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We investigate the effects of the axial-anomaly term with a chiral-diquark coupling on the phase

diagram within a two-plus-one-flavor Nambu-Jona-Lasinio model under the charge-neutrality and

�-equilibrium constraints. We find that when such constraints are imposed, the new anomaly term plays

a quite similar role as the vector interaction does on the phase diagram, which the present authors clarified

in a previous work. Thus, there appear several types of phase structures with multiple critical points at low

temperature T, although the phase diagrams with intermediate-T critical point(s) are never realized

without these constraints even within the same model Lagrangian. This drastic change is attributed to an

enhanced interplay between the chiral and diquark condensates due to the anomaly term at finite

temperature; the u-d diquark coupling is strengthened by the relatively large chiral condensate of the

strange quark through the anomaly term, which in turn definitely leads to the abnormal behavior of the

diquark condensate at finite T, inherent to the asymmetric quark matter. We note that the critical point

from which the crossover region extends to zero temperature appears only when the strength of the vector

interaction is larger than a critical value. We also show that the chromomagnetic instability of the neutral

asymmetric homogenous two-flavor color-superconducting phase is suppressed and can be even com-

pletely cured by the enhanced diquark coupling due to the anomaly term and/or by the vector interaction.
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I. INTRODUCTION

It is generally believed that the strongly interacting
matter exhibits a rich phase structure in an extreme
environment such as at high temperature and high baryon
chemical potential. Experimentally, the Relativistic
Heavy-Ion Collider and Large Hadron Collider may pro-
vide more information on this topic. Theoretically, some
results have been already obtained on a sound basis: First,
the lattice simulations of quantum chromodynamics
(QCD) indicate that, for physical quark masses, the tran-
sition from the hadronic phase to the quark gluon plasma is
a smooth crossover at finite temperature and vanishing
baryon chemical potential [1,2], whereas in the low-
temperature and very high density region, the techniques
of perturbation QCD can be used and the color flavor
locking (CFL) [3] phase is proved to be the ground state
of QCD [4–7].

However, the above methods based on the first principle
fail at the low temperature and moderate density region,
due to the sign problem or the nonperturbative effect.
Phenomenologically, such a region in the T-� plane is
more relevant to reality and hence interesting since it is
directly related to the physics of compact stars. On that
account, chiral models of QCD such as the Nambu-Jona-
Lasinio (NJL) model [8–11] that embody the basic

low-energy characteristics of QCD such as symmetry prop-
erties have been extensively used to explore the T-� phase
diagram of strongly interacting matter. In particular, such
model calculations suggest that color superconducting
(CSC) phase may occur at low temperature and large
chemical potential (for reviews, see [12–15]). In addition,
a popular result from the model studies is that the chiral
phase transition always keeps first order at the low-
temperature region [16–21]. Combined with the crossover
transition confirmed by lattice QCD at zero baryon chemi-
cal potential, usually, a schematic T-� phase diagram with
one chiral critical point (CP) is widely adopted in the
literature [22]. Such a CP may be located at relatively
high temperature and low baryon chemical potential,
which has attracted considerable attention as it is poten-
tially detectable in heavy-ion experiments [23,24].
Generally, there is no reason to rule out the possibility

that the QCD phase diagram may contain more than one
chiral CP, especially when the chiral and diquark conden-
sates are considered simultaneously; some rich structures
with multiple CPs may be expected for the phase diagram
owing to somehow enhanced interplay between the two
types of condensates.1 It has been shown on the basis of
the NJL model that it is indeed the case [27–30]; the QCD
phase diagram can admit multiple CPs when the repulsive
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1Note that multiple critical points had also been found in two-
flavor models of QCD without considering diquark paring
[25,26].
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vector interaction [27,28] or the charge-neutrality and �
equilibrium [29] or both of these two ingredients [30] are
included.2 This is because the two ingredients act so as to
enhance the competition between the chiral and diquark
condensates and thus thewould-be first-order boundary line
in the low-temperature region of the T-� plane can be
turned into a smooth crossover or multiply-cut crossover
lines with new CP(s). Indeed it has been found [30] that the
number of the chiral CPs may vary from zero to four with
the joint effect of these two ingredients. Moreover, the
present authors have shown [30] that the vector interaction
can effectively suppress the chromomagnetic instability
[33] in the asymmetric homogeneous CSC phase.

It is noteworthy that a direct coupling term between the
chiral and diquark condensates can be supplied by the axial
anomaly [3,34,35], which thus might lead to a new CP in
the low-temperature region, as first conjectured in [36] on
the basis of an analysis using the Ginzburg-Landau (GL)
theory in the chiral limit; see also subsequent detailed
analyses [37,38] though still in the chiral limit. It is,
however, to be noted that the GL theory assumes that
both the diquark and chiral condensates are sufficiently
small around the phase boundaries provided that the phase
transitions are of second-order. In addition, the GL theory
itself can not determine the coefficients in the action, and
some microscopic model or theory is necessary for such a
determination.

Recently, a microscopic calculation has been done [39]
with the use of a three-flavor NJL model for massive
quarks incorporating the axial-anomaly term with a
form of a six-quark interaction [3,34,35,37], the coupling
constant of which is denoted by K0: It was claimed in [39]
that the low-temperature CP can exist owing to the axial
anomaly for an appropriate range of the model para-
meters even off the chiral limit but still with a flavor
symmetry as in the GL approach in the chiral limit. It
should be noticed, however, that the SU(3)-flavor symme-
try may lead to a special type of CSC phase, i.e., the CFL
phase, as is taken for granted in [36–39], which automati-
cally satisfies the charge neutrality and �-equilibrium
constraints.

Then one may suspect that the possible emergence of the
new CP might be an artifact of such an ideal situation with
the three-flavor symmetry. Nevertheless, it is a very inter-
esting possibility that the axial anomaly-induced interplay
between the chiral and diquark condensates would lead to a
new CP in the low-temperature region. Thus it is worth
exploring to see whether a new low-temperature CP is
induced by the axial anomaly in a dynamical model of
QCD by considering the realistic situation with the broken
flavor symmetry by the hierarchical current-quark masses.

