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There is a direct group-theoretical connection between neutrino mixing and horizontal symmetry that

can be established without any dynamical input. Such a connection is reviewed and expanded in this

article. For certain symmetry groups G including A4 and S4, it is shown that a generic Uð1Þ � G Higgs

potential of a valon yields exactly the alignments dictated by the group-theoretical approach, but energy

can now be used to discriminate different alignments. This mechanism possibly explains why starting

from an A4 group, the tribimaximal mixing matrix with an enhanced S4 symmetry is more preferable than

the one without it.
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I. INTRODUCTION

After Chadwick discovered the neutron in 1932,
Heisenberg came up with the ‘‘isotopic spin’’ to distinguish
it from the proton. This new quantum number corresponds
to a global symmetry SUð2Þ which explains the similarity
of neutrons and protons in strong interactions. Now that we
have three generations of quarks and leptons, should there
not be a new ‘‘family quantum number’’ to distinguish
them, and a corresponding ‘‘horizontal (or family) sym-
metry’’ to explain the similarity of their interactions?

Unlike neutrons and protons which have nearly the same
mass, the masses of fermions of different generations are
vastly different. Moreover, they mix. Thus if horizontal
symmetry is present, it has to be badly broken, a fact which
makes the symmetry difficult to recognize unless enough
remnants survive from the breaking to tell the story. We
suggest that such remnants are indeed present and they are
hidden in the mixing matrix.

Neutrino mixing is successfully described by the tribi-
maximal mixing (TBM) matrix [1]. This mixing is most
frequently explained by models with an A4 symmetry, but
models based on S4 as well as many other groupsG [2] can
also do the job. With so many successful models, it is
hard to know which of them is the correct horizontal
symmetry and, indeed, whether horizontal symmetry really
exists or not.

To shed some light on this question from a different
angle, we have previously developed a purely group-
theoretical method to connect neutrino mixing with
horizontal symmetry [3]. This method differs from the
conventional one in that only symmetry considerations
are involved. The presence of Higgs fields is never as-
sumed, nor the details of a model Lagrangian. In this
approach, the broken symmetry (which we call residual
symmetry) and the minimal unbroken horizontal symmetry
of the left-handed leptons are derived from the mixing

matrix U. In particular, if neutrino mixing is given by the
TBM, then the smallest unbroken horizontal symmetry is
S4, not A4. Models based on A4 can explain TBM because
in those models there is an accidental symmetry which
elevates the A4 symmetry to an S4 symmetry. These results
will be reviewed in Sec. II.
The same formalism can in principle be applied to

fermion mixing as well [3], but unless we make suitable
approximations to the Cabibbo-Kobayashi-Maskawa
(CKM) mixing, all that we get is the group SUð3Þ, nothing
smaller. For that reason we will not discuss quark mixing
any further in this paper. This difference, however, brings
up a very important question, as to whether there is a
common origin between neutrino mixing and quark mixing
that is smaller than SUð3Þ. This question will be taken up in
a forthcoming paper [4].
The group-theoretical procedure can be reversed to

obtain mixing matrices U from a symmetry group G.
The detail will be discussed in Sec. III, but let us outline
now how that differs from the usual dynamical method. In
the dynamical approach,U is to some extent determined by
the vacuum alignments, and the alignments are in principle
obtained by minimizing a Higgs potential V. There are
however frequently too many G-invariant terms available
to construct V, so that just about any vacuum alignment can
be obtained by a suitable choice of V. What one does then
is to use the experimental results to decide what U one
wants, and what alignments that can give rise to such a U,
then proceeds to design a V that does the job. To keep it
robust, this is often accomplished by imposing another
symmetry in additional to G to throw away the unwanted
terms in V.
In the group-theoretical approach, U is determined by

the residual symmetries F (for the charged-lepton sector)
and Gi (i ¼ 1; 2; 3) (for the neutrino sector) which are
members of G. No peeking of data is needed so one is
not prejudiced by the experimental outcome. There is no
dynamics to tune, and the existence of Higgs is not as-
sumed. For a given G, there is usually more than one*Lam@physics.mcgill.ca

PHYSICAL REVIEW D 83, 113002 (2011)

1550-7998=2011=83(11)=113002(19) 113002-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.113002


possible choice of residual symmetries and thus more than
one U, but within equivalence only very few survive. By
equivalence I mean the following. Since Majorana phases
are not measurable in neutrino oscillation experiments, and
since there is no way for group theory to distinguish which
flavor neutrino is which, and which neutrino mass eigen-
states are to be labeled 1, 2, or 3, we will consider two
mixing matrices equivalent if they differ only by row and
column phases, and by row and column permutations. With
a convenient choice of permutation, the mixing can be
specified by three mixing angles and one CP phase, con-
tained in the triplet hsin�12; sin�23; sin�13e�i�i. Two U’s
with the same triplet parameters are considered to be
equivalent.

Normally we need an F and three mutually commuting
Gi to specify a U. A mixing matrix determined this way
will be called a full-mixing matrix. These are the mixing
matrices obtained from G by symmetry alone. In order to
allow TBM to occur under A4, we will also discuss partial-
mixing matrices, which are obtained from a full-mixing
matrix by replacing two of its columns with arbitrary
parameters, subject however to the constraint of unitarity.
Equivalently, they are mixing matrices determined by F
and one of the three Gi’s, plus additional parameters
needed to specify U. For each full-mixing there are always
associated three types of partial-mixings, which will nor-
mally not be mentioned separately.

However, the mixing matrix obtained from a partial-
mixing of G with the other two columns filled has its

own symmetry group �G, which contains G as a subgroup.
Unless the entries in the other two columns are carefully

chosen, most likely �G would end up to be an infinite group,
perhaps as large as SUð3Þ. Thus, the entries of the other two
columns are severely restricted if we stipulate �G to be a
finite group. In particular, if the entries are those given by

the full-mixing matrix, then �G ¼ G. In the case of A4, the
smallest finite group containing it is S4, and there is one

partial-mixing mode of A4 whose �G is S4. That is how
TBM is produced from A4.

In the case of S4, there are two full-mixing patterns. One
is the familiar TBM specified by the physical parameters
h 1ffiffi

3
p ; 1ffiffi

2
p ; 0i, and the other is one specified by h 1ffiffi

2
p ; 1ffiffi

2
p ; 0i,

which is seldom mentioned in the literature. The full-
mixing of A4 is the Cabibbo-Wolfenstein mixing matrix,

specified by h 1ffiffi
2

p ; 1ffiffi
2

p ; e
��i=2ffiffi
3

p i, though TBM is allowed in a

partial-mixing mode. There are two possible full-mixings
in A5, but we will work out only one whose physical

parameters are h 1ffiffi
3

p
’
; 1ffiffi

2
p ;0i, where ’¼ð1þ ffiffiffi

5
p Þ=2¼1:618

is the golden ratio. Once again, these results are obtained in
a purely group-theoretical way, without the help of any
dynamics.

Sections IV, V, and VI are devoted to the connection
between group-theoretical and dynamical approaches.
Defining an invariant eigenvector to be an eigenvector

with eigenvalue þ1, the basic connection is that the vac-
uum alignment in every irreducible representation (IR) has
to be the invariant eigenvector of the corresponding
residual-symmetry operator in that IR [3]. That connection
is reviewed in Sec. IV. In case such an eigenvector does not
exist, the alignment would be forced to be zero and the
coupling with such a valon cannot contribute. This in
principle would reduce our ability to make models because
we need at least three independent Yukawa couplings in
each sector to fit the three charged-lepton and the three
neutrino masses. Nevertheless, in the case of S4 and A4

which we discuss in some detail, there remain just enough
parameters to fit all the data in type-II seesaw models. For
A4 we also discuss the partial-mixing results, both because
the phenomenologically interesting TBM belongs to that
category, and because the result of the discussion would be
useful in Sec. V. We see from these discussions that a large
number of models can be constructed for each group and,
indeed, many of them have already appeared in the litera-
ture. Similar discussions can be carried out for other
groups.
With the basic connection, one important question to ask

