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The nonlocal Polyakov-loop-extended Nambu–Jona-Lasinio model is further improved by including

momentum-dependent wave-function renormalization in the quark quasiparticle propagator. Both

two- and three-flavor versions of this improved Polyakov-loop-extended Nambu–Jona-Lasinio model

are discussed, the latter with inclusion of the (nonlocal) ’t Hooft-Kobayashi-Maskawa determinant

interaction in order to account for the axial U(1) anomaly. Thermodynamics and phases are investigated

and compared with recent lattice-QCD results.
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I. INTRODUCTION

The Polyakov-loop-extended Nambu and Jona-Lasinio
(PNJL) model has become a widely used ‘‘minimal’’ ap-
proach to deal with important aspects of the QCD phase
diagram, in close contact and comparison with lattice-
QCD results whenever available. Its basis is the Nambu
and Jona-Lasinio (NJL) model [1–5], generalized by in-
corporating Polyakov-loop dynamics that is controlled by a
suitably chosen effective potential [6–10]. Once the dy-
namical input is fixed in terms of a few parameters by
reproducing basic facts from hadron physics in vacuum and
QCD thermodynamics, the PNJL model permits to ex-
plore, at least schematically, regions of the phase diagram
that are not accessible to lattice QCD but nonetheless of
principal interest. A particularly attractive feature of this
model is its ability, through the coupling of the Polyakov
loop to the quarks as dynamical quasiparticles, to study the
correlated pattern of the deconfinement and chiral cross-
over transitions.

In recent work [11–16] the PNJL model has been gen-
eralized and extended by introducing nonlocal effective
interactions of the quark fields. This was an important step
in order to avoid the traditional sharp momentum-space
cutoff characteristic of former (local) NJL models. The
nonlocal version now permits to establish contacts with
QCD at the level of quark quasiparticle properties. In
Refs. [11,12] the first part of such a program has been
accomplished by generating momentum-dependent dy-
namical quark masses from a generalized gap equation,
in close correspondence with (Landau gauge) Dyson-
Schwinger (DS) equations or (extrapolated) lattice-QCD
results. At this stage, however, quark wave-function renor-
malization effects were not yet incorporated. The residue
of the quark propagator at its quasiparticle pole was strictly
Z � 1. The commonly used chiral quark interactions are
not explicitly momentum dependent and, consequently, do
not provide a mechanism for reducing the wave-function
renormalization factor ZðpÞ from unity (at least not at the
mean-field level).

In the present work we generalize the PNJL model
further in order to improve on this issue. A vector-type
derivative coupling between quarks will be introduced
such as to reproduce results for ZðpÞ from lattice QCD.
The two-flavor version will be dealt with in Sec. II, fol-
lowed by the three-flavor case with inclusion of the axial
U(1) anomaly in Sec. III. The thermodynamics based on
this extended PNJL model will be derived in Sec. IV. The
discussion of chiral and Polyakov-loop crossover transi-
tions at zero quark chemical potential will be updated, also
in view of recent lattice results. Finally, extrapolations to
nonzero quark chemical potentials and the resulting phase
diagram will be explored. We present a summary and an
outlook in Sec. V.

II. GENERALIZED NONLOCAL NAMBU–JONA-
LASINIO MODEL

A. Quark propagator and wave-function
renormalization

Consider as a starting point the full, renormalized
Euclidean quark propagator SðpÞ, the inverse of which is
represented by the DS equation

It involves the renormalized (dressed) gluon propagator
D

��
ab and the full quark-gluon vertex function ��, together

with renormalization constants Z1, Z2. The solution of the
DS Eq. (2.1) has the general form

SðpÞ ¼ � 1

Aðp2Þp� Bðp2Þ ¼ �
Zðp2Þ

p�Mðp2Þ : (2.2)
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The functions Aðp2Þ and Bðp2Þ depend on the renormal-
ization scale and encode the Lorentz-vector and -scalar
dressings of the propagating quark by its interaction with
the full gluon field. The wave-function renormalization
factor, Zðp2Þ ¼ A�1ðp2Þ, accounts for the deviation of
the quark’s quasiparticle strength from unity, induced by
momentum-dependent vector-type interactions. The dy-
namical quark mass function, Mðp2Þ ¼ Bðp2ÞZðp2Þ, is
generated primarily by nonperturbative mechanisms in-
volving the scalar quark condensate h �c c i that acts as an
order parameter of spontaneously broken chiral symmetry.
In the chiral limit (m0 ¼ 0), the mass Mðp2Þ remains
strictly zero at all orders of QCD perturbation theory.

B. Nonlocal Nambu–Jona-Lasinio model
with two quark flavors

In Refs. [11,12] we have already shown how a nonlocal
generalization of the NJL model [1] can be constructed
starting from the SD Eq. (2.1) in the case of Zðp2Þ � 1. We
are now going to write down the extended nonlocal action,
SE, for the two-flavor NJL model including a momentum-
dependent renormalization function Zðp2Þ (following
Refs. [14,15,17–19]). Assuming separability as in
Refs. [11,12], i.e., g2D

��
ab ðp� qÞ ! G

2 CðpÞCðqÞ����ab,

where G is a coupling strength of mass dimension �2,
we can write in Euclidean space-time:

SE ¼
Z

d4x

�
�c ðxÞð�i6@þm0Þc ðxÞ

�G

2
½jaðxÞjaðxÞ þ JðxÞJðxÞ�

�
; (2.3)

with the quark fields c ðxÞ. We work in the isospin limit
with equal current quark masses for up and down quarks,
mu ¼ md � m0. The nonlocal currents jaðxÞ, JðxÞ are
given by

jaðxÞ ¼
Z

d4zCðzÞ �c
�
xþ z

2

�
�ac

�
x� z

2

�
; (2.4)

JðxÞ ¼
Z

d4zF ðzÞ �c
�
xþ z

2

�
i 6@
$

2�
c

�
x� z

2

�
: (2.5)

Here the usual chiral scalar-isoscalar and pseudoscalar-
isovector NJL operators, �a2f0;...;3g ¼ ð1; i�5 ~�Þ are now

supplemented by vector currents with derivative couplings,

�c ðx0Þ6@
$
c ðxÞ :¼ �c ðx0Þð6@c ÞðxÞ � ð6@ �c Þðx0Þc ðxÞ. The non-

locality distribution CðzÞ is the same as in Refs. [11,12].
In momentum space:

C ðp2Þ ¼
� exp½�p2d2C=2� for p2 < �2

const: � 	sðp2Þ
p2 for p2 � �2;

(2.6)

normalized as Cðp ¼ 0Þ ¼ 1. The high-momentum behav-
ior, Cðp2Þ / 	sðp2Þ=p2, with the QCD running coupling
	sðp2Þ, is known from the operator product expansion for

the dynamically generated quark mass [20]. It is matched
at a scale � to the nonperturbative infrared sector of Cðp2Þ
that is conveniently parametrized as a Gaussian. Its width
reflects a typical instanton size or the characteristic gluonic
field strength correlation length, dC � ð0:3–0:4Þ fm. The
matching scale � is fixed by requiring continuity and
differentiability of Cðp2Þ. The detailed low-momentum
form of (2.6) is actually not essential because all relevant
integrals involve Cðp2Þ multiplied by powers of p3.
All four quark currents jaðxÞ with a ¼ 0, 1, 2, 3 have the

same distribution CðzÞ to ensure chiral invariance. The new
element in this generalized nonlocal approach is the vector-
type derivative current JðxÞ of Eq. (2.5) that is separately
invariant under global chiral transformations. We follow
Refs. [18,19] at this point. The derivative coupling propor-
tional to ��@

� in JðxÞ induces the momentum-dependent

wave-function renormalization in Eq. (2.2). Apart from the
overall coupling G that has been factored out in Eq. (2.3),
the coupling strength now features an additional indepen-
dent parameter � with mass dimension 1 in the denomina-
tor at each vertex. The nonlocality distribution F ðzÞ
associated with JðxÞ is again normalized in momentum
space as F ðp ¼ 0Þ ¼ 1. It is given a Gaussian parametri-
zation,

F ðp2Þ ¼ exp½�p2d2F=2�; (2.7)

with dF to be adjusted such that the momentum-dependent
renormalization factor ZðpÞ is well reproduced. Note that
this ansatz is actually consistent with the one for CðpÞ in
Eq. (2.6): according to Ref. [21] there is no modification of
Zðp2Þ ¼ 1 for p2 > �2 coming from a Landau-gauge op-
erator product expansion up to first order in the current
quark mass.
Given the action (2.3), we apply the standard bosoniza-

tion procedure. Consider the partition function

Z ¼
Z

D �cDc e�SE (2.8)

and introduce five bosonic fields 
, v and �k plus five
auxiliary fields S, V, Pk (k 2 f1; 2; 3g). Next, insert a
‘‘one’’ in terms of (Euclidean) delta functions on the
right-hand side of Eq. (2.8),

1 ¼
Z

DSDVDPk�ðS� j0Þ�ðV � JÞ�ðPk � jkÞ

¼
Z

DSDVDPkD
DvD�k exp

�Z
d4z½
ðS� j0Þ

þ vðV � JÞ þ �kðPk � jkÞ�
�
;

and write the partition function as
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Z ¼
Z

D �cDcDSDVDPkD
DvD�k

� exp

�
�
Z

d4x½ �c ð�i��@� þm0Þc þ 
j0

þ vJ þ �kjk�
�
exp

�Z
d4x

�
ð
Sþ vV þ �kPkÞ

þG

2
ðS2 þ V2 þ PkPkÞ

��
: (2.9)

The inserted delta functions imply a replacement of j0, J
and jk by S, V and Pk, respectively. The first exponential,
after re-insertion of Eqs. (2.4) and (2.5) for the currents, has

terms of the form �c Â c . The path integration over the
fermionic fields �c and c is carried out in the standard way:

Z ¼
Z

D
DvD�k detÂ
Z

DSDVDPk

� exp

�Z
d4x

�
ð
Sþ vV þ �kPkÞ

þG

2
ðS2 þ V2 þ PkPkÞ

��
: (2.10)

The integration over the auxiliary fields S, V, Pk is readily
performed by completing the square, leading to

Z ¼N
Z

D
DvD�k detÂ

� exp

�
� 1

2G

Z
d4x½
2 þ v2 þ ~�2�

�
; (2.11)

where detÂ is the fermion determinant. In momentum
space one finds after Fourier transformation1

Aðp; p0Þ :¼ hpjÂjp0i
¼ ð�pþm0Þð2�Þ4�ð4Þðp� p0Þ

þ C
�
pþ p0

2

�
½
ðp� p0Þ þ i�5�k�kðp� p0Þ�

þF
�
pþ p0

2

�
pþp0
2�

vðp� p0Þ: (2.12)

Finally, comparison of Eq. (2.11) with the definition (2.8)
of the partition function gives the bosonized Euclidean
action,

Sbos ¼ � lndetAðp; p0Þ þ 1

2G

Z d4p

ð2�Þ4 ½
ð�pÞ
ðpÞ
þ vð�pÞvðpÞ þ ~�ð�pÞ � ~�ðpÞ�; (2.13)

where we have used integration in momentum space2 (for
later convenience).