We note that once the quark mass difference of different
flavors is taken into account, it becomes a complicated
dynamical problem to make the charge-neutrality and
�-equilibrium constraints satisfied.
More recently, such a realistic calculation in the frame-

work of a two-plus-one-flavor NJLmodel has been done by
Basler et al. [40]; they have shown that such a new low-
temperature CP is not found in such a model even with the
axial-anomaly term, because an unusual interplay between
the chiral and diquark condensates induced by the anomaly
term actually leads favorably to the two-flavor color super-
conducting (2CSC) phase [41,42] rather than the CFL
phase near the chiral phase boundary, even in the case
with the equal quark mass limit [40].
It is worth emphasizing here that the constraints by the

charge neutrality and � equilibrium are not taken into
consideration in [39] nor [40] in contrast to [29,30] where
various types of multiple-CP structures are found in the
phase diagram. Thus, the following two questions arise
naturally: Will the results found in [40] be altered or not
when the charge-neutrality and �-equilibrium constraints
and/or the vector interaction are taken into account? Or
will the phase structure with multiple CPs found in [30]
rather persist when taking into account the coupling be-
tween the chiral and diquark condensates induced by such
a six-quark interaction? The main purpose of this paper is
to answer these questions by incorporating the anomaly
term that breaks the UAð1Þ symmetry as well as the vector
interaction under the constraints of the charge neutrality
and � equilibrium in the two-plus-one-flavor NJL model.
The present work may be regarded as either an extension of
Ref. [40] by incorporating the charge neutrality, � equi-
librium, and the vector interaction, or an extension of
Ref. [30] by including the K0 interaction.
The main conclusion we reach is that the key results on

the phase structure obtained in Refs. [29,30] persist even
when the attractive K0 interaction is incorporated. That is,
there appear new CP(s) at the intermediate temperature
owing to the charge-neutrality constraint and then the
transition in the low-temperature region extending to
zero T becomes a crossover when the strength of the vector
interaction becomes larger than a critical value: Thus, the
number of the CPs can be even more than two, depending
on the values of some related coupling constants.
Strikingly enough, we find that the interplay between the
chiral and the diquark condensates induced by the anomaly
term even acts toward realizing the multi-CP structure of
the phase diagram under the neutrality and �-equilibrium
constraints even without the help of the vector interaction.
Accordingly, the results in Ref. [40] are modified by con-
sidering these constraints. The chiral boundary in the
low-T region extending to zero T also remains first order
in our case in the absence of the vector interaction, which
shrinks and vanishes eventually as K0 becomes large and
exceeds a critical value.

2Note that the renormalization group theory for deducing low-
energy effective vertex favors the presence of the vector-type
interaction [31,32].
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We shall also examine the chromomagnetic (in)stability
under the influence of the axial anomaly, as was done in
[30]. It is well known that the asymmetric homogenous
2CSC phase suffers from the chromomagnetic instability.
At zero temperature, the calculation based on the hard-
dense-loop method [33] suggests that the Meissner mass

squared of the 8th gluon becomes negative for ��
� > 1

while the 4th–7th gluons acquire negativeMeissner masses

squared for ��
� > 1=

ffiffiffi
2

p
; here �� and � denote the differ-

ence of the chemical potentials of u and d quarks and the
gap, respectively. Note that �� is just equal to a half of the
electron chemical potential �e when the vector interaction
is absent, and this quantity is to be replaced by an effective
chemical potential � ~� (see below) when the vector inter-
action is present, as shown in [30]. The instability of the
asymmetric homogenous CSC phase should imply the
existence of a yet unknown but stable phase in this region
of the T-� plane. Candidates of such a stable phase include
the Larkin-Ovchinnikov-Fulde-Ferrel phase [43] and
gluonic phase [44]. Besides developing the possible new
phases, the instability problem may also be totally or
partially gotten rid of by some other mechanisms. For
instance, the instability problem becomes less severe sim-
ply at finite temperature because the smeared Fermi sur-
face relaxes the mismatch of the Fermi spheres of the
asymmetric quark matter [45–47]. Furthermore, it is
known that the larger the quark mass and the stronger the
diquark coupling, the more suppressed the instability even
at zero temperature [48]. Recently, the present authors [30]
have shown that the repulsive vector interaction can also
resolve the instability problem totally or partially. The
stability by the vector interaction is realized due to the
following two ingredients: (1) the density difference be-
tween the u and d quarks reduces the mismatch in the
effective chemical potentials; (2) the nonzero vector inter-
action suppresses the formation of high density and hence
larger quark masses than those obtained without the inter-
action are realized. We shall show that the new anomaly
term plays a quite similar role as the vector interaction and
the interplay between the chiral and diquark condensates
induced by the anomaly term acts toward suppressing the
unstable region of the homogeneous 2CSC phase in the
T-� plane; the neutral 2CSC phase can become even free
from the chromomagnetic instability if K0 is larger than a
critical value K0

c, which can be reduced significantly when
the vector interaction is incorporated.

This paper is organized as follows. In Sec. II, the two-
plus-one-flavor NJL model with the extended flavor-
mixing six-quark interaction is introduced under the
constraints of the charge neutrality and � equilibrium.
The phase diagram of the neutral strongly interacting
matter with the influence of the axial anomaly is presented
in Sec. III. Section IV focuses on the role of the axial
anomaly on the chromomagnetic (in)stability. The conclu-
sion and outlook are given in Sec. V.

II. NJL MODELWITH AXIAL-ANOMALYAND
VECTOR INTERACTION

A. The model lagrangian

We start from the following two-plus-one-flavor NJL
model with the vector interaction [30,49] and two types
of six-quark anomaly terms,

L ¼ �c ði@� m̂Þc þLð4Þ
� þLð4Þ

d þLð6Þ
� þLð6Þ

�d; (1)

where m̂ ¼ diagfðmu;md;msÞ denotes the current-quark

mass matrix and

L ð4Þ
� ¼ GS

X8
i¼0

½ð �c�f
i c Þ2 þ ð �c i�5�

f
i c Þ2�

�GV

X8
i¼0

½ð �c���f
i c Þ2 þ ð �c���5�

f
i c Þ2�; (2)

L ð4Þ
d ¼ GD

X3
i;j¼1

½ð �c i�5t
f
i t

c
jc CÞð �c Ci�5t

f
i t

c
jc Þ

þ ð �c tfi t
c
jc CÞð �c Ct

f
i t

c
jc Þ�; (3)

L ð6Þ
� ¼ �Kfdet

f
½ �c ð1þ �5Þc � þ det

f
½ �c ð1� �5Þc �g; (4)

Lð6Þ
�d ¼

K0

8

X3
i;j;k¼1

X
�
½ðc tfi t

c
kð1� �5Þc CÞ

� ð �c tfj t
c
kð1� �5Þ �c CÞð �c ið1� �5Þc jÞ�: (5)