is whether a generic Higgs potential can be constructed to
yield just these vacuum alignments. As remarked before, in
order to avoid the appearance of arbitrary alignments, an
additional symmetry would have to be imposed to throw
away unwanted G-invariant terms. In the case of G ¼ A4,
that additional symmetry turns out to be Uð1Þ (an appro-
priate Zn would do as well) as we shall show in Sec. V. The
calculation involves writing down a generic Uð1Þ � A4

potential in terms of Clebsch-Gordan (CG) coefficients in
a convenient basis, then minimizing it.
Can this result be generalized to other groups? On the

one hand, this calculation requires intimate knowledge of
the group A4, such as the explicit CG coefficients and the
details of all the (Uð1Þ � A4)-invariant terms, so it is
difficult to see how to generalize it from A4 to other groups
G. On the other hand, the result of minimization can be
expressed in general group-theoretical terms, as the invari-
ant eigenvectors of members of A4, and that gives hope
that one might find a way to bypass the details of A4 to
generalize the result to other groups G. This is indeed true
as will be discussed in Sec. VI. In the first part of that
section, an alternative proof for the A4 result is presented
that is quite independent of the specific A4 details. This
proof is then generalized to other groups G in the rest of
that section.
Besides demonstrating the consistency between the

group-theoretical and the dynamical approaches, the in-
troduction of the Higgs potential also serves another pur-
pose. There is no way for group theory to choose between
different residual symmetries, but Higgs potentials might,
as different vacuum alignments might give rise to different
Higgs energy. In that case the one with the lowest Higgs
energy wins out.
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This mechanism can, for example, be used to solve a
puzzle. TBM is a full-mixing of S4 but only a partial-
mixing of A4. The full-mixing of A4 is given by the
Cabibbo-Wolfenstein matrix which gives too large a solar
angle and too large a reactor angle. If A4 is the correct
symmetry group, as many models seem to prefer, one has
to answer two questions. (1) Why does nature choose a
partial-mixing rather than a full-mixing more appropriate
to A4 from the symmetry (group-theoretical) point of view?
(2) Why should nature choose a partial-mixing of A4 and
then promote it to a larger S4 to give TBM, rather than
choosing S4 directly as the symmetry group from the
very start?

With the result of Sec. V, we may have an answer to
question 1. If the Higgs self-couplings are all positive,
then the full-mixing pattern has a higher energy than the
partial-mixing pattern, which is presumably why nature
prefers partial-mixing. Once in a partial-mixing mode,
economy would like to make the mixing matrix TBM

because �G ¼ S4 is the smallest group that contains A4.
Question 2 is harder to answer, but the answer might come
from dynamics as well. In a forthcoming publication [4], it
will be shown that if we ignore the much smaller quark
mixing with its third generation, then there is something
common between quark mixing and leptonic mixing
described by A4, but there is no such commonality between
quark mixing and leptonic mixing described by S4.

II. FROM MIXING TO HORIZONTAL GROUP

We review in this section how the horizontal symmetry
group GL for left-handed leptons can be derived from the
neutrino mixing matrix U [3]. We will assume GL to be a
subgroup of SUð3Þ, and we are particularly interested in
small GL to minimize the amount of breaking necessary to
obtain the desired mixing. For that reason we will concen-
trate on finite subgroups of SUð3Þ.

Let Me be the 3� 3 charged-lepton mass matrix, and
�Me :¼ My

eMe the effective mass (squared) matrix connect-
ing left-handed to left-handed charged leptons. This matrix
is clearly Hermitian. Similarly, let �M� ¼ �MT

� be the
Majorana mass matrix for the left-handed neutrinos. This
matrix is symmetric on account of the Majorana nature of
the neutrinos. In the basis where �Me is diagonal, the
neutrino mixing matrix U is the matrix that renders
UT �M�U diagonal.

A residual-symmetry operator in the charged-lepton
sector is a unitary matrix F which transforms �Me into
itself: Fy �MeF ¼ �Me. Similarly, a residual-symmetry op-
erator in the neutrino sector is a unitary matrix G which
transforms �M� into itself: GT �M�G ¼ �M�. G

T rather than
Gy has to be used to maintain �M� ¼ �MT

� . An important
consequence that follows is G2 ¼ 1. As a result, the ei-
genvalues of G are þ1 or �1. Since detG ¼ 1, G has one
þ1 and two �1 eigenvalues. There are exactly three such
operators, given by

G1 ¼ u1u
y
1 � u2u

y
2 � u3u

y
3 ;

G2 ¼ �u1u
y
1 þ u2u

y
2 � u3u

y
3 ;

G3 ¼ �u1u
y
1 � u2u

y
2 þ u3u

y
3 ;

(1)

where ui is the ith column vector of the mixing matrix U.
It is easy to see that the three Gi’s mutually commute,
and that the product of any two is equal to the third.
Moreover, if we define an invariant eigenvector to be an
eigenvector with eigenvalue þ1, then ui is the invariant
eigenvector of Gi.
Since �Me is diagonal, F may be taken to be any diagonal

unitary matrix, with determinant 1. If F is to be a member
of a finite group, then there is an integer n so that Fn ¼ 1.
We divide F into two categories, the degenerate ones,
and the nondegenerate ones. The latter consists of F’s
whose three diagonal entries are all different, which neces-
sitates n � 3. This category is specially important because
in that case �Me must be diagonal whenever F is. This will
be used in the next section to recover U from GL.
F and Gi are symmetry operators of the left-handed

mass matrices, so they are the remaining symmetry opera-
tors of the left-handed leptons after the horizontal group
GL for left-handed leptons is broken. Conversely, the
smallest GL must be the group generated by F and Gi,
and this is how the group GL can be obtained from the
mixing matrix U. We shall use the notation GL ¼
fF;G1; G2; G3g to denote this. Since the product of two
distinct Gi is equal to the third, we can write GL ¼
fF;Gi; Gjg, as long as i � j. We shall call the group

generated this way the full group.
The role of a nondegenerate F is to ensure that �Me is

diagonal when F is, and the role of Gi is to use their
invariant eigenvectors to construct the columns of the
mixing matrix U. Since there is no need for more than
one F to nail down �Me to its diagonal form, and since we
want a minimal GL, we include only one F in the gener-
ators of GL. However, different choices of F will generally
lead to different groups GL.
Sometimes we may be more sure of one column of U to

be correct than another column. In that case we simply fill
the other two columns of U with adjustable parameters,
subject to the unitarity condition of U, of course. The full

group �G associated with U then contains a subgroup GL

generated by fF;Gig, where i denotes that particular col-
umn ofU that we have confidence in. The groupGL will be
called a partial group. There are clearly three possible
partial groups, associated with i ¼ 1, 2, and 3, respectively.

If for the sake of economy we demand �G to be a finite
group, then the entries of the other two columns are se-

verely restricted. In particular, if �G ¼ GL, then the partial
group is a full group.
Note that since eachGi is of order 2, a partial group must

have an even order, and a full group must have an order
divisible by 4. Groups of odd order, such as �ð27Þ, would
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violate the assumption that at least one Gi is a member of
the unbroken horizontal group.

The symmetry of the right-handed leptons cannot be
determined by this procedure, because mixing has nothing
to do with right-handed fermions. Whenever it calls for a
knowledge of those, we shall make the minimal assump-
tion that they are invariant under GL as well. In other
words, if necessary, for simplicity we will implicitly
assume G ¼ GL in this paper.

For tribimaximal mixing [1],

U ¼ 1ffiffiffi
6

p
2

ffiffiffi
2

p
0

�1
ffiffiffi
2

p ffiffiffi
3

p
�1

ffiffiffi
2

p � ffiffiffi
3

p

0
B@

1
CA :¼ U0; (2)

the explicit form of Gi using (1) works out to be

G10¼1

3

1 �2 �2
�2 �2 1
�2 1 �2

0
@

1
A; G20¼1

3

�1 2 2
2 �1 2
2 2 �1

0
@

1
A;

G30¼�
1 0 0
0 0 1
0 1 0

0
@

1
A:

(3)

To obtain a minimal group, we shall choose for F the
simplest nondegenerate matrix, F0 ¼ diagð1; !;!2Þ,
where! ¼ e2�i=3. In that case, straightforward calculation
using (3) shows that the full group is GL ¼
fF0; G10; G20; G30g ¼ S4, and the three partial groups are
fF0; G10g ¼ S4, fF0; G20g ¼ A4; fF0; G30g ¼ S3.