C. Taylor expansion of the action

In order to derive formulas for physical observables,
such as the pion mass and the pion decay constant, a
Taylor expansion of the bosonized action (2.13) is per-
formed around the expectation values of the fields 
, v,
~�. We assume that 
 and v have nontrivial translationally
invariant mean-field values �
, �v, respectively, while
the mean-field values of the pseudoscalar fields �k (k ¼
1, 2, 3) vanish. In coordinate space: 
ðxÞ ¼ �
þ �
ðxÞ,
vðxÞ ¼ �vþ �vðxÞ and ~�ðxÞ ¼ � ~�ðxÞ. This permits to
write the action (2.13) as

Sbos ¼ SMF þ Sð2Þ þ . . . (2.14)

The mean-field approximation is defined by the require-
ment of a vanishing first derivative of the action Sbos,

�Sbos

�’

��������f
¼ �
;v¼ �v; ~�¼0g
¼ 0; for’ 2 f
; v; ~�g: (2.15)

The mean-field action, SMF, is thus obtained by replacing

ðxÞ ! �
, vðxÞ ! �v, ~�ðxÞ ! 0. In momentum space this

implies the substitutions 
ðpÞ ! �
ð2�Þ4�ð4ÞðpÞ, vðpÞ !
�vð2�Þ4�ð4ÞðpÞ and, of course, ~�ðpÞ ! 0. With this and
using3 lndet¼ Tr ln, we find

SMF

Vð4Þ
¼ �Nc

Z d4p

ð2�Þ4 Tr ln½Z�1ðpÞð�pþMðpÞÞ�

þ �
2 þ �v2

2G
; (2.16)

where Vð4Þ denotes the four-dimensional Euclidean space-
time volume and Nc the number of colors (Nc ¼ 3). We
have introduced the wave-function renormalization factor,
ZðpÞ,

ZðpÞ ¼
�
1� �v

�
F ðpÞ

��1
; (2.17)

and the dynamically generated constituent quark mass,
MðpÞ,

MðpÞ ¼ ZðpÞðm0 þ �
CðpÞÞ: (2.18)

The quadratic term Sð2Þ follows from the second-order
term of the Taylor-series expansion in ��:

S ð2Þ ¼ 1

2

Z d4p

ð2�Þ4 ½G
ðp2Þ�
ðpÞ�
ð�pÞ

þ Gvðp2Þ�vðpÞ�vð�pÞ
þ 2G
;vðp2Þ�
ðpÞ�vð�pÞ
þ G�ðp2Þ� ~�ðpÞ� ~�ð�pÞ�: (2.19)

1We use ĈðpÞ ¼ R
d4zCðzÞe�ip�z, �̂ðpÞ ¼ R

d4z�ðzÞe�ip�z,
where �ðzÞ stands for an arbitrary field � 2 f
; v; ~�g. We
omit the ‘‘hats’’ on the Fourier transforms and set henceforth
CðpÞ � ĈðpÞ, �ðpÞ � �̂ðpÞ, etc.

2The arguments of the quadratic expressions in 
, v, ~� follow
immediately from the Plancherel theorem under the assumption
that those fields are real-valued in coordinate space.

3The functions ln, det and Tr extend over Dirac and flavor
space only; operation on color space has already been applied,
leading to the factor Nc.
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The inverse propagators for the 
 and v fields are given by4

G
ðp2Þ ¼ �2Sbos

�
ðpÞ�
ð�pÞ
��������f �
; �v;�i¼0g

¼ 1

G
� 8Nc

Z d4q

ð2�Þ4 C
2ðqÞZðqþÞZðq�Þ qþ � q� �MðqþÞMðq�Þ

½ðqþÞ2 þM2ðqþÞ�½ðq�Þ2 þM2ðq�Þ� ;

Gvðp2Þ ¼ �2Sbos

�vðpÞ�vð�pÞ
��������f �
; �v;~0g

¼ 1

G
þ 8Nc

�2

Z d4q

ð2�Þ4 q
2F 2ðqÞZðqþÞZðq�Þ q

þ � q� �MðqþÞMðq�Þ þ ½ðqþÞ2ðq�Þ2 � ðqþ � q�Þ2�=ð2q2Þ
½ðqþÞ2 þM2ðqþÞ�½ðq�Þ2 þM2ðq�Þ� ;

G
;vðp2Þ ¼ �2Sbos

�
ðpÞ�vð�pÞ
��������f �
; �v;~0g¼ �

8Nc

�

Z d4q

ð2�Þ4 CðqÞF ðqÞZðq
þÞZðq�Þ q � ½q�MðqþÞ þ qþMðq�Þ�

½ðqþÞ2 þM2ðqþÞ�½ðq�Þ2 þM2ðq�Þ� ;

with q� ¼ q� p=2. The fields 
 and v obviously mix. In
the present context this mixing is of no relevance and we
will not discuss it further. More important in the present
work is the inverse pion propagator, G�ðp2Þ, that is used
for the determination of the pion mass:

G �ðp2Þ ¼ �2Sbos

��kðpÞ��kð�pÞ
��������f �
; �v;�i¼0g

¼ 1

G
� 8Nc

Z d4q

ð2�Þ4 C
2ðqÞZðqþÞZðq�Þ

� qþ � q� þMðqþÞMðq�Þ
½ðqþÞ2 þM2ðqþÞ�½ðq�Þ2 þM2ðq�Þ�:

(2.20)

Note that no summation is implied in this second deriva-
tive: with trf�i � �kg ¼ 2�ik only the diagonal elements in
isospin space survive.

D. Mean-field approximation and chiral condensates

As mentioned earlier [see Eq. (2.15)], the mean-field
values �
 and �v are determined by imposing a minimal
action SMF. From Eq. (2.16) we obtain the following two
gap equations:

�
 ¼ 8NcG
Z d4p

ð2�Þ4 CðpÞ
ZðpÞMðpÞ
p2 þM2ðpÞ ; (2.21a)

�v ¼ � 8NcG

�

Z d4p

ð2�Þ4 F ðpÞ
p2ZðpÞ

p2 þM2ðpÞ ; (2.21b)

with MðpÞ and ZðpÞ determined self-consistently by
Eqs. (2.17) and (2.18).

The chiral condensates can be calculated using the
Feynman-Hellmann theorem by calculating the variation
of ZMF ¼ exp½�SMF� with respect to the corresponding

current quark masses. The definition of the chiral conden-
sate h �qqi ¼ h �uui ¼ h �ddi is5

h �qqi ¼ �i tr lim
y!xþ
½SFðx; yÞ � Sð0ÞF ðx; yÞ�; (2.22)

where SFðx; yÞ is the full quark propagator while Sð0ÞF ðx; yÞ
denotes its perturbative part. For nonvanishing current
quark mass, m0 � 0, the perturbative contribution needs
to be subtracted, leading to

h �qqi ¼ �4Nc

Z d4p

ð2�Þ4
�
ZðpÞMðpÞ
p2 þM2ðpÞ �

m0

p2 þm2
0

�
:

(2.23)

E. Pion mass and pion decay constant

From the inverse pion propagator G�ðp2Þ the pion mass
is determined by the condition

G�ð�m2
�Þ ¼ 0: (2.24)

Furthermore, the square of the quark-pion coupling con-
stant, g2�qq, is defined as the residue of the pseudoscalar-

isovector quark-antiquark amplitude,

½G�ðp2Þ��1 ¼: g2�qq

p2 þm2
�

; (2.25)

hence

g�2�qq ¼ dG�ðp2Þ
dp2

��������p2¼�m2
�

: (2.26)

Finally, comparing the definition of the (inverse) pion
propagator, Eq. (2.20), with Eq. (2.25) the renormalized
one-pion state, ~�k, is defined as

~�k ¼ g�1�qq�k; (2.27)

such that �2Sbos=ð�~�ðpÞ�~�ð�pÞÞ ¼ p2 þm2
�.

The derivation of the pion decay constant in the presence
of the wave-function renormalization factor, ZðpÞ, is con-
siderably more involved than the simpler case discussed in
Refs. [11,12]. The decay constant f� is defined as

4Notice, that from the definition of the gamma matrices in
Euclidean space-time, f��; ��g ¼ �2���, one has trf����g ¼�4��� and trf�����
�
g ¼ 4ð����

 � ��
��
 þ ��
��
Þ.