Here the four-fermion interactions are all invariant under
the Uð3ÞR �Uð3ÞL transformation in the flavor space.
In our notations, the Gell-Mann matrices in flavor (color)

space are �fðcÞ
i with i ¼ 1; . . . ; 8, and �fðcÞ

0 � ffiffiffiffiffiffiffiffi
2=3

p
1fðcÞ,

and the antisymmetric one is denoted by tfðcÞi with
i ¼ 1, 2, 3:

tfðcÞ1 ¼ �fðcÞ
7 ; tfðcÞ2 ¼ �fðcÞ

5 ; tfðcÞ3 ¼ �fðcÞ
2 : (6)

The scalar interaction in Lð4Þ
� is responsible for the dy-

namical chiral symmetry breaking in the vacuum with the
formation of the chiral condensate, while the vector inter-
action can be used to investigate the effect of density-
density interaction on the chiral phase transition [30].3 In
Eqs. (3) and (5), c C stands for C �c T and C ¼ i�0�2 is the
Dirac charge conjugation matrix. We remark that the suffix

3 in tf3 denotes the channel for the u-d pairing, for example.

For lower temperature T and large enough baryon chemical

3We remark that the effects of the vector interaction on the
baryon-number susceptibility and the chiral transition in the two-
flavor case are examined in [50] and [16,27], respectively.
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potential �, Lð4Þ
d leads to the formation of diquark con-

densate in the color-antitriplet channel [3,41,42]. Besides
the four-fermion interactions, Lagrangian (1) also con-

tains two types of six-quark interactions, Lð6Þ
� and Lð6Þ

�d:

the former is the traditional Kobayashi-Maskawa-’tHooft
(KMT) interaction [51,52] and its effect on the
phase diagram in T-� plane is fully examined
[11,14,18,53–55], whereas the latter could be obtained by
a Fierz transformation of the former and induces the cou-
pling between the chiral and diquark condensates
[3,34,35,37,39]. We remark that both interactions respect
the flavor symmetry of SUð3ÞR � SUð3ÞL �Uð1Þ while
violating the UAð1Þ symmetry as mentioned above.
The former is responsible for accounting for the abnor-
mally large mass of �0 beyond the Weinberg inequality
[56] (in contrast to other pseudo Nambu-Goldstone bo-
sons) in the effective chiral model and can be identified as
an induced quark interaction from instantons [52,57]. The
introduction of the latter to the Lagrangian expands the
study of CSC to the six-fermion level [35].

B. The model parameters

The numerical values of some model parameters are
given in Table I. In contrast to [39], we only consider the
case with realistic quark masses. The choice of the model
parameters is the same as that in [20,30,40] (all following
Ref. [58]), where GS, the coupling constant for the scalar
meson channel, and K, the coupling constant of the KMT
term, are fixed by the vacuum physical observables (meson
masses and decay constants). We shall work in the isospin
symmetric limit in two-flavor space with mu ¼ md ¼
5:5 MeV, and a sharp three-momentum cutoff � is
adopted.

In contrast to GS and K, no definite observables in the
vacuum are available for determining the coupling con-
stants GV , GD, and K0 in such a quark model, although we
could read off their values from a Fierz transformation of
known vertices: the coupling constant K0, for instance, can
be related to K through the Fierz transformation of the
instanton vertex, and K0 is found to be identical to K [39].
Since we are mainly interested in the roles of K0 andGV on
the chiral phase transition and the chromomagnetic insta-
bility, both these coupling constants are treated as free
parameters in the present work. Following [39,40], we
only consider the attractive interaction between the chiral
condensate and the diquark condensate. Namely, the
coupling K0 is kept positive. As for the ratio of GD=GS,

we adopt the standard value from Fierz transformation in
this paper. Because of the contribution from the KMT
interaction, the ratio GD=GS from Fierz transformation
should be 0.95 rather than 0.75 obtained by only consider-
ing the four-quark interaction [14]. Such a choice of the
coupling has also been used in Refs. [30,40]. In the litera-
ture, the diquark-diquark interaction near the standard
value from Fierz transformation is usually called the inter-
mediate coupling.

C. Thermodynamic potential with the constraints
of charge-neutrality and � equilibrium

The grand partition function of the NJL model is
given by

Z � e��V=T ¼
Z

D �cDc ei
R

dx4ðLþc y�̂c Þ; (7)

where � is the thermodynamic potential density and �̂ is
the quark chemical potential matrix. In general, the quark
chemical potential matrix �̂ takes the form [59]

�̂ ¼ ���eQþ�3T3 þ�8T8; (8)

where � is the quark chemical potential (i.e. one third of
the baryon chemical potential), �e the chemical potential
associated with the (negative) electric charge, and �3 and
�8 represent the color chemical potentials corresponding
to the Cartan subalgebra in the SU(3)-color space.
The explicit form of the electric charge matrix is Q ¼
diagð23 ;� 1

3 ;� 1
3Þ in flavor space, and the color charge

matrices are T3 ¼ diagð12 ;� 1
2 ; 0Þ and T8 ¼ diagð13 ; 13 ;� 2

3Þ
in the color space. The chemical potentials for the quarks
with respective flavor and color charges are listed below:

�ru ¼ �� 2
3�e þ 1

2�3 þ 1
3�8;

�rd ¼ �þ 1
3�e þ 1

2�3 þ 1
3�8;

�rs ¼ �þ 1
3�e þ 1

2�3 þ 1
3�8;

�gu ¼ �� 2
3�e � 1

2�3 þ 1
3�8;

�gd ¼ �þ 1
3�e � 1

2�3 þ 1
3�8;

�gs ¼ �þ 1
3�e � 1

2�3 þ 1
3�8;

�bu ¼ �� 2
3�e � 2

3�8;

�bd ¼ �þ 1
3�e � 2

3�8;

�bs ¼ �þ 1
3�e � 2

3�8:

(9)

TABLE I. The parametrization of two-plus-one-flavor NJL is shown.

mu;d [MeV] ms [MeV] GS�
2 K�5 � [MeV] Mu;d [MeV]

5.5 140.7 1.835 12.36 602.3 367.7

f� [MeV] m� [MeV] mK [MeV] m�; [MeV] m� [MeV] Ms [MeV]

92.4 135 497.7 957.8 514.8 549.5
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Corresponding to the chiral and diquark interactions in
Eq. (1), we assume that the following condensates are
formed in the system, namely, the scalar quark-antiquark
condensate:

	i ¼ h �c ic ii; (10)

and the scalar diquark condensate

si ¼ h �c Ci�5t
f
i t

c
i c i: (11)

In addition, we remark that the quark-number (or baryon-
number) density


i ¼ h �c i�
0c ii; (12)

has a finite value for finite�. Note that the indices 1, 2, and
3 in Eqs. (10) and (12) represent u, d, and s quarks,
respectively, whereas in Eq. (11), the indices 1, 2, and 3
stand for the diquark condensate in d-s, s-u, and u-d
pairing channels, respectively. Here we have assumed the
condensates and the density are all homogeneous; the
study of the phase structure with inhomogeneous conden-
sates and/or baryon-number density [43,60–63] is surely
intriguing but beyond the scope of the present work.