Furthermore, it can be shown that as long as F is non-
degenerate, no matter what n is (Fn ¼ 1), the full groupGL

always contain S4 as a subgroup [3].

III. FROM HORIZONTAL GROUP TO MIXING

Given a finite group GL containing a nondegenerate
element F, we can reverse the argument of the last section
to obtain all possible mixings associated with this group.
Everything can be carried out in a purely group-theoretical
manner, without the presence of Higgs fields, nor the help
of a Lagrangian.

In doing so, we may assume GL to be a full group, or a
partial group. Wewill refer to the mixing matrices obtained
with the former as full-mixing matrices of GL, and those
with the latter as partial-mixing matrices. Since partial-
mixing matrices are obtained from full-mixing matrices by
replacing two columns with arbitrary entries, subject only
to the unitarity constraint, there is no need to discuss them
separately.

Another reason not to discuss them separately is that a
partial-mixing matrix of GL is a full-mixing matrix of a

larger group �G, as mentioned in the introduction. Hence we
need to study only full-mixing matrices.

The general procedure of constructing U from GL is as
follows. First, separate the order-2 elements in GL from
those of order� 3. The former are candidates ofG, and the

latter are candidates of F. Next. identify other order-2
elements G0 that commute with a G. Then G00 ¼ GG0 is
an order-2 element that commutes with both G and G0, so
the normalized invariant eigenvectors of G, G0, G00 in
the F-diagonal basis constitute the three columns of the
full-mixing matrix U. Which eigenvector occupies which
column is a matter of convention, corresponding to differ-
ent ways of labeling the three neutrino mass eigenstates, or
equivalently different ways of assigning G, G0, G00 to be
G1, G2, and G3. Moreover, the entries of the diagonal F
may be permuted, resulting in permutations of the rows of
U. In other words, the full-mixing matrix U can be deter-
mined only up to permutation of rows and columns, be-
cause group theory has no way of knowing which flavor
neutrino is which, nor which mass neutrino eigenstate
should be called 1, 2, or 3. When we present a U below,
it is understood that such an ambiguity always exists.
We must check that F, G,G0, G00 generate the group GL,

and that the three normalized invariant eigenvectors in the
F-diagonal basis are mutually orthogonal so that U is
unitary.
If we cannot find two order-2 elements in GL that

mutually commute, which would be the case, for example,
when the order ofGL is not divisible by 4, thenGL contains
only partial-mixing matrices. The actual symmetry group
�G of the resulting mixing matrix must be larger, with an
order divisible by four.
Since Majorana phases are not measurable in neutrino

oscillation experiments, we will regard two U’s differing
only by Majorana phases to be equivalent. With that we
may classify neutrino mixing also by the familiar Chau-
Keung parametrization used in quark-mixing, which by
convention leaves the (11), (12), (23), and (33) matrix
elements of U real, through a suitable choice of the phases
of the three columns and the three rows. A mixing matrix
parametrized this way can be summarized by the triplet
hsin�12; sin�23; sin�13e�i�i, exhibiting the mixing angles
�ij and the CP-phase �. For TBM, this physical triplet is

h 1ffiffi
3

p ; 1ffiffi
2

p ; 0i.
Although straightforward, the task of obtaining all the

full-mixing matrices from a given group might seem rather
daunting because of the large number of combinatorial
choices of F and G’s. In reality it is not as bad because
mixings produced by members in the same conjugacy
classes are often equivalent, i.e., they differ only by row
and column phases, or the reshuffling of rows and columns,
so at least for relatively small groups GL, there are only
very few inequivalent mixings.
With such a foresight, we should arrange group elements

into conjugacy classes. One way to do so is to make use of
the character table, although characters other than those in
the defining three-dimensional representation will not be
used in this section. To illustrate the procedure, we shall
discuss in the rest of this section how to obtain the full-
mixing matrices from the groups GL ¼ S4, A4, and A5.
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These are the rotational symmetry groups of the regular
polyhedrons.

The elements of each of these three groups can all be
obtained by the repeated multiplication of two members, a
and b, which are known as the generators. In each case,
a obeys a2 ¼ 1 and b obeys b3 ¼ 1. These three groups
differ from one another in the behavior of ab, which is of
order 3, 4, 5, respectively, for A4, S4, and A5. In short, the
presentation of these three groups is

A4 ¼ ha; bja2 ¼ b3 ¼ ðabÞ3 ¼ 1i;
S4 ¼ ha; bja2 ¼ b3 ¼ ðabÞ4 ¼ 1i;
A5 ¼ ha; bja2 ¼ b3 ¼ ðabÞ5 ¼ 1i:

(4)

A. S4

S4 is the group of permutation of four objects, whose
character table is given in Table I. It contains five classes
Cið1 ¼ 1; 2; . . . ; 5Þ with jCij elements, defined by the cycle
structure of permutations shown in the second row. The
order of the elements in each class can be read off from the
cycle structure to be 1, 2, 2, 3, 4, respectively.

There are five irreducible representations, ��, with di-
mensions 1, 1, 2, 3, 3. The two three-dimensional irreduc-
ible representations IR4 and IR5 are very closely related. If

g3
0
and g3 are the representations of g 2 S4, respectively,

in IR4 and IR5, then g3 ¼ g3
0
for g 2 C3 or C4, and

g3 ¼ �g3
0

for g 2 C2 or C5. The defining three-
dimensional representation (the matrices defining F and
Gi) is IR5, not IR4, because �

5 ¼ �1 but �4 ¼ þ1 for the
class C2. Since G is of order 2, it belongs to C2. It also has
eigenvaluesþ1,�1,�1, hence the trace ofG, which is the
character of C2, is�1 and notþ1, soGmust belong to IR5.

The last row lists where the generators a and b belong.
From the order of the classes, clearly b has to belong to C3,
but a priori a could be in C2 or C3. C3 is excluded because
then both a and b are even permutations, so the group they
generate is the subgroup A4, not the whole S4. Hence a
must be in C2.

Since the naming of the four objects under permutation
is arbitrary, without loss of generality we may take b ¼
ð134Þ. To be a generator of S4 together with b, a must
then contain the number 2, so there are three possibilities:
a1 ¼ ð12Þ, a2 ¼ ð23Þ ¼ ba1b

2, and a3 ¼ ð24Þ ¼ b2a1b.
For each ai, one can find an a0i and an a00i so that members
of the triplet Ai :¼ ½ai; a0i; a00i � mutually commute and the
product of two is the third. The explicit expressions for
the three triplets are

A1 ¼ ½ð12Þ; ð34Þ; ð12Þð34Þ�;
A2 ¼ ½ð23Þ; ð14Þ; ð23Þð14Þ�;
A3 ¼ ½ð24Þ; ð13Þ; ð24Þð13Þ�:

(5)

Note that ai, a
0
i 2 C2, but a00i 2 C3.

Next, let us see how to represent the generators as SUð3Þ
matrices, in the basis where b ¼ ð134Þ is diagonal. Let us
start off with b. Since b3 ¼ 1 and its character TrðbÞ ¼
TrðC4Þ vanishes, its diagonal form must be b ¼
diagð1; !;!2Þ up to possible permutation of the entries,

where ! ¼ e2�i=3. This is the same as F0 in TBM. From
(3) and the discussion below it, we know that G10 and F0

together generate S4, so we may take G10 to represent
any one of the generators ai. For definiteness we let it be
a1 ¼ ð12Þ.
Please note that notations such as a, b, may stand for the

abstract elements defined by the permutation cycles, or
matrices in various irreducible representations.
To find the representation of the triplets Ai in the

b-diagonal basis, let B :¼ ða1bÞ2 ¼ ð14Þð23Þ. Then
Ba1B

�1 ¼ a01, which works out to be a01 ¼ G30 of (3).
Furthermore, a001 ¼ a1a

0
1 ¼ G20 of (3). Hence A1 ¼

½G10; G30; G20�. Moreover, it is easy to check that A2 ¼
bA1b

2 and A3 ¼ b2A1b. Hence A2 ¼ F0½G10; G30; G20�F2
0

and A3 ¼ F2
0½G10; G30; G20�F0.

