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A new expression for the pion form factor F� is proposed. It takes into account the pseudoscalar meson

loops and the mixing of �ð770Þ with heavier �ð1450Þ and �ð1700Þ resonances. The expression has correct
analytical properties and can be used in both timelike and spacelike kinematical regions. The comparison

is made with the existing experimental data on F�, collected with the detectors SND, CMD-2, KLOE, and

the BABAR, restricted to energies below 1 GeV. A good description of all four data sets is obtained. In the

spacelike region, upon substituting the resonance parameters found in the timelike one, one obtains F�, in

agreement with the measurements of the NA7 Collaboration.
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I. INTRODUCTION

The pion form factor F� is an important characteristic of
the low-energy phenomena in particle physics related with
the hadronic properties of the electromagnetic current in
the theoretical scheme of the vector dominance model
[1–4]. There are a number of expressions for this quantity
used in the analysis of experimental data. The simplest
approximate vector dominance model expression based on
the effective �� � coupling / ��A� [3],

F�ðsÞ ¼
m2

�g���=g�

m2
� � s� i

ffiffiffi
s

p
����ðsÞ

; (1.1)

(for notations, see Sec. III) does not possess the correct
analytical properties upon the continuation to the unphys-
ical region 0 � s < 4m2

� and further to the spacelike re-
gion s � 0, nor does it takes into account the mixing of the
isovector �-like resonances. Since, phenomenologically
[5], g���=g� is not equal to unity—to be precise,

g���
g�

¼
�
3m�������ee

2�2q3�

�
1=2 � 1:20 (1.2)

—the correct normalization F�ð0Þ ¼ 1 is satisfied by
Eq. (1.1) only approximately. Hereafter, � ¼ 1=137 stands
for the fine structure constant. The formula of Gounaris and
Sakurai [6] respects the above normalization condition and
has the correct properties under analytical continuation.
However, being based on some sort of effective radius
approximation for the single �ð770Þ resonance, it is not
suited for taking into account the mixing of �ð770Þ with
heavier isovector mesons. The expression analogous to
Eq. (1.1), based on the gauge invariant �� � coupling /
���F��,

F�ðsÞ ¼ 1þ sg���=g�

m2
� � s� i

ffiffiffi
s

p
����ðsÞ

; (1.3)

respects the correct normalization but does not possesses
correct analytical properties and breaks unitarity. The ear-
lier expression [7,8] for F� takes into account the strong
isovector mixing but has the shortcoming that the above
normalization condition is satisfied only approximately,
within the accuracy 20%.
The applications of the Lagrangian of Kroll, Lee, and

Zumino [3] to the calculations of F� with the meson loop
contributions in the field-theoretic context are given, in
particular, in Refs. [9–11]. In particular, Ref. [10] contains
the comparison of the theoretical F� with the experimental
data in the spacelike kinematical region. However, the
authors of Ref. [10] refrained from the application of their
expression in the timelike region, despite the fact that the
high statistics experimental data collected with the detec-
tors SND [12] and CMD-2 [13] were available at that time.
The purpose of the present work is to obtain the ex-

pression for the pion form factor which possesses the
correct analytical properties in the entire kinematic domain
and takes into account the mixing of �ð770Þ with the
heavier resonances �ð1450Þ and �ð1700Þ. By restricting
the consideration to the inclusion of the pseudoscalar
meson loops �þ�� and K �K, which admits the analytical
treatment and is valid at energies below 1 GeV, the new
expression is found and compared with the existing data on
F� collected with the detectors SND [12], CMD-2 [13],
KLOE [14], and BABAR [15].
Below, in Sec. II, the method is described by which the

loop contributions to the vector-meson propagators are
taken into account. The expression for the form factor
F�ðsÞ is given in Sec. III. Section IV is devoted to the
analysis of available new experimental data on F�ðsÞ
[12–15]. Section V contains the discussion of the obtained
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results. The conclusions are stated in Sec. VI. The
Appendix is devoted to the description of the method by
which the resonance mixing is taken into account.

II. THE LOOP CONTRIBUTIONS TO
THE VECTOR-MESON PROPAGATOR

Let us give some details necessary for the derivation of
the expression for the pion form factor. They refer to the
pseudoscalar loop contributions. For the sake of brevity,
the notation

�1��ð770Þ; �2��ð1450Þ; �3��ð1700Þ (2.1)

is used hereafter for the isovector resonances involved in
the consideration.

The starting point is the effective Lagrangian describing
the SU(3) invariant interaction of the vector resonances
with the pair of pseudoscalar mesons [16,17]. Restricted to
the couplings of the isovector resonances �i, i ¼ 1; 2; 3,
with the pair of pions and kaons (P ¼ �;K), this
Lagrangian looks like

L�iPP ¼ ig�i���
0
i�

�
1

2
½K�@�Kþ � Kþ@�K� � �K0@�K

0

þ K0@ �K0� þ ��@��þ � �þ@���
�
: (2.2)

The partial width of the decay �i ! P �P, calculated from
the above effective Lagrangian, is

��i!PPðsÞ ¼
g2�iPP

s1=2v3
PðsÞ

48�
; (2.3)

where s stands for the (virtual) mass squared of the decay-
ing resonance �i, and

vPðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

P

s

s
(2.4)

is the velocity of the final meson in the rest frame of the
decaying resonance. Applying the Cutkosky cutting rule to
the diagram in Fig. 1, one finds that the imaginary part of
the diagonal polarization operator caused by the specific
real intermediate state P �P is related to the corresponding
partial decay width, according to the expression

