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We present a new calculation of the cross sections for charged current and neutral current �N and ��N

interactions in the neutrino energy range 104 <E� < 1012 GeV using the most recent Martin-Stirling-

Thorne-Watt (MSTW) parton distribution functions (PDFs), MSTW 2008. We also present the associated

uncertainties propagated from the PDFs, as well as parametrizations of the cross section central values,

their uncertainty bounds, and the inelasticity distributions for ease of use in Monte Carlo simulations. For

the latter we only provide parametrizations for energies above 107 GeV. Finally, we assess the feasibility

of future neutrino experiments to constrain the �N cross section in the ultrahigh energy regime using a

technique that is independent of the flux spectrum of incident neutrinos. A significant deviation from the

predicted standard model cross sections could be an indication of new physics, such as extra space-time

dimensions, and we present expected constraints on such models as a function of the number of events

observed in a future subterranean neutrino detector.
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I. INTRODUCTION

Neutrino experiments are closing in on neutrinos in the
ultrahigh energy (UHE) regime, where a diffuse neutrino
flux, first predicted by Berezinsky and Zatsepin [1,2], is
expected to result from interactions between UHE cosmic
rays and cosmic microwave background photons through
what is known as the Greisen, Zatsepin, and Kuzmin
(GZK) process [3,4]. Neutrinos in this energy regime probe
higher center-of-mass (COM) energies than those acces-
sible by human-made accelerators through their interac-
tions in the earth. For example, the COM energy of a
109 GeV neutrino incident on a nucleon at rest is 45 TeV.
Thus, a measurement of neutrino-nucleon (�N) cross sec-
tions in the UHE regime could be sensitive to either new
physics scenarios such as extra space-time dimensions or
unexpected behavior of parton distribution functions
(PDFs) at Bjorken-x smaller than that accessible by current
experiments (from here on, any � refers to both neutrino
and antineutrino unless otherwise stated) [5]. However,
before the significance of any �N cross section measure-
ment can be assessed, the uncertainties on the standard
model (SM) expectation must be quantified based on the
diverse body of current experimental constraints.

The paper is composed of two parts. In Sec. II, we
perform a new calculation of �N cross sections and their
associated PDF uncertainties for neutrino energies
E� > 104 GeV using the MSTW 2008 PDF set. In

Sec. II A, we review the expressions for the �N cross
sections in terms of the quark PDFs. In Sec. II B we present
the results of our cross section calculations, associated
uncertainties, and their energy-dependent parametriza-
tions. Next, in Sec. II C we discuss the differential cross
sections and parametrize the inelasticity distributions in an
energy-dependent way. We also show a few select distri-
butions in x. In Sec. II D, we calculate the correlations
between the uncertainties across energies.
In Sec. III, we propose to constrain the UHE �N cross

section in future subterranean neutrino experiments using a
technique that is independent of the incident flux spectrum
of neutrinos and present projected constraints on models
with enhanced cross sections due to extra space-time
dimensions.

II. NEUTRINO-NUCLEON CROSS SECTION

A. Methodology

The �N cross section for charged current (CC) interac-
tions on an isoscalar target is given by1:

�CCðE�Þ¼2G2
FMNE�

�

�
Z 1

0

Z 1

0
dydx

�
M2

W

Q2þM2
W

�
2½qþð1�yÞ2 �q� (1)

with quark and antiquark densities given by q ¼
ðdþ uÞ=2þ sþ b and �q ¼ ð �dþ �uÞ=2þ cþ t. In all of
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the equations in this paper we assume that a quark
distribution function is equivalent to the corresponding
antiparticle distribution except for u and d. In MSTW
2008, t ¼ 0 and it is not strictly true that s ¼ �s, but these
are negligible effects for our calculations. Here, GF ¼
1:17� 10�5 GeV�2 is the Fermi coupling constant and
MN is the nucleon mass for which we use the proton mass,
0.938 GeV. The mass of the W boson MW ¼ 80:398 GeV,
E� is the incident neutrino energy, and x and y are the
parton momentum fraction (Bjorken-x) and the inelasticity,
respectively.

Likewise, the neutral current (NC) �N cross section is
given by

�NCðE�Þ ¼ 2G2
FMNE�

�

�
Z 1

0

Z 1

0
dydx

�
M2

Z

Q2 þM2
Z

�
2½q0 þ ð1� yÞ2 �q0�;

(2)

where MZ is the Z mass. Then

q0 ¼ uþ d

2
ðL2

u þ L2
dÞ þ

�uþ �d

2
ðR2

u þ R2
dÞþ (3)

ðsþ bÞðL2
d þ R2

dÞ þ ðcþ tÞðL2
u þ R2

uÞ (4)

and

�q 0 ¼ uþ d

2
ðR2

u þ R2
dÞ þ

�uþ �d

2
ðL2

u þ L2
dÞ (5)

þ ðsþ bÞðL2
d þ R2

dÞ þ ðcþ tÞðL2
u þ R2

uÞ (6)

with Lu ¼ 1� 4=3 � xW , Ld ¼ �1þ 2=3 � xW , Ru ¼
�4=3 � xW , and Rd ¼ 2=3 � xW where xW ¼ sin2�W ¼
0:226. For the ��N cross sections, the above equations are
the same with each quark distribution function replaced
with the corresponding antiparticle distribution and vice
versa, so that q $ �q, q0 $ �q0.