Any one of the triplets Ai is a possible choice for ~G :¼
½G;G0; G00�. As to F, since F is of order � 3, it is either in
C4 or C5. Let us consider these two cases separately.
(1) F 2 C4. In cycle notation, we can write F ¼ ðxyzÞ

for some numbers x, y, z chosen among 1, 2, 3, 4.
The permutation

g ¼ x y z
1 3 4

� �
brings F into diagonal form because gFg�1 ¼
ð134Þ ¼ b ¼ F0. Since F0 together with any Ai

generate S4, so does F and Ag
i
:¼ g�1Aig. The

choice of ~G ¼ ðG;G0; G00Þ would then be any of
the three Ag

i .
To computeU, we need to go to the basis where F is

diagonal, in which case the representation of ~G is Ai

in the b-diagonal basis. We may therefore assume

from the outset that F ¼ b and ~G ¼ Ai for some i.
A similar step should be carried out for the cases to
be considered later, but we will often skip that step
and assume F directly to be an appropriate generator
of the group.
(a) ~G ¼ A1. If we let ~G ¼ ½G1; G3; G2�, then Gi ¼

Gi0 and the full-mixing matrix is the TBM ma-
trix U0 in (2).

(b) ~G ¼ A2. If we let ~G ¼ ½G1; G3; G2�, then Gi ¼
F0Gi0F

2
0 and the full-mixing matrix is just the

TBM matrix U0, multiplied, respectively, by 1,
!, !2 in the first, second, and third rows. Since
row phases are adjustable, this is equivalent to
the TBM in (2).

(c) ~G ¼ A3. If we let ~G ¼ ½G1; G3; G2�, then Gi ¼
F2
0Gi0F0 and the full-mixing matrix is just the

TBM, multiplied, respectively, by 1,!2, ! in the
first, second, and third rows. Since row phases are
adjustable, this is equivalent to the TBM in (2).
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(d) In conclusion, as long as F 2 C4, the full-mixing
matrix is equivalent to the TBM in (2), charac-
terized by the physical parameters h 1ffiffi

3
p ; 1ffiffi

2
p ; 0i.

(2) F 2 C5. Any F in this class obeys F4 ¼ 1, hence its
possible eigenvalues are 1, þi, �i, �1. Since we
want it to be nondegenerate, has determinant þ1,
and since its character according to Table I is real,
we conclude that its allowed eigenvalues are 1, i,
�i, each occurring once and only once. For definite-
ness, we will let F ¼ a1b ¼ ð1342Þ :¼ c1. This is
completely general because the four permutation
objects in S4 can be assigned any label we wish to.
Once again, G must be chosen so that fF;Gg gen-
erate S4. To see how to find such a G, write the
presentation of S4 in (4) in a slightly different form,
S4 ¼ ha; cja2 ¼ c4 ¼ ðacÞ3 ¼ 1i, which shows that
the generator a is of order 2, the generator c of
order 4, and ac is of order 3. Trying all 9 possibil-
ities in C2 and C3 with c ¼ c1 ¼ ð1342Þ, we see that
only the following four a’s, a1 ¼ ð12Þ, a01 ¼ ð34Þ,
a03 ¼ ð13Þ, and a3 ¼ ð24Þ, can yield an order-3 ac.
Thus G is confined to one of these four cases.

As a consequence, the allowed triplets are ~G ¼ A1

and A3.
In order to find out what these matrices are in the
F-diagonal basis, we first write them in the
b-diagonal basis, then convert them by a similarity
transformation to the F-diagonal bases.
In the b-diagonal basis,

F¼a1b¼G10F0¼1

3

1 �2! �2!2

�2 �2! !2

�2 ! �2!2

0
B@

1
CA: (6)

This F can be diagonalized by the unitary matrix

V¼ 1ffiffiffi
3

p
! �! !

!2 �!2=ð ffiffiffi
3

p þ1Þ �!2=ð ffiffiffi
3

p �1Þ
1 1=ð ffiffiffi

3
p �1Þ 1=ð ffiffiffi

3
p þ1Þ

0
BB@

1
CCA (7)

to yield VyFV ¼ diagð1; i;�iÞ :¼ F0.

(a) ~G ¼ A1. In the F-diagonal representation,
½G1;G2;G3�:¼½G;G0;G00�¼Vy½G10;G30;G20�V.
The full-mixing matrix is then given by

U¼VyU0
0

¼
�e�i=3=

ffiffiffi
2

p �e��i=6=
ffiffiffi
2

p
0

�e�5�i=12=2 �e�i=12=2 e�i=12=
ffiffiffi
2

p
�e�i=12=2 e�5�i=12=2 e�5�i=12=

ffiffiffi
2

p

0
B@

1
CA;

(8)

whereU0
0 is the TBMmixing matrix given in (2)

with the second and third columns switched. We
do that switching to put U into a more familiar
form with a vanishing reactor angle.
Multiplying the first, second, and third columns

by e�i=6, e��i=12, e5�i=12, and the first and sec-
ond columns by i, �1, we can turn U into the
equivalent form

U !
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
0

�1=2 1=2 1=
ffiffiffi
2

p
1=2 �1=2 1=

ffiffiffi
2

p

0
B@

1
CA; (9)

whose mixing angles are given by the physical
triplet h 1ffiffi

2
p ; 1ffiffi

2
p ; 0i. In this case, the reactor angle

remains to be zero, but both the solar and the
atmospheric mixings are maximal.

(b) ~G ¼ A3. First, note that A3 ¼ ½ð24Þ; ð13Þ;
ð24Þð13Þ� ¼ c1½ð34Þ; ð12Þ; ð34Þð12Þ�c�1

1 , where
c1¼ð1342Þ. In the b-diagonal representation,
½a03; a3; a003 � ¼ c1½a1; a01; a001 �c�1

1 ¼ F½G10; G30;
G20�F�1. In the F-diagonal basis, ½G1;G2;
G3� :¼½G0;G;G00�¼VyF½G10;G30;G20�F�1V¼
F0Vy½G10;G30;G20�VF0�1. The full-mixing ma-
trix is therefore F0VyU0

TBM ¼ F0U5, with U5

being the U in (8). Since F0 is a diagonal phase
matrix, the full-mixing matrix here is equivalent
to (8) and (9).

(c) In conclusion, as long as F 2 C5, the full-
mixing matrix is equivalent to U of (9), charac-
terized by the physical parameters h 1ffiffi

2
p ; 1ffiffi

2
p ; 0i.

To summarize, up to equivalence, the full-mixing matrix
of S4 is either given by the TBM in (2), characterized
by the physical parameters h 1ffiffi

3
p ; 1ffiffi

2
p ; 0i, or the matrix (9),

characterized by h 1ffiffi
2

p ; 1ffiffi
2

p ; 0i.

B. A4

The character table of A4 is given in Table II. In this case
the order-3 elements are divided into two classes, C3 and
C4, with the elements in C4 being the square, or the inverse,
of the elements in C3. Since the generator b is of order 3, it

TABLE I. Character table of S4.

C1 C2 C3 C4 C5
(1) (12) (12)(34) (123) (1234)

jCij 1 6 3 8 6

�1 1 1 1 1 1

�2 10 �1 1 1 �1
�3 2 0 2 �1 0

�4 30 1 �1 0 �1
�5 3 �1 �1 0 1

a b ab
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is either in C3 or C4, which differ only by the arbitrary
naming of the four objects. For definiteness we will choose
it to be in C3. Since its three-dimensional character �4

vanishes, up to permutation of the entries, the diagonal
form of b is again b ¼ diagð1; !;!2Þ. For definiteness,
once again we will let b ¼ ð134Þ.

The generator a is of order 2, so it must be in C2.
To be a generator, it must contain the permutation of the
object 2, but then all of them do. Hence there are three
possibilities: a1 ¼ ð12Þð34Þ, a2 ¼ ð13Þð24Þ, a3 ¼ ð14Þð23Þ.
These three mutually commute, and the product of any two
is the third, so they can be taken to be G, G0, G00
respectively.

