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The thermodynamical properties of a pure Yang-Mills theory SUðNÞ is described by a gas of gluonic

quasiparticles with temperature-dependent mass mðTÞ and a bag function BðTÞ. The analytic behavior of
mðTÞ and the pressure p in the temperature range 2:5–5Tc are derived and constraints on the parameters

defining BðTÞ are discussed. The trace anomaly � ¼ �� 3p is evaluated in the high T domain: it is

dominated by a quadratic behavior � ¼ nKT2, where n ¼ 2ðN2 � 1Þ is the number of degrees of freedom

and K is an integration constant which does not depend on the bag function BðTÞ. The quadratic rise of � is

in good agreement with recent lattice simulations.
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I. INTRODUCTION AND SUMMARY

The concept of quasiparticle is a valuable tool toward an
effective description of complicated interactions. An im-
portant example is that of Yang-Mills (YM) SUðNÞ theo-
ries at nonzero temperature T, where their intrinsic
nonperturbative nature renders the applicability of a per-
turbative treatment limited [1]. Descriptions of the YM
system at T > 0 via gluonic quasiparticles have been per-
formed in a variety of approaches, e.g. Refs. [2–8] and refs.
therein. Different Ansätze have been tested and the out-
coming thermodynamical quantities, such as energy
density and pressure, have been compared to lattice results
[9–11]. An appropriate, but at the same time analytically
tractable, description of a gas of gluons is also a necessary
step toward the understanding of the quark gluon plasma,
see for instance Ref. [12] for a review.

Besides the temperature-dependent gluonic mass m ¼
mðTÞ, also a temperature-dependent bag energy B ¼ BðTÞ
has been widely used to describe nonperturbative proper-
ties of YM theories, such as the trace anomaly and the
gluon condensate. With these two basic ingredients the
energy density and the pressure read (see Refs. [3,4] and
references therein)

� ¼ �p þ BðTÞ; p ¼ pp � BðTÞ; (1)

where the suffix ‘p’ denotes the quasiparticle part

�p ¼ n
Z
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðTÞp

exp½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2ðTÞ

p
T � � 1

;

pp ¼ �Tn
Z
k
log

�
1� exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ðTÞp

T

��
; (2)

where
R
k ¼

R
d3k
ð2�Þ3 ¼

R1
0

k2dk
2�2 and n represents the degen-

eracy of the particle spectrum. Restricting to perturbative
degrees of freedom only, one has n ¼ 2ðN2 � 1Þ in the
case of a SUðNÞ YM theory.

In this article, we study the high T properties of the
gluonic gas expressed in Eqs. (1) and (2). On the practical
side, we are interested in the behavior in the range be-
tween, say, 2:5Tc and 5Tc, where Tc is the critical tem-
perature for deconfinement, above which gluonic
quasiparticles are the relevant degrees of freedom. In this
energy range, lattice data for the energy density and pres-
sure show a plateau [9–11], which is compatible with a
linear increase of the quasiparticle mass with the tempera-
ture T, m / T. Because of this linear increase, the Stefan-
Boltzmann limit is not reached, but a saturation at lower
values is obtained. This situation persists as long as loga-
rithmic corrections due to the running coupling of QCD are

neglected. In fact, the correct perturbative behavior is m /
T=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðT=�QCDÞ

q
, which implies a slow approach of the

pressure and energy density to the expected Stefan-
Boltzmann values, see the lattice simulation in Ref. [13].
In the present work, we do not include these logarithmic
corrections. This simplification is applicable in the tem-
perature range 2:5–5Tc, which is high when compared to
the critical temperature, but not high enough for the loga-
rithmic terms to become relevant.
Strong constraints on the gas of quasiparticles can be

derived by imposing that the system fulfills thermodyna-
mical self-consistency [2–6], which is a consequence of the
first principle of thermodynamics:

� ¼ T
dp

dT
� p: (3)

The bag constant BðTÞ is assumed to have the following
behavior:

BðTÞ ¼ BNPðTÞ þ BPðTÞ (4)

with BNPðTÞ ¼ ncT� and BPðTÞ ¼ n�T4

for 2:5Tc & T & 5Tc: (5)

The term BPðTÞ ¼ n�T4 is included in order to recover
the expected results of perturbation theory in the high
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temperature regime, where the effective gluon mass grows
linearly with T (up to the previously mentioned logarith-
mic corrections, which are not considered here.)