We use the parton distribution functions calculated by
Martin et al. known as ‘‘MSTW 2008’’ [6]. These PDFs are
the latest update to a series that began with the MRS PDFs
20 years ago, which were the first global next-to-leading-
order (NLO) PDF analysis. The MSTW 2008 set incorpo-
rates improvements in the precision and kinematic range of
recent measurements as well as improved theoretical de-
velopments that make the global analysis more reliable.
The publication of the MSTW 2008 set was particularly
timely in view of the start of data taking at the Large
Hadron Collider (LHC).

B. Cross sections

Figures 1 and 2 show the results of our �N and ��N cross
section calculations compared with the previous calcula-
tions by Gandhi et al. (GQRS) [7]. These results are
summarized numerically in Tables I and II. With regard

to uncertainties, the latter paper only states that they find
the uncertainties in the �N cross sections to be at most a
factor of 2�1. Recently, Cooper-Sarkar and Sarkar (CSS)
[8] also published CC �N cross sections for energies in the
range 100< s < 1012 GeV2 where

ffiffiffi
s

p
is the COM energy

of the interaction. There has also been a recent investiga-
tion into the dependence on the number of active heavy
quarks in [9]. We find good agreement with the central
values of both the GQRS and CSS calculations within our
uncertainties. We note that the explicit evolution of the
MSTW 2008 PDFs only takes place down to the lowest
value of the grid points, i.e. x ¼ 10�6. Below this the
values for the central set and each eigenvector for the error
sets are extrapolated linearly in lnð1=xÞ. Within the region
of the grids the accuracy of the NLO and NNLO evolution
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FIG. 1. Calculated �N CC and NC cross sections. In this plot
we compare this work (CTW), with the shaded bands represent-
ing the associated uncertainties due to PDFs, to those in GQRS.
Thin black lines bound the NC uncertainties so that they remain
visible where they overlap with the CC bounds.
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FIG. 2. Calculated ��N CC and NC cross sections. In this plot
we compare this work (CTW), with the shaded bands represent-
ing the associated uncertainties due to PDFs, to those in GQRS.

AMY CONNOLLY, ROBERT S. THORNE, AND DAVID WATERS PHYSICAL REVIEW D 83, 113009 (2011)

113009-2



has been checked to small fractions of a percent, see Sec. 3
of [6].2

Figure 3 compares the uncertainties on the cross section
calculations for the range of energies being considered.
The uncertainties on our calculations are dramatically
different from those reported by CSS for E� * 108 GeV.
The difference is due to a different parametrization of the
gluon parton distribution gðxÞ. The CSS fit to the HERA
data allows a very good fit with the gluon distribution
having an x dependence of the form gðxÞ / x�. However,
MSTW 2008 finds that a sum of two terms with different
powers xgðxÞ / A1x

�1 þ A2x
�2 gives a better fit to the

global data set. This is partially due to the global fit
requiring a slightly larger value of the strong coupling �S

and consequently less gluon to drive small-x structure
function evolution. It is also found that Tevatron jet data
prefer a larger high-x gluon distribution, hence allowing a
smaller gluon distribution at small-x from the momentum
sum rule. (It is shown in [11] that fitting the newer com-
bined HERA data in [12] results in no very significant
change to the MSTW PDFs.)
As well as producing the best fit, the greater flexibility

brought about by including two terms in the parametriza-
tion results in more rapid expansion of the allowed range in
gðxÞ at low-x beyond the reach of current experiments, as
illustrated in Fig. 16 of [6]. With the parametrization used
by CSS, the uncertainty can only grow as a function of
lnð1=xÞ in this region as discussed in Sec. 6.5 of [6]. We

TABLE II. Cross sections for ��N.

E �� (GeV) �CC (cm�2) �NC (cm�2) �tot (cm
�2)

1� 104 0:29� 10�34 0:11� 10�34 0:4� 10�34

2:5� 104 0:63� 10�34 0:24� 10�34 0:87� 10�34

6� 104 0:12� 10�33 0:47� 10�34 0:17� 10�33

1� 105 0:17� 10�33 0:67� 10�34 0:24� 10�33

2:5� 105 0:3� 10�33 0:12� 10�33 0:42� 10�33

6� 105 0:49� 10�33 0:2� 10�33 0:68� 10�33

1� 106 0:63� 10�33 0:26� 10�33 0:89� 10�33

2:5� 106 0:98� 10�33 0:4� 10�33 0:14� 10�32

6� 106 0:15� 10�32 0:6� 10�33 0:21� 10�32

1� 107 0:18� 10�32 0:76� 10�33 0:26� 10�32

2:5� 107 0:26� 10�32 0:11� 10�32 0:37� 10�32

6� 107 0:37� 10�32 0:16� 10�32 0:52� 10�32

1� 108 0:45� 10�32 0:19� 10�32 0:64� 10�32

2:5� 108 0:62� 10�32 0:27� 10�32 0:88� 10�32

6� 108 0:84� 10�32 0:36� 10�32 0:12� 10�31

1� 109 0:99� 10�32 0:43� 10�32 0:14� 10�31

2:5� 109 0:13� 10�31 0:58� 10�32 0:19� 10�31

6� 109 0:17� 10�31 0:77� 10�32 0:25� 10�31

1� 1010 0:2� 10�31 0:9� 10�32 0:29� 10�31

2:5� 1010 0:27� 10�31 0:12� 10�31 0:39� 10�31

6� 1010 0:35� 10�31 0:15� 10�31 0:5� 10�31

1� 1011 0:4� 10�31 0:18� 10�31 0:58� 10�31

2:5� 1011 0:52� 10�31 0:23� 10�31 0:75� 10�31

6� 1011 0:66� 10�31 0:3� 10�31 0:96� 10�31

1� 1012 0:77� 10�31 0:35� 10�31 0:11� 10�30

TABLE I. Cross sections for �N.