In the diagonal form, a nondegenerate F must be F ¼
b ¼ diagð1; !;!2Þ ¼ F0, up to permutation of its entries.
We must now find out the representation of A ¼ ða1; a2:a3Þ
in this basis.

We know from (3) and the discussions below that
equation that F0 and G20 generate A4, hence we may
take a2 ¼ G20. Then a1¼ð12Þð34Þ¼ð134Þð13Þð24Þð143Þ¼
ba1b

2 :¼G0
1, and a3 ¼ ð14Þð23Þ ¼ b2a1b :¼ G0

3. Since

the invariant eigenvector of G2 is proportional to
ð1; 1; 1ÞT , and invariant eigenvectors of G0

1 and G0
3 are

respectively F0ð1; 1; 1ÞT ¼ ð1; !;!2ÞT and F2
0ð1; 1; 1ÞT ¼

ð1; !2; !ÞT . Consequently, the full-mixing matrix of A4 is
the Cabibbo-Wolfenstein mixing matrix

U ¼ 1ffiffiffi
3

p
1 1 1
! 1 !2

!2 1 !

0
@

1
A; (10)

whose triplet of physical parameters can be shown to be

h 1ffiffi
2

p ; 1ffiffi
2

p ; e
�i�=2ffiffi
3

p i.

C. A5

The character table of A5 is given in Table III, where’ is

the golden ratio ð1þ ffiffiffi
5

p Þ=2 ¼ �2 cosð4�=5Þ ¼ 1:618,

and 1=’¼ð�1þ ffiffiffi
5

p Þ=2¼’�1¼2cosð2�=5Þ¼0:618.
The elements in class C5 are the square of the elements in

C4. From the presentation of the group given in (4), we see
that the generators a and b must in classes C2 and C3
respectively, and ab must in C4 or C5. Which of the two it
belongs to simply depends on how we label the five objects
in A5.
For definiteness, let b ¼ ð134Þ as before. To be a gen-

erator of A5, a must contain the numbers 2 and 5 in
separate cycles, such as a13 ¼ ð12Þð35Þ or a013¼ð15Þð23Þ.
These two commute and produce a product a0013¼ð13Þð25Þ,
which incidentally is not a generator because 2 and 5 are in
the same cycle. In addition to A13 ¼ ½a13; a013; a0013�, there
are two other commuting triplets, A14¼½a14;a014;a0014� and
A34 ¼ ½a34; a034; a0034�, with a14 ¼ ð12Þð45Þ, a014 ¼ ð15Þð24Þ,
a0014 ¼ ð14Þð25Þ, and a34 ¼ ð32Þð45Þ, a034 ¼ ð35Þð24Þ,
a0034 ¼ ð34Þð25Þ. In each case, a or a0 is a possible generator
of A5, but not a

00. Any of these three triplets is a possible

choice for ~G ¼ ½G;G0; G00�.
F may be in C3 or C4, but we will only consider the case

F 2 C3 here.
1 As usual, without loss of generality we may

choose F ¼ b ¼ ð134Þ ¼ diagð1; !;!2Þ ¼ F0 as before.
The question is what is the three-dimensional representa-
tion for the generator a.
Representation of A5 can be found in [6], but unfortu-

nately it is not in the b-diagonal basis that we need.
Nevertheless, from that representation, one can work out
the defining representation a in the b-diagonal basis to be

a ¼

ffiffi
5

p
3 � 1

4 þ 1
12 ð

ffiffiffi
5

p þ i
ffiffiffi
3

p þ i
ffiffiffi
5

p ffiffiffi
3

p Þ � 1
4 þ 1

12 ð
ffiffiffi
5

p � i
ffiffiffi
3

p � i
ffiffiffi
5

p ffiffiffi
3

p Þ
� 1

4 þ 1
12 ð

ffiffiffi
5

p � i
ffiffiffi
3

p � i
ffiffiffi
5

p ffiffiffi
3

p Þ � 1
2 �

ffiffi
5

p
6

1
4 þ 1

12 ð�2
ffiffiffi
5

p � 2i
ffiffiffi
3

p þ i
ffiffiffi
5

p ffiffiffi
3

p Þ
� 1

4 þ 1
12 ð

ffiffiffi
5

p þ i
ffiffiffi
3

p þ i
ffiffiffi
5

p ffiffiffi
3

p Þ 1
4 þ 1

12 ð�2
ffiffiffi
5

p þ 2i
ffiffiffi
3

p � i
ffiffiffi
5

p ffiffiffi
3

p Þ � 1
2 �

ffiffi
5

p
6

0
BB@

1
CCA: (11)

One can check that b3 ¼ a2 ¼ 1 and ðabÞ5 ¼ 1, so these a and b are indeed generators of A5.

TABLE II. Character table of A4.

C1 C2 C3 C4
(1) (12)(34) (123) (132)

jCij 1 3 4 4

�1 1 1 1 1

�2 10 1 ! !2

�3 100 1 !2 !
�4 3 �1 0 0

a b b2

TABLE III. Character table of A5.

C1 C2 C3 C4 C5
(1) (12)(34) (123) (13524) (12345)

jCij 1 15 20 12 12

�1 1 1 1 1 1

�2 4 0 1 �1 �1
�3 5 1 �1 0 0

�4 30 �1 0 �1=’ ’
�5 3 �1 0 ’ �1=’

a b ab ab2
� �

1There have been some model calculations of A5 [5], which agree with the group-theoretical result given below. I am grateful to Prof.
Feruglio for informing me that the result of the case not considered here is also contained in their paper.
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This a can be equated to any one of the generators in C2.
For definiteness, let it be a ¼ a13 ¼ ð12Þð35Þ. We must
also find the matrix representation of its commuting part-
ners a013 :¼ a0 and a0013 :¼ a00. They are in the same class as

a, so each of them can be written in the form gag�1, for

some g, which itself is a product of the generators a and b.
It can be shown that g ¼ ðbaÞ2b2 ¼ ð125Þ and g�1 ¼
bðbaÞ3 ¼ ð152Þ convert a ¼ ð12Þð35Þ into a00 ¼ ð13Þð25Þ.
Using the representation of b and a, one can calculate from
(11) to obtain

a00 ¼ 1

8

�8 0 0
0 0 1þ 3

ffiffiffi
5

p þ ffiffiffi
3

p
ið1� ffiffiffi

5
p Þ

0 1þ 3
ffiffiffi
5

p � ffiffiffi
3

p
ið1� ffiffiffi

5
p Þ 0

0
@

1
A; (12)

and then from a0 ¼ aa00 that

a0 ¼
�

ffiffi
5

p
3

1
4 � 1

12 ð
ffiffiffi
5

p þ i
ffiffiffi
3

p þ i
ffiffiffi
5

p ffiffiffi
3

p Þ 1
4 � 1

12 ð
ffiffiffi
5

p � i
ffiffiffi
3

p � i
ffiffiffi
5

p ffiffiffi
3

p Þ
1
4 � 1

12 ð
ffiffiffi
5

p � i
ffiffiffi
3

p � i
ffiffiffi
5

p ffiffiffi
3

p Þ � 1
2 þ

ffiffi
5

p
6

1
4 þ 1

12 ð�2
ffiffiffi
5

p � 2i
ffiffiffi
3

p þ i
ffiffiffi
5

p ffiffiffi
3

p Þ
1
4 � 1

12 ð
ffiffiffi
5

p þ i
ffiffiffi
3

p þ i
ffiffiffi
5

p ffiffiffi
3

p Þ 1
4 þ 1

12 ð�2
ffiffiffi
5

p � 2i
ffiffiffi
3

p � i
ffiffiffi
5

p ffiffiffi
3

p Þ � 1
2 þ

ffiffi
5

p
6

0
BB@

1
CCA: (13)

The unitary matrix to diagonalize simultaneously a, a0, a00 so that UyaU ¼ diagðþ1;�1;�1Þ, Uya0U ¼
diagð�1;þ1;�1Þ, Uya00U ¼ diagð�1;�1;þ1Þ is