The term BNPðTÞ ¼ ncT�, where � is a real number
smaller than 4 and c is a constant with the dimension of
½Energy�4��, describes the ‘‘nonperturbative’’ bag contri-
bution relevant above the phase transition [14]. At the
present stage, the only and general requirement about the
function BNPðTÞ is that it is dominated by a powerlike term
T� in the high T region. It is the aim of this work to
constrain the value of � and c by using mathematical
considerations and lattice results.

As a last remark, we stress that the bag function BðTÞ ¼
BNPðTÞ þ BPðTÞ is proportional to the number of degrees
of freedom n ¼ 2ðN2

c � 1Þ, in agreement with general
large N scaling arguments [15].

The temperature-dependent mass mðTÞ can be analyti-
cally evaluated at high T (details are in Sec. II) and takes
the form (� � 2)

mðTÞ ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

Dða0Þ
�c

2� �
T��4 þ k

�2

T2
� 8�2�

Dða0Þ

s
; (6)

where Dða0Þ is a positive real number which shall be
specified later on, �, c, � are the already-introduced pa-
rameters defining BðTÞ, n is the number of degrees of
freedom, � is the Yang-Mills scale and finally k is an
integration constant related to the differential Eq. (3); k
is not determined by the choice of BðTÞ but is a further
parameter entering in the model.

Mathematically- and physically-based considerations
about Eq. (6) will lead us to establish nontrivial relations
between the parameters:

� The parameter � parametrizes the linear increase ofm
with T. As evident from Eq. (6), � � 0 in order to
avoid an imaginary mass at high T. Moreover, a
careful study of the equations will lead us to establish
also an upper limit on its absolute value: j�j �
0:0151.

� Many approaches show that the nonperturbative bag
function BNP is a positive number [15,16]. In the
present framework, it means that c > 0. Moreover,
the contribution of nonperturbative physics to the
effective gluon mass should be positive, a property
which also assures that no instability emerges at low
T. Thus, it is a general physical requirement that the
nonperturbative contribution to m2ðTÞ given by
4�2

Dða0Þ
�c
2�� T

��2 in Eq. (6) is also positive. This, in

turn, implies a consistent limitation on the choice of
the parameter �: 0 � �< 2. Note, for the very same
requirement we are led to conclude that the integra-
tion constant k is positive.

� The case � ¼ 2 is somewhat peculiar because of the
emergence of logarithms in the solution, see details in
Sec. II D. However, it is also unfavored because of
similar arguments.

As a next step of this work, we turn to the explicit
expression for the pressure p in the high T limit, see
Sec. III for details. We shall find that p is expressed by
the sum of three terms (� � 2):

p¼�nc
2

2��
T�� n

4�2
Dða0Þk�2T2þð �ppða0Þ�n�ÞT4:

(7)

The first, negative term scales as T� (just as BNP); the
second, also negative, term scales as T2 (in agreement with
the phenomenological argument of Ref. [17]) and is pro-
portional to the constant k; the third, positive term goes as
T4, but the coefficient is slightly smaller than the Stefan-
Boltzmann limit, see later on for details. The overall
pressure scale as n / N2 in agreement with large N scaling
arguments.
The final and main subject of the present work is the

study of the trace anomaly at high T (Sec. IV). The trace
anomaly �, defined as

� ¼ �� 3p ¼ 4Bþ �p � 3pp; (8)

has been in the center of a vivid debate in the last years (see
Refs. [17–22] and references therein). Strict dilatation
invariance would imply that � vanishes in a dilatation
invariant theory, such as a gas of photons. In a YM theory,
this symmetry is broken by quantum effects and � does not
vanish: this is the so-called trace anomaly. We aim to show
that, in the context of a gas of quasiparticle with the general
form of the bag constant BðTÞ given in Eq. (4), the follow-
ing high T behavior holds:

� ¼ �� 3p ¼ nCT� þ nKT2 for T * 2Tc; (9)

where C ¼ 2c 4��
2�� is a constant determined by the non-

perturbative parameters of the model �, c (i.e., those
parameters which define the nonperturbative bag function

BNPðTÞ ¼ ncT�), and K ¼ k�2Dða0Þ
2�2 is proportional to the

previously introduced integration constant k. The main
result is that the trace anomaly � can be decomposed in a
term which behaves as the nonperturbative contribution to
the bag constant BNPðTÞ ¼ ncT�, and a term which goes as
T2. Restricting to the favored interval 0 � �< 2, one is
led to conclude that the quadratic rise dominates at T large
enough. Remarkably, the T2 rise of � is a general property,
which is independent on the nonperturbative bag constant
BNP.
It is indeed remarkable that a quadratic rise of the trace

anomaly, � ’ aT2, is found in Ref. [17], where an analysis
of the lattice data of Ref. [10] has been performed. Later
on, this quadratic rise has been confirmed in recent lattice
works [11,23]. In particular, in the lattice study of Ref. [23]
the trace anomaly has been investigated for various pure
Yang-Mills theories SUðNÞ, N ¼ 3; . . . ; 8. The behavior
� / nT2 (with a direct proportionality to the degeneracy
number n ¼ 2ðN2 � 1Þ) is indeed found for N ¼ 3; . . . ; 8
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in a range between 2 and 5Tc. Thus, the result of Eq. (9)
may explain in a natural way the emergence of such
quadratic behavior of � at high T.

In the following sections, we present the detailed deri-
vations of the outlined results: In Secs. II and III, we derive
the expressions formðTÞ in Eq. (6) and for the pressure p in
Eq. (7). In Sec. IV, we present the calculation leading to the
expression of the trace anomaly �ðTÞ in Eq. (9). Finally, in
Sec. V we briefly outline our conclusions.

II. TEMPERATURE-DEPENDENT
QUASIPARTICLE MASS mðTÞ
A. Differential equation for mðTÞ

In order to obtain the differential equation for the qua-
siparticle mass m ¼ mðTÞ, we plug the expressions of
Eqs. (1) and (2) into the thermodynamical self-consistency

relation � ¼ T dp
dT � p:

dB

dT
¼ �nIðmÞ dm

2

dT
;

IðmÞ ¼
Z
k

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p 1

exp½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2ðTÞ

p
T � � 1

; (10)

where the bag function BðTÞ is given in Eq. (4).

B. Use of dimensionless functions

It is convenient to rewrite the equations by using dimen-
sionless quantities. To this end, we introduce the dimen-
sionless temperature

� ¼ T

�
; (11)

where� is the Yang-Mills scale, which is of the same order
of the critical temperature Tc, �� Tc.

The dimensionless particle contribution to the energy
density and pressure

�� p ¼ �p

T4
; �pp ¼ pp

T4
(12)

read

�� p ¼ n

2�2

Z 1

0
dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p

e
ffiffiffiffiffiffiffiffiffiffi
x2þa2

p
� 1

; (13)

�p p ¼ � n

2�2

Z 1

0
dxðx2 lnð1� e�

ffiffiffiffiffiffiffiffiffiffi
x2þa2

p
ÞÞ: (14)

The function a ¼ að�Þ is the ‘‘dimensionless mass’’:

a ¼ að�Þ ¼ mðTÞ
T

¼ mð��Þ
��

: (15)

We also define the dimensionless constant � as

� ¼ c���4: (16)