E� (GeV) �CC (cm�2) �NC (cm�2) �tot (cm
�2)

1� 104 0:48� 10�34 0:16� 10�34 0:63� 10�34

2:5� 104 0:93� 10�34 0:32� 10�34 0:12� 10�33

6� 104 0:16� 10�33 0:57� 10�34 0:22� 10�33

1� 105 0:22� 10�33 0:78� 10�34 0:3� 10�33

2:5� 105 0:36� 10�33 0:13� 10�33 0:49� 10�33

6� 105 0:56� 10�33 0:21� 10�33 0:77� 10�33

1� 106 0:72� 10�33 0:27� 10�33 0:98� 10�33

2:5� 106 0:11� 10�32 0:41� 10�33 0:15� 10�32

6� 106 0:16� 10�32 0:61� 10�33 0:22� 10�32

1� 107 0:2� 10�32 0:76� 10�33 0:27� 10�32

2:5� 107 0:29� 10�32 0:11� 10�32 0:4� 10�32

6� 107 0:4� 10�32 0:16� 10�32 0:56� 10�32

1� 108 0:48� 10�32 0:19� 10�32 0:67� 10�32

2:5� 108 0:67� 10�32 0:27� 10�32 0:94� 10�32

6� 108 0:91� 10�32 0:36� 10�32 0:13� 10�31

1� 109 0:11� 10�31 0:43� 10�32 0:15� 10�31

2:5� 109 0:14� 10�31 0:58� 10�32 0:2� 10�31

6� 109 0:19� 10�31 0:77� 10�32 0:27� 10�31

1� 1010 0:22� 10�31 0:9� 10�32 0:31� 10�31

2:5� 1010 0:29� 10�31 0:12� 10�31 0:41� 10�31

6� 1010 0:37� 10�31 0:15� 10�31 0:53� 10�31

1� 1011 0:43� 10�31 0:18� 10�31 0:61� 10�31

2:5� 1011 0:56� 10�31 0:23� 10�31 0:8� 10�31

6� 1011 0:72� 10�31 0:3� 10�31 0:1� 10�30

1� 1012 0:83� 10�31 0:35� 10�31 0:12� 10�30
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FIG. 3. Uncertainties on the calculated cross sections due to
PDFs. We compare this work (CTW) to CSS.

2A numerical inaccuracy in the LO evolution at very small x,
albeit very much less than the uncertainty, has been pointed out
in [10]. This is unique to LO due to the extreme singular
behavior of the small-x gluon in this case. It will be corrected
in future sets.
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notice that the point at which our uncertainty starts to
exceed that of CSS to a significant extent is indeed when
the constraint due to HERA data is starting to disappear,
i.e. when the dominant x values contributing to the cross
section are x ¼ 10�5 or lower. At very high neutrino
energy when the x values probed are typically well below
x ¼ 10�5, our uncertainty on the cross section becomes
very large. Hence, we conclude that a good measurement
of the cross section within this range will provide the first
direct constraint on the extremely small-x PDFs, and can
give us the first true indication of their central value as well
as reducing the uncertainty significantly.

At the lower end of the uncertainty bands the cross
sections do contain contributions from PDFs that have
become negative. It is difficult to know whether this is
really a problem. At low orders in �S and leading twist
perturbation theory this could lead to negative cross sec-
tions. However, we have the possibility of both large
lnð1=xÞ perturbative corrections and higher-twist nonlinear
effects in this regime that could alter this conclusion.
Hence, our uncertainty at the very highest energies can
be thought of as acknowledging the possibility of theoreti-
cal corrections in this regime.

The recent comparative study of high energy neutrino
cross sections in [13] illustrates the variation between
models at very high energies due to theoretical assump-
tions. (Note the variation at lower energies between models
in Figs. 1 and 2 of this paper is likely due to the omission of
terms required at higher x [14]).

Parametrizations

For ease of use in Monte Carlo simulations, we have
parametrized the cross sections in the energy range
4< "< 12, where " � log10ðE�=GeVÞ, with an expres-
sion of the following form:

log10½�ð"Þ=cm2�¼C1þC2 � lnð"�C0ÞþC3 � ln2ð"�C0Þ
þC4= lnð"�C0Þ: (7)