Im�P �P
�i�i

ðsÞ ¼ ffiffiffi
s

p
��iPPðsÞ: (2.5)

In the present work, the real intermediate states �þ��,
KþK�, and K0 �K0 are taken into account; hence,

Im��i�i
ðsÞ ¼ X

P¼�þ;Kþ;K0

Im�P �P
�i�i

ðsÞ:

The diagonal and nondiagonal polarization operators for
the specific loop P �P are calculated from the dispersion
integral. Here, the version of this integral is defined which
automatically provides the condition ��i�j

ð0Þ ¼ 0, in

agreement with the conservation of the vector current.
To this end, the dispersion relation should be written for
the quantity ��i�j

ðsÞ=s. Then, one has

�P �P
�i�j

ðsÞ
s

¼ 1

�

Z 1

4m2
P

Im�P �P
�i�j

ðs0Þds0
s0ðs0 � s� i"Þ

¼ g�iPPg�iPP

48�2

Z 1

4m2
P

v3
Pðs0Þds0

s0 � s� i"
: (2.6)

One can evaluate this dispersion integral in the unphysical
region 0 � s < 4m2

P, where Im��i�j
¼ 0, and no pole is

encountered. But, the integral is still divergent at s0 ! 1.
The divergence can be regularized by taking the cutoff
s0max ¼ �2. The integration can be fulfilled with the change
of the integration variable �2 ¼ v2

Pðs0Þ ¼ 1� 4m2
P=s

0:

IðsÞ �
Z �2

4m2
P

ds0

s0 � s

�
1� 4m2

P

s0

�
3=2

¼
Z 1�2m2

P=�
2

0
d�

8m2
P�

4

ð1� �2Þð4m2
P � sþ �2Þ

¼ � 8m2
P

s
þ 2

�
4m2

P

s
� 1

�
3=2

arctan
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
P

s � 1
q þ 4 ln

�

mP

:

The logarithmic divergence can be removed by fixing
ReIðm2

VÞ ¼ 0. The diagonal elements ��i�i
� ��i�i

ðsÞ
can be represented in the form

��i�i
¼ sg2�i��

48�2

�
��ðs; m2

�i
Þ þ 1

2
�Kðs;m2

�i
Þ
�
; (2.7)

where the factor 1=2 in the second term is due to the flavor
SU(3) relation g�iKK ¼ 1

2g�i�� [see Eq. (2.2)] and that two

isotopic K �K modes contribute.
The expressions for ��;Kðs;m2

VÞ are represented in the

following form. Since the pion is the lightest hadron, the
function ��ðs;m2

VÞ looks as

FIG. 1. The meson loop diagram contributing to both the di-
agonal polarization operator��i�i

—resulting, in particular, in the

finite width of the resonance—and the nondiagonal one ��i�j
,

responsible for the �i�j resonance mixing; P ¼ �þ, Kþ, K0.
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��ðs; m2
VÞ ¼ 8m2

�

�
1

m2
V

� 1

s

�
þ v3

�ðm2
VÞ ln

1þ v�ðm2
VÞ

1� v�ðm2
VÞ

þ v3
�ðsÞ

�
i�� ln

1þ v�ðsÞ
1� v�ðsÞ

�
; if s � 4m2

�;

��ðs; m2
VÞ ¼ 8m2

�

�
1

m2
V

� 1

s

�
þ v3

�ðm2
VÞ ln

1þ v�ðm2
VÞ

1� v�ðm2
VÞ

þ 2 �v3
�ðsÞ arctan 1

�v�ðsÞ ; if 0 � s < 4m2
�;

��ðs; m2
VÞ ¼ 8m2

�

�
1

m2
V

� 1

s

�
þ v3

�ðm2
VÞ ln

1þ v�ðm2
VÞ

1� v�ðm2
VÞ

� v3
�ðsÞ lnv�ðsÞ þ 1

v�ðsÞ � 1
; if s < 0: (2.8)

The function �Kðs; m2
VÞ looks different depending on the mass of the vector meson mV . If mV > 2mK, as is the case for

V ¼ �ð1450Þ and �ð1700Þ, the expression is

�Kðs; m2
VÞ ¼ 8m2

K

�
1

m2
V

� 1

s

�
þ v3

Kðm2
VÞ ln

1þ vKðm2
VÞ

1� vKðm2
VÞ

þ v3
KðsÞ

�
i�� ln

1þ vKðsÞ
1� vKðsÞ

�
; if s � 4m2

K;

�Kðs; m2
VÞ ¼ 8m2

K

�
1

m2
V

� 1

s

�
þ v3

Kðm2
VÞ ln

1þ vKðm2
VÞ

1� vKðm2
VÞ

þ 2 �v3ðsÞ arctan 1

�vKðsÞ ; if 0 � s < 4m2
K;

�Kðs; m2
VÞ ¼ 8m2

K

�
1

m2
V

� 1

s

�
þ v3

Kðm2
VÞ ln

1þ vKðm2
VÞ

1� vKðm2
VÞ

� v3
KðsÞ ln

vKðsÞ þ 1

vKðsÞ � 1
; if s < 0: (2.9)

If mV < 2mK, as is the case for V ¼ �ð770Þ, the expression is

�Kðs;m2
VÞ ¼ 8m2

K

�
1

m2
V

� 1

s

�
� 2 �v3

Kðm2
VÞ arctan

1

�vKðm2
VÞ

þ v3
KðsÞ

�
i�� ln

1þ vKðsÞ
1� vKðsÞ

�
; if s � 4m2

K;