In this way, the ground state dimensionless energy density
��gs and pressure �pgs

�� gs ¼ � �pgs ¼
�gs

T4
¼ BðTÞ

T4
(17)

read explicitly (see Eq. (4))

�� gs ¼ � �pgs ¼ n����4 þ n�: (18)

The full dimensionless energy density and pressure read

�� ¼ ��p þ ��gs; �p ¼ �pp þ �pgs: (19)

The thermodynamical self-consistency of Eq. (3) can be
rewritten in terms of the reduced energy density and
pressure as

��� 3 �p ¼ �
d �p

d�
: (20)

In terms of the dimensionless quantities, the differential
Eq. (10) takes the form

n�����4 þ 4n� ¼ � n

2�2

dða2�2Þ
d�

DðaÞ
2�

; (21)

where the integral DðaÞ is given by

DðaÞ ¼
Z 1

0
dx

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p 1

e
ffiffiffiffiffiffiffiffiffiffi
x2þa2

p
� 1

: (22)

Note, the dependence on the degeneracy number n ¼
2ðN2 � 1Þ factorizes, so that the equation for að�Þ is inde-
pendent on the number of colors N. This is in agreement
with the general expectation of large N scaling, according
to which the effective gluon mass mðTÞ scales as N0.

C. Constraints on the parameter �

In the limit of large � (i.e., large T), one has að� �
�cÞ ! a0. In this way, besides the logarithmic corrections,
the effective mass exhibits a linear growth m ¼ a0T, in
agreement with the expectation of perturbation theory [24]
and with high T effective approaches, e.g. Ref. [25]. In the
present phenomenological approach, the numerical value
of a0 is related to the parameter � by studying the asymp-
totic behavior of Eq. (21):

� ¼ � 1

8�2
a20Dða0Þ: (23)

In Fig. 1, left panel, the quantity � is plotted as function of
a0. The two properties mentioned in the Introduction can
be easily proven: � � 0 and j�j � maxð 1

8�2 a
2
0Dða0ÞÞ ¼

0:0151.
Various lattice simulations of Yang-Mills system [10,11]

show that the Stefan-Boltzmann limit of the energy density
and the pressure

�� SB ¼ n
�2

30
; �pSB ¼ n

�2

90
(24)

is not reached at 5Tc. On the contrary, a saturation at a
lower value of about 90% of the Stefan-Boltzmann limit is
observed. Such a saturation is obtained in the present
quasiparticle approach by a nonzero value of a0 (i.e., a
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nonzero value of �). For high �, the function �pð�Þ= �pSB

approaches the asymptotic value ð �ppða0Þ � n�Þ= �pSB

(see Sec. III). In Fig. 1, right panel, the quantity
ð �pð�Þ= �pSBÞ��1 ¼ ð ��ð�Þ= ��SBÞ��1 is plotted as a function
of a0. In order that at high � the ratio ��ð�Þ= ��SB ’ 0:9
holds, the value a0 ’ 0:83 is required. This, in turn, implies
that � ’ �0:0070. Note, similar values for a0 have been
obtained in Refs. [4,5].

As explained in the Introduction, the Stefan-Boltzmann
limit for the energy density and the pressure is reached at
much higher temperatures [13], at which the logarithmic
decrease of að�Þ becomes relevant.

D. Analytical solution að�Þ in the large
� domain (i.e., mðTÞ in the large T domain)

An analytical solution of Eq. (21) can be obtained in the
limit of large � by approximating the function DðaÞ by its
asymptotic values Dða0Þ. In this limit, Eq. (21) can be
easily solved and one obtains for a2ð�Þ (� � 2):

a2ð�Þ ¼ 4�2

Dða0Þ
��

2� �
���4 þ k

�2
þ a20; (25)

In Fig. 2, the analytical expression (25) is compared to
the numerical result of the differential Eq. (21) for a
particular numerical choice; the numerical solution takes
into account the full dependence on the function DðaÞ,
which is ignored in the analytical one. However, the quali-
tative agreement, which becomes better and better by
increasing �, is visible.