Table III shows the values of the constants for each of
�N and ��N interactions, CC and NC. The parametrized
cross sections are within approximately 1% (2%) of the
calculated cross sections in the stated energy range for �N
( ��N). In Table IV we show the same constants for parame-
trizing the upper and lower bounds on the cross sections
due to the uncertainties derived in this paper. For the upper

bounds, the parametrizations are good to approximately
5% (10%) for describing our �N ( ��N) calculations. For the
lower bounds, the parametrizations are at most approxi-
mately 8% from our �N ( ��N) calculations until 1011:5 <
E� < 1012 GeV where they deviate by nearly 20%.
Note that the highest power of log10E� required to

describe the cross section is quadratic, the same as the
quadratic dependence of the Froissart bound [15] on
hadron-hadron cross sections. This shows that although
in principle the PDFs and cross sections grow quicker
than any power of log10E� as E� ! 1 without some non-
linear evolution effects slowing the evolution at very small
x, in practice this has not clearly manifested itself in the
region of energy we consider. The desire to have a parame-
trization for structure functions manifestly consistent with
the Froissart bound at all energies has led to the results in
[16,17], which gives rather lower predictions than our
central values. However, even the upper band of our un-
certainty is not generating behavior obviously stronger
than ðlog10E�Þ2 for E� � 1012 GeV.
Finally, the fraction of NC events is parametrized by

�NC

�NC þ �CC
¼ D1 þD2 � lnð"�D0Þ (8)

with D0 ¼ 1:76, D1 ¼ 0:252162, and D2 ¼ 0:0256.

C. Differential cross sections

1. Inelasticity

For ease of use in Monte Carlo programs, we describe
here a procedure for choosing inelasticities that follow the
proper energy-dependent distributions for energies in the
range 107 � E� � 1012 GeV. We use the inverse trans-
form method described in [18], which requires finding a
function that describes d�=dy that has an integral that is
invertible.
Because of the steepness of the differential cross section

at low values of y, we divide up the parametrization into
two regions in y:

TABLE IV. Coefficients for parametrizing the uncertainty
bounds on the cross sections according to Eq. (7).

C0 C1 C2 C3 C4

Upper

� NC �1:456 32.23 �32:32 5.881 �49:41
� CC �1:456 33.47 �33:02 6.026 �49:41
�� NC �2:945 143.2 �76:70 11.75 �142:8
�� CC �2:945 144.5 �77:44 11.90 �142:8

Lower

� NC �15:35 16.16 37.71 �8:801 �253:1
� CC �15:35 13.86 39.84 �9:205 �253:1
�� NC �13:08 15.17 31.19 �7:757 �216:1
�� CC �13:08 12.48 33.52 �8:191 �216:1

TABLE III. Coefficients for parametrizing the cross sections
according to Eq. (7).

C0 C1 C2 C3 C4

� NC �1:826 �17:31 �6:448 1.431 �18:61
� CC �1:826 �17:31 �6:406 1.431 �17:91
�� NC �1:033 �15:95 �7:296 1.569 �18:30
�� CC �1:033 �15:95 �7:247 1.569 �17:72
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d�

dy
¼

�
YðC0; C1; C2Þ 0< y< 10�3

Y0ðC0
0; C

0
1Þ 10�3 < y< 1

(9)

with Y and Y0 taking the following form:

YðC0; C1; C2Þ ¼ C0

ðy� C1Þ1=C2
; (10)

Y0ðC0
0; C

0
1Þ ¼

C0
0

y� C0
1

: (11)

For the low y region, the normalized integral of the
distribution at y0 is

Iðy0Þ ¼
R
y0
ymin

YðC0; C1; C2ÞdyR
ymax
ymin

YðC0; C1; C2Þdy

¼ ðy0 � C1Þð�1=C2þ1Þ � ðymin � C1Þð�1=C2þ1Þ

ðymax � C1Þð�1=C2þ1Þ � ðymin � C1Þð�1=C2þ1Þ :

(12)

For the high y region, it is

Iðy0Þ ¼
R
y0
ymin

Y0ðC0
0; C

0
1ÞdyR

ymax
ymin

Y0ðC0
0; C

0
1Þdy

¼
2
4ln

�
y0�C0

1

ymin�C0
1

�
ln
�
ymax�C0

1

ymin�C0
1

�
3
5: (13)

Notice that Eqs. (12) and (13) no longer contain the
normalization factors C0 and C0

0. For the low-y region,

ymin ¼ 0 and ymax ¼ 10�3, while for the high-y region,
ymin ¼ 10�3 and ymax ¼ 1.

Since Eqs. (12) and (13) each represent a cumulative
distribution function that is invertible, we can use the
inverse transform method to select values of y0 that follow
the distributions in Eqs. (10) and (11) in each region. By
setting Iðy0Þ of Eqs. (12) and (13) to a random number R
between 0 and 1, we can then solve for our choice of y0 and
obtain for the low y region:

y0 ¼ C1 þ ½Rðymax � C1Þð�1=C2þ1Þ

þ ð1� RÞðymin � C1Þð�1=C2þ1Þ�C2=ðC2�1Þ (14)

and for the high y region:

y0 ¼ ðymax � C0
1ÞR

ðymin � C0
1ÞR�1

þ C0
1: (15)

The parameter C1 itself depends on ", and for both
regions of y, the energy-dependent parameter takes the form

C1 ¼ A0 þ A1 exp½�ð"� A2Þ=A3�: (16)

In Eq. (16), all parameters are primed when describing the
high-y region. The numerical values of the parameters in
Eq. (16), summarized in Table V, were obtained from fits of
the parametrizations to the theoretical calculations.