�Kðs;m2
VÞ ¼ 8m2

K

�
1

m2
V

� 1

s

�
� 2 �v3

Kðm2
VÞ arctan

1

�vKðm2
VÞ

þ 2 �v3
KðsÞ arctan

1

�vKðsÞ ; if 0 � s < 4m2
K;

�Kðs;m2
VÞ ¼ 8m2

K

�
1

m2
V

� 1

s

�
� 2 �v3

Kðm2
VÞ arctan

1

�vKðm2
VÞ

� v3
KðsÞ ln

vKðsÞ þ 1

vKðsÞ � 1
; if s < 0: (2.10)

The function vPðsÞ (P ¼ �;K) is given by Eq. (2.4), while

�v PðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

P

s
� 1

s
: (2.11)

Note that the expressions Eqs. (2.8), (2.9), and (2.10) have
the property that their real parts vanish at s ¼ m2

V :

Re��;Kðm2
V;m

2
VÞ ¼ 0:

III. THE EXPRESSION FOR
THE PION FORM FACTOR

The new expression for the pion form factor, which
automatically respects the current conservation condition
F�ð0Þ ¼ 1 and possesses the correct analytical properties
over the entire s axis, looks like

F�ðsÞ ¼ ðg��1
; g��2

; g��3
ÞG�1

g�1��

g�2��

g�3��

0BB@
1CCA

þ g�!��1!

D!�
ðg11g�1�� þ g12g�2�� þ g13g�3��Þ:

(3.1)

The notations are as follows. The quantity

g�V ¼ m2
V

gV
(3.2)

(V ¼ �1;2;3, !) is introduced in such a way that eg�V ,

where e is the electric charge, is the �V transition ampli-
tude. As usual, the coupling constant gV is calculated from
the electronic width

�V!eþe� ¼ 4��2mV

3g2V
(3.3)

of the resonance V. The matrix of inverse propagators

G ¼
D�1

���1�2
���1�3

���1�2
D�2

���2�3

���1�3
���2�3

D�3

0BB@
1CCA (3.4)

is responsible for the �ð770Þ � �ð1450Þ � �ð1700Þmixing
[7,8,18–20], and � ¼ detG. See the Appendix for more
detail. The inverse propagators of the �i resonance
(i ¼ 1; 2; 3) are

D�i
¼ m2

�i
� s���i�i

; (3.5)

where the diagonal polarization operator ��i�i
can be

expressed through the functions ��ðs; m2
VÞ and

�Kðs;m2
VÞ described in Sec. II. The nondiagonal polariza-

tion operators are the following:
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��1�2
¼ g�2��

g�1��

��1�1
; ��1�3

¼ g�3��

g�1��

��1�1
;

��2�3
¼ g�2��g�3��

g2�1��

��1�1
þ sa23: (3.6)

The quantity a23 is the dimensionless phenomenological
free parameter. No such parameter is introduced in ��1�2

and ��1�3
because it would result in a shift of the �ð770Þ

resonance peak position. See the Appendix and Refs. [7,8].
The term / ��1! in Eq. (3.1) takes into account the

�ð770Þ �!ð782Þ mixing. The basic quantities in this con-
tribution are the following. The inverse propagator of the
meson !ð782Þ is taken in the form

D! ¼ m2
! � s� i

ffiffiffi
s

p
�!; (3.7)

where the energy-dependent width

�! � �!ðsÞ ¼ �!3�ðsÞ þ �!��ðsÞ þ �!��ðsÞ
includes the dominant decay mode !ð782Þ ! �þ���0

and the radiative ones. The tree pion decay width is repre-
sented in the form

�!3�ðsÞ ¼
g2!�1�

4�
W3�ðsÞ;

where W3�ðsÞ is the phase space volume of the final
�þ���0 state:

W3�ðsÞ ¼
Z ffiffi

s
p �m�

2m�

dmm2��1��ðm2Þq3��
Z 1

�1
dxð1� x2Þ

�
�������� 1

D�1
ðm2Þ þ

1

D�1
ðm2þÞ

þ 1

D�1
ðm2�Þ

��������2

: (3.8)

Here, m is the invariant mass of the �þ�� pair, while
m� refers to the ���0 one:

m2� ¼ 1

2
ðsþ 3m2

� �m2Þ � xq��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

�
1� 4m2

�

m2

�s
; (3.9)

and q�� ¼ qð ffiffiffi
s

p
; m;m�Þ. Here and in what follows,

qð ffiffiffi
s

p
;ma;mbÞ¼ 1

2
ffiffiffi
s

p f½s�ðmaþmbÞ2�½s�ðma�mbÞ2�g1=2

(3.10)

is the momentum of the particles a or bwith the massesma

or mb, respectively, in the rest reference frame of the
decaying particle whose invariant mass is

ffiffiffi
s

p
. The coupling

constant g!�1� is evaluated from the! ! �þ���0 decay

width. The energy-dependent radiative width �VP�ðsÞ,
where V ¼ �1; !, P ¼ �;�, is related to the radiative

width on the mass shell �ð0Þ
VP� � �VP�ðm2

VÞ in accord with

the relation

�VP�ðsÞ ¼ �ð0Þ
VP�

q3PðsÞ
q3Pðm2

VÞ
; (3.11)

and qPðsÞ ¼ qð ffiffiffi
s

p
; mP; 0Þ is the momentum of the pseudo-

scalar meson P in the rest frame of the decaying vector
meson V. The quantity

��1! ¼ s

m2
!