U ¼ 1ffiffiffi
3

p
’ ’�1 0

� 1
2 ð1þ!’Þ’�1 1

2 ð1þ!’Þ’
ffiffi
3

p
2 ið1þ!’Þ

1
2 ð1þ!2’Þ’�1 � 1

2 ð1þ!2’Þ’
ffiffi
3

p
2 ið1þ!2’Þ

0
B@

1
CA: (14)

Writing ð1þ!’Þ ¼ ð1þ!2’Þ� ¼ ffiffiffi
2

p
ei�, then multiply

the second and the third rows of U by e�i� and �ei�

respectively, and the third column by �i, we can turn U
into the equivalent form

U ! 1ffiffiffi
3

p
’ ’�1 0

� 1ffiffi
2

p
’

’ffiffi
2

p
ffiffi
3

pffiffi
2

p
1ffiffi
2

p
’

� ’ffiffi
2

p
ffiffi
3

pffiffi
2

p

0
BB@

1
CCA; (15)

whose physical parameters are given by the triplet
h 1ffiffi

3
p

’
; 1ffiffi

2
p ; 0i. This is the full-mixing matrix of A5

if ðG;G0; G00Þ ¼ ða13; a013; a0013Þ ¼ ða; a0; a00Þ ¼ ðð12Þð35Þ;
ð15Þð23Þ; ð13Þð25ÞÞ.
Next, consider the other triplet ðG;G0; G00Þ ¼

ða14; a014; a0014Þ ¼ ðð12Þð45Þ; ð15Þð24Þ; ð14Þð25ÞÞ. Let g¼
ðbaÞ3¼ðð134Þð12Þð35ÞÞ3¼ð15243Þ. Then ða14; a014; a0014Þ ¼
gða; a00; a0Þg�1. Note that the positions of a00 and a0 are
reversed. The full-mixing matrix for this triplet choice is
therefore U ¼ X ~U, where ~U is the matrix in (14) with the
second and third columns interchanged, and

X ¼ ðbaÞ3 ¼ 1

12

4 1� i
ffiffiffi
3

p þ ffiffiffi
5

p ð3þ i
ffiffiffi
3

p Þ 1þ i
ffiffiffi
3

p þ ffiffiffi
5

p ð3� i
ffiffiffi
3

p Þ
4ð1� i

ffiffiffi
3

p Þ 1þ i
ffiffiffi
3

p � ffiffiffi
5

p ð3� i
ffiffiffi
3

p Þ 1� i
ffiffiffi
5

p ffiffiffi
3

p
4ð1þ i

ffiffiffi
3

p Þ 1þ i
ffiffiffi
5

p ffiffiffi
3

p
1� i

ffiffiffi
3

p � ffiffiffi
5

p ð3þ i
ffiffiffi
3

p Þ

0
B@

1
CA: (16)

The result is

U ¼ X ~U ¼ 1ffiffiffi
3

p
’�1 �’ 0

1ffiffi
2

p ’e�i� 1ffiffi
2

p ’�1e�i� �i
ffiffi
3

pffiffi
2

p e�i�

1ffiffi
2

p ’ei� 1ffiffi
2

p ’�1ei� i
ffiffi
3

pffiffi
2

p e�i�

0
BB@

1
CCA; (17)

where � is defined by
ffiffiffiffi
15

p
12 � i

4 ¼ 1ffiffi
6

p e�i�.
Multiply the second row by ei�, the third row by�e�i�,

the second column by �1, the third column by i, and
interchange the first and second columns, we get back to
the mixing in (15).

Finally, similar calculation shows that if ðG;G0; G00Þ ¼
ða34; a034; a0034Þ, then its full-mixing matrix is also equivalent
to (14).

In summary, as long as F 2 C3, the full-mixing matrix
of A5 is equivalent to (15), a mixing which is characterized
by the triplet physical mixing parameters h 1ffiffi

3
p

’
; 1ffiffi

2
p ; 0i.

IV. CONNECTION BETWEEN GROUP THEORY
AND DYNAMICS

Charged-lepton masses come from Yukawa interactions
in the standard model. If neutrino masses arise from the
type-I seesaw mechanism, then the Lagrangian responsible
for flavor structure of mass matrices can be symbolically
written as

L ¼�c	 �eReL

	�h0	 �NR�L�

0	�1

2
h	N

T
RNR�

	þH:c:;

(18)
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where eL, eR are the left-handed and right-handed charged
leptons, �L, NR are the active and heavy Majorana neutri-
nos, and 
	, �	, �0	 are the flavons. Isotopic spin and
spacetime details are omitted, so this Lagrangian should
only be used to discuss the flavor structure of mass matri-
ces. In that regard every term is assumed to be invariant
under a horizontal symmetry group G, with c	, h	, h

0
	

being the Yukawa coupling constants. The index 	 labels
the irreducible representations ofG, and a sum over all 	 is
understood. The IR of the fermions are not explicitly
specified.

For type-II seesaw, we replace the last two terms with a
single term, hence

L ¼ �c	 �eReL

	 � h	�

T
L�L�

	 þ H:c: (19)

To obtain the mass matrices from (18) or (19), vacuum
expectation values of the flavons are introduced to break
the G-symmetry. In order for the residual symmetries to be
preserved after the breaking, F in the charged-lepton sector
and Gi in the neutrino sector, the vacuum alignments
have to be invariant eigenvectors (eigenvector with eigen-
value þ1) of the corresponding residual operators [3],

Fð	Þh
	i¼ h
	i; Gð	Þ
i h�	i¼ h�	i; Gð	Þ

i h�0	i¼h�0	i;
(20)

where Fð	Þ andGð	Þ
i are the representations of F,Gi in IR	.

If we want to obtain a full-mixing matrix, then (20) is
required to be obeyed for i ¼ 1; 2; 3, but if we want to
construct a partial-mixing matrix, then the equation has to
be satisfied only for that i.

Assuming the invariant eigenvectors to be unique, it
follows from (20) that h�	i ¼ h�0	i up to normalization,
so we will set �0	 ¼ �	 in (18) from now on.

Note that (20) does not rely on the specific form of (18)
or (19). All that it requires is the neutrino mass terms to be
distinct from the charged-lepton mass terms, and that each
has its own valon. (20) would be equally valid if valon
fields appear quadratically in the Lagrangian, for example.

Our main goal is to keep the effective left-handed mass
matrices �Me and �M� invariant under the residual-
symmetry. This can be accomplished by keeping the bro-
ken Lagrangian invariant, as is done above, but in the case
of type-I seesaw, since the Dirac mass matrix M� enters
quadratically in �M� ¼ MT

�M
�1
N M�, where MN is the

Majorana mass matrix of NR, invariance of �M� can also
be preserved indirectly [7] if the last term in (20) is

replaced by Gð�Þ
i h�0�i ¼ �h�0�i.

Once we know the IR of the residual-symmetry opera-
tors, vacuum alignments can be calculated. With those
alignments, one can construct many models that automati-
cally give rise to the desired neutrino mixing. Yukawa
coupling constants are used to fit the fermion masses,
and in the case of partial-mixing, also the remaining mix-
ing parameters. Different models are obtained by choosing

different IR assignments of eL, eR, �L, NR, 
, and �,
though for a successful model we must make sure that
enough terms are present in each sector to fit all the masses
and the remaining mixing parameters, in spite of the zero
vacuum alignments forced upon us in those IR without an
invariant eigenvector.
Let us see how this works explicitly. Let h�a;�bj	ci be

the Clebsch-Gordan coefficient of the group G, coupling
orthonormal states j�ai in IR� with the orthonormal states
j�bi in IR� to get an orthonormal state j	ci in IR	,

j	ci ¼ X
a;b

j�aij�bih�a;�bj	ci;

j�aij�bi ¼ X
	;c

j	cih	cj�a;�bi:
(21)

The CG coefficients must obey the group-invariant
condition

X
c0
h�a;�bj	c0igð	Þ

c0c ¼
X
a0;b0

gð�Þ
aa0g

ð�Þ
bb0 h�a0; �b0j	gi;

X
c0
gð	Þcc0 h	c0j�a;�bi ¼

X
a0;b0

h	cj�a0; �b0igð�Þa0ag
ð�Þ
b0b;

(22)

for every g 2 G, or at least for every generator of G. It is
important to note that if we change the IR bases of g, the
CG coefficients may have to be changed as well. In the case
of S4, the CG coefficients to be used will be those that
correspond to the IR given in Table IV.
Suppose eR and eL belong to IR� and IR�, respectively,

and the flavons belong to IR	. Then the charged-lepton
mass matrix can be read out from either (18) or (19) to be

ðMeÞab ¼ X
	;c

c	h��a;�bj	cih
	
c i: (23)

The invariance of the charged-lepton mass matrices Me

and �Me: ¼ My
eMe under the residual-symmetry F can be

seen from (20) and (22)

Fð�ÞyMeF
ð�Þ ¼ Me; Fð�Þy �MeF

ð�Þ ¼ �Me: (24)

Similarly, if NR, �L belong to IR� and IR�, respec-
tively, then the neutrino mass matrices are

TABLE IV. Irreducible representations and invariant eigenvec-
tors of the first set of S4 residual-symmetry operators.