5Here tr denotes the trace over Dirac space only. Since the
condensates of each flavor are considered separately, the trace
over flavor space must not be taken.
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the matrix element of the axial current JiA;�ðxÞ ¼
�c ðxÞ���5

�i

2 c ðxÞ between the vacuum and the renormal-

ized one-pion state at the pion pole,

h0jJiA;�ð0Þj ~�kðpÞi ¼ i�ikp�f�: (2.28)

In order to calculate this matrix element one has to gauge
the nonlocal action (2.13) by introducing a set of axial
gauge fields Ai

�ðxÞ, i 2 f1; 2; 3g. Since we are dealing

with a nonlocal theory this gauging requires a general-
ization of the parallel transport. The ‘‘connection’’ that
links operators at two different space-time points x, y is
given by a Wilson line, W ðx; yÞ, defined as

W ðx; yÞ ¼ P exp

�
i

2

Z y

x
ds��5 ~� � ~A�ðsÞ

�
; (2.29)

where s runs over an arbitrary path connecting x with y.
This procedure implies the replacements6

c ðx� z=2Þ !W ðx; x� z=2Þc ðx� z=2Þ;
c yðxþ z=2Þ ! c yðxþ z=2ÞW ðxþ z=2; xÞ:

(2.30)

In the case of local operators it gives the well-known

minimal gauge-coupling rule @� ! @� þ i
2�5 ~� � ~A�ðxÞ.

Starting from Eq. (2.9) the replacements (2.30) enter first
directly in the kinetic term and, secondly, in the currents j0,
jk and J of Eqs. (2.4) and (2.5). The fermion determinant of
the gauged theory reads, in coordinate space,7

AGðx; yÞ ¼
�
�i6@y þ 1

2
�5 ~� � ~Aþm0

�
�ð4Þðx� yÞ þ Cðx� yÞ�0W

�
x;
xþ y

2

�
�0


�
xþ y

2

�
W

�
xþ y

2
; x

�

þ Cðx� yÞ�0W
�
x;
xþ y

2

�
i�0�5 ~� � ~�

�
xþ y

2

�
W

�
xþ y

2
; x

�
þF ðx� yÞ�0W

�
x;
xþ y

2

�

� i�0��

2�
v

�
xþ y

2

�
W

�
xþ y

2
; x

��
@�
! þ i

2
�5 ~� � ~A�ðyÞ

�
�F ðx� yÞ

�
@�
 � i

2
�5 ~� � ~A�ðxÞ

�
�0

�W
�
x;
xþ y

2

�
i�0��

2�
v

�
xþ y

2

�
W

�
xþ y

2
; x

�
: (2.31)

Choosing a straight line connecting the points x and y in the Wilson line W ðx; yÞ, we have
W ðx; yÞ ¼ P exp

�
i

2

Z 1

0
d	�5 ~� � ~A�ðxþ ðy� xÞ	Þðy� � x�Þ

�
; (2.32)

and its derivative with respect to the gauge field Ai
�ðtÞ,

�W ðx; yÞ
�Ai

�ðtÞ
��������A¼0

t¼0
¼ i

2

Z 1

0
d	�5�i�

ð4Þðxþ ðy� xÞ	Þðy� � x�Þ: (2.33)

The matrix element (2.28) becomes8:

h0jJiA;�ð0Þj�kðpÞi ¼ � �2 lndetAG

��kðpÞ�Ai
�ðtÞ

��������A¼0
t¼0

¼ 8iNc�ik
~Tr

�Z 1

0
d	q�

dCðqÞ
dq2

Mðqþ	 Þ
ðqþ	 Þ2 þM2ðqþ	 Þ

�
þ 8iNc�ik

~Tr

�
1

2
½Z�1ðqþÞ þ Z�1ðq�Þ�CðqÞ

� qþ�ZðqþÞZðq�ÞMðq�Þ
ððqþÞ2 þM2ðqþÞÞððq�Þ2 þM2ðq�ÞÞ

�
þ 8iNc�ik �
 ~Tr

�Z 1

0
d	q�

dCðqÞ
dq2

C
�
q� p

2
	

�

� Zðqþ	 ÞZðq�	 Þ½qþ	 � q�	 þMðqþ	 ÞMðq�	 Þ�
ððqþ	 Þ2 þM2ðqþ	 ÞÞððq�	 Þ2 þM2ðq�	 ÞÞ

�
þ 8iNc�ik

~Tr

�Z 1

0
d	q�

dZ�1ðqÞ
dq2

C
�
q� p

2
	

�

� qþ	 � ðq� p	
2 ÞZðqþ	 ÞZðq�	 ÞMðq�	 Þ

ððqþ	 Þ2 þM2ðqþ	 ÞÞððq�	 Þ2 þM2ðq�	 ÞÞ
�
; (2.34)

with

6Note, that this replacement applies to c y and not to �c . This distinction is relevant in our case because of the �5 in the Wilson line
(2.29).

7The �0 matrices appearing in AGðx; yÞ are the artifacts of the replacement rule (2.30) for c y. Since the path integration extends over
�c , an additional �0 has to be included because of c y ¼ c y�0�0 ¼ �c�0.
8 ~Tr denotes the functional trace over momentum space. According to Ref. [18] the integrals over 	 can actually be solved

analytically.
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qþ	 ¼ qþ p

2
ð1� 	Þ

q�	 ¼ q� p

2
ð1þ 	Þ

qþ ¼ qþ p

2

q� ¼ q� p

2
:

(2.35)

Note that expressions containing �v
�F ðpÞ have been

replaced by [cf. Eq. (2.17)]

� �v

�
F ðpÞ ¼ Z�1ðpÞ � 1; � �v

�

dF ðpÞ
dp2

¼ dZ�1ðpÞ
dp2

:

Furthermore, the mass functionMðpÞ is given by Eq. (2.18)
and includes the wave-function renormalization factor
ZðpÞ.

With Eq. (2.34) the pion decay constant is now given as

f� ¼ ip�h0jJiA;�ð0Þj�iðpÞi
g�1�qq

m2
�

(2.36)

evaluated at the pion pole p2 ¼ �m2
�. The pion-field

component with index i is singled out in this expression
and no summation is implied.

Finally Taylor-series expansions of the inverse pion
propagator, Eq. (2.20), and of the pion decay constant,
Eq. (2.36), recover the Goldberger-Treiman relation,

f�g�qq ¼ �
þOðm2
0Þ; (2.37)

and the Gell-Mann–Oakes–Renner relation,

m2
�f

2
� ¼ �2m0h �qqi þOðm2

0Þ; (2.38)

at leading order in the quark mass m0. This means that the
nonlocal NJL model including wave-function renormaliza-
tion preserves chiral low-energy theorems and current-
algebra relations.

F. Parameter fixing

The two-flavor case discussed in this section involves
primarily the coupling-strength parameters G, � and the
(current) quark massm0. These parameters are chosen such
that the pion mass, m� ’ 0:14 GeV, and the pion decay
constant, f� ’ 0:09 GeV, are reproduced. At the same
time, the normalized nonlocality distributions CðpÞ and
F ðpÞ, associated with the chiral scalar-pseudoscalar and
vector-derivative interactions, are constrained by the avail-
able information from lattice QCD or Dyson-Schwinger-
equation results for the dynamical quark mass MðpÞ and
the renormalization factor ZðpÞ (see Figs. 1 and 2). The
lattice results taken here for orientation are Landau-gauge

a)

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

p GeV

p

m0 14.0 MeV

m0 11.2 MeV

b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.5

0.6

0.7

0.8

0.9

1.0

p GeV

Z
p

FIG. 1 (color online). (a) The distribution CðpÞ [Eq. (2.6)] and (b) the wave-function renormalization factor ZðpÞ [Eq. (2.23)]. Lattice
data of ZðpÞ are taken from Ref. [24] for different current quark masses as indicated.

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

p GeV

M
p

G
eV

FIG. 2 (color online). Momentum dependence of the dynami-
cally generated quark mass MðpÞ [see Eq. (2.18)]. Diamonds
show unquenched lattice results for the two-flavor case, extrapo-
lated to the chiral limit [22]. The open triangles and circles
correspond to extrapolated two-flavor lattice results [23] for
quenched and unquenched simulations, as indicated. The solid
curve is calculated using the input of Table I and CðpÞ, ZðpÞ of
Fig. 1. The dashed curve shows the effect of lowering the quark
quasiparticle coupling to G ¼ 2:01 fm2.
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simulations with two dynamical quark flavors for MðpÞ
extrapolated to the chiral limit [22,23], and with 2þ 1
dynamical quarks for ZðpÞ (with renormalization scale
set at 3 GeV) [24].

With these constraints the nonlocality length scales dC
and dF of the Gaussian distributions in Eqs. (2.6) and (2.7)
become

dC ¼ 0:40 fm; dF ¼ 0:27 fm; (2.39)

well within the expected range of gluonic correlation
lengths. The matching scale at which CðpÞ turns over to
its high-momentum expression proportional to 	sðp2Þ=p2

is then � ¼ 0:83 GeV.
The input parameters are summarized in Table I. The

resulting output is collected in Table II. Note that the small
value of the current quark mass, m0 ’ 3 MeV, together
with the large magnitude of the chiral condensate h �qqi, is
consistent with the renormalization scale�� 3 GeV char-
acteristic of the lattice-QCD results forMðpÞ and ZðpÞ that
have been used to constrain the quark quasiparticle propa-
gator. The scale-independent product m0h �qqi enters in the
Gell-Mann–Oakes–Renner relation (2.38).

The parameter �, associated with the vector-type deriva-

tive coupling, comes in the combination
ffiffiffiffi
G
p

�p=� where �p
is a typical momentum ( �p� 0:5 GeV) appearing in the
relevant amplitudes and integrals. This coupling strength is

effectively about 1 order of magnitude smaller than
ffiffiffiffi
G
p

itself, indicating a convergent hierarchy in a derivative
expansion of the quark quasiparticle interactions.

The dynamical quark mass MðpÞ in Fig. 2, extrapolated
towards the low-momentum region, is subject to uncertain-
ties concerning its limit Mðp ¼ 0Þ, commonly interpreted
as a constituent quark mass. Our standard choice is
the solid line in Fig. 2 with Mð0Þ ’ 0:36 GeV. The
dashed curve in Fig. 2 shows an option reproducing
Mðp ¼ 0Þ ’ 0:28 GeV (we recall that values around
Mð0Þ � 0:3 GeV are frequently used in phenomenological
quark models). Such anMð0Þ can be reached with a slightly
reduced coupling strength, G ¼ 2:01 fm2, but at the ex-
pense of simultaneously reducing the pion decay constant
to f� ’ 74 MeV.