�0
�1! þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�!��ðsÞ��1��ðsÞ

q
(3.12)

is the polarization operator of the �ð770Þ �!ð782Þ
mixing. The real part s�0

�1!=m
2
! is chosen in such a way

that it vanishes at s ¼ 0, and�0
�1! is a free parameter. The

contributions to Im��1! from the �� intermediate state

can be neglected in comparison with the �� one. If not
fitted, the masses and partial widths of particles and reso-
nances involved in the treatment are taken from the Review
of Particle Physics [5].
Note that the isovector-isoscalar type of weak mixing is

essential only for the �ð770Þ �!ð782Þ system because it is
enhanced due to the small mass difference of these reso-
nances. As for other isovector-isoscalar mixings
�ð1450Þ �!ð782Þ and �ð1700Þ �!ð782Þ, there is no en-
hancement due to the mass proximity, and one can neglect
��2;3! in what follows. The coupling constant of the direct

transition! ! �þ�� is neglected, too. The reason for this
is explained in the Appendix. See Eq. (A8) and the dis-
cussion around it. The quantitiesg11; g12; g13 are, respec-
tively,

g11 ¼ D�2
D�3

��2
�2�3

;

g12 ¼ D�3
��1�2

þ��1�3
��2�3

;

g13 ¼ D�2
��1�3

þ��1�2
��2�3

:

See Eq. (A5) in the Appendix.
When checking the form factor normalization F�ð0Þ ¼

1, one should have in mind that the �!mixing is negligible
at s ¼ 0, because, at this energy squared, there is no
enhancement of the effect due to the proximity of m!

and m�. The same is true for other contributions violating

G-parity conservation. Neglecting the above contributions
results in the correct normalization F�ð0Þ ¼ 1, if one takes

g�1��

g�1

þ g�2��

g�2

þ g�3��

g�3

¼ 1: (3.13)

Indeed, the mixings due to strong interactions��i�j
vanish

at s ¼ 0, and F�ð0Þ reduces to the above sum. This is the
reason for the s in front of a23 in Eq. (3.6). The comparison
of the new expression Eq. (3.1) with the latest experimental
data [12–15] obtained in eþe� annihilation is presented in
the next section.

IV. THE DATA ANALYSIS AND RESULTS

The experimental data on the reaction eþe� ! �þ��
collected by the collaborations SND [12], CMD-2 [13],
KLOE [14], and BABAR [15] are chosen for the analysis in
the framework of the field-theory-inspired approach to the
pion form factor presented in this work. As for the BABAR
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data set, we restrict ourselves by the points with
ffiffiffi
s

p �
1GeV, because, at the first stage of the study, the proposed
expression for the polarization operator is restricted to
include only �þ�� and K �K loops.

The original eþe� ! �þ�� data of the SND, CMD-2,
and KLOE Collaborations are presented in two distinct
forms. The first one is the form factor with the vacuum
polarization effect included. The BABAR Collaboration
does not present their results in this form. The second
form is the so-called bare cross section. This quantity is
undressed from the vacuum polarization effects, but in-
cludes the final state radiation. All four groups present their
data in this form. For the purpose of uniformity of presen-
tation, the analysis of the present work refers to the bare
cross section

�bare ¼ 8��2

3s5=2
jF�ðsÞj2q3�ðsÞ

�
1þ �

�
aðsÞ

�
; (4.1)

where F�ðsÞ is given by Eq. (3.1),

q�ðsÞ ¼
ffiffiffi
s

p
v�ðsÞ=2

is the momentum of the final pion, and the function aðsÞ
allows for the radiation of a photon by the final pions. In
the case of the pointlike pions, it has the form [12,21–24]

aðsÞ ¼ 1þ v2
�

v�

�
4Li2

�
1� v�

1þ v�

�
þ 2Li2

�
� 1� v�

1þ v�

�
� 3 ln

2

1þ v�

ln
1þ v�

1� v�

� 2 lnv� ln
1þ v�

1� v�

�
� 3 ln

4

1� v2
�

� 4 lnv� þ 1

v3
�

�
5

4
ð1þ v2

�Þ2 � 2

�
� ln

1þ v�

1� v�

þ 3ð1þ v2
�Þ

2v2
�

: (4.2)

Here, v� � v�ðsÞ is given by Eq. (2.4), and

Li 2ðxÞ ¼ �
Z x

0
dt

lnð1� tÞ
t

:

First of all, no fit with the single �ð770Þ resonance
contribution, based on Eq. (3.1), in which both g�2�� and

g�3�� are set to zero, is capable of satisfactory description

of all four data sets, even with the �! mixing effect being
taken into account. Although the formula with the single
resonance works well in the �! resonance region, the
curve at the far-right shoulder of the �ð770Þ resonance
peak does not follow the data points.

Taking into account the resonance �2, but with the
neglect of the �3 one, results in a rather poor fit, too.
This is because the normalization condition F�ð0Þ ¼ 1
reduces, in this case, to the rather restrictive sum rule

g�1��

g�1

þ g�2��

g�2

¼ 1;

which fixes completely the �2 contribution to the eþe� !
�þ�� reaction amplitude in a way that forbids the

successful fit. Specifically, the ratio g�2��=g�2
turns out

to be too small, due to the fact that the universality condi-
tion g�1��=g�1

� 1 is satisfied for the couplings of �ð770Þ.
See Eq. (1.2). Hence, the �2 resonance contribution turns
out to be smaller than necessary for reconciling the calcu-
lations with the data. The third resonance �3 � �ð1700Þ is
required in order both to preserve the approximate univer-
sality condition and to allow a freedom in the variation of
the �2 � �ð1450Þ couplings.
Free parameters, which should be determined from

comparison with the existing data [12–15], are the masses
of the resonances �ð770Þ and !ð782Þ, the coupling con-
stants g�1;2;3!�� of the resonances �1;2;3 with the �þ��

state, the coupling constants g�1;2
and g! parametrizing the

�1;2;3 and!ð782Þ leptonic decay widths [see Eq. (3.3)], and
the real part of the polarization operator of the �ð770Þ �
!ð782Þ mixing �0

�1!. Note that g�3
is not free but should

be determined from the sum rule Eq. (3.13). At last, there is
the parameter a23 [see Eq. (3.6)] that defines Re��2�3

.