In the low region, the parameter C2 is also energy
dependent:

C2 ¼ B0 þ B1 � "; (17)

where B0 ¼ 2:55 and B1 ¼ �0:0949 for all interaction
types.
The fraction of the cross section occupying the low-y

region is given by

fð"Þ ¼ F0 � sin½F1 � ð"� F2Þ� (18)

with F0 ¼ 0:128, F1 ¼ �0:197, and F2 ¼ 21:8 for all
interaction types.
To summarize, for an interaction of a given type (�N or

��N, CC or NC) at an energy ", one can find an inelasticity
y0 chosen from the appropriate distribution through the
following steps:
(i) Choose a random number R1 between 0 and 1 and if

R1 < fð"Þ [see Eq. (18)], then the event lies in the
low-y region. Otherwise, it is in the high-y region.

(ii) Obtain the value of C0
1, or C1 and C2, depending on

the y region and the event type, using Eqs. (16),
Eq. (17), and Table V.

(iii) Choose a new random number R2 and insert
R ¼ R2 along with the parameters obtained in the
previous step into Eq. (14) or Eq. (15) to obtain y0.

Figures 4 and 5 show the calculated y distributions in
each region compared with the event distributions gener-
ated from this procedure for �N, CC events at " ¼ 10.
For all event types and energies in the range 7 � " �

12, this procedure will give y distributions whose mean
value differs from the theoretical calculation by at most
3.7% in the energy range E� ¼ 107–1012 GeV. Recall that
the inelasticity is the fraction of neutrino energy carried
away by the hadronic shower and therefore these uncer-
tainties on the mean hadronic energy imply less than 1%
uncertainties on the mean energy of the final state lepton.
The rms of the distributions are 0.05–0.07 in the same
energy range and the difference in rms values between
the model and the calculation is no more than 2.6% for
all interaction types except the ��N CC events, whose
uncertainties on the RMS values do not exceed 8.3%. In
[19], the authors give a parametrization of the inelasticity
distributions in the neutrino energy range 50 GeV<E� <
1012 GeV which is within 15% agreement with calcula-
tions using the CTEQ6 parton distribution functions.

TABLE V. Coefficients that go into calculating C1 and C0
1 in

Eq. (16) for parametrizing the inelasticity distributions.

Low y
A0 A1 A2 A3

0.0 0.0941 4.72 0.456

High y

A0
0 A0

1 A0
2 A0

3

��N CC �0:0026 0.085 4.1 1.7

�N CC �0:008 0.26 3.0 1.7

��N NC �0:005 0.23 3.0 1.7

�N NC �0:005 0.23 3.0 1.7
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Sample code for generating energy-dependent inelastic-
ity distributions for all interaction types according to
the prescription laid out in this paper can be found
online [20].

2. Bjorken-x

The fraction of momentum carried by a parton within a
nucleon is called the Bjorken-x. UHE neutrino cross sec-
tions include contributions from PDFs in the region of x
that is lower than the region above 10�4–10�5 accessible in
the perturbative regime by HERA experiments [12].
Figure 6 shows the distributions of ð1=�totÞd�=dðlog10xÞ
for energies between 104 and 1012 GeV. As one can see,
the cross section starts to become very sensitive to the
x-range below the extent of the HERA data constraint at
E� � 109 GeV.

D. Correlations

Since we quote uncertainties on the �N cross sections
continuously across the energy range, we also include the
correlations between the uncertainties at different energies
using the prescription laid out in [21]. For completeness we
briefly summarize the procedure here.
Each cross section value calculated in this paper is the

sum of contributions from N different orthogonal eigen-
vectors that are the result of diagonalizing the parameters
of the PDFs. Considering two different cross sections, X
and Y, the correlation between their uncertainties is de-
noted cos’ and is given by

cos’ ¼
~�X � ~�Y

�X�Y

¼ 1

4�X�Y

XN
i¼1

ðXðþÞ
i � Xð�Þ

i ÞðYðþÞ
i � Yð�Þ

i Þ; (19)

where

�X ¼ j ~�Xj ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðXðþÞ
i � Xð�Þ

i Þ2
vuut : (20)

Here, XðþÞ
i and Xð�Þ

i are the upper and lower bounds on
the contribution to X from the ith eigenvector. For a
maximum correlation, cos’ ¼ 1, for an anticorrelation,
cos’ ¼ �1, and for two quantities that are uncorrelated,
cos’ ¼ 0.
In Fig. 7, we plot cos’ for all energy pairs in the range

104–1012 GeV for charged current �N cross sections. The
analogous plots for ��N and neutral current cross sections
look similar. There are very strong correlations among
cross sections at energies above 109 GeV, and then again
below 107 GeV, with little correlation between energies in
different regions. There are three reasons for this, all

Inelasticity y
0.0002 0.0004 0.0006 0.0008 0.001

/d
y

σ
 d

to
t

σ
1/

0

100

200

300

400

500

600

700

800

FIG. 5. Same as Fig. 4, but for low-y region. The curves are
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associated with the fact that in the lower energy region the
cross section has a high proportion of its contribution from
x� 0:01 or above, while in the higher energy region most
of the contribution is from x values lower than this. First,
from sum rules in the PDFs, there is a crossing point where
changes in PDFs become anticorrelated, i.e. for any change
in the PDFs, they tend to increase below this x and decrease
above this x or vice versa. For high energy scales this is at
x 	 0:01. Second, this also happens to be the xwhere there
is a very large amount of accurate HERA data also tending
to fix the PDFs. Third, x ¼ 0:01 is a transition point at
which for higher x the dominant contributions are from
valence quarks but for lower x the sea quarks dominate,
which are gluon driven.