The analytical expression of the functionm2ðTÞ is easily
obtained by making use of Eqs. (11), (15), and (25):

m2ðTÞ ¼ 4�2

Dða0Þ
�c

2� �
T��2 þ k�2 þ a20T

2: (26)

As a result of the obtained expression for mðTÞ, we can
discuss the constraints on the parameters c and �:

(i) The squared mass is constituted of three terms. The
first term in Eq. (26) depends on the parameters c
and�, which define the nonperturbative bag pressure
BNP ¼ cT�. The second contribution in Eq. (26),
k�2, is constant and is directly proportional to the
integration constant k. The last term in Eq. (26)
dominates at high T, implying the linear behavior
mðTÞ ’ a0T, as predicted by perturbative calcula-
tions and effective theories of QCD. As already
anticipated in Sec. I, the natural requirements that
BNP ¼ cT� and the corresponding contribution to

m2ðTÞ, given by 4�2

Dða0Þ
�c
2�� T

��2, are positive numbers

implies that � > 0, 0 � �< 2. Similarly, k > 0.
(ii) In the limit� ¼ 0, the first term in Eq. (26) vanishes

and the second, constant contribution dominates:
this situation corresponds to the simple approxima-
tion with a constant gluon mass. This possibility has

FIG. 1. Left panel: the parameter � is plotted as function of the asymptotic value að� ! 1Þ ¼ a0. Right panel: the ratio
ð �p= �pSBÞ��1 ¼ ð ��= ��SBÞ��1 is plotted as function of a0. The dot corresponds to ��= ��SB ¼ 0:9 and a0 ¼ 0:83; this is the saturation
value obtained in lattice simulations [23].

FIG. 2 (color online). Comparison of the analytic, approximate
expression of Eq. (25) (solid line) with the full solution of the
differential Eq. (21) (dashed line) for a particular numerical case:
� ¼ 1, � ¼ 0:034, k ¼ 10.

FRANCESCO GIACOSA PHYSICAL REVIEW D 83, 114002 (2011)

114002-4



however been ruled out by a precise comparison
with lattice data [4]. More generally, when � is
small, the first term in Eq. (26) is also negligible
(unless the parameter c is anomalously large); at
low T, only the second constant term survives. On
the contrary, when � ’ 2 the first term is very large,
unless the parameter c is very small. We thus con-
clude that � should be not to close to the boundaries
0 and 2, but somewhere in between.

(iii) In the case � ¼ 2, a slightly different solution is
obtained:

a2ð�Þ ¼ � 8�2�

Dða0Þ
log�

�2
þ k

�2
þ a20; (27)

where an additional logarithm arises. The mass
contribution of the nonperturbative first term is
negative for � > 0 (that is for the here considered
choice c > 0). Thus, also the case � ¼ 2 is re-
garded as phenomenologically unfavored.

(iv) In order to include the logarithmic corrections in
the very high T domain, one should modify the
perturbative bag pressure BPðT; Þ in such a way

that the perturbative mass behavior m /
T=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logT=�

p
holds. One obtains the constraint

T�3dBP=dT / ð2ln�1�� 2ln�2�Þ, thus leading to
more complicated expressions involving loga-
rithms. A detailed study of this subject represents
an interesting outlook. Although the formulas will
be more involved, a link with studies of Ref. [7], in
which the starting point is the perturbative behavior
at very large temperature, can be driven.