Since we restrict our analysis to the energy range below
1 GeV, the masses of the resonances �ð1450Þ and �ð1700Þ
are fixed to, respectively, m�2

¼ 1:45 GeV and m�3
¼

1:7 GeV.
So, the total set of free parameters is

m�1
; g�1��; g�1

; m!; g!;

�0
�1!; g�2��; g�2

; g�3��; a23: (4.3)

Their obtained values, found from fitting the bare cross
section Eq. (4.1) side-by-side with the corresponding 	2

per number of degrees of freedom, are listed in Table I
separately for the four independent measurements of SND
[12], CMD-2 [13], KLOE [14], and the BABAR data [15]
restricted to the low-energy range

ffiffiffi
s

p � 1 GeV by the
reason explained earlier. The bare cross section evaluated
with the parameters of Table I is compared with the SND
[12], CMD-2 [13], KLOE [14], and BABAR [15] data
shown in Figs. 2–5, respectively.
As far as the specific values of the obtained parameters

in Table I are concerned, those corresponding to the
�ð770Þ �!ð782Þ resonance system agree satisfactorily
for all four experiments [12–15]. The agreement of the
coupling constants of the resonances �ð1450Þ and �ð1700Þ
is poor but, taking into account the large uncertainties in
their determination, is not crucial. This is justifiable, be-
cause the energy range

ffiffiffi
s

p � 1 GeV is not a proper place
for extraction of the coupling constants of the above reso-
nances. The widths of �ð1450Þ and �ð1700Þ, in their re-
spective energy ranges, are known to be saturated by the
complicated final states ���, !�, etc., not the �þ�� one
[5]. Taking into account these decay modes is necessary at
energies

ffiffiffi
s

p
> 1 GeV. Unfortunately, taking into account

the real parts of the polarization operators arising due to the
mentioned complicated states is hardly possible in closed
form. In addition, the corresponding dispersion integrals
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diverge much more strongly than in the case of the �þ��
andK �K intermediate states considered in the present work.
In the meantime, the small values of g�2;3��, in comparison

with g�1��, obtained in the present work upon neglecting

the ���, !�, etc., decay modes at
ffiffiffi
s

p � 1 GeV, agree
with the earlier conclusions [7,8] inferred from the analysis
in which the above decay modes were included. Note also
that a23 is compatible with zero.

V. DISCUSSION

An important check of the expression for the pion
form factor Eq. (3.1) and the consistency of the fits is

the continuation to the spacelike region t < 0 accessible
in the scattering processes. To this end, one should take
the branch with s < 0 in ��;Kðs;m2

VÞ [see Eqs. (2.8),

(2.9), and (2.10)] and replace s ! t. Having in mind
that the �ð770Þ �!ð782Þ mixing in the region t < 0 is
negligibly small, one can calculate F�ðtÞ in this region.
The results are shown in Fig. 6, where the comparison
with the NA7 data [25] is presented for all four fits
considered in the present work. We emphasize that the
data [25] are not included to the fits. Hence, a good
agreement, demonstrated in Fig. 6, makes the evidence
in favor of the validity of Eq. (3.1) for the pion form
factor.
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σ ππ
 [
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]
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FIG. 2. The bare cross section, Eq. (4.1), calculated with the
resonance parameters obtained from fitting the SND data [12]
listed in Table I. Experimental points are from Ref. [12].
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1400

 CMD-2

σ ππ
 [
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]
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FIG. 3. The same as in Fig. 2, but evaluated with the parame-
ters obtained from fitting the CMD-2 data [13]. Experimental
points are from Ref. [13].

TABLE I. The resonance parameters found from fitting the data from SND [12], CMD-2 [13],
KLOE10 [14], and the BABAR data [15] restricted to the energies

ffiffiffi
s

p � 1 GeV.

Parameter SND CMD-2 KLOE10 BABAR

m�1
[MeV] 773:76� 0:21 774:70� 0:26 774:36� 0:12 773:92� 0:10

g�1�� 5:798� 0:006 5:785� 0:008 5:778� 0:006 5:785� 0:004
g�1

5:130� 0:004 5:193� 0:006 5:242� 0:003 5:167� 0:002
m! [MeV] 781:76� 0:08 782:33� 0:06 782:94� 0:11 782:04� 0:10
g! 17:13� 0:30 18:43� 0:47 18:27� 0:45 17:05� 0:29
103�0

�1! [GeV2] 4:00� 0:07 3:97� 0:10 3:98� 0:09 4:00� 0:06
g�2�� 0:71� 0:35 0:79� 0:26 0:019� 0:004 0:21� 0:04
g�2