IR 1 10 2 30 3

F 1 1 diag !;!2
� �

diag 1; !;!2
� �

diag 1; !;!2
� �

h
i 1 1 (0, 0) (1, 0, 0) (1, 0, 0)

G1 1 �1 �1 �G10 G10

G2 1 1 diag 1; 1ð Þ G20 G20

G3 1 �1 �1 �G30 G30

h�i 1 0 (1, 1) (1, 1, 1) (0, 0, 0)
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ðM�Þab ¼ X
	;c

h0	h�a;�bj	cih�	
c i;

ðMNÞaa0 ¼
X
	;c

h	h�a;�a0j	ciSh�	
c i;

�M� ¼ MT
�M

�1
N M�;

(25)

where h�a;�a0j	ciS is the CG coefficient symmetric in a
and a0. Once again the invariance relations

Gð�Þy
i M�G

ð�Þ
i ¼ M�; Gð�Þy

i MNG
ð�Þ�
i ¼ MN;

Gð�ÞT
i

�M�G
ð�Þ
i ¼ �M�

(26)

follow. Note that because of the Majorana nature of the

neutrino, we have assumed Gð�;�Þ
i to be real. For indirect

models, the first equation in (26) should have a minus sign.
In the rest of this section, we will illustrate these opera-

tions by considering the direct full-mixing models of the
groups G ¼ A4 and S4. In the case of A4, partial-mixing
models are also discussed because they can give rise to the
phenomenologically interesting tribimaximal mixing.

The first task in each case is to find out the IR of the
residual-symmetry operators.

A. S4

Remember from Sec. IV that there are two full-mixing
modes, one giving rise to the TBM, and the other yielding a
mixing with too large a solar angle. We shall consider how
dynamical models can be constructed in each case, starting
with those giving rise to the TBM.

(1) F ¼ F0, ½G1; G2; G3� ¼ ½G10; G20; G30�
Table IV shows the IR and invariant eigenvectors of
the residual-symmetry operators in the basis where
F is diagonal.
The one-dimensional IR 1, 10 in Table IVare obtained
directly from Table I because in that case the group
character is the value of the IR. The three-dimensional
representations 3, 30 are copied from those given in the
previous section. For 2, sinceF3 ¼ 1 and its character
from Table I is TrðC4Þ ¼ �1, its diagonal form must
be diagð!;!2Þ. The other generator G1 must not be
diagonal, or else the two-dimensional representation
is not irreducible. Since G2

1 ¼ 1, within equivalence
we may choose it to be the Pauli matrix

�1 ¼ 0 1
1 0

� �
:

With these IR of the residual-symmetry operators, it is
straightforward to work out the invariant eigenvector
h
i of F, and the simultaneous invariant eigenvector
h�i of G1, G2, and G3. The column vectors are
displayed in the table as row vectors for printing
convenience. Some of the vacuum alignments are
zero either because F� does not haveþ1 eigenvalue,
or because there is no commoneigenvector ofG�

1 ,G
�
2 ,

G�
2 all with eigenvalueþ1.

With the help of Tables I and IV, many direct models
possessing TBM can be constructed. These models
differ from one another in their IR assignments for the
right-handed fermions and flavons.
We saw in the last section that the residual-
symmetry operators for S4 and A4 are in IR3, hence
the left-handed fermions must transform as 3. One
can then work out from the character table the al-
lowed IR of the flavons for every assignment of the
right-handed fermion. The result is listed in row 2 of
Table V. Since h
i ¼ 0 for IR2 and h�i ¼ 0 for IR3,
neither of them can be used to construct models.
Taking that into account, the final number of free
parameters available in model construction is listed
in the third row for the charged-lepton sector, the
fourth row for the neutrino sector if it is given by a
type-II seesaw, and the fifth row for the neutrino
sector given by a type-I seesaw. Those in the neu-
trino sector require a little bit of explanation.
For type-II seesaw, �L is coupled to itself so only
3� 3 coupling is relevant. For type-I seesaw, the
heavy Majorana neutrino NR can be assigned to any
IR. The first of the two numbers in the last row refers
to the number of free parameters in the Dirac neu-
trino mass term. Once the assignment � of NR is
determined, the number of parameters in the
Majorana mass terms is determined by �� �, and
that appears as the second number in the last row. If
we consider indirect models [7], then the number of
parameters is even larger than that.
Let us see what Table V is telling us. First look at the
charged-lepton sector, in row 3. Since the number of
free parameters always happens to match the dimen-
sion of the representation, there are always just
enough of them to fit the three charged-lepton
masses.
For type-II seesaw, there is again exactly three free
parameters to fit the three active neutrino masses.
For type-I seesaw, the number of free parameters
shown is the sum of the M� and MN parameters,
which is generally more than enough to fit the active
neutrino masses. The remaining ones can be used,
for example, to tune the properties of the heavy
neutrinos.
As a concrete illustration, we will write down the
massmatrices of a type-Imodelwhere eL, eR,�L,NR

TABLE V. Number of free parameters in S4 models with a
TBM mixing.

RHF 1 10 2 30 3

Flavons 3 30 30, 3 10, 2, 30, 3 1, 2, 30, 3
e parameter 1 1 2 3 3

Type-II � - - - - 3

Type-I � 0þ 1 1þ 1 1þ 3 3þ 3 3þ 3
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all belong to 3. It is the kind of assignment that a
SOð10Þ grand unified theory would want. In that
case, according to Tables IV and V, Me, M�, and
MN should contain exactly three parameters each.
Using the CG coefficients in the F0-diagonal basis,
these mass matrices can be worked out to be Me ¼
diagð �c1 þ 2�c30 ; �c1 � �c30 þ �c3; �c1 � �c30 � �c3Þ, where
�c1 ¼ c1=

ffiffiffi
3

p
, �c30 ¼ c30=3

ffiffiffi
2

p
, and �c3 ¼ c3=

ffiffiffi
6

p
.

Furthermore,

MN ¼
�h1 þ 2 �h30 �h2 � �h30 �h2 � �h30
�h2 � �h30 �h2 � �h30 �h1 þ �h30
�h2 � �h30 �h1 þ �h30 �h2 � �h30

0
B@

1
CA; (27)

where �h1 ¼ h1=
ffiffiffi
3

p
, �h30 ¼ h30=3

ffiffiffi
2

p
, and �h2 ¼

h2=
ffiffiffi
6

p
. The expression for M� is identical except

that h� is to be replaced by h0�.
This example illustrates some general points dis-
cussed above:
(a) Each of Me, M�, MN is specified by three inde-

pendent parameters, as shown in Table Vabove.
(b) The three parameters in Me can be fitted by the

three charged-lepton masses.
(c) There are six parameters to specify �M� ¼

MT
�M

�1
N M�. In additional to fitting the three

active neutrino masses, we can use the remain-
ing three to specify the heavy NR masses.

(d) Me is automatically diagonal. This is because
we are using CG coefficients in the F0-diagonal
(hence �Me-diagonal) basis. As remarked below
Eq. (22), if we use some other basis, then the
CG coefficient will be rotated and the resulting
Me may no longer be diagonal.