III. NONLOCAL NJL MODELWITH THREE
QUARK FLAVORS

A. Three-flavor action

The action for the improved nonlocal three-flavor model
is determined by the action given in Ref. [12], plus the
extra term introducing the vector derivative interaction,
Eq. (2.5):

SE ¼
Z

d4x

�
�c ðxÞ½�i��@� þ m̂q�c ðxÞ

�G

2
½jS	ðxÞjS	ðxÞ þ jP	ðxÞjP	ðxÞ þ JðxÞJðxÞ�

�H

4
A	��½jS	ðxÞjS�ðxÞjS�ðxÞ � 3jS	ðxÞjP�ðxÞjP�ðxÞ�

�
;

(3.1)

where m̂q is the Nf ¼ 3 quark mass matrix, m̂q ¼
diagðmu;md;msÞ. The currents are

jS	ðxÞ ¼
Z

d4zCðzÞ �c
�
xþ z

2

�
�	c

�
x� z

2

�
; (3.2)

jP	ðxÞ ¼
Z

d4zCðzÞ �c
�
xþ z

2

�
i�5�	c

�
x� z

2

�
; (3.3)

with U(1) flavor matrices �	 (	 ¼ 0; 1; . . . ; 8), and

JðxÞ ¼
Z

d4zF ðzÞ �c
�
xþ z

2

�
i 6@
$

2�
c

�
x� z

2

�
: (3.4)

The action (3.1) is invariant under chiral SUð3ÞL � SUð3ÞR
in the limit m̂q ¼ 0. The functions CðpÞ andF ðpÞ are given
as in the two-flavor case; again we have �c ðx0Þ 6@

$
c ðxÞ :¼

�c ðx0Þð6@c ÞðxÞ � ð6@ �c Þðx0Þc ðxÞ. The term in the second line
of Eq. (3.1) derives from the ’t Hooft-Kobayashi-Maskawa
determinant that generates the anomalous breaking of the
axial Uð1ÞA symmetry. This term produces an �0 meson
mass about twice as large as the mass of the �meson, once
the strength H of this determinant interaction is properly
chosen.
The bosonization procedure of the action has already

been outlined in the context of the two-flavor model
(Sec. II B), so we restrict ourselves to the result for the
partition function:

Z ¼
Z

D
	D�	Dv detÂ
Z

DS	DP	DV

� exp

�Z
d4xð
	S	 þ �	P	 þ vVÞ

�

� exp

�Z
d4x

�
G

2
ðS	S	 þ P	P	 þ V2Þ

þH

4
A	��ðS	S�S� � 3S	P�P�Þ

��
: (3.5)

TABLE I. Current quark mass m0 and coupling-strength
parameters G, �.

m0 G �

3.0 MeV 2:37 fm2 5.21 GeV

TABLE II. Output resulting from the parameters given in
Table I. All numbers are given in GeV.

h �qqi1=3 �
 �v f� m� Mð0Þ
�0:288 0.493 �1:928 0.084 0.142 0.362
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Here we have introduced 18 scalar, pseudoscalar bosonic
fields 
	, �	 together with a vectorlike field v (	 2
f0; . . . ; 8g) and, additionally, 18 auxiliary fields S	, P	

necessary to deal with the six-fermion interactions induced
by the ’t Hooft term plus one auxiliary field V. In momen-

tum space, the fermion determinant detÂ reads

Aðp;p0Þ :¼hpjÂjp0i
¼ ð�pþm̂qÞð2�Þ4�ð4Þðp�p0Þ

þC
�
pþp0

2

�
�	½
	ðp�p0Þþ i�5�	ðp�p0Þ�

þF
�
pþp0

2

�
pþp0
2�

vðp�p0Þ: (3.6)

The major difference compared with the two-flavor parti-
tion function (2.10) are the cubic expressions in the auxil-
iary fields S	, P	. As a consequence an analytic evaluation
of the functional integral over the auxiliary fields is not
possible anymore. A suitable method to proceed at this
point is the stationary phase approximation (SPA): choose
the fields S	, P	 so as to minimize the integrand in the
bosonized partition function (3.5). A necessary condition
imposed on the fields is therefore


	 þGS	 þ 3H

4
A	��½S�S� � P�P�� ¼ 0;

�	 þGP	 � 3H

2
A	��S�P� ¼ 0;

(3.7)

where S	, P	 are now to be considered as (implicit)
functions of 
	, �	. Performing, in addition, the integra-
tion over the vectorlike fields V the bosonized action can
thus be written:

Sbos
E ¼ � lndetÂþ 1

2G

Z
d4xv2

�
Z

d4x

�

	S	 þ �	P	 þG

2
½S	S	 þ P	P	�

þH

4
A	��½S	S�S� � 3S	P�P��

�
: (3.8)

From here on we can apply the methods developed for the
two-flavor case (Secs. II B, II C, II D, and II E) in order to
reproduce the pseudoscalar meson spectrum within the
nonlocal three-flavor NJL model.

B. Mean-field approximation, gap equations,
and chiral condensates

Starting from the action Sbos
E , Eq. (3.8), a power series

expansion is performed around the expectation values of
the fields 
	, �	 (	 ¼ 0; 1; . . . ; 8) and v


	ðxÞ ¼ �
	 þ �
	ðxÞ;
�	ðxÞ ¼ ��	ðxÞ;
vðxÞ ¼ �vþ �vðxÞ:

(3.9)

Given the constraint imposed by charge conservation, one
needs to consider only the fields 
0, 
3, 
8. (In the isospin
limit studied later, one has the additional constraint that 
3

also vanishes.) It is useful to introduce


¼diagð
u;
d;
sÞ :¼
0�0þ
3�3þ
8�8; (3.10)

and analogously, S ¼ diagðSu; Sd; SsÞ ¼ S0�0 þ S3�3 þ
S8�8. Since h�	i ¼ hP	i ¼ 0 to leading order, the action
in mean-field approximation reads

SMF
E

Vð4Þ
¼ �2Nc

Z d4p

ð2�Þ4 Tr ln½Z�2ðpÞðp213�3 þ M̂2ðpÞÞ�

þ �v2

2G
� 1

2

� X
i2fu;d;sg

�
�
i
�Si þG

2
�Si �Si

�
þH

2
�Su �Sd �Ss

�
;

(3.11)

where M̂ðpÞ ¼ diagðMuðpÞ;MdðpÞ;MsðpÞÞ with

MiðpÞ ¼ ZðpÞðmi þ �
iCðpÞÞ: (3.12)

Here ZðpÞ is the wave-function renormalization factor
(2.17), 13�3 denotes the unity matrix in flavor space and

Vð4Þ is the four-dimensional Euclidean volume.
The mean-field equations (gap equations) are deduced

once again by applying the principle of least action,
�SMF

E

�
i
¼ 0 for 
i ¼ �
i (i 2 fu; d; sg), and

�SMF
E

�v ¼ 0 for

v ¼ �v. The Si and Pi are both implicit functions of 
i,
determined through the SPA equations in mean-field ap-
proximation [compare Eq. (3.7)]. One finds

�
i¼�G �Si�H

4
"ijk"ijk �Sj �Sk (3.13a)

�Si¼�8Nc

Z d4p

ð2�Þ4CðpÞ
ZðpÞMiðpÞ
p2þM2

i ðpÞ
(3.13b)

�v¼�4NcG

�

X
i2fu;d;sg

Z d4p

ð2�Þ4F ðpÞ
p2ZðpÞ

p2þM2
i ðpÞ

: (3.13c)

Finally, the chiral condensate h �qqi is calculated in a way
analogous to the two-flavor case using the definition (2.22).
This leads to

h �qqi ¼ �4Nc

Z d4p

ð2�Þ4
�
ZðpÞMqðpÞ
p2 þM2

qðpÞ
� mq

p2 þm2
q

�
;

(3.14)

now with q ¼ u, d, s. Note that MqðpÞ ! mq for large p.

As in Eq. (2.23), the subtraction of the free quark propa-
gator makes sure that no perturbative artifacts are left in
h �qqi for mq � 0.
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C. Masses and decay constants of the pseudoscalar
meson nonet

1. Second-order terms and meson masses

We focus now on the masses of the (pseudoscalar)
meson octet, plus the �0 meson with its large mass related
to the anomalous breaking of the Uð1ÞA symmetry.
Consider once again second-order corrections to the
mean-field action, extracted from a functional Taylor ex-
pansion,

Sð2ÞE ¼
1

2

Z
d4xd4y

�2SE

�
	�
�

�
	ðxÞ�
�ðyÞ

þ 1

2

Z
d4xd4y

�2SE

��	���

��	ðxÞ���ðyÞ

þ 1

2

Z
d4xd4y

�2SE

�v�v
�vðxÞ�vðyÞ

þ 1

2

Z
d4xd4y

�2SE

�
	�v
�
	ðxÞ�vðyÞ;

where the second derivatives, �2SE

�
	ðxÞ�
�ðyÞ ,
�2SE

��	ðxÞ���ðyÞ ,
�2SE

�vðxÞ�vðyÞ and
�2SE

�
	ðxÞ�vðyÞ , are evaluated at the mean-field

values 
	ðxÞ ¼ �
	, etc. Mixed second-order derivatives
including one differentiation with respect to �	ðxÞ vanish
because of trf�5g ¼ trf���5g ¼ trf�����5g ¼ 0.