The constituent quark masses and the dynamical
Majarona masses are expressed in terms of these conden-
sates as follows:

Mi ¼ mi � 4GS	i þ Kj"ijkj	j	k þ K0

4
jsij2; (13)

and

�i ¼ 2

�
GD � K0

4
	i

�
si: (14)

Similarly, it is convenient to define the dynamical quark
chemical potential for flavor i by

~� i ¼ �i � 4GV
i: (15)

A few remarks are in order here:

(1) Both types of the anomaly terms Lð6Þ
� and Lð6Þ

�d

contribute to the constituent quark masses in
Eq. (13), and thus if K0 and the diquark condensate
si are finite, chiral symmetry is dynamically broken
even when the usual chiral condensates are absent.

(2) The new anomaly term Lð6Þ
�d also modifies the for-

mula for the Majarona mass for the CSC phase so
that the chiral condensates affects the Majorana
mass, and hence induce an interplay between the
two condensates: Indeed the ‘‘bare’’ diquark-
diquark coupling GD is replaced by an effective

one,G0
Di � GD � K0

4 	i, as shown in Eq. (14), which

is dependent on the chiral condensates. Thus the
flavor-dependent effective coupling G0

Di is now de-
pendent on T and � through 	i.

(3) Equations. (13) and (14) clearly show that the
flavor-mixing occurs not only in the usual chiral

condensates due to Lð6Þ
� but also in the diquark

condensates owing to Lð6Þ
�d, which would lead to

interesting physical consequences.
(4) It is also to be noted that the dynamical quark

chemical potential ~�i for u and d quarks are differ-
ent from each other because of the constraint of
electric charge neutrality (�d > �u) in 2CSC;
notice also, however, that they are dependent only
on the respective density 
u;d and hence the dynami-

cal chemical potentials ~�u;d tend to come closer

because 
d > 
u with the common coupling con-
stant GV [30].

In the mean-field level, the thermodynamic potential for
the two-plus-one-flavor NJL with the charge-neutrality
constraints reads

� ¼ �l þ 2GS

X3
i¼1

	2
i � 2GV

X3
i¼1


2
i þ

X3
i¼1

�
GD � K0

2
	i

�
jsij2 � 4K	1	2	3 � T

2V

X
P

lndet
S�1
MF

T
: (16)

Notice the presence of the new cubic-mixing terms among
the chiral and diquark condensates. In Eq. (16),�l denotes
the contribution from free leptons. Note that �l should
include the contributions from both electrons and muons
for completeness. Since M� � Me and Me � 0, ignoring
the contribution of muons has little effect on the phase
structure. Therefore, only electrons are considered in our
calculation and the corresponding �l reads

�l ¼ � 1

12�2

�
�4

e þ 2�2T2�2
e þ 7�4

15
T4

�
: (17)

Because of the large mass difference between s and u ½d�
quarks, the most favored phase at low temperature and
moderate density tends to be the 2CSC rather than CFL

phase, as demonstrated in the two-plus-one-flavor NJL

model [20,21]. Surprisingly enough, if the anomaly term

Lð6Þ
�d is incorporated, the 2CSC phase turns to be still

favored in the intermediate density region even when the

three flavors have the equal mass [40]. Needless to say,

the dominance of the 2CSC phase over the CFL one is

more robust when the realistic mass hierarchy for the three

flavors is adopted. Moreover, it is worth mentioning here

that the mass disparity favors the 2CSC phase with the u-d
pairing also through the inequality of the effective diquark

coupling G0
D3 >G0

D1;2 when the anomaly coupling K0 is
present; see Eq. (14). Since the main purpose of the pre-

sent work is to explore how the axial-anomaly term Lð6Þ
�d
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affects the phase boundary involving the chiral transition at
moderate densities, under the constraints of the charge
neutrality and � equilibrium, we only consider the 2CSC
phase in the following. Note that �3 in (8) vanishes in the
2CSC phase because the color SU(2) symmetry for the red
and green quarks are left unbroken.

The inverse quark-propagator matrix in the Nambu-
Gorkov formalism takes the following form in the mean-
field approximation:

S�1
MFði!n; ~pÞ ¼ ½Gþ

0 ��1 ��5t
f
3t

c
3

����5t
f
3t

c
3 ½G�

0 ��1

 !
; (18)

with

½G�
0 ��1 ¼ �0ði!n � ~̂�Þ � ~� 	 ~p� M̂; (19)

where M̂ ¼ diagfðMu;Md;MsÞ, ~̂� ¼ diagfð ~�u; ~�d; ~�sÞ,
and !n ¼ ð2nþ 1Þ�T is the Matsubara frequency.
Taking the Matsubara sum, the last part of the thermody-
namic potential (16) is expressed as

� T

2V

X
P

lndet
S�1
MF

T
¼ �X18

i¼1

Z d3p

ð2�Þ3 fðEi � E0
i Þ

þ 2T lnð1þ e�Ei=TÞg; (20)

with the dispersion relations for nine quasiparticles
[that is, three flavors� three colors; the spin degeneracy
is already taken into account in Eq. (20)] and nine
quasi-antiparticles. In Eq. (20), E0

i represents EiðM ¼ m;
� ¼ 0; 
 ¼ 0Þ. The s quark and unpaired blue u and d
quarks have 12 energy dispersion relations with a similar
form. For example, the dispersion relations for the blue u
quark and anti-blue u quark are

Ebu ¼ E� ~�bu and �Ebu ¼ Eþ ~�bu; (21)

respectively, with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

u

p
. In the rd-gu quark

sector with pairing we can find the four dispersion rela-
tions,

E�
rd-gu ¼ E� � 1

2ð ~�rd � ~�guÞ ¼ E� � � ~�;