III. PRESSURE IN THE HIGH T DOMAIN

We turn to the explicit expression of the pressure for
large T. To this end, we expand Eq. (14) around the
asymptotic value a20

�p pðaÞ ¼ �ppða0Þ þ
�
d �ppðaÞ
da

�
a0

ða� a0Þ þ . . . (28)

Using the equality ðd �ppðaÞ
da Þa0 ¼ � n

2�2 a0Dða0Þ and approx-

imating a0ða� a0Þ ¼ a2 � a20 (valid at the considered

order), one gets

�p p ¼ �ppða0Þ � n
��

2� �
���4 � n

4�2
Dða0Þ k

�2
: (29)

The full dimensionless pressure �p ¼ �pp þ �pgs reads at

high �

�p ¼ �n�
2

2� �
���4 � n

4�2
Dða0Þ k

�2
þ ð �ppða0Þ � n�Þ:

(30)

By multiplying by T4, we find the pressure p for large T:

p¼�nc
2

2��
T�� n

4�2
Dða0Þk�2T2þð �ppða0Þ�n�ÞT4:

(31)

We thus have also decomposed the pressure into three
contributions: the first term in Eq. (31) scales exactly as
the bag function BNP. The second, negative term in Eq. (31)
scales as T2 and is proportional to the integration constant
k. Note, a similar quadratic contribution to the pressure has
been postulated in Ref. [17]. There is, however, an impor-
tant point to stress: here we have shown that there is no
need to introduce at hand a quadratic contribution to the

FIG. 3 (color online). Comparison with the lattice results of Ref. [10]. The parameters � ¼ 1, � ¼ 0:034, k ¼ 10 are used. Left
panel: the interaction measure is plotted. The lattice point for T=Tc ¼ 4:58 has been used to determine � ¼ 1:55Tc. Right panel: the
quantities � (the upper curve is the theoretical result, the dots the lattice points) and 3p (the lower curve is the theoretical result, the
triangles are the lattice points) are shown.
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pressure from the very beginning. The quadratic contribu-
tion naturally emerges as the result of the equation, inde-
pendently on the choice of the bag function BNPðTÞ.
Finally, the last term in Eq. (31) describes the high T
asymptotic limit, which differs from the Stefan-
Boltzmann value as depicted in the right panel of Fig. 1.
For other works on the pressure in the high T domain, see
Refs. [26,27] and references therein. For a direct compari-
son with lattice data, see Fig. 3.

IV. TRACE ANOMALY

The interaction measure

� ¼ �

T4
¼ ��� 3 �p (32)

is evaluated by making use of the thermodynamical self-
consistency of Eq. (20):

� ¼ ��� 3 �p ¼ �
d �p

d�
¼ �

d �pp

d�
þ �

d �pgs

d�
; (33)

where in the last step the dimensionless pressure has
been decomposed into its particle and ground state
contributions.

The ground state contribution is easily evaluated:

�
d �pgs

d�
¼ n�ð4� �Þ���4: (34)

The calculation of the particle contribution to the interac-
tion measure goes via two steps. First, we rewrite it by
making use of Eqs. (14):

�
d �pp

d�
¼ � n

2�2
�DðaÞa da

d�
¼ � n

4�2
�DðaÞ da

2

d�
: (35)

As a second step, in the large � domain one can replace
DðaÞwith the asymptotic valueDða0Þ and then evaluate the
derivative da2

d� by using Eq. (25):

�
d �pp

d�
¼ n��

4� �

2� �
���4 þ n

Dða0Þ
2�2

k

�2
: (36)

By putting the results together, one finds for � * 2�c

(� � 2)

� ¼ ��� 3 �p ¼ 2n�
4� �

2� �
���4 þ n

Dða0Þ
2�2

k

�2
; (37)

which consists of two terms: a term which scales as the
ground state contribution ��gs, and a term which scales as

��2.
By multiplying� by T4, one obtains the trace anomaly �

as a function of T (� � 2):