A basis change with �ij ¼ 1ffiffi
2
p ð�	�	Þij gives the stan-

dard representation of the pseudoscalar octet:

�ij¼ð�̂Þij¼
�0ffiffi
2
p þ �8ffiffi

6
p þ�0ffiffi

3
p �þ Kþ

�� ��0ffiffi
2
p þ�8ffiffi

6
p þ�0ffiffi

3
p K0

K� �K0 �2�8ffiffi
6
p þ�0ffiffi

3
p

0
BBB@

1
CCCA:

(3.15)

Defining analogously a corresponding matrix 
̂ for the
scalar boson octet, the fermion determinant, Eq. (3.6),
can be written as

Aðp; p0Þ ¼ ð�pþ m̂qÞð2�Þ4�ð4Þðp� p0Þ

þ C
�
pþ p0

2

� ffiffiffi
2
p ½
̂ðp� p0Þ þ i�5�̂ðp� p0Þ�

þF
�
pþ p0

2

�
pþp0
2�

vðp� p0Þ:

The resulting second-order contributions to the action are
given by

Sð2ÞE ¼
1

2

Z d4p

ð2�Þ4 ½G
þ
ij;k‘ðpÞ�
ijðpÞ�
k‘ð�pÞ

þ G�ij;k‘ðpÞ��ijðpÞ��k‘ð�pÞ�

þ 1

2

Z d4p

ð2�Þ4 ½GvðpÞ�vðpÞ�vð�pÞ
þ Gij;vðpÞ�
ijðpÞ�vð�pÞ�; (3.16)

with

G �ij;k‘ðpÞ ¼ ��ij�i‘�jk þ ðr�ij;k‘Þ�1; (3.17)

where

� �
ij ðpÞ ¼ �8Nc

Z d4q

ð2�Þ4 C
2ðqÞZðqþÞZðq�Þ

� qþ � q� 	MiðqþÞMjðq�Þ
½ðqþÞ2 þM2

i ðqþÞ�½ðq�Þ2 þM2
j ðq�Þ�

;

(3.18)

q� ¼ q� p
2 , and ðr�Þ�1 is given as the solution of the

system

�
G�km�n‘ �H

2
"knt"t‘mSt

�
ðr�ij;k‘Þ�1 ¼ �im�jn: (3.19)

For completeness we have also determined the (inverse)
propagators associated with the vector-type field v:

Gvðp2Þ ¼ 1

G
þ 4Nc

�2

X
i2fu;d;sg

Z d4q

ð2�Þ4 q
2F 2ðqÞZðqþÞZðq�Þ

� qþ � q� �MiðqþÞMiðq�Þ þ ½ðqþÞ2ðq�Þ2 � ðqþ � q�Þ2�=ð2q2Þ
½ðqþÞ2 þM2

i ðqþÞ�½ðq�Þ2 þM2
i ðq�Þ�

;

Gij;vðp2Þ ¼ � 8Nc

�

Z d4q

ð2�Þ4 CðqÞF ðqÞZðq
þÞZðq�Þ q � ½q�MiðqþÞ þ qþMjðq�Þ�

½ðqþÞ2 þM2
i ðqþÞ�½ðq�Þ2 þM2

j ðq�Þ�
:

The meson masses can now be determined by writing the second-order term of the action, Eq. (3.16), in the physical
basis as
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S ð2ÞE jP ¼
1

2

Z d4p

ð2�Þ4 fG�ðp2Þ½�0ðpÞ�0ð�pÞ

þ 2�þðpÞ��ð�pÞ� þ GKðp2Þ½2K0ðpÞ �K0ð�pÞ
þ 2KþðpÞK�ð�pÞ� þG88ðp2Þ�8ðpÞ�8ð�pÞ
þG00ðp2Þ�0ðpÞ�0ð�pÞ
þ 2G08ðp2Þ�0ðpÞ�8ð�pÞg;

where the inverse propagatorsGP are defined in Eqs. (3.17),
(3.18), and (3.19). Considering only the isospin-symmetric
case, mu ¼ md with 
3 ¼ 0, one has

G�ðp2Þ ¼
�
GþH

2
�Ss

��1 þ��uuðp2Þ (3.20)

GKðp2Þ ¼
�
GþH

2
�Su

��1 þ��usðp2Þ (3.21)

G88ðp2Þ ¼ 1

3

�
6G� 4H �Su � 2H �Ss
2G2 �GH �Ss �H2 �S2u

þ��uuðp2Þ þ 2��ssðp2Þ
�

(3.22)

G00ðp2Þ ¼ 1

3

�
6Gþ 4H �Su �H �Ss

2G2 �GH �Ss �H2 �S2u

þ 2��uuðp2Þ þ��ssðp2Þ
�

(3.23)

G08ðp2Þ ¼
ffiffiffi
2
p
3

�
Hð �Ss � �SuÞ

2G2 �GH �Ss �H2 �S2u

þ��uuðp2Þ ���ssðp2Þ
�
: (3.24)

The masses of the pseudoscalar octet mesons are given by
the poles of their propagators or, equivalently,

GPð�m2
PÞ ¼ 0; for P 2 f�;K; �g: (3.25)

Finally, the physical � and �0 mesons are identified after a
basis change and introducing the mixing angle � ¼ �ðp2Þ:

� ¼ �8 cos�� � �0 sin��

�0 ¼ �8 sin��0 þ �0 cos��0 ;
(3.26)

where �� ¼ �ð�m2
�Þ, ��0 ¼ �ð�m2

�0 Þ. With the inverse �
and�0 propagatorsG� andG�0 , respectively, instead ofG00,
G88, G08 we obtain for the mixing angle

tan2�ðp2Þ ¼ 2G08ðp2Þ
G00ðp2Þ � G88ðp2Þ (3.27)

and

G�ðp2Þ¼G88ðp2ÞþG00ðp2Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

08ðp2Þþ
�
G00ðp2Þ�G88ðp2Þ

2

�
2

s
(3.28)

G�0 ðp2Þ ¼ G88ðp2Þ þ G00ðp2Þ
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

08ðp2Þ þ
�
G00ðp2Þ � G88ðp2Þ

2

�
2

s
: (3.29)

Evidently, themass splittingm2
�0 �m2

� is given by twice the
square root appearing in Eq. (3.29).

2. Renormalization and decay constants

As in the two-flavor case, renormalized fields,9 ~’ðpÞ ¼
Z�1=2’ ’ðpÞ, are introduced so that the quadratic part of the
Lagrangian can be written in the standard form

L ð2Þ
E ¼ 1

2ðp2 þm2
�Þ~’ðpÞ~’ð�pÞ:

Given the pole structure of the propagators G�1P ðp2Þ, one
arrives at an explicit expression for the renormalization
constants:

Z�1P ¼
dGPðp2Þ
dp2

��������p2¼�m2
P

; forP2f�;K;�g: (3.30)

The pseudoscalar meson decay constants in the three-
flavor case are defined as

h0jJ�A;	ð0Þj ~��ðpÞi ¼ if	�p�

()h0jJ�A;	ð0Þj��ðpÞi ¼ if	�Z
1=2
� p�; (3.31)

where J�A;	ðxÞ ¼ �c ðxÞ���5
�	

2 c ðxÞ denotes the axial-

vector current. As described in Sec. II E we have to gauge
the nonlocal action in Eq. (3.1) connecting the fields by a
Wilson line and introducing a set of axial gauge fieldsA	

�

ð	 2 f0 . . . ; 8gÞ. The only modifications compared to the

two-flavor calculation are the replacements ~� � ~A!
�	A	, 
! �	
	 and ~� � ~�! �	�	 in the gauged fer-
mion determinant (2.31). Following the lines of the two-
flavor calculation, we find for the matrix elements (3.31)10:

9Here ’ðpÞ stands generically for any of the fields �	ðpÞ; . . .
10As in the two-flavor case, the integration over 	 can be
performed analytically [25].
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h0jJ�A;	ð0Þj��ðpÞji¼� �2 lndetAG

���ðpÞ�A�
	 ðtÞ

��������A¼0
t¼0

¼2iNcð�ij
	�

ji
�þ�ij

��
ji
	Þ ~Tr

�Z 1

0
d	q�

dCðqÞ
dq2

Zðqþ	 ÞMiðqþ	 Þ
qþ2	 þM2

i ðqþ	 Þ
�

þ2iNcð�ij
	�

ji
�þ�ij

��
ji
	Þ ~Tr

�
1

2
½Z�1ðqþÞþZ�1ðq�Þ�CðqÞ qþ�ZðqþÞZðq�ÞMjðq�Þ

ððqþÞ2þM2
i ðqþÞÞððq�Þ2þM2

j ðq�ÞÞ
�

þ2iNc�ik �
ð�ij
	�

ji
�þ�ij

��
ji
	Þ ~Tr

�Z 1

0
d	q�

dCðqÞ
dq2

C
�
q�p

2
	

�

�Zðqþ	 ÞZðq�	 Þ½qþ	 �q�	þMiðqþ	 ÞMjðq�	 Þ�
ððqþ	 Þ2þM2

i ðqþ	 ÞÞððq�	 Þ2þM2
j ðq�	 ÞÞ

�

þ2iNcð�ij
	�

ji
�þ�ij

��
ji
	Þ ~Tr

�Z 1

0
d	q�

dZ�1ðqÞ
dq2

Cðq�p

2
	Þ qþ	 �ðq�p	

2 ÞZðqþ	 ÞZðq�	 ÞMjðq�	 Þ
ððqþ	 Þ2þM2

i ðqþ	 ÞÞððq�	 Þ2þM2
j ðq�	 ÞÞ

�
; (3.32)

with

qþ	 ¼ qþ p

2
ð1� 	Þ

q�	 ¼ q� p

2
ð1þ 	Þ

qþ ¼ qþ p

2

q� ¼ q� p

2
:

(3.33)

The decay constants are derived from the expressions
(3.32) and their definitions, Eq. (3.31), by contraction
with p�:

f	� ¼ ip�h0jJ�A;	ð0Þj��ðpÞi
Z�1=2�

m2
�

; (3.34)

evaluated at the corresponding mass p2 ¼ �m2
�. Owing to

the properties of the Gell-Mann matrices and assuming
isospin symmetry (i.e., mu ¼ md) one has11 f	� ¼
�	�f� for 	 2 f1; 2; 3g and f	� ¼ �	�fK for 	 2
f4; 5; 6; 7g.