8:0� 4:4 7:6� 3:4 0:22� 0:07 4:0� 1:0
g�3�� 0:20þ1:20

�0:17 0:76� 0:75 0:055þ0:088
�0:043 0:011þ0:479

�0:007

a23 0:002� 0:011 �0:016� 0:057 �0:014� 0:040 �0:0005� 0:0009
	2=Nd:o:f: 54=35 34=19 87=65 216=260
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Using the resonance parameters of Table I, one can
calculate, in particular, such important characteristics as
the charged pion radius r�, defined as the square root of the
root-mean squared radius,

r� ¼
ffiffiffiffiffiffiffiffi
hr2i

q
;

of the spherical symmetric electric charge distribution

F�ðqÞ ¼
Z

d3r�ðrÞeiq	r � F�ð0Þ � q2

6

Z
�ðrÞr2d3r

¼ F�ð0Þ þ t

6
hr2i; (5.1)

where t ¼ �q2. One gets

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
dF�ðtÞ
dt

s ��������t!0
: (5.2)

Evaluating r� with the parameters of Table I, one obtains
the results presented in the first row of Table II. For
comparison, the averaged value of the pion charge radius
cited by the PDG [5] is r� ¼ 0:672� 0:008 fm.
If one considers the single �ð770Þ resonance, then its

inverse propagator near s ¼ m2
�1

can be represented as
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FIG. 5. The same as in Fig. 2, but evaluated with the parame-
ters obtained from fitting the BABAR data [15] restricted to the
energies

ffiffiffi
s

p � 1 GeV. Experimental points are from Ref. [15].
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FIG. 4. The same as in Fig. 2, but evaluated with the parame-
ters obtained from fitting the KLOE-2010 data [14].
Experimental points are from Ref. [14].
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FIG. 6. The pion form factor squared in the spacelike region,
evaluated using the resonance parameters of Table I. The labels
of the theoretical curves correspond to the columns of Table I.
The experimental data NA7 are from Ref. [25].
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D�1
¼ m2

�1
� sþ ðm2

�1
� sÞdRe��1�1

ðsÞ
ds

�
��������s¼m2

�1

�i
ffiffiffi
s

p
��1��ðsÞ: (5.3)

The behavior of Re��1�1
ðsÞ is shown in Fig. 7. Comparing

Eq. (5.3) with Eq. (1.1), one can see that one should make
the renormalization

g�1�� ! Z�1=2
� g�1��; g�1

! Z1=2
� g�1

;

where

Z� ¼ 1þ dRe��1�1
ðsÞ

ds

��������s¼m2
�1

; (5.4)

in order to reduce Eq. (5.3) to the conveniently used form,
with m�1

being the physical mass of the resonance. This

results in the renormalization of the �þ�� and eþe�
partial widths of the �ð770Þ:

��1��!�ðphysÞ
�1�� ¼��1��

Z�

; ��1ee!�ðphysÞ
�1ee ¼��1ee

Z�

: (5.5)

TABLE II. The pion charge radius r�, Eq. (5.2), the renormalization constant Z�, Eq. (5.4), the
‘‘physical’’ partial widths (with the superscript phys), and the bare ones (without the super-
script), of the decay �ð770Þ and !ð782Þ, evaluated with the resonance parameters of Table I.

Parameter SND CMD-2 KLOE10 BABAR

r�[fm] 0:635� 0:054 0:646� 0:059 0:668� 0:039 0:668� 0:053
Z� 0:9273� 0:0003 0:9277� 0:0002 0:9279� 0:0002 0:9277� 0:0001
��1��ðm2

�1
Þ [MeV] 139:93� 0:29 139:54� 0:39 139:12� 0:29 139:34� 0:19

�
ðphysÞ
�1��ðm2

�1
Þ [MeV] 150:90� 0:31 150:42� 0:42 149:92� 0:31 150:20� 0:20

��1eeðm2
�1
Þ [keV] 6:56� 0:01 6:41� 0:01 6:29� 0:01 6:47� 0:01

�
ðphysÞ
�1ee ðm2

�1
Þ [keV] 7:07� 0:01 6:91� 0:01 6:78� 0:01 6:97� 0:01

�!eeðm2
!Þ [keV] 0:59� 0:02 0:51� 0:03 0:52� 0:03 0:60� 0:02
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FIG. 7. The energy dependence of Re��1�1
ðsÞ for both the

pion and kaon loops.
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FIG. 8. The phase shift 
1
1 of �� scattering. The data are,

respectively, Protopopescu et al. [26] and Estabrooks et al. [27].
The curves corresponding to the parameters obtained from fitting
the SND, CMD-2, and KLOE data are not shown because they
coincide with the curve evaluated using the parameters from the
fit of the BABAR data, shown here.
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The numerical values of the renormalization constant Z�

are given in Table II, side-by-side with the �þ�� and
eþe� partial widths of the �ð770Þ. One can see that Z�

brings the ‘‘bare’’ widths (without the superscript ‘‘phys’’)
closer to the values ���� ¼ 149:1� 0:8 MeV and

��ee ¼ 7:04� 0:06 keV cited in the Review of Particle

Physics [5].
Another important characteristic of the low-energy had-

ronic physics is the phase shift 
1
1 of �� scattering in the

vector-isovector channel with the quantum numbers of
�ð770Þ. At energies below the !� and K �K production
thresholds, 
1

1 is given by the phase of the pion form factor


1
1 ¼ arctan

ImF�

ReF�

; (5.6)

where F� is given by Eq. (3.1) upon neglecting the con-
tribution of �! mixing / ��1!. The plot of 
1

1, obtained

using parameters extracted from fitting the low-energy
portion of the BABAR data [15], is shown in Fig. 8, where
the comparison with the data [26,27] is presented. Note
that the resonance parameters, extracted from three other
sets of data [12–14], result in the curves for 
1

1 coincident
with that shown in Fig. 8. Having in mind that the data on
the phase shift were not included in the fits, the agreement
of the calculated 
1

1 with the measured one is satisfactory.