� ¼ 2nc
4� �

2� �
T� þ n

Dða0Þ
2�2

k�2T2; (38)

which is Eq. (9) discussed in the Introduction. The first
term depends on c and � (i.e., the parameters which define
BNPðTÞ), while the second term describes a quadratic rise

of �, is proportional to the integration constant k and is
independent on the bag function B. The very same term
proportional to k was responsible for a constant contribu-
tion to the effective gluon mass, see Eq. (26). In the favored
range 0 � �< 2, the rise T� is realized for small T, while
the quadratic rise of � dominates for large enough
temperature. The temperature at which this change hap-
pens depends on the particular numerical values of the
parameters, and cannot be determined by analytical
considerations.
It is, however, possible to use some lattice results about

the trace anomaly in order to constrain the numerical
values of the parameters of the model. The quantity �
scales as 3:3T2

c=T
2 for T * 1:5–2Tc [4]. Then, from

Eq. (38) and �� Tc, it follows that k ’ 10. It is also
possible to obtain a rough estimation of the upper limit
of the parameter � ¼ c�4�� � cT4��

c . In fact, the quantity
�=T2 is, to a good approximation, constant for T * 2Tc

[17]. This, in turn, means that the first term in Eq. (38) is
smaller than the second term for T * 2Tc. Through simple

algebra, one obtains the upper limit � & 2��
4��

Dða0Þk
2�2 21��.

We now turn to a direct comparison of our theoretical
curves with the lattice results of Ref. [10]. Since our
theoretical functions depend on the variable � ¼ T=�,
where �� Tc but not exactly equal, care is needed: it is
first necessary to determine �. To this end, we chose � in
such a way that the theoretical result for the interaction
measure � reproduces the lattice point at the highest
simulated value of T=Tc ¼ 4:57 (at which � ¼ 0:10).
One obtains the relation � ¼ 1:55Tc. In Fig. 3, the plot
of the interaction measure (left panel) and energy and
pressure (right panel) are shown: it is visible that the
agreement is acceptable for T * 2:5Tc and increases for
increasing T. On the contrary, the theoretical results for
T=Tc & 2:5 deviate from the lattice simulations. This is
expected because the present version of the model cannot
describe the physical properties close to the phase
transition.
Further comments are in order:
(i) For the here-considered case c > 0 (i.e. forBNP > 0),

a positive contribution of the first term to the trace
anomaly is obtained for 0 � �< 2 (see Eq. (38)),
which is the same interval outlined previously. If, on
the contrary, 2<�< 4 one would have a negative �
for high enough T, in disagreement with all present
simulations. This represents a further confirmation of
the outlined range of �.

(ii) The case � ¼ 2 leads to a slightly modified form:

� ¼ 4nT2

�
c� c log

�
T

�

�
þDða0Þ

8�2
k�2

�
: (39)

A negative � at high T is realized. This fact is at first
sight a further argument against the choice � ¼ 2.
However, the appearance of the logarithms in the
solution implies that a full study of the present case
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is only possible when the logarithmic corrections
are taken into account.

(iii) The behavior of � in the large T domain as mea-
sured on the lattice is still subject to an ongoing
discussion. In the work of Ref. [18], also based on
the lattice data of Ref. [10], it is found that � grows
linearly (rather than quadratically) with T: � ¼ aT
for 2:5Tc & T & 5Tc, where a ’ 1:5 GeV3 in the
SUð2Þ case and a ’ 1:7 GeV3 in the SUð3Þ case.
We also refer to the similar results obtained in the
older works of Refs. [28,29]. In Ref. [30], the linear
rise has been confirmed by studying the lattice data
of Ref. [11]. Our result (9) can indeed also account
for an initial nonquadratic behavior of � (the linear
one being realized for � ¼ 1, see [19]), which
persists as long as the quadratic term does not
become dominant.

