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Magic spinor product methods in loop integrals
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We present an approach to higher point loop integrals using Chinese magic in the virtual loop
integration variable. We show, using the five point function in the important e e~ — ff + v process
for initial state radiation as a pedagogical vehicle, that we get an expression for it directly reduced to one
scalar 5-point function and 4-, 3-, and 2- point integrals, thereby avoiding the computation of the usual
three tensor 5-pt Passarino-Veltman reduction. We argue that this offers potential for greater numerical

stability.
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With the advent of the LHC, we enter the era of preci-
sion QCD, by which we mean predictions for QCD pro-
cesses at the total precision tag of 1% or better. This is
analogous to the per mille level era of EW corrections at
LEP energies. Radiative effects at the level of O(a?) have
to be controlled on the QCD side, and those at the level of
O(aLa,), O(a*L?) on the QED ® QCD and QED sides
have to be controlled systematically, both from the physi-
cal precision standpoint and from the technical precision
standpoint, in order to optimize physics discovery at the
LHC." In Ref. [1], we have developed a platform for the
realization of such corrections ultimately on an event-by-
event basis based on exact, amplitude-based resummation
of QED and QCD together, wherein residuals for hard
photons and hard gluons are simultaneously calculated
order-by-order in perturbation theory in powers of a and
a,. These residuals, which are infrared finite and, for
hadron-hadron applications, collinearly finite require
then exact evaluation of higher point and (higher) loop
Feynman diagrams in an appropriate reduction scheme
for any attendant tensor properties as first developed sys-
tematically in Ref. [2], for example. Recently, alternative
approaches have been developed in Refs. [3,4] to deal with
the growing complexity of the method in Ref. [2] as the
number of legs beyond four and/or loops beyond one
increases. Here, we focus on higher point one-loop
functions.?

It has been demonstrated that n-point functions, for n =
1, - -+, 4, at one-loop, reduced to scalar functions using the
method of Ref. [2], are tractable for fast MC event genera-
tor implementation for arbitrary masses and kinematics
for high energy scattering processes [6—22]. It has also
been demonstrated [23-26] that, at one-loop, higher point
scalar functions can be reduced to sums of four-point scalar
functions. In Refs. [24,27-30] representations of the scalar

"Here, L denotes the typical big log for the process under
discussion.

See Ref. [5] for some recent progress on the higher loop
functions with an eye toward their use in the MC realization of
the approach in Ref. [1]
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four-point function that cover arbitrary masses and the
momenta relevant to most high energy collider applications
have been given and these are suitable for fast MC imple-
mentation. Thus, when one is discussing higher point func-
tions at one-loop, we can consider, at least for most collider
physics applications, that the 1, 2, 3, and 4 point functions at
one-loop are known in a practical way so that the main issue
can be considered to be the representation of the higher
point functions in terms of these known functions.

When we consider any higher point function, two of
the most important aspects of any reduction procedure
for recasting it in terms of the ‘“known”, lower point
functions are its numerical stability and its usefulness for
Monte Carlo event generator realization, as we have in

mind for our residuals Bn,m in Ref. [1] for example. Given
the simplification that has been shown for the “Chinese
magic” polarization scheme [31-33] for real emission of
massless gauge particles in such functions, it is natural to
seek further simplification and numerical stability in the
virtual emission and reabsorption processes as well by
exploiting the same scheme. It is this that we pursue in
what follows.