VI. CONCLUSION

It is shown that the new formula for F�ðsÞ, Eq. (3.1),
gives a good description of the latest experimental data
[12–15] on the production of the �þ�� pair in eþe�
annihilation at

ffiffiffi
s

p
< 1 GeV. In this low-energy domain,

one can restrict oneself by the contribution of the �þ��
and K �K loops to both diagonal and nondiagonal polariza-
tion operators. In principle, other intermediate states
could be taken into account, at least numerically.
However, heavier isovector resonances �ð1450Þ and
�ð1700Þ are known to have other decay modes besides
�þ�� and K �K, such as !�, a1�, etc. The treatment
should include the energies

ffiffiffi
s

p � 2 GeV, where the cou-
pling constants with the above states could be determined.
No data exist on these decay modes of the quality
comparable with the �þ�� data [12–15]. Hence, at
present, the restriction to the domain

ffiffiffi
s

p
< 1 GeV and

to the pseudoscalar loops seems justifiable.
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APPENDIX: THE FINITE WIDTH
AND THE RESONANCE MIXING

Some details necessary for taking into account the finite
width effects and the resonance mixing are given in this

Appendix. The meaning of the diagonal polarization op-
erator�RRðsÞ is that it modifies the inverse bare propagator

of the resonance R with the mass mR, D
ð0Þ
R ðsÞ � Dð0Þ

R ¼
m2

R � s, in the following way:

1

DRðsÞ ¼
1

Dð0Þ
R

þ 1

Dð0Þ
R

�RRðsÞ 1

Dð0Þ
R

þ 1

Dð0Þ
R

�RRðsÞ 1

Dð0Þ
R

�RRðsÞ 1

Dð0Þ
R

þ 	 	 	

¼ 1

Dð0Þ
R ��RRðsÞ

:

In particular, this formula takes into account the finite
width effects

DRðsÞ ¼ m2
R � s� Re�RRðsÞ � i

ffiffiffi
s

p
�R��ðsÞ: (A1)

In principle, the mixing of the isovector resonances
�ð770Þ, �ð1450Þ, and �ð1700Þ can be strong, especially
because of the common decay modes, for example, the
�þ�� one. It can be taken into account in the field-
theory-inspired approach based on summing to all orders
of the loop corrections to the bare propagators of vector
mesons [7,8,18,20]. The term ‘‘bare’’ means that the propa-
gators are not distorted by the mixing. The scheme can be
demonstrated by taking the two-resonance mixing as
an example [20]. It reduces in this case to the following
replacements:

1

DR

! 1

DR

þ 1

DR

�RR0
1

DR0
�RR0

1

DR

þ 	 	 	

¼ DR0

DRDR0 ��2
RR0

� ðG�1ÞRR;
1

DR0
! 1

DR0
þ 1

DR0
�RR0

1

DR

�RR0
1

DR0
þ 	 	 	

¼ DR

DRDR0 ��2
RR0

� ðG�1ÞR0R0 ;

�RR0

DRDR0
! �RR0

DRDR0
þ ð�RR0 Þ3

ðDRDR0 Þ2 þ 	 	 	

¼ �RR0

DRDR0 ��2
RR0

� ðG�1ÞRR0 :

The matrix

G ¼ DR ��RR0

��RR0 DR0

 !

is the matrix of inverse propagators in the two-resonance
case. Let us take for a moment just this case, R ¼ �1 and
R0 ¼ �2, in order to clarify the effect of the mixing on the
resonance position. Neglecting for a moment the �! mix-
ing, which is taken into account below, one can write the
pion form factor as
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F� ¼ ðg��1
; g��2

Þ D�2
��1�2

��1�2
D�1

� �
g�1��

g�2��

� �
� 1

D�1
D�2

��2
�1�2

: (A2)

In the vicinity of the �1 resonance position, s ! m2
�1
,

Eq. (A2) can be represented in the form

F�ðsÞ �
g��1

g�1��

m2
�1

� s���1�1
ðsÞ � �2

�1�2
ðm2

�1
Þ

m2
�2
�m2

�1
���2�2

ðm2
�1
Þ
; (A3)

where, in accord with the adopted definition,
Re��1�1

ðm2
�1
Þ ¼ 0. One can see from Eq. (A3) that there

is a shift in the �1 resonance peak position, due to the
mixing of �1 with the resonance �2:

�m2
�1

¼ �Re
�2

�1�2
ðm2

�1
Þ

m2
�2

�m2
�1

���2�2
ðm2

�1
Þ

� �Re½�2
�1�2

ðm2
�1
Þ�

m2
�2

�m2
�1

; (A4)

where we neglect��2�2
ðm2

�1
Þ in comparison with the mass

difference squared m2
�2

�m2
�1
. Indeed, using the plots in

Fig. 7, the relation

��2�2
¼
�
g�2��

g�1��

�
2
��1�1

;

Eq. (2.5), Eq. (2.7), and g�2�� � 0:8 (see Table I), one

obtains the estimate

��2�2
ðm2

�1
Þ

m2
�2

�m2
�1

& ð0:2þ 1:5iÞ � 10�3:

In the case of the well-studied resonance �1 ¼ �ð770Þ, it is
natural to expect that the visible peak position with a good
accuracy coincides with the bare mass m�1

