ¼ 2 effective operators that can con-
tribute to Bs mixing. The operator basis we shall employ is
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FIG. 3 (color online). Left: branching ratio of BB0
s!�þ�� as a function of the top-prime mass mt0 for different values of the phase

�t0s ¼ 0, �=2, � (solid, dashed, dash-dotted lines) and 
t0
bs ¼ jVt0sV

�
t0bj ’ 10�4 [59] (see also [63]). Right: branching ratio of

BB0
s!�þ�� as a function of the CKM parameter combination 
t0

bs with �t0s ¼ 0 and different values of mt0 ¼ 400 GeV (solid),

500 GeV (dashed), and 600 GeV (dash-dotted).
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Q1¼ð �bL	�sLÞð �bL	�sLÞ; Q2¼ð �bL	�sLÞð �bR	�sRÞ;
Q3¼ð �bLsRÞð �bRsLÞ; Q4¼ð �bRsLÞð �bRsLÞ;
Q5¼ð �bR���sLÞð �bR���sLÞ; Q6¼ð �bR	�sRÞð �bR	�sRÞ;
Q7¼ð �bLsRÞð �bLsRÞ; Q8¼ð �bL���sRÞð �bL���sRÞ;

(A1)

where quantities enclosed in parentheses are color singlets,
e.g., ð �bL	�sLÞ � �bL;i	�sL;i. These operators are generated

at a scale M where the NP is integrated out. A nontrivial
operator mixing then occurs via the renormalization group
running of these operators between the heavy scale M and
the light scale � at which hadronic matrix elements are
computed.

We need to evaluate the B0
s-to- �B

0
s matrix elements of

these eight dimension-six basis operators. This introduces
eight nonperturbative B parameters fBig that require evalu-
ation by means of QCD sum rules or QCD-lattice simula-
tion. We express these in the form

hQ1i ¼ 2
3f

2
Bs
M2

Bs
B1; hQ2i ¼ �5

6f
2
Bs
M2

Bs
B2;

hQ3i ¼ 7
12f

2
Bs
M2

Bs
B3; hQ4i ¼ � 5

12f
2
Bs
M2

Bs
B4;

hQ5i ¼ f2Bs
M2

Bs
B5; hQ6i ¼ 2

3f
2
Bs
M2

Bs
B6;

hQ7i ¼ � 5
12f

2
Bs
M2

Bs
B7; hQ8i ¼ f2Bs

M2
Bs
B8; (A2)

where fBs
is the Bs meson decay constant and hQii �

h �B0
s jQijB0

si.
Reference [29] has performed aQCD-lattice determination

(quenched approximation) of theB parameters in an operator
basis fOig which is distinct from the fQig of Eq. (A1),

O1 ¼ �bi	�ð1þ 	5Þsi �bj	�ð1þ 	5Þsj;
O2 ¼ �bið1þ 	5Þsi �bjð1þ 	5Þsj;
O3 ¼ �bið1þ 	5Þsj �bjð1þ 	5Þsi;
O4 ¼ �bið1þ 	5Þsi �bjð1� 	5Þsj;
O5 ¼ �bið1þ 	5Þsj �bjð1� 	5Þsi: (A3)

Three more operators Oiði ¼ 6; 7; 8Þ can be obtained by
substituting right-handed chiral projection operators with
the left-handed ones Oiði ¼ 1; 2; 3Þ in Eq. (A3). The
B0
s-to- �B

0
s matrix elements of these operators have been pa-

rametrized in Ref. [29] as

hO1i ¼ 8
3f

2
Bs
M2

Bs

~B1; hO2i ¼ �5
3R

2
sf

2
Bs
M2

Bs

~B2;

hO3i ¼ 1
3R

2
sf

2
Bs
M2

Bs

~B3; hO4i ¼ 2R2
sf

2
Bs
M2

Bs

~B4;

hO5i ¼ 2
3R

2
sf

2
Bs
M2

Bs

~B5: (A4)

Also, the chiral structure of QCD requires that hO6i ¼ hO1i,
hO7i ¼ hO2i, and hO8i ¼ hO3i.

Several of the quantities introduced above are scale
dependent, i.e., fBið�Þg, f ~Bið�Þg, and R2

sð�Þ. Throughout
this paper, we shall understand all these quantities to be

renormalized at a common scale � ¼ mb and to simplify
notation, we shall denote them simply as fBig, f ~Big, and R2

s .
In particular, our evaluation at scale � ¼ mb of the quan-
tity Rsð�Þ � MBs

=ðmbð�Þ þmsð�ÞÞ yields
R2
s ¼ M2

Bs
=ð �mbð �mbÞ þ �msð �mbÞÞ2 ¼ 1:57þ0:04

�0:10; (A5)

where we have used the input values �mbð �mbÞ ¼
4:2þ0:17

�0:07 GeV [1] and �msð �mbÞ ¼ 0:085� 0:017 GeV [8].

The two bases fQig and fOig can be related via Fierz
rearrangement,

O1 ¼ 4Q1; O2 ¼ 4Q4; O3 ¼ �2Q4 � 1
2Q5;

O4 ¼ 4Q3; O5 ¼ �2Q2: (A6)

from which we find

B1 ¼ ~B1; B2 ¼ 2
5
~B5R

2
s ; B3 ¼ 6

7
~B4R

2
s ;

B4 ¼ ~B2R
2
s ; B5 ¼ �1

3R
2
sð2 ~B3 � 5 ~B2Þ; B6 ¼ ~B1;

B7 ¼ 6
7
~B4R

2
s ; B8 ¼ �1

3R
2
sð2 ~B3 � 5 ~B2Þ: (A7)

Alternatively, the B parameters can be estimated using the
‘‘modified vacuum saturation’’ (MVS) approach, wherein
all matrix elements in Eq. (A2) are written in terms of
(known) matrix elements of ðV � AÞ � ðV � AÞ and

ðS� PÞ � ðSþ PÞ matrix elements BB and BðSÞ
B ,

hQ1i ¼ 2

3
f2Bs

M2
Bs
BBs

; hQ2i ¼ f2Bs
M2

Bs
BBs

�
� 1

2
� �

Nc

�
;

hQ3i ¼ f2Bs
M2

Bs
BBs

�
1

4Nc

þ �

2

�
;

hQ4i ¼ � 2Nc � 1

4Nc

f2Bs
M2

Bs
BBs

�;

hQ5i ¼ 3

Nc

f2Bs
M2

Bs
BBs

�; hQ6i ¼ hQ1i;
hQ7i ¼ hQ4i; hQ8i ¼ hQ5i; (A8)

where we take Nc ¼ 3 as the number of colors and define

��BðSÞ
Bs

BBs


 M2
Bs

ð �mbð �mbÞþ �msð �mbÞÞ2
!R2

s forBðSÞ
Bs

¼BBs
: (A9)

It is instructive to compare how well the MVS approxima-
tion estimates the recent lattice results. We provide such a
comparison in Table II.

TABLE II. Numerical estimates of the B-parameters. The de-
termination from lattice QCD is done in MS(NDR).

List of fBig
(in fQig basis)

fBig from lattice QCD

(from Ref. [29])

Bi in MVS

[from Eq. (A8)]

B1 ¼ B6 0.87 0.87

B2 0:70R2
s 0:87½35 þ 2

5R
2
s�

B3 0:99R2
s 0:87½17 þ 6

7R
2
s�

B4 ¼ B7 0:80R2
s 0:87R2

s

B5 ¼ B8 0:71R2
s 0:87R2

s
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