D. Parameters and results

The enlarged set of parameters in the three-flavor case
now includes, in addition, the strange current quark mass

ms and the coupling strength H of the Uð1ÞA-breaking
(nonlocal) ’t Hooft-Kobayashi-Maskawa interaction. The
profiles of the nonlocality distributions, Cðp2Þ and
F ðp2Þ, are left unchanged, assuming that these distribu-
tions are governed by (flavor-independent) gluon
dynamics, so flavor-symmetry breaking effects can be
ignored in these quantities. With the parameters collected
in Table III, the results for chiral condensates, dynamical
quark masses at p2 ¼ 0 and properties of the pseudoscalar
meson nonet including octet-singlet mixing are summa-
rized in Table IV. The input current quark masses,
mu;d ’ 3 MeV and ms ’ 70 MeV, are once again compat-

ible withMSmasses at a renormalization scale�� 3 GeV
and correspondingly large magnitudes of quark
condensates at that scale. The resulting pseudoscalar
meson-octet masses are generally within less than 2% of
their measured values, while the pion decay constant

comes out just slightly smaller than its value fð0Þ� ’
86 MeV in the chiral limit, about 10% below its empirical
value. The result for the �-�0 mixing angle, ��0 ¼
�29:9 deg, agrees well with the empirical value from
Ref. [26], � ¼ �29:0 deg.12
Figure 3 shows the dynamically generated quasi-

particle masses of the u- and s-quarks, MuðpÞ ¼ ZðpÞ�
ðmu þ �
uCðpÞÞ and MsðpÞ ¼ ZðpÞðms þ �
sCðpÞÞ, where
the flavor-independent distributions CðpÞ and F ðpÞ enter.
Note the interplay of the chiral condensates Eq. (3.14), the
scalar fields in Eqs. (3.13) and the wave-function renor-
malization factor ZðpÞ in determining those dynamical
quark masses.

11This follows from the fact, that the summands in Eq. (3.32)
can be written as

ð�ij
	�

ji
� þ �ij

��
ji
	ÞAij ¼ 2Reð�ij

	�
ij

� ÞAij: (3.35)

Assuming mu ¼ md one gets the stated result. Note, in particu-
lar, that for the two-flavor case, Aij is independent of i, j, hence
leading the anticommutators of the Pauli matrices, as given in
Eq. (2.34).

12Note the different definitions of the �-�0 mixing angle in this
work and in Ref. [26]. The cited number � ¼ �29:0 deg has,
however, already been translated to the definition, Eq. (3.26), of
the mixing angle used in the present work.
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IV. THERMODYNAMICS: POLYAKOV LOOP
AND NONLOCAL PNJL MODEL

A. Preparations

The nonlocal NJL approach provides a basic under-
standing for the mechanisms governing spontaneous chiral
symmetry breaking and the dynamical generation of mas-
sive quasiparticles from almost massless current quarks, in
close contact with QCD itself. But the thermodynamics
based on the NJL model goes wrong: colored quasipar-
ticles would exist in regions of temperature T and baryon
chemical potential �B where they should be suppressed by
confinement. This is the point where the Polyakov loop
enters. It acts as an order parameter for the confinement-

deconfinement transition in pure-gauge QCD.13 The cou-
pling of the dynamical quarks to the Polyakov loop pro-
motes the NJL scheme to the PNJL model [6–13,16]. Once
this coupling is active, it prevents colored objects (quarks,
diquarks and color-octet q �q pairs) from propagating in the
hadronic low-temperature phase, while color-singlet (mes-
onic) quark-antiquark pairs and three-quark compounds
are permitted (although the formation of localized baryons
is not yet realized at this stage).
In the PNJL context the Polyakov loop� is expressed in

terms of homogeneous (constant) background fields, A3
4

and A8
4, representing the Euclidean temporal gauge-field

components associated with the color-diagonal generators
of the SU(3) gauge group:

� ¼ 1

Nc

trc

�
exp

�
i�

2
ðA3

4�3 þ A8
4�8Þ

��
: (4.1)

Here Nc ¼ 3 is the number of colors, trc indicates the trace
over color space only,� :¼ 1=T is the inverse temperature,
and �3, �8 are the Cartan-algebra elements of the color
SU(3) Lie group. One can derive an effective potential, the
Polyakov-Fukushima potential Uð�;�
; TÞ, that de-
scribes the first-order confinement-deconfinement transi-
tion in the pure-gauge case (here we adopt the version
proposed in Refs. [9,10]):

Uð�;�
;TÞ
T4

¼�1

2
b2ðTÞ�
�þb4ðTÞ

� ln½1�6�
�þ4ð�
3þ�3Þ�3ð�
�Þ2�:
(4.2)

TABLE III. Current quark masses (mu ¼ md, ms) and coupling-strength parameters G, H and
�.

mu ¼ md ms G H �

2.9 MeV 69.3 MeV 1:63 fm2 �0:77 fm5 5.28 GeV

Mu

Ms

0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

p GeV

M
q

p
G

eV

FIG. 3. Dynamical quasiparticle masses of the u- and the
s-quark resulting from the three-flavor gap Eqs. (3.12).

TABLE IV. Output for condensates, dynamical quark masses, pseudoscalar meson masses,
decay constants (all given in GeV) and �-�0 mixing angles resulting from the parameters listed
in Table III.

h �uui1=3 ¼ h �ddi1=3 h�ssi1=3 �v Muð0Þ ¼ Mdð0Þ Msð0Þ
�0:290 �0:309 �1:953 0.369 0.583

m� mK m� m�0 f� fK �� ��0

0.142 0.503 0.553 0.957 0.084 0.100 2.1� �29:9�

13Alternative possibilities to describe the interplay between
chiral symmetry breaking and confinement within the framework
of NJL models exist in the literature (e.g., external chromomag-
netic fields mimicking the gluon condensate [27]).
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This effective potential satisfies the condition of being
symmetric under the center Zð3Þ of the gauge group: �!
exp½2�in=3��, with n ¼ 1; 2; 3. The temperature-
dependent coefficients b2;4ðTÞ are given in Ref. [9], pa-

rametrized such that the first-order deconfinement transi-
tion in pure-gauge lattice QCD [28] is accurately
reproduced together with its transition temperature
T0 ¼ 270 MeV. Although Uð�;�
; TÞ is parametrized
in terms of the longitudinal components A3

4, A
8
4 of the

Cartan algebra, it implicitly includes effects of the non-
Cartan elements of color SU(3), as well as effects of the
transversal components of the gluon fields Ai

�, as pointed

out in Refs. [13,29,30].
The PNJL model introduces the coupling of the

Polyakov loop to the quarks in the standard gauge-
covariant derivative and adds the effective potential U to
the mean-field action (2.16). The thermodynamics is de-
scribed using the well-known Matsubara formalism. The
Euclidean time component p4 of the quark four-
momentum is replaced by

p4 ! �!n þ i�þ A3
4

�3

2
þ A8

4

�8

2
;

with Matsubara frequencies!n ¼ ð2nþ 1Þ�T, n 2 Z and
quark chemical potential �. For antiquarks, the corre-
sponding replacement is

p4 ! �!n � i��
�
A3
4

�3

2
þ A8

4

�8

2

�
:

Four-momentum integrations are replaced asZ d4p

ð2�Þ4 ! T
X
!n

Z d3p

ð2�Þ3 :

B. Two-flavor nonlocal PNJL model

The PNJL thermodynamic potential with Nf ¼ 2 quark

flavors becomes14

� ¼ �T

2

X
n2Z

Z d3p

ð2�Þ3 Tr ln½�~S�1ði!n; ~pÞ�

þ �
2 þ �v2

2G
þUð�;�
; TÞ: (4.3)

Here ~S�1 is the inverse quark propagator expressed in
Nambu-Gor’kov space,

~S�1ði!n; ~pÞ ¼ Ẑ�1ði!n�0 � ~� � ~p� M̂� iðA4 þ i�Þ�0Þ 0
0 ðẐ
Þ�1ði!n�0 � ~� � ~p� M̂
 þ iðA4 þ i�Þ�0Þ

 !
; (4.4)

where the momentum-dependent mass matrix M̂ is diago-
nal in color space,

M̂ ¼ diagcðMð!�n ; ~pÞ;Mð!þn ; ~pÞ;Mð!0
n; ~pÞÞ; (4.5a)

and Ẑ is the wave-function renormalization matrix, also
diagonal in color space,

Ẑ ¼ diagcðZð!�n ; ~pÞ; Zð!þn ; ~pÞ; Zð!0
n; ~pÞÞ: (4.5b)

In Eqs. (4.5a) and (4.5b), Mðp4; ~pÞ is the dynamically
generated mass, Eq. (2.24), and Zðp4; ~pÞ is the wave-
function renormalization factor, Eq. (2.23), already en-
countered in the zero-temperature treatment.15 The gener-
alized Matsubara frequencies appearing in Mðp4; ~pÞ and
Zðp4; ~pÞ are:

!�n ¼ !n � i�� A3
4=2� A8

4=ð2
ffiffiffi
3
p Þ;

!0
n ¼ !n � i�þ A8

4=
ffiffiffi
3
p

;
(4.5c)

with !n ¼ ð2nþ 1Þ�T, n 2 Z the standard fermionic
Matsubara frequencies.
In the limit of vanishing quark chemical potential,

� ¼ 0, the thermodynamical potential (4.3) for Nf ¼ 2

can be written in the simpler form

� ¼ �4T X
i2f0;�g

X
n2Z

Z d3p

ð2�Þ3 ln

�
!i2

n þ ~p2 þM2ð!i
n; ~pÞ

Z2ð!i
n; ~pÞ

�

þ �
2 þ �v2

2G
þUð�;�
; TÞ; (4.6)

where the generalized Matsubara frequencies are again
given in Eq. (4.5c). The finite-temperature generalization
of the gap Eqs. (2.21) are obtained by the requirement of a
minimal grand-canonical potential �, leading to the nec-
essary conditions

@�

@ �

¼ @�

@ �v
¼ @�

@A3
4

¼ @�

@A8
4

¼ 0: (4.7)

According to Refs. [9,10] one has� ¼ �
 in mean-field
approximation and, consequently, A8

4 ¼ 0. In the following
we first discuss mean-field solutions at � ¼ 0. Equation
(4.7) determines the expectation values of the scalar and
vector fields, �
ðTÞ and �vðTÞ, together with the Polyakov
loop�ðTÞ. The mean fields �
 and �v enter in the calculation

14Note an extra factor 1=2 because of the doubling of the
degrees of freedom in Nambu-Gor’kov space. This notation is
useful for a separate treatment of particle and antiparticles.
15Recall that we are considering the isospin-symmetric limit
mu ¼ md ¼ m0.
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of the thermal condensate, h �qqiðTÞ ¼ �@�=@m0, via the
dynamical quark mass Mð!i

n; ~pÞ and the renormalization
factor Zð!i

n; ~pÞ, when taking the derivative of the pressure
P ¼ �� with respect to the quark mass m0.