For the reader unfamiliar with the Chinese magic polar-
ization scheme for massless gauge bosons, which is his-
torically associated to the preprint in Ref. [31], the key
observation is that the gauge invariance of the attendant
massless gauge theory allows one to use an attendant set of
polarization vectors which, when the chiral forms of the
respective spin % charged particles’ wave functions are
used, eliminate radiation from one entire side of a charged
line and, simultaneously, simplify considerably the
calculation of the part of the amplitude that remains,
almost like “magic,” hence the name. This is possible
because of a representation of the respective polarization
vector for helicity Ay and 4-momentum ky, ejfy, as a matrix
element of the Dirac gamma matrix, y*, between the
spinor of helicity A, and four-momentum k., |k.yA.,y>, and
the massless spinor state <p/\7|, p*> =0, up to a normal-
ization factor, so that the Chisholm identity [see Eq. (12)
below] reduces the Feynman rule factor e;’: Y at the
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respective interaction vertex to the simple expression
2|k, — A, Xp — Al + |pA, Xk, A, ], up to the same nor-
malization factor, which causes one side of a line of the
real radiation terms to vanish if p is set equal to the external
4-momentum entering(leaving) that side of the respective
line. The remaining terms are then expressed in terms of
simple spinor products which lend themselves to easy
evaluation [31-33]. This gives a 'magically’ shortened
expression compared the usual Cartesian representation
of the polarization vector with the squared amplitude
modulus evaluated using traces over the fermion lines.
We illustrate this below here as well.

Specifically, we will use the conventions of Refs. [10,34]
for spinors and polarization vectors, which are derived
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from the work of [31,33]. The 5-pt function which we
want to analyze in these conventions as our prototypical
example is shown in diagram (c) in Fig. 1. It has many
applications in collider precision physics. When combined
with diagrams 1(a) and 1(b) it generates a gauge invariant
contribution to the ISR for ete™ — ff + v, f # e,’ for
example, and it is a part of such a contribution to uit —
m + G (in an appropriate color basis), etc. Such appli-
cations and their attendant phenomenology will be taken
up elsewhere. [36]. Here, we focus on the use of Chinese
magic in the loop integral in Fig. 1(c) to illustrate what
simplifications are possible.

More precisely, by the standard methods, we need the
following Feynman integral representation of Fig. 1(c)

[diq O YR+ pr— K+ m)ES (@ + py+ m)y*u,,

MG i, = @m)*8(py + p2 = pi = ph = KIC

@m* (g + py — k* —mi +ie)(qg + p))* — m} + ie)
’Zl)‘f] ')’a(q +p 1/ + mz)'yﬁvl)‘;

where we have defined massless limit coupling factor

¢ = CAL A

8 ((g+ p1+ py— k> =My, +ie)(g + p))* — m3 + ie)(q> — My, + ie) T M
[
wi e — oK)y us(B)
B T w8 “
= 0,eG*G"*(V} + alAy)(v) — a1Ay) (e™(2))" = il (k)y*11,({)

X (vh + ayAy)(vy — axA)) 2)

with the couplings Q,e, G, and G’ for the 7y, V;, and V,,
respectively. In the usual Glashow-Salam-Weinberg-’t
Hooft-Veltman [37] notation, v(a) represents vector
(axial-vector) coupling. The ellipsis in (2) represent the
mass corrections needed to correct the massless limit used
for C({A;}, {A’}). They are not necessary to illustrate our
method and they will be restored elsewhere [36]. To get
the loop integral in terms of Chinese magic, we take the
following kinematics as shown in Fig. 1:

p1=(E, p2)
p2=(E, —p32)
—p4=(E, p'(coshz +sinb| %)) = p|
k= (k° k(cos8, 2 + sinf, (cos¢, X + sing,, 9)))
—ps=p3Tk=pi+pr=(/50)
—p3=p 3)

with k9 = k, \/E = 2F. Here, we introduce the alternate
notations p| = —py4, pb = — ps for cosmetic use entirely.
We now introduce the two sets of magic polarization
vectors associated to the two incoming lines:

? A numerical realization of the amplitude in Fig. 1 as it relates
to bhabha scattering can be found in Ref. [35].