III. CROSS SECTION CONSTRAINTS

A. Motivation

The upper (lower) bounds on the standard model �N
cross sections differ from the central values by more than
approximately 20% (15%) for neutrino energies above
109 GeV. Above 1010 GeV, the uncertainties are more
than approximately 50% (30%).Wewould like to constrain
the cross sections at the highest energies because in that
region neutrino experiments could be sensitive to new
physics scenarios. Fortunately, there is a near guaranteed
flux of neutrinos in the UHE energy regime from GZK
interactions, but this so-called ‘‘cosmogenic’’ neutrino flux
has large theoretical uncertainties associated with it.

Here we outline a technique [22] to constrain the UHE
�N cross sections that is independent of the incident neu-
trino flux through the measured zenith angle distributions
with a subterranean detector such as IceCube, ARA, or
ARIANNA [23–25]. The latter two experiments are cur-
rently in the first stages of deploying prototype detectors
and will be focused on the UHE regime. Here, we focus on

the ARA detector as an example, but our results are general
to any subterranean neutrino detector with similar capa-
bilities in energy measurement and reconstruction.
The sensitivity of neutrino detectors to �N cross sections

due to earth absorption has been addressed elsewhere in
varying degrees [26–34]. This is the only study that uses
the full zenith angle distribution in the UHE regime to
make hard predictions for the expected constraints on
models with extra dimensions.
We note a few assumptions made for this study. First, we

assume the incident flux is entirely neutrinos with no
antineutrino component. Above 108 GeV, the cross sec-
tions for neutrinos and antineutrinos differ by no more than
about 6%. Second, we assume that all of the interactions
occur at the same depth, d ¼ 250 m, and that it is precisely
known. In an actual data analysis one would modify the
dn=d cos�z distributions so that d is the measured depth,
just as we use the measured energy for each event. The
three-dimensional vertex resolution of the ARA detector is
expected to be of order of 10’s of meters. One can show
that a depth uncertainty given by �d changes dP=d cos�z
by a fraction of order �d=L. This only approaches of order
10% at the highest cross sections probed in this paper,
approximately 10�28:5 cm2. We also assume that the de-
tector efficiency is flat in zenith angle �z and that the
neutrino flux is isotropic. An analysis would fold in the
measured detector efficiency, and neutrinos from any dis-
covered sources could be removed from the sample.
Finally, we assume that the energy resolution �log10E� ¼
0:4, which is dominated by the uncertainty in inelasticity, is
appropriate for both neutrino and black hole interactions.

B. ARA

The Askaryan Radio Array (ARA) is a nascent neutrino
detector near the South Pole. It is an array of radio antennas
deployed deep in the ice, designed to measure the radio
Cerenkov pulse from UHE neutrinos [35–38]. If expanded
to become a precision measurement, observatory class
array of 300 to 1000 km2 area, ARA will be capable of
measuring hundreds of cosmogenic neutrinos per year. The
first ARA testbed station was deployed in the 2010–2011
austral summer, and the first ARA stations will be de-
ployed in 2011–2012.
For the purpose of generating mock ARA data for this

study, we use energy-dependent relative effective areas (the
overall scale is not used) derived by inverting the projected
flux limits for a 37-station array in [24]. The stations are
arranged on a triangular grid with the array forming a
hexagon. Each station is made of three ’’strings’’ deployed
vertically in the ice, each holding two pairs of vertically and
horizontally polarized antennas that sit at 200m depth, for a
total of 12 antennas per station. The trigger requires 5 out of
12 stations measure a pulse that exceeds 3.5 times the
expected noise level. We assume an energy resolution of
�log10E� ¼ 0:4. The resolution on the neutrino �z is
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expected to be approximately 2
 for the events (approxi-
mately 80%) detected by one station only [39].

Our projected constraints will not depend on the exact
size of the ARA detector. This is because the expected
limits will be quoted for a specific number of neutrino
events measured in the detector, whether that came from
a weak flux measured with a large detector or a strong flux
measured with a smaller detector. Nor do the projected
constraints depend strongly on the energy threshold of the
experiment, as long as there is at least a crude energy
measurement capability. We will quantify these statements
at the conclusion of Sec. III E. In addition, our conclusions
are not specific to the ARA experiment, and would be
qualitatively similar for any subterranean detector with
sensitivity to UHE neutrinos.

C. A flux-Independent technique for measuring the
UHE neutrino-nucleon cross section

Consider a neutrino (see Fig. 8) that interacts in a
subterranean detector such as ARA at depth d and zenith
angle �z, the angle from vertical of the direction of origin
of each incident neutrino. The neutrino travels a distanceD
through the earth of radius R before reaching its interaction
point. From Fig. 8 and using the law of sines,

sin�1

R� d
¼ sinð�� �zÞ

R
; (21)

which gives

sin�1 ¼ R� d

R
sin�z: (22)

Then since �2 ¼ �=2��1,

sin�2 ¼ cos�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2�1

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
R� d

R

�
2
sin2�z

s
: (23)

Then the distance traveled through the earth by the
neutrino is

D ¼ ðD� xÞ þ x ¼ R sin�2 þ ðR� dÞ sin
�
�z � �

2

�
:

(24)

Inserting Eq. (23) into Eq. (24) we find

D ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
R� d

R

�
2
sin2�z

s
þ ðR� dÞ sin

�
�z � �

2

�
:

(25)