A key result is shown in Fig. 4. As in our previous work
[11], the entanglement of the chiral and deconfinement
transitions is a characteristic result of the PNJL approach,
a feature that persists in the nonlocal version including
wave-function renormalization effects. The crossover tran-
sition temperature in this example is Tc ¼ 205 MeV, to be
compared with the critical temperature, T0 ¼ 270 MeV,
of the first-order deconfinement transition in pure-gauge

lattice QCD that has been used to fix the temperature scale
in the Polyakov-loop effective potential (4.2). In Fig. 4 no
change has been made in this potential when introducing
the coupling to dynamical quarks. In Ref. [31] it has been
argued that the transition temperature, T0, for the decon-
finement transition depends on the number of dynamical
quark flavors: T0ðNf ¼ 2Þ ¼ ð208� 30Þ MeV instead of

T0ðNf ¼ 0Þ ¼ 270 MeV mentioned earlier. Using this

shift in T0 as input in the Polyakov-loop effective potential
U, the chiral transition temperature is lowered to Tc ’
170 MeV shown in Fig. 5.
Compared to the nonlocal PNJL model without wave-

function renormalization, there is now the condensate �v
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FIG. 4. Solid curves: calculated temperature dependence of the
chiral condensate h �qqi (left) and of the Polyakov loop � (right)
normalized to the transition temperature Tc ¼ 205 MeV as
obtained in the nonlocal PNJL model considered here.
The dashed lines show the chiral condensate for the pure
fermionic case and the Polyakov loop for the pure gluonic
case, respectively.
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FIG. 5. The T0 dependence of the chiral condensate. The chiral
transition temperature decreases from 205 MeV to about
170 MeV when reducing T0ðNf ¼ 0Þ ¼ 270 MeV to T0ðNf ¼
2Þ ¼ 208 MeV.
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FIG. 6. Temperature dependence of �v. The decrease of (the
absolute value of) �v at high temperatures stems from the fact that
the wave-function renormalization function ZðpÞ approaches one
at high energy scales.
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FIG. 7. Temperature dependence of the normalized pressure
P=T4 (at zero density) (solid line). The dashed and dashed-
dotted lines show the contributions of the Polyakov loop and
the quarks to the pressure, respectively.
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that becomes temperature dependent. The result is shown
in Fig. 6. It is evident, that �v stays constant up to a
temperature that is about 1:5Tc. Above this temperature
the absolute value of the condensate �v decreases.
The reason for this can easily be understood: the wave-
function renormalization factor approaches one at high
momenta (see the lattice data in the right picture of
Fig. 1); a similar effect must appear when the temperature
is increased.

Finally, the pressure P ¼ �� is computed after sub-
tracting a divergent vacuum (T ¼ 0) term. The result is
shown in Fig. 7. This figure displays, in addition, the
separate contributions from the Polyakov loop [i.e., the
term �P ¼ �U in Eq. (4.6) featuring �ðTÞ in the pres-
ence of quarks; dashed line] and from the quark quasipar-
ticles (dashed-dotted line). Of course these separate
contributions do not have a physical interpretation when
taken individually, but their pronounced variations in the
transition region give an impression of the strong coupling
between Polyakov loop and quarks around Tc. The
total pressure is then a result of nontrivial cancellations
between both parts as shown by the smooth solid curve in
Fig. 7.

C. Three-flavor nonlocal PNJL model

1. Thermodynamical potential

The thermodynamics of three quark flavors introduces
the strange quark, with its heavier mass ms well separated
from the masses mu;d of the light quarks. It also introduces

the axial U(1) anomaly as a mechanism that generates
additional nonlinear dynamics in the resulting gap equa-
tions [11,12].
By analogy with the two-flavor case, the stationary

phase approximation gives the grand-canonical mean-field
thermodynamical potential16 in terms of the fields (3.22):

� ¼ �T

2

X
n2Z

Z d3p

ð2�Þ3 tr ln½�~S�1ði!n; ~pÞ�

� 1

2

� X
f2fu;d;sg

ð �
f
�Sf þG

2
�Sf �SfÞ þH

2
�Su �Sd �Ss

�

þ �v2

2G
þUð�;�
; TÞ; (4.8)

where the scalar mean fields now carry quark flavor in-
dices. The inverse Nambu-Gor’kov quark-propagator ma-
trix is

~S�1ði!n; ~pÞ ¼
Ẑ�1ði!n�0 � ~� � ~p� M̂� iðA4 þ i�̂Þ�0Þ 0

0 ðẐ
Þ�1ði!n�0 � ~� � ~p� M̂
 þ iðA4 þ i�̂Þ�0Þ

 !
(4.9)

where the momentum-dependent dynamical mass matrix M̂ is again diagonal in color and flavor space,

M̂¼
diagcðMuð!�u;n; ~pÞ;Muð!þu;n; ~pÞ;Muð!0

u;n; ~pÞÞ
diagcðMdð!�d;n; ~pÞ;Mdð!þd;n; ~pÞ;Mdð!0

d;n; ~pÞÞ
diagcðMsð!�s;n; ~pÞ;Msð!þs;n; ~pÞ;Msð!0

s;n; ~pÞÞ

0
BB@

1
CCA; (4.10a)

withMiðpÞ, i 2 fu; d; sg from Eq. (3.12). The matrix of the
wave-function renormalization factors is

Ẑ ¼ diagcðZð!�n ; ~pÞ; Zð!þn ; ~pÞ; Zð!0
n; ~pÞÞ; (4.10b)

with

!�f;n ¼ !n � i�f � A3
4=2� A8

4=ð2
ffiffiffi
3
p Þ;

!0
f;n ¼ !n � i�f þ A8

4=
ffiffiffi
3
p

:
(4.10c)

In contrast to the two-flavor model, different quark chemi-
cal potentials �̂ ¼ diagfð�u;�d;�sÞ have now been in-
troduced for the three quark flavors. The trace in Eq. (4.8)
can be further simplified leading to

� ¼ �2T X
f2fu;d;sg

X
i¼0;�

X
n2Z

Z d3p

ð2�Þ3

� ln

�!i2
f;n þ ~p2 þM2

fð!i
f;n; ~pÞ

Z2ð!i
f;n; ~pÞ

�

� 1

2

� X
f2fu;d;sg

ð �
f
�Sf þG

2
�Sf �SfÞ þH

2
�Su �Sd �Ss

�

þ �v2

2G
þUð�;�
; TÞ: (4.11)

16The factor 1
2 results again from the doubling of the degrees of

freedom in Nambu-Gor’kov space.
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This is the thermodynamic potential of the nonlocal three-
flavor PNJL model in mean-field approximation, including
quark wave-function renormalization. The auxiliary
scalar fields �Sf are determined by the SPA conditions,
Eq. (3.13a). Note that the Polyakov-loop effective potential
U is taken to be universal, independent of quark flavors.

2. Gap equations in mean-field approximation

Given the thermodynamic potential (4.11), the fields

u ¼ 
d, 
s, v and A3

4, A
8
4 are determined by requiring

� to be stationary, as in the two-flavor case. The necessary
conditions are given by the gap equations

@�

@ �
u

¼ @�

@ �
s

¼ @�

@ �v
¼ @�

@A3
4

¼ @�

@A8
4

¼ 0; (4.12)

together with the stationary phase approximation
Eqs. (3.13a). As long as we limit ourselves to the zero-
density (� ¼ 0) case we have A8

4 ¼ 0 (cf. Ref. [9]).
A first instructive result, displayed in Fig. 8, concerns

the temperature dependence of the Polyakov loop� in the
presence of u-, d- and s-quarks. The dashed curve in this
figure shows the pure-gauge first-order deconfinement
transition at the critical temperature T0 ¼ 270 MeV. This
phase transition is controlled by the effective potential
(4.2), constructed to satisfy Zð3Þ symmetry and parame-
trized so as to reproduce the energy density of pure-glue
lattice-QCD thermodynamics. The coupling to quarks in-
duces two basic effects. First, Zð3Þ symmetry is explicitly
broken by the presence of quarks and the first-order phase
transition turns into a continuous crossover. Secondly, the
transition-temperature range is lowered to a broad band
between 150 and 200 MeV (see the solid curve in Fig. 8).