V2 (), (2)

with 82 =0 and ¢ defined in Refs. [10,34], so that all
phase information is strictly known in our amplitudes: the
two choices for 8 are such that its spacelike components
have the directions of the two incoming beams in the initial
state. We take the basis of the four-dimensional momentum
space as follows:

€1 =(E,E2)
€2=(E, —Ef)
_E<€2+ [y#]€,+)
= E 2T
V206, — €,+)
- E
= ﬁ(xﬂy) (5)
0, = € = ly#16,—)
PUVRG +16-)
- Laoip
\/E y),

where we use the obvious equivalence |€o) = u(f),, in the
notation of Refs. [31-34]. The important point is that all
four of these basis four-vectors are lightlike with €7 = 0,
i=1,---,4. They therefore can participate in Chinese
magic.
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To illustrate explicitly this latter point, consider the
definite case Aj, Ay, A}, A, A, =+, —, +, —, +, as all
other choices for the helicities behave similarly. We write
the loop momentum as
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q = ait; (6)

with summation over repeated indices understood. The
coefficients «; are readily determined as

¢
(3] =2=(®3—@2—s+2p2k+M‘2,2)/s

2E?
qt,
a, = ﬁ_ (@1 - @0 - M%/])/S
_qly gty )
BT R T TR M
i
ay = — ﬁ[cj@j + C5M‘2/1 + C6(M‘2/2 + 2p2k - S) + C7(2kp1)],
where we define the denominators as
Dy =q> — My, +ie
Di=(q+ pl)2 —mj + i€
Dy =(q+pi—k?—mj+ie (8)
Dy=(q+p+p—k>— My +ie
D, =(q— py)*—m}+ie
so that the expansion coefficients {c;} are (here, B, =%, B} =1
cschel® _ cschie iy csch, cotfie®r — cot,
co = csco, T ; + -
BiE; Biv/s Vs Biv/s
csc@’ 6y csch)  cotfie’®r —coth, csch,
¢ =csco, + +—5 )
NG Bi/s K
scH’ i¢ csc0 cotf ei®y —cotd., cscO
c2=csc¢< ’ Y 4 1 Y _ Oy)
F Bis K
csc¢9’ 3’4’ csch, cotd ey — cot
;= cscqﬁy( /1 T Y _ 1 7)
Bis s Bi/s 9)
cschel®r
¢y = —csch, ———
" BiE
cschlei®y  cschlei®y csch,  cotfe®r — cotb,
cs = csce, i ; + —
B EY Bis Vs Bi/s
(csc@’1 el®r  csch, cotfiel?r — cot0y>
Ce = CSC - -
"\ Bis s Biv/s
csch,,
c; = —csco, 0

Thus, the {c j} are determined explicitly by the center of momentum system (cms) kinematics that we use. The consequence

to note is that the Chinese magic now carries over to the loop variable via the identity

113014-3



B.E.L. WARD PHYSICAL REVIEW D 83, 113014 (2011)
q=at;
V2E

mﬂgz_)((ﬁ — |+ 1€)X, + 1)

2
= z;aj(lfj+)<€j FH1G=XEG =D+ ay
=

V2E

+ a4m(|€2+><€1 ++ 1€ =Xt~ 1)

2
E;aj(lpﬁij +1+1p,=Xp;— D+ a3<p2\_/_%(|172_><191 =+ 1pitXp2+1)
+ awp?_[%ﬂpz"‘Xh + 1+ pi—Xp2a—1)

2
= Z a(lp;+Xp;+1+1p;=Xp; =)+ as(Ipa—Xpr — |+ Ipr +Xp2 + D) + asllpa+Xpy + 1 + 1o —=Xp2 =), (10)
=1

where we work in the massless limit for this numerator . V2
algebra so that we take €, = p,, £, = p, in (10). Here, we £ = < LA XA |+ k= A, 06 — Al
v (k= A€M
defined as well Y v
YAy, 1€ 4) = 2[1€) — A)X€, — Al + [€,0(€1Al],

£y =16 +)X6 + [+ 1€, =X — |, (12)
dy = a; _VE the reduction
o= Im+) 2
J3E (1D 2 v
G.=a _ a4 N = k_i{(Al@z +1pi—=Xpy — Ip2t)
N 4(1’2 +1lpi—=) V2 < ity
+ Ax(p2 + |pi=Xph — [P +NAs(py + |pi—)
X{py = Ipi+) + Allpy + Ipy=Xpy — Ipi+)
From the standpoint pf e.fﬁ01ent and numeflcal'ly st.able MC + ay(A(py + |pr=Xph = Ipat) + Axlps + |p1—)
event generator realization of the correction in Fig. 1, the
explicit form the «; cannot be stressed too much. XAphy = P+ D(Aspa + |pi=Xp2 = |1 +)