�E�
rd-gu ¼ �E� � 1

2ð ~�rd � ~�guÞ ¼ �E� � � ~�;
(22)

and the ru-gd sector has another four as

E�
rd-gu ¼ E� � 1

2ð ~�ru � ~�gdÞ ¼ E� 
 � ~�;

�E�
rd-gu ¼ �E� � 1

2ð ~�ru � ~�gdÞ ¼ �E� 
 � ~�;
(23)

where E� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE� �~�Þ2 þ �2
p

and �E� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEþ �~�Þ2 þ �2
p

; from now on � stands for �3. The
average chemical potential is defined by

�~� ¼ ~�rd þ ~�gu

2
¼ ~�ru þ ~�gd

2

¼ ���e

6
� 2GVð
1 þ 
2Þ þ�8

3
; (24)

and the effective mismatch between the chemical poten-
tials of u and d quarks takes the form

� ~� ¼ 1
2ð�e � 4GVð
2 � 
1ÞÞ: (25)

Ignoring the mass difference between u and d quarks,
the determinantal term in Eq. (16) has an analytical form
which greatly simplifies the numerical calculation.
Adopting the variational method, we get the eight non-
linear coupling equations

@�

@	1

¼ @�

@	3

¼@�

@s3
¼ @�

@
1

¼ @�

@
2

¼ @�

@
3

¼ @�

@�e

¼ @�

@�8

¼0:

(26)

Since�8 is tiny around the chiral transition region [20,21],
we shall set it zero with little effect in the numerical results
[30]. Thus, Eq. (26) is then simplified to a system of seven
coupled equations.

III. PHASE STRUCTURE WITH
THE AXIAL ANOMALY

In this section, we show numerical results of the effects
of the new six-quark interaction (5) on the chiral phase
transition under the charge-neutrality and �-equilibrium
constraints with or without the vector interaction. Since we
are mainly interested in the phase diagram involving chiral
transition at low temperatures, all the phase diagrams
will be plotted for the range 250 MeV<�< 400 MeV
where the chiral transition is expected to be relevant.
As for the type of the CSC phase, Ref. [40] indicates that
the CFL phase is only realized for �> 460 MeV even
when K0 ¼ 0 with the same model parameters as ours, and
an increase of K0 pushes the CFL phase to even higher �
region. Therefore, we exclusively consider the 2CSC phase
near the chiral boundary without a loss of generality.
In the following, we use the same notations as in

Refs. [29,30,36] to distinguish the different regions in
the T-� phase diagram. Namely, NG, CSC, COE, and
NOR refer to the hadronic (Nambu-Goldstone) phase
with 	 � 0 and � ¼ 0, color-superconducting phase
with � � 0 and 	 ¼ 0, coexisting phase with 	 � 0 and
� � 0, and normal phase with 	 ¼ � ¼ 0, respectively,
though they have exact meanings only in the chiral limit.

A. The case without vector interaction

We first show the numerical results in the case without
the vector interaction. The phase diagrams with varying
coupling constant K0 are displayed in Fig. 1. In contrast to
Fig. 8 in Ref. [40], the multi-CP structure can still appear
with a choice of K0 in the phase diagram when the charge
neutrality, � equilibrium, and the new axial-anomaly term
are simultaneously taken into account. For K0=K ¼ 2:0,
Fig. 1(a) shows that there exists only one usual chiral CP
even though the COE emerges: We remark that the COE
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region does not exist when K0=K ¼ 0, which is not dis-
played in Fig. 1. Figure 1(b) shows that when K0=K is
increased to 2.25, the chiral transition turns to a crossover
at relatively lower temperatures, and hence there appear
two new chiral CPs. With a further increase of K0=K, the
boundary line for first-order transition at higher tempera-
ture shrinks and thus the two crossover boundary lines in
Fig. 1(b) join with each other, and eventually only one CP
is left in the phase diagram, as shown in Fig. 1(c). When
K0=K is large enough, Fig. 1(d) indicates that the first-order
boundary vanishes completely and there is no chiral CP in
the phase diagram.

We note that the emergence of the three CPs in Fig. 1(b)
comes from a joint effect of the interplay between the
chiral and diquark condensates and the electric charge-
neutrality constraint. First of all, we recall that the abnor-
mal thermal behavior of the diquark condensate that it has
a maximum at a finite temperature in the COE is respon-
sible for the emergence of the multiple chiral CP structure
[27–30]. Such a behavior is also observed in the present
case, as displayed in Fig. 1(b). As first indicated in
Ref. [29], when �e ¼ �d ��u is positive, the boundary

of the chiral transition is shifted toward the higher �
region, and leads to the formation of the COE at the
low-temperature region, in which the chiral phase transi-
tion is significantly weakened by the smearing of the Fermi
surface inherent in the CSC phase. In this regard, �e plays
a role of an effective vector interaction [27,28,30]. On the
other hand, the chiral anomaly term with positive K0
intensifies the competition between the chiral and diquark
condensates due to the enhanced effective diquark-diquark
interaction. Thus, when K0 is increased, the CSC region
expands toward the lower � region in the T-� plane.
Consequently, the COE region tends to be more easily
formed when both �e and K0 take effect. Therefore, the
chiral transition is significantly weakened and the smooth
crossover gets to appear with new CPs in the intermediate
temperature owing to the abnormal thermal behavior of the
diquark condensate.
The T dependence of Mu, Ms, �, and � ~� for fixed

K0=K ¼ 2:25 and several values of � is shown in Fig. 2.
One can see that, with increasing T, the constituent quark
masses decrease persistently while the Majarona mass for
CSC first increases, has the maximum value, and then

(a)

(c)

(b)

(d)

FIG. 1 (color online). The phase diagrams in the T-� plane for various values of K0 in the two-plus-one-flavor NJL model with the
charge-neutrality and �-equilibrium being kept. The vector interaction is not taken into account. The thick solid line, thin solid line,
and dashed line denote the first-order transition, second-order transition, and chiral crossover, respectively. (a) K0=K ¼ 2:0,
(b) K0=K ¼ 2:25, (c) K0=K ¼ 2:4, and (d) K0=K ¼ 2:8
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decreases in the COE region and nearby. Let us see the
details for each value of �. For a small � ¼ 312 MeV,
the diquark pairing is weak and the gap � does not
appear at the lower-temperature region. Thus, the chiral
phase transition keeps the nature of the first order at
TC1 � 75 MeV. At a lager � ¼ 320 MeV, the diquark
pairing becomes significant and the � shows the ab-
normal thermal behavior with a maximum value around
TC2 � 60 MeV, and hence the chiral phase transition turns
to a smooth crossover owing to the competition with the
diquark condensate in the COE region. For even larger
� ¼ 330 MeV, the diquark pairing becomes more signifi-
cant and the � still shows the abnormal thermal behavior.
However, the competition between the two condensates is
not strong enough to qualitatively change the nature of the
chiral restoration and a first-order transition happens at
TC3 � 40 MeV. The reason why the crossover does not
occur at � ¼ 330 MeV but happens at � ¼ 320 MeV can
be understood as follows: Starting from the same point
(T ¼ TC3, � ¼ 320 MeV) in the COE region, an increase
of T affects the nature of the chiral transition more sig-
nificantly than that of � does, since TC3 < TC2.