Then, taking d � R and replacing sin�z with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2�z

q
,

we find

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � 2RdÞcos2�z þ 2Rd

q
� ðR� dÞ cos�z: (26)

If the detection efficiency is uniform in �z, then for a
neutrino with energy E�, the probability distribution in �z
for a detected interaction is given by [40]

dP

d cos�z
ðE�Þ ¼ A � exp

�
� D

LðE�Þ
�
¼ A � exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � 2RdÞcos2�z þ 2Rd

q
� ðR� dÞ cos�z

LðE�Þ
�
; (27)

where R is the radius of the earth, A is a constant that sets the total probability to unity, and LðE�Þ is the interaction length
for a neutrino of energy E� along its path through the earth, given by

LðE�Þ ¼ MN

�ðE�Þh�i�z
; (28)

whereMN is the nucleon mass, �ðE�Þ is the �N cross section at energy E� and h�i�z is the mean density averaged over the
distance travelled by the neutrino at the given �z. The expected �z distribution from a sample of n measured neutrino
interactions with measured energies ~Ei

� will be the sum of n different ðdP=d cos�zÞi, so that the resulting expected �z
distribution is then given by

FIG. 8. Diagram showing neutrino incident on the Earth used
in derivation of Eq. (27).
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dn

d cos�z exp
¼ Xn

i¼1

Ai � exp
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � 2RdÞcos2�z þ 2Rd

q
� ðR� dÞ cos�z

Lð ~Ei
�Þ

�
: (29)

Note that due to the difference between measured neutrino
energies ~Ei

� and true energies E
i
�, the expected distribution

will differ from the true one. In Fig. 9, we plot dP=d cos�z
for a few monoenergetic distributions. Notice the breaks in
the distribution due to the neutrino trajectory intersecting
the Earth’s core and mantle, derived using a simple three-
layer model of the Earth’s interior. Because of this struc-
ture at lower energies, this technique could lead to a
measurement of the Earth’s density profile with a km3

neutrino experiment such as IceCube that is independent
of the traditional techniques used by geologists [40].

D. Models with extra space-time dimensions

There are a class of models for physics beyond the
standard model that contain extra space-time dimensions
[41–44]. These models are motivated by the need to re-
solve what is known as the hierarchy problem in particle
physics, where the dramatically different energy scales for
electroweak symmetry breaking and quantum gravity lead
to a need for fine-tuning of terms in the calculation of the
Higgs mass.

In these extra-dimensional models (EDMs), the energy
scale at which gravity dominates, MD, is reduced to of
order 1 TeV, just above the electroweak scale. The weak-
ness of gravity in our 3þ 1 dimensional world is a con-
sequence of its propagation in additional dimensions. The
number of dimensions in the model beyond the four known
space-time dimensions is denoted ND.

Interactions at energies at or above the reduced Planck
mass lead to the production of micro-black holes, and this
additional channel causes cross sections to be enhanced.
The minimum black hole mass is given by Mmin

BH ¼
xminMD, where xmin is a parameter in the model.
Figure 10 shows the predicted �N cross sections for a
few EDMs, from [44], compared to the SM cross sections
calculated in this paper.
Tevatron experiments CDF and D0 have already set

lower limits on MD in the range of approximately
1–1.6 TeV with between two and seven extra dimensions
[45,46]. A recent paper by the CMS Collaboration places
constraints on black hole production at the LHC based on
35 pb�1 of data at center-of-mass energy of 7 TeV [47].
For xmin ¼ 1, they exclude models with n up to 6 for 1:5<
MD < 3:5 TeV. They were not sensitive to models with
xmin ¼ 3 in the range of MD considered. In addition, neu-
trino experiments have constrained UHE cross sections,
but in a way that depends on a model for the neutrino flux
[48]. With the technique described here, neutrino experi-
ments would be setting limits on EDMs that are competi-
tive with collider experiments and independent of a flux
model.
In Fig. 11, we plot the expected �z distribution for 100

events measured in ARA using cross sections from the SM
compared to ones from a few select EDMs and a bin width
of�cos�z ¼ 0:1. The shape of the true energy spectrum of
the 100 events is the product of an incident flux spectrum
and an energy-dependent effective area for the detector.
Here we assume a neutrino flux from the GZK process
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neutrino energies. The width of each band is due to the cross
section uncertainties reported in this paper. The kinks in the
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neutrino paths reaching the Earth’s mantle and core, respectively.
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as in [49], and the ARA effective areas derived from [24] as
described in Sec. III B.

E. Projected constraints

In order to assess the sensitivity of a future ARA detec-
tor to EDMs, we generate many pseudoexperiments and
compare the resulting pseudodata distributions to the pre-
dicted ones for the signal and null hypothesis, respectively.
For an expected number of events Nexp, the number of

events observed in a given pseudoexperiment is given by
np and is Poisson distributed with mean Nexp. The data in

the ith bin in cos�z is denoted np;i. The mean number of

events predicted in the ith bin centered on cos�z ¼ c0 is

	i ¼
dnp

d cos�z
ðc0Þ � �cos�z; (30)

where dnp=d cos�z is constructed for each pseudoexperi-

ment using Eq. (29). Note that through the Lð ~Ei
�Þ’s in

Eq. (29), dnp=d cos�z depends on the model hypothesis,

whether that be the SM or an EDM. Also note that we only
use the measured energies, selected from the incident flux
spectrum and then smeared according to detector resolu-
tion of�log10E� ¼ 0:4. The bin width is�cos�z ¼ 0:1, or
��z 	 5:7
, which is greater than the expected resolution
of the ARA array in �z.