This feature is also consistently observed by different
lattice-QCD groups in their simulations with 2þ 1 quark
flavors and the light quarks taken at (almost) physical
masses [32,33]. Note that the effective potential U has
been left unchanged when arriving at the (solid) crossover
curve in Fig. 8, i.e., the parametrization of the coefficients
in U still maintains the pure-gauge temperature
T0 ¼ 270 MeV. The shift of the transition temperature
from T0 to Tc below 200 MeV emerges entirely through
the coupling of the dynamical quarks to the Polyakov loop
in this calculation.
At this point our findings appear to be at variance with

considerations in Ref. [31] suggesting that the feedback
induced by the dynamical quarks should change the
Polyakov-loop effective potential such that T0ðNf ¼ 0Þ ¼
270 MeV is shifted downward to T0ðNf ¼ 2þ 1Þ ¼
ð187� 30Þ MeV. Such a shift in U would run the cross-
over profile for the Polyakov loop (solid curve in Fig. 8)
down to much lower temperatures in the present approach,
out of scale for comparison with the Nf ¼ 2þ 1

lattice-QCD data. On the other hand, a more sophis-
ticated treatment of the effective potential U using
renormalization-group methods [34,35] might help clarify-
ing the situation.
Figure 9 shows the temperature dependence of the chiral

condensates h �uui ¼ h �ddi and h�ssi resulting from the
present calculation. The softening of the strange quark
condensate clearly reflects the stronger explicit chiral sym-
metry breaking by the s-quark mass ms. One notes that in
these condensates, the influence of the quark wave-
function renormalization factor ZðpÞ through the gap
Eqs. (3.13) and (3.14) is only marginal in comparison
with previous calculations [11,12] that used ZðpÞ � 1.
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FIG. 8. Results for the Polyakov loop in the presence of two
light and one heavier quark compared to lattice-QCD computa-
tions (open circles: Ref. [33], filled squares: Ref. [32]). The solid
line shows our PNJL model calculation with T0 ¼ 270 MeV as
input in the effective potentialU. The dashed curve corresponds
to the pure gauge case, compared to lattice data from Ref. [44].
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FIG. 9. Results of nonlocal PNJL calculations of the chiral
condensates including quark wave-function renormalization.
Solid curve: temperature dependence of the chiral condensate
h �uui ¼ h �ddi. The strange-quark condensate h�ssi is shown as the
dashed curve.
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Recent (2þ 1)-flavor lattice-QCD computations of the
chiral condensate have been performed using physical light
quark masses by the Budapest-Marseille-Wuppertal
(BMW) group [33,36] and by the ‘‘hotQCD’’ collaboration
[32,37] (the latter employing a highly improved staggered
quark action). These lattice data suggest a relatively
smooth chiral crossover with transition temperature in
the range Tc � ð160–170Þ MeV. Our mean-field nonlocal
PNJL calculation, using a Polyakov-loop effective poten-
tial U with T0ðNf ¼ 0Þ ¼ 270 MeV as before, is not able

to reproduce these updated lattice results (see dashed curve
in Fig. 10). Running the T0 scale in U down to T0ðNf ¼
2þ 1Þ ¼ 187 MeV and adding pionic contributions from
chiral perturbation theory [38] give the qualitatively cor-
rect pattern for h �qqiðTÞ (see solid curve in Fig. 10).
However, as already mentioned, the Polyakov loop would
now be systematically shifted to lower temperatures, out of
scale with the corresponding lattice data. In addition, such
small values of T0 enhance the inference of the Polyakov
loop such that the chiral transition tends to become first
order, in contradiction with the lattice results. Again, im-
proved Polyakov-loop effective potentials with systematic
implementation of the backreaction from light quarks
[34,35] are under discussion in this context.

3. Finite densities and phase diagram for 2þ 1 flavors

Consider now the phase diagram emerging from the
nonlocal PNJL model at nonzero quark chemical potential.
The starting point is the (2þ 1)-flavor thermodynamical
potential (4.12) treated in mean-field approximation.
For calculational simplicity we choose the symmetric

combination � � �u ¼ �d ¼ �s. The case �s ¼ 0 to-
gether with �u ¼ �d has been studied earlier in
Ref. [12]. The flavor-symmetric choice of the quark chemi-
cal potential shifts the � scale just slightly upward as
compared to the �s ¼ 0 case.
The resulting ðT;�Þ phase diagram, Fig. 11, is the

generic one for PNJL type models at mean-field level: a
chiral crossover transition ending in a critical point fol-
lowed by a first-order transition line down to�� 0:3 GeV
at T ¼ 0. The behavior of the Polyakov loop, detached
from the chiral first-order-transition boundary has led to an
interpretation in terms of an intermediate ‘‘quarkyonic’’
phase [39]. These features are not changed by the addi-
tional effects of quark wave-function renormalization in
the nonlocal PNJL model.
However, recent two-flavor investigations beyond mean

field [34,35], including both the quantum fluctuations in
the quark quasiparticle sector and the backreaction from
the matter fluctuations to the Polyakov-loop effective po-
tential, suggest that the coincidence of chiral and decon-
finement crossover transitions continues all the way down
to a critical end point that now appears at low temperature,
TCEP � 25 MeV, at�� 0:3 GeV. Similar tendencies have
been found in Ref. [40]. That is then the terrain of nuclear
physics, however, where the PNJL approach is not sup-
posed to work and different methods (e.g., chiral effective
field theory with baryons) must be applied [41].
Along the chiral crossover transition at small chemical

potential �, it is convenient to introduce a transition
band, Tcð�Þ, specified by the region in which the chiral
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FIG. 10 (color online). Solid curve: temperature dependence
of the chiral up-quark condensate using T0 ¼ 187 MeV and
adding pionic contributions as obtained in chiral perturbation
theory (e.g., Ref. [38]). Dashed curve: mean-field result with
T0 ¼ 270 MeV (same as solid curve in Fig. 9). Lattice-QCD
data from Refs. [32,33,36,37].
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FIG. 11 (color online). Phase diagram for the (2þ 1)-flavor
nonlocal PNJL model at mean-field level. The orange band
shows the confinement-deconfinement crossover transition as
described by the Polyakov loop in the range 0:1<�< 0:3.
The dashed black line corresponds to the chiral crossover (blue
band: 0:3< h �c c i=h �c c i0 < 0:7). The solid black line indicates
the chiral first order transition. The temperature scale is set by
Tc ¼ 0:2 GeV.
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condensate has dropped to about half of its vacuum value:
0:4< h �c c i=h �c c i0 < 0:6. This is also the domain in
which the chiral susceptibility develops a pronounced
maximum. In this region an expansion

Tcð�Þ
Tcð� ¼ 0Þ ¼ 1� K

�
�

T

�
2 þO

��
�

T

�
4
�

(4.13)

is meaningful. From Fig. 11 one finds

K ¼ 0:11� 0:02; (4.14)

where the error reflects the uncertainty in locating
the transition line in the crossover region. This should
be compared to recent values found in lattice QCD:
Klat ’ 0:06 from Ref. [42] (analysis of the scaling proper-
ties of the chiral condensate and its susceptibilities), and
Klat ’ 0:08 from Ref. [43] (Taylor-series expansion), both
with an uncertainty of about 10%.

V. SUMMARYAND OUTLOOK

In this work the two- and three-flavor PNJL models have
been further extended with inclusion of quark wave-
function renormalization effects. This brings the PNJL
approach in close contact with Dyson-Schwinger calcula-
tions and lattice-QCD results for the Landau-gauge quark
quasiparticle propagator, with the wave-function renormal-
ization factor ZðpÞ of the quark quasiparticle propagator
introduced in addition to the momentum-dependent dy-
namical fermion mass MðpÞ.

In the following we summarize the main results of the
present studies and point out improvements compared to
previous work:

(1) Including wave-function-renormalization effects re-
quires a careful re-assessment of chiral low-energy
theorems. Pseudoscalar meson masses and corre-
sponding decay constants at zero temperature have
been rederived. The results clearly show that the
formalism incorporates fundamental chiral
relations such as the Gell-Mann–Oakes–Renner
and Goldberger-Treiman relations. In the three-
flavor case, the inclusion of the ’t Hooft-
Kobayashi-Maskawa interaction leads to the correct
mass splitting between the � and the �0 meson.

(2) The PNJL thermodynamics has now been developed
with systematic inclusion of the quark quasiparticle
renormalization factor ZðpÞ. The temperature

dependence of the chiral condensate and of the
Polyakov loop has been calculated, indicating chiral
and deconfinement crossover transitions. We have
compared our results with recent lattice-QCD com-
putations. Finally, a quark chemical potential has
been introduced that enables extensions to the finite-
density region of the QCD phase diagram.

(3) The impact of the wave-function renormalization
factor ZðpÞ compared to previous calculations
[11,12] setting ZðpÞ � 1 is generally quite small
over the whole relevant momentum range. This
can be understood considering the gap equations
at zero temperature: since ZðpÞ deviates signifi-
cantly from unity only in the momentum range
p & 1 GeV, its effect does not contribute much to
the relevant integrals because of its suppression by
the integration measure.

(4) With inclusion of ZðpÞ, the chiral and deconfine-
ment crossover transitions tend to become smoother
compared to our previous investigations.

(5) The flavor dependence, T0ðNfÞ, of the deconfine-

ment temperature scale is an important issue in
lowering chiral-transition temperatures in accor-
dance with the tendency recently observed in
lattice-QCD computations. We have investigated
the impact of different values for T0 in the
Polyakov-loop effective potential and found that
such modifications do not relax the strong entangle-
ment between chiral condensate and Polyakov loop,
at least at mean-field level.

(6) Concerning the behavior of the phase diagram at
finite quark (or baryon) chemical potentials �, the
backreaction of the matter fluctuations on the
Polyakov-loop sector is an important effect, as
pointed out in Refs. [34,35], that calls for further
studies. Finally, the challenge remains to construct a
phase diagram at finite baryon densities in accor-
dance with realistic constraints from nuclear
physics.
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[31] B.-J. Schäfer, J.M. Pawlowski, and J. Wambach, Phys.

Rev. D 76, 074023 (2007).
[32] A. Bazavov et al., Phys. Rev. D 80, 014504 (2009).
[33] S. Borsanyi et al., J. High Energy Phys. 09 (2010) 073.
[34] T.K. Herbst, J.M. Pawlowski, and B.-J. Schäfer, Phys.
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