(iv) The linear rise of � has been derived within the
theoretical framework described in Refs. [31], and
further investigated in Refs. [19,32]. The nonpertur-
bative sector of SUð2Þ or SUð3Þ YM theories is
described by a composite, (adjoint-) scalar field �
in the deconfined phase (T > Tc), which emerges as
an ‘‘average’’ over calorons and anticalorons (topo-
logical objects which correspond to instantons at
nonzero T [33]) with trivial holonomy, see [31] for
a microscopic derivation and [32] for a macroscopic
one. On a length scale l > j�j�1, it is thermody-
namically exhaustive to consider only the average
field � and neglect the (unsolvable) microscopic
dynamics of all YM-field configurations, such as
calorons and monopoles. One can then build up an
effective theory for YM-thermodynamics valid for
T > Tc, in which the scalar field � acts as a back-
ground field coupled to the residual, perturbative
gluons. On a phenomenological level, it contributes
to the energy and pressure as a temperature-
dependent bag constant BNP ¼ 4��3T, i.e. with
the parameters � ¼ 1 and � ¼ 4�. Note, in the
theoretical framework of Ref. [31] the constant k
was set to be very small, thus the quadratic rise starts
to dominate only at very high temperatures and for
this reason does not affect the phenomenology be-
tween 2:5Tc and 5Tc. The linear growthwithT of the
stress-energy tensor in the pure SUð2ÞYM theory is
obtained as [19] � ¼ �� 3p�T>2Tc 24��3T ’
ð1:7 GeV3ÞT. The coefficient 1:7 GeV3 is similar
to 1:5 GeV3 found in Ref. [18]. A similar result
holds in the SUð3Þ case.

(v) A linear growth of the trace anomaly � has also been
obtained within the theoretical approach described
in Ref. [20], in which a Gribov-type dispersion
relation is used. On the contrary, a quadratic rise
of � is the result of Ref. [21], in which a dimension-
two gluonic condensate is studied.

(vi) In the present work, we concentrated on the high T
side. If we assume that a powerlike behavior
BNPðTÞ ¼ cT� is valid for lower temperature, the
quasiparticle gluon mass blows up at a critical
temperature Tc (which depends on the numerical
values of c and �, e.g. in Ref. [31]). This fact may
signalize a confinement/deconfinement phase tran-
sition. For T < Tc, a quasiparticle description is no
longer possible and the system should be described
by different degrees of freedom (such as glueballs
[34] and other nonperturbative states).

V. CONCLUSIONS

In this work, we have performed an analytical study of
the high temperature properties of a gas of gluonic quasi-
particles with a temperature-dependent bag function. The
expression of the quasiparticle mass mðTÞ, pressure and
trace anomaly have been derived analytically for large T.
The implications and constraints on the parameters of

the bag function BðTÞ ¼ BNPðTÞ þ BPðTÞ have been dis-
cussed. For the nonperturbative contribution BNPðTÞ ¼
ncT� (with c > 0) we have found the following constraint
on the parameter �: 0 � �< 2. This result follows from
the requirements that the gluon mass mðTÞ does not be-
come imaginary for decreasing T and that the sign of the
trace anomaly � ¼ �� 3p at large T is positive, in agree-
ment with lattice simulations. The behavior of the trace
anomaly � ¼ �� 3p at high temperatures consists of two
contributions, � ¼ n#T� þ n#T2, with a first term which
goes as T�, just as the nonperturbative bag function, and a
second term which goes as T2 and dominates the high T
behavior. It is remarkable that this quadratic contribution is
general and does not depend on the choice of the bag
function. Such a quadratic behavior, and also the expected
scaling with the degeneracy number n, have been con-
firmed in the lattice simulations of Refs. [11,23].
A variety of improvements of the present approach rep-

resents an outlook for the future: (i) Inclusion of the loga-
rithmic corrections in order to make contact with the very
high T behavior, in which the pressure and the energy
density slowly approach their Stefan-Boltzmann limit.
(ii) On the low-temperature side, a fit should be performed
in order to determine the behavior of the nonperturbative
bag pressure BNPðTÞ beyond the simple power-law used in
this work for analytical considerations. (iii) Calculation
of viscosities following Ref. [35] can be performed.
(iv) Inclusion of further degrees of freedom: quarks for T >
Tc and confined states (glueball and mesons) for T < Tc.
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