Upon introducing the representation (10) into the nu- +A +lp— —p. + 13
merator, N, of the integrand in (1) we get, from the stan- P+ 1Py =p2 = Ipi ) (13)
dard identities where we defined

" k
+ + NN
N TN Y N TN Y NN Y
[ s Q D3
(a) (b) ()

FIG. 1 (color online). ISR 5-point function contributions with fermion and vector boson masses m, mg, f = 1,2, B =V;, V, and
with four momenta p;, k as shown, with Q = p; + p,. Radiation is shown from the initial state line with electric charge Q,e, where e
is the electric charge of the positron—here p, is the incoming fermion 4-momentum, p, is the incoming antifermion 4-momentum.
When the quantum numbers allow it, the crossed graphs for the internal vector boson exchanges must be added to what we show here.
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Ay = ay(py + k=) + ay(py + k=),

Ay = (1 + a)p, + k=) + as(ps + |k—)

(14)
Az = ay(p; — Ip2+),
Ay = ap) — |p2t)

for the magic choice 8 = p;. Note that the magic has
killed all but one set of the terms with three factors of
the virtual momentum expansion coefficients and that, in
the numerator of the propagator (before) after the real
emission vertex, it has eliminated the terms associated
with (p;) k as well as half of the terms in the respective
virtual momentum expansion in former case. While we
have eliminated a large fraction of the possible terms on
the right-hand side (rhs)of (13), one can ask how it com-
pares in length with what one would get from the usual
approaches of taking traces on the fermion lines. To be
specific, in the traditional method that leads to traces
on fermion lines, one needs to compare the length of
2R M M1 where M is the respective Born amplitude
that would interfere with the one-loop amplitude to create
the one-loop correction to the respective cross section. In
the Chinese magic representation, we get immediately that
only radiation from the antiparticle (p,) incoming line
contributes with the simple result (repeated indices are
summed with G, =G, G, =G’ and s' = (p; + p, —
k)? as usual)

Mps—s—+

= Q2m)*8(py + pa— pi — ph—k)

2\/§i€Q1G§(U§ —a)(v;—a;}py—Ipi+)
(k= Ip1+Xk = Ipa+)(s" = M3, + ie)

XUp1 = p2tXp2 + 1pi=) = (p1 = lk+ )k + | py—)]
(15)

so that computing 208 M M1 just involves multiplying
N in (13) by the complex conjugate of this simple expres-
sion and taking twice the real part. If we proceed with the
usual trace on the fermion lines method, one needs the
trace of two sets of terms with 10 Dirac gamma matrices
multiplied by a factor with the trace of 6 Dirac gamma
matrices: this means one has 2-9-7-5-4X5-4=
2520 X 20 = 50, 400 terms, each of which requires
Passarino-Veltman reduction of 3, 2, and 1 5-point tensor
integrals. In Ref. [38], another approach that leads as well
to traces over fermions is used in which one first expands
the amplitude under study in a gauge invariant tensor
basis with scalar coefficients and uses Chinese magic-
type [31-33] representations of the helicity states to
express the attendant helicity amplitudes in terms of these
invariant scalar coefficient functions. The key step is the
use of projection operators, P(X) in the notation of
Ref. [38], which project out the scalar coefficient X.
To compare with our approach, we observe the following:
the Born amplitude tensor structure is one of the tensor
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structures in the respective expansion basis and to project
its coefficient the respective projection operator evaluates a
linear combination of the trace on the fermion lines of the
Hermitian conjugate of this Born level tensor structure in
product with the Feynman amplitude and the traces on the
fermion lines of the Hermitian conjugates of the other
tensor structures in product with the same amplitude.
Thus, our counting of terms given for the evaluation of
2R M M1 using the traditional traces on fermion lines
gives a lower limit to the number of terms that would be
generated by the methods of Ref. [38] for our calculation.*
Looked at this way, we can appreciate better the great
simplification that (13) represents. It follows that this
form of N in (13) has efficiently reduced the problem of
reduction of the 5-point function with three, two, and one
tensor indices(index) in the Passarino-Veltman formalism
to the problem of a single scalar 5-point function and lower
4, 3, and 2 point functions with the coefficients already
explicitly expressed in terms of the cms kinematic varia-
bles that are so crucial to efficient MC event generation.
Efficient MC event generator realization of the latter func-
tions is known [6—-22], where it is understood that one uses
the results in Refs. [23-26] to express the scalar 5-point
function in terms of scalar 4-point functions using our
explicit kinematics above. These last remarks are made
more manifest when one notes the introduction of the result
for N in (13) into the integral in (1) leads to the integrals