We have seen that the abnormal thermal behavior of the
gap � plays an essential role in realizing the multi-CP
structure of the phase diagram. Such an unusual T depen-
dence of the � can be attributed to the following two
mechanisms: (i) the mismatch between the chemical poten-
tials of u and d quarks owing to the charge-neutrality and
�-equilibrium constraints and (ii) the small Fermi spheres
of the quarks in the COE region due to the relatively large
quark masses: First, the difference in the chemical poten-
tials � ~� or the mismatch of the Fermi momenta disfavors
the u-d pairing at zero or small temperature. However, as
the temperature is raised in the low-T region, more and
more u and d quarks tend to participate in the pairing due to
the smearing of the Fermi surfaces, especially that of the u
quark.Of course, whenT is raised toomuch, the pairingwill
be gradually destroyed. Thus, the�will have the maximum

value at a finite T and then disappear eventually when T is
further raised. These dual effects of the temperature on the
diquark pairing lead to the abnormal behavior of the�. This
behavior becomes more prominent in the 2CSC phase for a
weak diquark coupling [64] or in the COE region for a
moderate or strong diquark coupling [29,30]. Second,
when T is raised, the dynamical quark masses decrease
and hence the Fermi spheres or momenta of u and d quarks
grow significantly for a fixed �, which means that the
density of states at the Fermi surface increases with T,
and thus the diquark pairing is enhanced in the COE region.
The increased diquark condensates in turn tend to further
suppress the dynamical quark masses.
Notice that such an increase of the diquark condensate

along with increasing T is expected to be most prominent
around the phase boundary of the chiral transition, includ-
ing the COE region, where the chiral condensates change
most significantly. For the neutral 2CSC, once the COE is
formed, both of these mechanisms take effects simulta-
neously and are mutually enhanced, and thus the formation
of the multiple-CP structure is readily made.
This may explain why no intermediate-temperature CP

is realized in Ref. [40] where the chiral-diquark interplay is
embodied by the anomaly term but without the charge-
neutrality and�-equilibrium constraints; the anomaly term
solely is insufficient for realizing the abnormal thermal
behavior of the�. It should be stressed that the mechanism
for the emergence of the intermediate-temperature CPs in
Fig. 1(b) is apparently similar to that in the two-flavor case
found in [29]. However, the strange quark plays an impor-
tant role in the present case since the chiral condensate of
the strange quark contributes positively to the effective
diquark-diquark coupling for u and d quarks through the
axial anomaly. We should stress that apart from the appear-
ance of intermediate-temperature CPs, there is a common
feature with and without the charge-neutrality constraint:
the chiral transition in the low-T region extending zero
temperature keeps first order provided that K0 does not

FIG. 2 (color online). The temperature dependence of Mu, Ms;�, and � ~� for fixed K0=K ¼ 2:25 and three different chemical
potentials � ¼ 312 MeV, 320 MeV, and 330 MeV. The constraints of electric charge neutrality and � equilibrium are imposed while
the vector interaction is not incorporated.
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exceed a critical value at which the first-order line com-
pletely disappears.

Last but not least, we remark that the T-� region where
the two new low-temperature CPs are located in Fig. 1(b) is
free from the chromomagnetic instability, which is obvious
from Fig. 5(a); a detailed discussion on this point will be
given in Sec. IV.

B. The case for nonzero vector interaction

In this subsection, we will investigate the phase diagram
when both the vector and the new six-quark interactions are
present under the charge-neutrality and �-equilibrium
constraints.

There are some choices for the value of the vector
coupling: The chiral instanton-anti-instanton molecule
model [57] gives the ratio GV=GS ¼ 0:25, while the Fierz
transformation of the vertex given in the truncated
Dyson-Schwinger model [65] gives the ratio 0.5. Thus,
we rather treat the GV=GS as a free parameter in the range,
0–0.5.

We first explore the phase diagram in the T-� plane
by varying the ratio K0=K but with GV=GS being fixed as
0.25, the value given in the instanton-anti-instanton mole-
cule model. When K0=K is small and less than 0.5, only
the usual phase structure with single CP is obtained.
When K0=K exceeds 0.5, four different types of the CP
structures appear, as displayed in Fig. 3. At K0=K ¼ 0:55,
a phase diagram similar to that in Fig. 1(b) is obtained,
as shown in Fig. 3(a), where two new intermediate-
temperature CPs emerge. When K0=K is slightly increased
to 0.57, the chiral transition becomes crossover in the
lower-temperature region which extends to zero tempera-
ture; thus the total number of the CPs becomes four, which
indicates stronger competition between the chiral and di-
quark condensates at relatively larger�. Further increasing
K0=K, the low-temperature chiral boundary totally turns
into a crossover one and only one first-order transition line
with two CPs attached remains in the phase diagram, as
displayed in Fig. 3(c). In this case, the number of the CPs is
reduced to two accordingly. When K0=K is large enough,

(a) (b)

(c) (d)

FIG. 3 (color online). The T-� phase diagrams of the two-plus-one-flavor NJL model for several values of K0=K and fixed
GV=GS ¼ 0:25, where the charge-neutrality constraint and �-equilibrium condition are imposed. With the increase of K0=K, the
number of the critical points changes and the unstable region characterized by the chromomagnetic instability (bordered by the dash-
dotted line) tends to shrink and ultimately vanishes in the phase diagram. The respective meanings of the various types of lines are the
same as those in Fig. 1. (a) K0=K ¼ 0:55, (b) K0=K ¼ 0:57, (c) K0=K ¼ 0:70, and (d) K0=K ¼ 1:0

ROLES OF AXIAL ANOMALY ON NEUTRAL QUARK . . . PHYSICAL REVIEW D 83, 114003 (2011)

114003-9



Fig. 3(d) shows that only chiral crossover transition exists
in the phase diagram with no CP.