. This follows

from the definition Re��1�1
ðm2

�1
Þ ¼ 0 adopted in the

present work. In order to preserve the above coincidence,
the natural demand is to set Re��1�2

¼ 0. Since, in

Eq. (A4), Re�2
�1�2

¼ ðRe��1�2
Þ2 � ðIm��1�2

Þ2, then, to
be precise, some mass shift survives, which is equal to

�m�1
� m�1

�2
�1��ðm2

�1
Þ

2ðm2
�2

�m2
�1
Þ
�
g�2��

g�1��

�
2
:

However, even in the worse case g�2�� ¼ 0:8 (see Table I,

where the magnitudes of the coupling constants extracted
from the specific fits are given), this shift is estimated at the
level of 0.1 MeV. This estimate falls within the errors of
m�1

, quoted in Table I. Having in mind the three-resonance

case, we setRe��1�3
¼ 0. Such a type of justification is not

applicable for the poorly studied resonances �2 ¼ �ð1450Þ
and �3 ¼ �ð1700Þ; hence, the parameter a23 fixing
Re��2�3

remains free.

The generalization to the case of three (and any number
of) resonances �1, �2, and �3 is straightforward. The
matrix of inverse propagators is given by Eq. (3.4). The
matrix of propagators is

G�1 ¼ 1

�

g11 g12 g13

g12 g22 g23

g13 g23 g33

0BB@
1CCA;

where

g11 ¼ D�2
D�3

��2
�2�3

; g22 ¼ D�1
D�3

��2
�1�3

; g33 ¼ D�1
D�2

��2
�1�3

;

g12 ¼ D�3
��1�2

þ��1�3
��2�3

; g13 ¼ D�2
��1�3

þ��1�2
��2�3

; g23 ¼ D�1
��2�3

þ��1�2
��1�3

;

� � detG ¼ D�1
D�2

D�3
� 2��1�2

��1�3
��2�3

�D�1
�2

�2�3
�D�2

�2
�1�3

�D�3
�2

�1�2
: (A5)

Note that, deep in the spacelike domain, the quantity 1=�
and, as a consequence, the pion form factor have a pole atffiffiffiffiffiffi�t
p ¼ 87, 82, 97, and 95 GeV, when evaluated with the
resonance parameters obtained from the fit of, respectively,
SND [12], CMD-2 [13], KLOE [14], and BABAR [15] data.
This pole is the analog of the famous Landau pole.

In addition to the strong mixing between the isovector
resonances, one should include also the isovector-isoscalar
�i �!ð782Þ mixing arising due to small G-parity break-
ing. Then, the matrix of inverse propagators can be written
in the form

Gtot ¼

D�1
���1�2

���1�3
���1!

���1�2
D�2

���2�3
���2!

���1�3
���2�3

D�3
���3!

���1! ���2! ���3! D!

0BBBBB@
1CCCCCA: (A6)

In this case, the pion form factor is written as follows:

F�ðsÞ ¼ ðg��1
; g��2

; g��3
; g�!ÞG�1

tot

g�1��

g�2��

g�3��

g!��

0BBBBB@
1CCCCCA: (A7)

The coupling constant g!�� describes the direct ! !
�þ�� transition arising due to the violation of G-parity
conservation side-by-side with the mixing mechanism.
However, it is known [28] that, since the �þ�� channel
dominates the �1 decay width, g!�� is almost canceled in
the effective ! ! �þ�� transition amplitude, due to the
compensation among imaginary parts of ��1! and the

inverse �1 propagator. Indeed, allowing for both the mix-
ing and direct transition, one can write the effective !��
coupling constant in the form
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gðeffÞ!���g!���
ðRe��1!þiIm��1!Þg�1��

m2
!�m2

�1
�i

ffiffiffi
s

p ð�!���1��Þ
¼ 1

m2
!�m2

�1
�i

ffiffiffi
s

p ð�!���1��Þ
�
�
g!��½m2

!�m2
�1
�i

ffiffiffi
s

p ð�!���1��Þ�

�g�1��

�
Re��1!þi

�
Im e��1!þ

ffiffiffi
s

p g!��

g�1��

��1��

���

�� ðRe��1!þiIm ~��1!Þg�1��

m2
!�m2

�1
�i

ffiffiffi
s

p ð�!���1��Þ
; (A8)

where Im ~��1! differs from Im��1! by the absence of the

term / g!��. Hence, one can safely neglect the coupling
constant g!��. This circumstance was not properly ac-
counted for in our earlier work, Ref. [7]. The isovector-
isoscalar type of weak mixing is essential only for the
�ð770Þ �!ð782Þ system because it is enhanced due to
the small mass difference of these resonances. See

Eq. (A8). As for other isovector-isoscalar mixings
�ð1450Þ �!ð782Þ and �ð1700Þ �!ð782Þ, there is no en-
hancement, due to the mass proximity, and one can neglect
��2;3!. Taking the latter assumption into account and

allowing for the �1! mixing to first order, one can ap-
proximate the propagator matrix G�1 in Eq. (A7) by the
expression

G�1
tot � 1

�

g11 g12 g13
g11��1!

D!

g12 g22 g23
g12��1!

D!

g13 g23 g33
g13��1!

D!

g11��1!

D!

g12��1!

D!

g11��1!

D!

�
D!

0BBBBBBBBB@

1CCCCCCCCCA
;

where the gij and � are given by Eq. (A5). The final

approximate expression for the pion form factor F� �
F�ðsÞ given by Eq. (3.1) is obtained by inserting this
approximate expression to Eq. (A7) and by neglecting
the coupling constant of the direct decay g!��.
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