[d*qg DD D DD ;D51
Cm)t DrD6,9;9,

, o L k=0,---,4 (16)

all of which are known from the lower point functions we
advertised when the results for the representation of the
scalar 5-point function in terms of 4-point functions in
Refs. [24-26] are used.’ We get a bonus: no evaluation

“For example, let us take the example discussed in Ref. [38],
using their notation, of g(py, A2)G(py, A1) = v(p3, A3)y(ps, As),
where we focus just on the one-loop correction from the Gross-
Wilczek-Politzer [39] QCD theory with direct analysis for the
respective 4-point box graph in which a gluon is exchanged
between the incoming quark (g) antiquark (§) pair “before” they
annihilate to the two photons. For the helicities + — ++ for the
quark, antiquark, y(p3), v(p4), respectively, the helicity amplitude
is proportional to the A, scalar coefficient in Ref. [38]. Evaluation
of the projection operator for A || on the box graph requires the trace
for a product of 12 Dirac gamma matrices, which generates 11 -
9-7-5-3 =10, 395 terms, and this has to be done 5 times (there
are five scalar coefficients) for a total of 51 975 terms. This is just a
4-point function. The same calculation using our methods gener-
ates a formula smaller in length than that in Eq. (20) in the text.

SSince the integral in (1) is manifestly UV finite, we do not
need to specify what regularization is used for the two point
functions because only UV finite combinations of them can
occur here while the wave functions are all in four-dimensional
Minkowski space. Note also that the standard trace over fermion
lines would also lead to results equivalent to that in (16) but as
we have seen above it would necessitate evaluation and simpli-
fication of much longer expressions in general to compute the
attendant transition rate for the process.
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of wave functions at complex momenta is required here.
What we have done is rigorously a result of Lagrangian
quantum field theory, and it therefore can serve as a cross
check on methods that may not obviously so be. Evidently,
the method we have illustrated can be used for any higher
point function.

At this point, while we have shortened considerably
the respective amplitude and have removed the Gram
determinant-type factors in the tensor reductions, we are
still subject to the Gram determinant-type denominator
factors in the results in Refs. [24-26] for the representation
of the 5-point scalar function in terms of 4-point scalar
functions. We have found that these are in general still too
numerically unstable for realization in the amplitude-based
exact resummation MC event generators such as those in

2
1+ 85

Eo(P1, P2, D3 Pay o, 1y, 1y, T3, Ty) = {_Do(o) + EYya
1

X (Dy(1) = Dg(0)) = M3, (Dy(3) = Do(2))] —
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Ref. [9]. Thus, we replace the representation from
Refs. [24-26] of the needed 5-point scalar function here
as follows.

We start from the basic identity

qZ = @0 + M%/] —ie = (al‘gi)z
=2a a8 1€, + 2aza405€4 = saja, + %a3a4.
(17
Dividing by D, - - - ©, and integrating over d*q we arrive
at the following representation of the required scalar

5-point function (we use the notation of Ref. [26] for E|,
itself):

16

TIBZ[A”LO(DO(I) — Dy (0))
1

+2Ap1,0(Dy1(1)p(1); = Dy11(0)p(0); + D15(1)p(1); — D15(0) p(0),

+ D13(1)p(1); — D13(0)p(0)3) — Do(1) p(1)4 + Do(0) p(0)4 — 2M73, (Do(1) — Dy(0))
+ Ar35(Do(3) = Do(2)) + 24 p3 (D11 (3)p(3), — D11(2)p(2),