We use the following ratio of Poisson probabilities to
discriminate between the two hypotheses [50]:

Q ¼ PpoissðdatajEDM truthÞ
PpoissðdatajSM truthÞ ; (31)

where

PpoissðdatajEDM truthÞ ¼ YN
i¼1

	ni
EDM;ie

�	EDM;i

ni!
(32)

and

PpoissðdatajSM truthÞ ¼ YN
i¼1

	ni
SM;ie

�	SM;i

ni!
: (33)

Here, N is the number of bins, and ni is the number of
events measured in the ith bin. The number of events
expected in a bin from an extra-dimensional model is
	EDM and the number expected in the standard model is
	SM. Then, we find

�2lnQ¼�2

�XN
i¼1

ni ln

�
	EDM;i

	SM;i

�
�	EDM;iþ	SM;i

�
: (34)

The parameters for the EDM models are defined in
Sec. III D. Equation (34) is evaluated separately for pseu-
dodata ~np generated assuming SM and EDM truths, giving

a different �2 lnQ distribution for each. According to the
Neyman-Pearson lemma, this likelihood ratio is the test
statistic with the most discriminating power [51].
We estimate the constraints on EDMs expected to be set

by the full scale ARA detector described in Sec. III B
depending on the observed number of events np. For the

expected limit, we first consider the median value
�2 lnQ50 of the �2 lnQ distribution from SM pseudoex-
periments. The subscript denotes the percentage of SM
pseudoexperiments with lower values of �2 lnQ. Then,
for a given EDM model, the p value is the fraction of
EDM pseudoexperiments with �2 lnQ<�2 lnQ50. Then,
on average we can expect that a model can be excluded
with percentage confidence level C:L: ¼ 100� ð1� pÞ.
The observed limit will differ from that expected due to

fluctuations in the data, as reflected by the width of the
�2 lnQ distribution for SM pseudoexperiments. Therefore,
we quote a range for the expected C.L.s by calculating p
values for �2 lnQ16 and �2 lnQ84, so that 68% of
pseudoexperiments would give confidence levels in the
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range. Figure 12 shows the distributions in �2 lnQ for the
SM and one EDM hypothesis, for 100 events observed in
ARA. We mark the points along the abscissa �2 lnQ16,
�2 lnQ50, and �2 lnQ84.

Figure 13 shows the expected C.L.s for constraining
EDMs as a function of the number of events observed
with ARA. The black bands show the variation in the
expected constraints brought about by the uncertainties
on the SM cross sections presented here. The gray bands
show the range of expected limits due to variations in the
data; 68% of the pseudoexperiments give constraints that

lie in the gray region. The gray bands are centered on the
curve corresponding to the central value standard model
cross sections. Conservatively taking the SM upper bounds
to be the true cross sections, for 100 events observed with
ARA, the mean expectation is to exclude the following
models: xmin ¼ 1, MD ¼ 1, ND � 2; xmin ¼ 3, MD ¼ 1,
ND � 3; xmin ¼ 1, MD ¼ 2, ND � 3. For xmin ¼ 3, MD ¼
2, 110 events would be needed to be predicted to exclude
ND ¼ 7.
We have checked that these projected limits are robust to

changes in the neutrino spectrum as well as details of the
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FIG. 13. Predicted confidence levels for excluding selected EDMs with an ARA experiment, depending on the number of events
observed. The upper (lower) edges of the black bands in the figure show the range of expected limits taking the SM cross section to be
their lower (upper) bounds as presented in this paper. The gray bands show the uncertainty due to pseudoexperiment statistics, with
68% of experiments expected to result in limits that lie within the gray region (using the central values for the SM cross section as the
true cross sections).

CALCULATION OF HIGH ENERGY NEUTRINO-NUCLEON . . . PHYSICAL REVIEW D 83, 113009 (2011)

113009-11



sensitivity of the experiment. We have calculated the
expected constraints with an E�3 neutrino spectrum, and
also after shifting the ARA effective areas up and down in
energy by a factor of 3. All of these changes have less of an
effect on the expected constraints than the cross section
uncertainties (the effect of which are depicted in the black
bands of Fig. 13).

IV. CONCLUSIONS

We have presented new calculations of the �N and ��N,
CC and NC cross sections in the neutrino energy range
104 < E� < 1012 GeV using the MSTW 2008 PDFs, along
with their PDF uncertainties. The cross section values are
consistent with those reported in previous publications, but
the uncertainties presented here are significantly larger.
This difference is due to a two-parameter model for the
gluon parton distribution at very small x used by MSTW
2008 arising from a fit to the global data, which leads to a
wide range of allowed values for the gluon contribution at
low-x. For ease of use in Monte Carlo simulations, we have

provided parametrizations of the cross sections for each
event type, the fraction of each type, and the cross section
uncertainty bounds in the energy range. In addition, we
have outlined a procedure for generating y values for a
neutrino sample with E� � 107 GeV using the inverse
transform method.
Finally, we present a technique for constraining UHE

cross sections with a next-generation subterranean neutrino
experiment. Using ARA as an example, we have shown
that with 100 events observed, neutrino experiments set
constraints on extra-dimensional models that are competi-
tive with those set by collider experiments.
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