In comparison with Fig. 1 where the vector interaction is
not included, Fig. 3 indicates that the phase structures with
multiple CPs can be realized with relatively smallK0 owing
to the vector interaction. We remark that all the types of the

chiral CP structures displayed in Fig. 3 by varying K0 are
obtained by varying GV without the anomaly term [30]. In
the present case, the number of the critical points changes as
1 ! 3 ! 4 ! 2 ! when K0 is increased.
As is mentioned before, the Fierz transformation of

the instanton vertex leads to the identity K0 ¼ K, so it is

(a) (b)

(c) (d)

(e) (f)

FIG. 4 (color online). The phase diagrams in the two-plus-one-flavor NJL model for fixed K0=K ¼ 1:0 with GV=GS being varied,
where the charge-neutrality constraint and �-equilibrium condition are taken into account. The meanings of the different line types are
the same as those in Fig. 1. The number of the critical points changes along with an increase of GV=GS. All the phase diagrams are free
from the chromomagnetic instability. (a) GV=GS ¼ 0, (b) GV=GS ¼ 0:193, (c) GV=GS ¼ 0:195, (d) GV=GS ¼ 0:197,
(e) GV=GS ¼ 0:23, and (f) GV=GS ¼ 0:3
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of special interest to investigate the phase diagram in the
case of K0 ¼ K. A series of phase diagrams with fixed
K0=K ¼ 1 but varied GV is shown in Fig. 3. One finds that
all the chiral CP structures in Fig. 3 still appear in the phase
diagrams, and moreover, even as large as five CPs can exist
in the phase diagram, as shown in Fig. 4(c). This suggests
that the interplay between the chiral and the diquark con-
densates in the COE region becomes complicated once the
charge neutrality, the vector interaction, and the axial
anomaly are all taken into account. A comparison with
the case of vanishing K0, which is given in Fig. 7 in [30],
shows that the parameter range ofGV for realizing the low-
temperature CPs moves towards lower GV , which is ac-
tually natural becauseK0 gives the same effect asGV on the
chiral transition. It is noteworthy that such lower values of
GV are also close to the standard value of GV=GS derived
from the instanton model. The number of the CPs changes
as 1 ! 3 ! 5 ! 4 ! 2 ! with increasing GV .

The anomaly terms in Eq. (1) are supposed to originate
from the instantons, which are to be screened at finite
chemical potential and temperature [57]. Accordingly,
both the coupling constants K and K0 are expected to
diminish around the phase boundary. However, we empha-
size that the main effect of K0 is to enhance the chiral
condensate of the strange quark and the u-d diquark con-
densate by each other through the cubic coupling among
them for the realistic quark masses, and Figs. 3 and 4 tell us
that even smaller values of K0 expected at low temperature
and moderate density can still lead to a quite different
phase structure with multiple CPs when the vector inter-
action is present under the charge-neutrality constraint.

IV. THE INFLUENCE ON THE
CHROMOMAGNETIC INSTABILITY

In this section, we investigate the effect of the new axial-
anomaly term on the chromomagnetic instability of the

asymmetric homogeneous 2CSC phase by varying K0. We
shall show that the anomaly-induced interplay between the
chiral and diquark condensates acts toward suppressing the
unstable region of the homogeneous 2CSC phase in the
T-� plane. Thus, the 2CSC phase can become even free
from the chromomagnetic instability provided that K0 is
larger than a critical value K0

c, which can be reduced
significantly when the vector interaction is incorporated.
The magnetic instability region in the T-� plane is

determined by calculating the Meissner masses squared
which can be negative when the charge-neutrality con-
straint is imposed. Here we adopt the same method as
that in [45] to evaluate the Meissner mass squared

m2
M ¼ @2

@B2
½�ð�Þ ��ð� ¼ 0Þ�B¼0; (27)

where B has the same meaning as that in [45]. Since the
strange quark does not take part in the diquark pairing in
the present case, we can directly use the formula for the
two-flavor NJL model to calculate the Meissner mass
squared.
The effect of the coupling constant K0 on the chromo-

magnetic instability is shown in Fig. 5. We have adopted
the model parameters in Table I to calculate the
Meissner mass squared. Figure 5(a) displays the change
of the unstable region of the chromomagnetic instability
with varyingK0 when the vector interaction is not included.
One can see that the instability region tends to shrink with
increasing K0 and eventually vanishes for K0=K > 0:8.
This suggests that the neutral homogenous 2CSC phase
will be totally free from the chromomagnetic instability if
K0 ¼ K that is derived by the Fierz transformation from the
usual instanton vertex. When taking the vector interaction
with GV=GS ¼ 0:5, the unstable region shrinks more sig-
nificantly with increasing K0 and eventually disappears in
the T-� plane forK0=K > 0:55, as shown in Fig. 5(b). This

(a) (b)

FIG. 5 (color online). The boundary between the stable and unstable homogenous 2CSC regions with (right figure) and without (left
figure) the vector interaction in two-plus-one-flavor NJL model. With the increase of the ratio K0=K � R, the unstable region with the
chromomagnetic instability in the T-� plane shrinks and eventually vanishes.
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could be an expected result because of the effect of the
vector interaction on the instability problem found in [30].

The reason for the suppression of the chromomagnetic
instability by K0 is understood as follows. First of all,
Eq. (16) tells us that the u-d diquark coupling is enhanced
by the presence of the s quark chiral condensate due to the
coupling between the chiral and diquark condensates in-
duced by theK0 term. On the other hand, as was first shown
in [48] through changing the diquark coupling by hand, the
chromomagnetic instability tends to be suppressed in the
strong coupling region and can be completely gotten rid of
when the diquark coupling is strong enough. Thus we see
that the coupling between the u-d diquark and the chiral
s-quark condensates by the K0 term leads to the suppres-
sion of the chromomagnetic instability. This is a new
mechanism of the stabilization of the gapless 2CSC phase,
found in the present work. We here emphasize the impor-
tant role of the strange quark and the anomaly term in
suppressing the instability: In contrast to the pure two-
flavor case, the rather large chiral condensate of the strange
quark enhances the diquark coupling between the u and d
quarks owing to the axial anomaly in the two-plus-one
flavor case, and this enhancement of the diquark coupling
causes the stabilization.