+D5(3)p(3), = D12(2)p(2), + D13(3)p(3)s — D13(2) p(2)3 — Do(3) p(3)4

1
4

4
+Dy(2)p(2)4) +2(M7, = s+ 2p,k)(Dy(3) — Dy(2))] — —[ D leP(Colj+ 1)
Jj=0

+Ar; j1Do(j) + 28D i1 (D (NP1 + Dia(ND P2 + Dis(j)p())s

4 4
= Do) + 2 3 Mere)Coli) + X e 53, + (M3, —5+2p20
j=0
+ekpDo)) |}/, (1)
where we have the identifications
pP1=pri, Pr=p1—k Pp3=pitpa—k ps=pl, mo=My, m=my, my=my, mz=DMy, i=m,,
and where the coefficient Cg, is given by
Co =M —ie+ T BNn 08— st 2p P 0 — s + 20k
E, = My, 7 L€ 28 §T 2P 4p2s v, 8T 2P
1 . " "
+ zm[csceM%/, (M3, — s + 2pyk) + csc3My, (2kpy) + coc5 (M5, — s + 2pok)(2kp,)]
1
+ Z[|Cs|2M€/, + el (M7, — s + 2pyk)* + le71*(2kpy)°]) (19)

We have here used a combination of the notation from Refs. [2,25,26] so that the definitions which follow should hold true:
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D;=(q+ p;)* —m; +ie=q*+2qp; + p; —m; +ie=q>+2qp; +r},
Ari’jErl'_rj,
Apij=pi— Dj

Dy(j) = 4-point scalar function obtained from 5-point scalar function by omitting denominator D,

Cy(i, j) = 3-point scalar function obtained from 5-point scalar function by omitting denominators ®; and ;i # j,

where we also follow the Passarino-Veltman [2] notation of
the 4-point one-tensor integral, D, (j), obtained by omit-
ting denominator j from the corresponding 5-point one-
tensor integral with

D,(j) = Dy ()p()1 + Di2()p()a + Di3(j)p())s
= Do()p(j)a,

where the four-vectors {p(j);} are then determined in ac-
cordance with Ref. [2], with the understanding that p(j), is
only nonzero if it is necessary to shift the g integration
variable by it to reach the standard form of the respective
Passarino-Veltman representation. This expression for E
does not have problems with Gram determinant-type
denominators.

To further exhibit the magic in the polarization vector
spinor representation under display here, we record as well
the results for Fig. 1(a) and 1(b) that one needs to add to our
result for Fig. 1(c) to get a gauge invariant result:

M9, =0
M= Qayo(py+ pr— Py —ph— k)
» 442C [ d*q
(k= |pi+Xk = |pat) @m)*
N/
X ———,
DD DD,

by magic

(20)
where the numerator N’ is given by

N'= ((p5 = IprH)ay +(ps = |p2H)b)(p1 = [p2+)
X{py + Ipi =) = {p1 — lk+)Xk + |p}—))
+((ph = IpiH)a; + (ph — |pa+)by)
X [(=2p1(p2 — k) @y + ax(py — lk+Xk + |pr—)]
(2D

with the definitions

a; = (1+a)2pip}) +as(ps + Ipi =Xp} = |p1+)

by = ax(ps + 1y =Xp) — Ip1+) + @2p1p))

a =<(p1 — Ipo M + a))p1 + ) —) + @&lps + Ipi—)]
by =(p1 — IpaH)arlps + Ipi =) + @ulpy +pi )] (22)

Again, this gives immediate reduction to the known scalar
functions with considerable reduction in the number of
terms requiring evaluation compared to the usual trace
over fermion lines method when one computes the respec-
tive contribution to 2R M3 M!. The complete phenome-
nology of our results for the process in Fig. 1 will appear
elsewhere [36].