Because of their common effects on the chromomag-
netic (in)stability, Fig. 5 suggests that the instability may
be totally cured in the asymmetric homogeneous 2CSC
phase when the coupling constants of the vector interaction
and the extended six-quark interaction are in an appropri-
ate range. Admittedly, the present work has only dealt with
the case of the so called intermediate diquark coupling.
Nevertheless, for a weaker diquark coupling, it is expected
that the system can be still free from the chromomagnetic
instability only with larger couplings for both the vector
interaction and the anomaly K0-term.

V. CONCLUSIONS AND OUTLOOK

We have explored the phase structure and the chromo-
magnetic instability of the strongly interacting matter
under the charge-neutrality constraint within a two-plus-
one-flavor NJL model by incorporating a new anomaly
term as well as the conventional KMT interaction. The
anomaly terms have the forms of six-quark interactions and
violate the UAð1Þ symmetry as a reflection of the axial
anomaly of QCD. Similarly to the KMT term, the new
anomaly interaction with the coupling constant K0 also
induces a flavor mixing which leads to a direct coupling
between the chiral and diquark condensates.

We first investigated the role of the axial anomaly on the
emergence of the low or intermediate-temperature CP(s)
without the vector interaction. Owing to the large strange
quark mass, the favored CSC phase near the chiral bound-
ary is 2CSC rather than CFL, where the electric chemical
potential �e required by the charge-neutrality plays an
important role on the chiral phase transition [29]. The

once-declared low-temperature CP in the symmetric
three-flavor limit [39] was ruled out in Ref. [40] due to
the actual dominance of the 2CSC over the CFL. We have
shown that this is true under the charge-neutrality con-
straint without the vector interaction; the chiral transition
in the low-T region extending zero temperature keeps
first order provided that K0 does not exceed a critical value
at which the first-order line completely disappears.
However, the new chiral anomaly term enhances the com-
petition between the chiral and diquark condensates under
the charge-neutrality constraint, and gives rise to the
intermediate-temperature CPs for an appropriate range of
K0. No such intermediate-temperature CPs had been found
in the same model when only either the charge-neutrality
constraint or the axial anomaly is exclusively included, as
shown in [20,40]; both of which did not take into account
the vector interaction, either.
We then investigated the T-� phase diagram by incor-

porating the repulsive vector interaction as well: We re-
mark that this task may be viewed as an extension of the
work [30], in which the effect of the vector interaction on
the phase diagram is fully explored under the charge-
neutrality constraint, to incorporate the anomaly term.
We have found that the cubic coupling between the chiral
and diquark condensates induced by the axial anomaly
does not affect the qualitative results obtained in [30].
Rather, the vector interaction and the anomaly term jointly
act so that the multiple CPs are realized. Indeed, by varying
K0 with fixed vector coupling or vise verse, we have shown
that all the types of multiple-CP structures obtained in [30]
can be reproduced. In particular, the phase transition in the
low-T region extending zero temperature becomes a cross-
over only when the vector interaction is present with a
strength larger than a critical value. Furthermore, the
maximum number of the CPs can reach as large as five
when both the interactions are put on. In this case, the low-
and intermediate-temperature CPs can appear even with
small values of K0 owing to the help by the vector interac-
tion. This is very welcome because K0 in the realistic
situation at moderate and high density should be weaker
than that in the vacuum, since the anomaly term is sup-
posed to originate from the instanton configuration which
is expected to be suppressed at finite density.
Besides the influence on the chiral phase transition, we

have shown that the axial anomaly also plays an important
role on the suppression of the chromomagnetic instability
for the asymmetric homogenous 2CSC phase, which is first
disclosed in the present work: With an increase of the
extended six-quark interaction, the T-� region with the
chromomagnetic instability shrinks and eventually van-
ishes when the coupling K0 is sufficiently large. In particu-
lar, when taking into account the vector interaction
simultaneously, the chromomagnetic instability is sup-
pressed more significantly and can be completely gotten
rid of by the axial anomaly.
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A general and remarkable message obtained from
the present investigation is that the strange quark can
significantly affect the properties of the neutral strongly
interacting matter in which the 2CSC phase with u-d
pairing is realized: Even though the strange quark does
not directly participate in the Cooper pairing in the 2CSC,
the interplay between the u-d diquark condensate and the
strange chiral condensate induced by the anomaly term can
lead to a drastically different phase structure in the T-�
plane under the charge-neutrality constraint.

It should be remarked here that the contribution of other
possible cubic flavor-mixing terms composed of different
condensates, such as

	
2 ¼ �ijk	i
j
k; (28)

which arise from another type of six-quark interaction

Lð6Þ
�
 � �ijk�lmnð �c i�

�ð1� �5Þc lÞð �c j��ð1� �5Þc mÞ
� ð �c kð1� �5Þc nÞ; (29)

are all neglected in Eq. (16) for simplicity. The interaction
(29) can be derived from the KMT interaction, which may
or may not affect the phase structure. Besides their direct
contribution to the thermodynamic potential, these flavor-
mixing terms also modify the dispersion relations of the
quasiquarks: For example, the dynamical quark mass be-
comes dependent on the quark-number density through the
term 	
2. It is certainly an interesting problem to explore
the possible effects of these cubic coupling terms on the
phase diagram; we leave such a task to a future work.

Even apart from the neglect of the above vertex (29),
there are some caveats with the present study based
on a chiral model that does not embody the confinement
effect, and relies on the mean-field approximation. The

results obtained in the current study are largely parameter
dependent and bears the shortcomings inherent in the
mean-field approximation. For instance, the result that
there can be multiple CPs associated with the chiral tran-
sition and the CSC actually may merely mean that the
QCD matter is very soft for a simultaneous formation of
the diquark and chiral condensates coupled with the bar-
yonic density along the phase boundary. Of course, a study
which incorporates these fluctuations should be performed,
say, by means of the nonperturbative/functional renormal-
ization group method [66,67] with the present model used
as a bare model. More profoundly, the effect of the con-
finement should be incorporated even in an effective model
approach, which is a more challenging problem since
the mechanism of confinement is still unclear. Anyway,
further studies based on different models and/or methods
are needed to determine whether the low-temperature
CP(s) exists. One of the tasks of the future is exploring
whether the low-temperature CP(s) persists or not when
the inhomogeneous phases are taken into consideration
such as the chiral crystalline phase [60–63] or the
Larkin-Ovchinnikov-Fulde-Ferrel phase [43].
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