It is important to explain the difference between what we
have done here and what was done in Refs. [3,4,40,41]. We
do this in turn in a somewhat reverse chronological order.
In Ref. [40], the representation of the loop variable in a
basis of lightlike four-vectors is used to construct a recur-
sion relation between one-loop n-point tensor integrals of
differing rank whereas in Ref. [41] the spinor representa-
tion of the external tensor coefficient of a massless n-point
tensor one-loop integral is used to reduce the rank of that
integral iteratively to allow numerical implementation,
using Dirac matrix methods. In both cases, the square roots
of the Gram determinants appear in the denominators of
the resulting representations. In our approach, explicit
kinematics allows direct Chinese magic action in the com-
plete amplitude contribution’s evaluation directly to the
lower point functions without Gram determinant factors
to be computed in our denominators. No iteration is
necessary and Chinese magic reduces considerably the
number of terms in our final result. Such action is not
present in Refs. [40,41]. In Ref. [4], the representation of
the n-point amplitude at one-loop starts from its integrand
N(g)/(Dy -+ D,_,) with an expansion of the numerator
N(q) in powers of the denominators {D ;} with coefficients
that split into a part that is independent of ¢ and a part that
integrates to zero with the understanding that the integra-
tion measure is in general in d dimensions, whereas the
function N(q) is defined for ¢ in four dimensions. We refer
to this representation as the Ossola-Papadopoulos-Pittau
(OPP) representation after the authors in the first paper in
Ref. [4]. Various methods for adding in the so-called
missing rational terms generated by the mismatch between
the 4-dimensional ¢ in N and the d-dimensional g in the
{®;} are given in Ref. [4], including the generalized
d-dimensional unitarity that treats the full d-dimensional
unitarity realization of the OPP representation. In all of
these works, N(q) or N(g) is treated as a given and no
procedure for exploiting Chinese magic to simplify it at the
loop momentum level is considered. Moreover, the need to
add in rational terms is an essential part of the procedure,
whereas, as we see in our result (13), we do not have such
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an issue in our approach—we get the complete answer with
methods that operate entirely in four dimensions.® More
importantly, inverse powers of Gram-type determinants
appear in the coefficients in the representation of N so
that issues of numerical stability obtain, whereas as we
show above our approach does not lead to such factors so
that it should be more stable. Finally, the procedure for
determining the coefficients in the representation of N
involves solving the algebraic problem for the g values at
which 4, then 3, then 2, and finally 1 of the {D;} vanish(es).
This means that, in general, complex values of ¢ are
required and this forces the evaluation of N(g) at such
unphysical 4-momenta. Our approach avoids this issue
altogether as we carry our entire calculation out in the
four-dimensional real virtual loop momentum space. We
then provide a completely physical cross check on the
methods in Ref. [4]. Similarly, the approach in Ref. [3]
also takes the integrand as a given and constructs
the respective amplitude from unitarity-based on-shell

°If one wants to apply our method to lower point amplitudes
that are UV divergent, in renormalizable theories one should use
the known counterterms for those divergences to render the
amplitudes finite first and then apply our four-dimensional
methods to the UV finite subtracted amplitudes.

PHYSICAL REVIEW D 83, 113014 (2011)

(recursion) relations, where the authors in Ref. [3] are
able to get both the cut-constructable and the rational parts
of the amplitudes with such methods. Again, there is no
exploitation of Chinese magic to simplify the amplitude at
the loop variable level, the amplitude construction uses
4-particle cuts that have in general complex 4-momenta
as their solutions so that wave functions are evaluated at
such unphysical momenta, and the solution of these on
shell relations generally introduces troublesome kinematic
factors in the denominators of the representation so that
numerical stability cannot be assured. Our approach avoids
all of these problems and affords again a completely physi-
cal cross check on this approach as well.

The complete analytical result for the amplitude in Fig. 1
will be presented elsewhere [36]. Here, we have shown that
the use of Chinese magic in the virtual loop momentum can
reduce considerably the amount of algebra required for
stable, efficient, manifestly physical computation of higher
point virtual corrections with general mass scales, as they
are needed for exact amplitude-based resummed MC event
generator realization.
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