(e) Whatever the parameters are, both M� and MN

turn out to be magic (all row sums are equal)
and 2–3 symmetric (invariant under a simulta-
neous exchange of the second and third col-
umns, and second and third rows). Hence
�M� ¼ MT

�M
�1
N M� is also magic and 2–3 sym-

metric, and the mixing matrix U is automati-
cally TBM [8].

(2) F ¼ G10F0, ½G1; G2; G3� ¼ ½G10; G20; G30�
This is the other allowed full-mixing of S4, given in
(6)–(9). Unlike the TBM mixing, whose models
abound in the literature, this one is seldom discussed
presumably because its phenomenology is less at-
tractive. Another reason might be that the appropri-
ate vacuum alignments in this case are a bit strange,
as we shall see. Nevertheless, we can follow the
general procedure to construct models that lead to
this kind of mixing.
There are two different ways to proceed. Either we
go directly to the F-diagonal basis, as prescribed
before, or we stay in the F0-diagonal basis that we
are familiar with. The former has the advantage
of having �Me automatically diagonal, but the CG

coefficients in the F-diagonal basis must be worked
out anew. If we travel the latter route, the CG
coefficients are the same ones used in (27), but we
have to work out the new alignments, and have to
perform the diagonalization of �Me afterward. To
illustrate better the connection between the group-
theoretical and the dynamical approaches, we
choose to work with the latter.

In the b-diagonal basis, the IR of Gi is the same as in
Table IV, and the IR of F can be obtained from Table IV by
calculating G1F. The resulting IR as well as the invariant
eigenvectors are shown in Table VI below. Since the IR for
Gi remains unchanged, that part of the table is identical to
Table VI. The only difference comes in the upper part of
the table in which F is replaced by G1F in every IR.
The parameter count for this kind of model is shown in

Table VII. The only variation from Table V comes from
the different vanishing h
i’s, now occurring in 10 and 30
instead of 2.
As a result, in order to have enough parameters to fit the

charged-lepton masses, eR must now be in 3, not 30, nor a
combination of 1 and 2. Other than that, things are pretty
much the same as before except that Me is now no longer
diagonal. To see the difference between this case and
TBM, let us illustrate again with the model in which eL,
eR, �L, NR all belong to 3. In that case, using the
F0-diagonal CG coefficient as before, but now a different
h
i, we get

Me¼
�c1 ! �c2þ �c3=

ffiffiffi
3

p
�c2�!2 �c3=

ffiffiffi
3

p
�c2þ!2 �c3=

ffiffiffi
3

p
�c1�! �c3=

ffiffiffi
3

p
! �c2

! �c2� �c3=
ffiffiffi
3

p
�c2 �c1þ! �c3=

ffiffiffi
3

p

0
B@

1
CA;
(28)

where �c1 ¼ c1=
ffiffiffi
3

p
, �c2 ¼ c2=

ffiffiffi
6

p
, and �c5 ¼ c5=

ffiffiffi
2

p
. Since

the h�i’s are the same as in Table IV, the neutrino mass

TABLE VI. Irreducible representations and invariant eigen-
vectors of the second set of S4 residual-symmetry operators.

IR 1 10 2 30 3

F 1 �1 �1diag !;!2
� � �G10F0 G10F0

h
i 1 0 1; !ð Þ (0, 0, 0) !;!2; 1
� �

G1 1 �1 �1 �G10 G10

G2 1 1 diag 1; 1ð Þ G20 G20

G3 1 �1 �1 �G30 G30

h�i 1 0 (1, 1) (1, 1, 1) (0, 0, 0)

TABLE VII. Number of free parameters for the other S4
model.

RHF 1 10 2 30 3

Flavons 3 30 30, 3 10, 2, 30, 3 1, 2, 30, 3
e parameter 1 0 1 2 3

Type-II � 3

Type-I � 0þ 1 1þ 1 1þ 3 3þ 3 3þ 3
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matrices M� and MN are identical to those given in (27),
which are diagonalized by the TBMmatrixU0 of (2). If for
convenience we switch the second and the third columns,
then it isU0

0 as explained below (8). ThisU0
0 however is not

the mixing matrix because Me is not diagonal.
SinceMe commutes with F, which is nondegenerate, the

matrix V in (7) that diagonalized F must also diagonalize
Me. Indeed,

VyMeV

¼
�c1þ2!2 �c2

�c1�!2 �c2þ! �c5

�c1�!2 �c2�! �c5

0
BB@

1
CCA;
(29)

which gives rise to the charged-lepton mass-squared matrix
Vy �MeV ¼ diagðm2

e; m
2
;m

2
�Þ, with

m2
e ¼ ð �c1 � �c2Þ2 þ 3�c22;

m2
;� ¼ �c21 þ �c22 þ �c25 þ �c1 �c2 � ð �c1 � �c2Þ �c5:

(30)

The neutrino mixing matrix is now given by U ¼ VyU0
0,

whose explicit result is already given in (8) and (9).

B. A4

We shall discuss for this group both the full-mixing and
the partial-mixing models. For full-mixing, h�i is the
simultaneous invariant eigenvector of G1, G2, and G3,
and is denoted by h�alli. For partial-mixing defined by
Gi, h�i is the invariant eigenvector of that Gi, denoted as
h�ii. Table VIII exhibits the IR of the residual operators
and the vacuum alignments.

The parameter count for these models is given in
Table IX.

We see once again that no matter how eR is assigned,
there are always just enough parameters to fit the charged-
lepton masses. For type-II neutrinos, after using three
to fit the neutrino masses, there is one left over to fit the
remaining mixing. It is this extra parameter that can turn a
partial-mixing mode of A4 into a TBM, thereby promoting

the A4 symmetry to a S4 symmetry. In the case of full-
mixing, listed under ‘‘all’’, the mixing matrix is completely
determined to be the Cabibbo-Wolfenstein matrix, so the
number of parameters is just enough to fit the neutrino
masses. For type-I mixing, as before, there are more pa-
rameters than necessary to fit the active neutrino masses
and the remaining mixing if in the partial-mixing mode, so
the extra ones can be applied to tune the properties in the
heavy neutrino sector.

V. HIGGS POTENTIAL OF A4

We established in Secs. II and III a connection between
the mixing matrix and horizontal symmetry, purely on
symmetry grounds, without the presence of Higgs fields
nor a Lagrangian. We also saw in Sec. IV that if flavons are
introduced in a Lagrangian, then their vacuum alignments
must be invariant eigenvectors of the residual-symmetry
operators for the two formalisms to agree. In a dynamical
model, vacuum alignments are obtained by minimizing a
Higgs potential, so for consistency we must find a suitable
Higgs potential to yield just those alignments.
A completely generic Higgs potential contains so many

G-invariant terms that just about any vacuum alignment
can be obtained by adjusting the self-coupling parameters.
In order to confine the solutions to invariant eigenvectors, a
rationale must be found to chop down the number of terms
in the potential. The usual way to accomplish that is to
impose an additional symmetry on top of G.
Take G ¼ A4 for example. It contains four irreducible

representations, 1, 10, 100, 3. Since the only nontrivial
alignment occurs in 3, let us consider a renormalizable
Higgs potential Vðc ; c �Þ of the complex triplet flavon
field c ¼ ða1; a2; a3ÞT . It turns out that if V contains
only c �c and c �c �c c terms, without terms like c c ,
c �c c , c �c c c , etc., then its minimization would yield
just the invariant eigenvectors of A4. Such a potential can
be arrived at by assigning c a nontrivial Uð1Þ quantum
number, c � the opposite quantum number, and imposing
an additional Uð1Þ symmetry on V. A suitable ZðNÞ would
do as well.

TABLE VIII. Irreducible representations and invariant eigen-
vectors of A4.

IR 1 10 100 3

F 1 ! !2 diag 1; !;!2 ¼ F0

� �
h
i 1 0 0 (1, 0, 0)

G1 1 1 1 F0G20F
2
0
:¼ G0

10

h�1i 1 1 1 1; !;!2
� �

G2 1 1 1 G20

h�2i 1 1 1 (1, 1, 1)

G3 1 1 1 F2
0G20F0 :¼ G0

30

h�3i 1 1 1 1; !2; !
� �

h�alli 1 1 1 (0, 0, 0)

TABLE IX. Number of free parameters for the full-mixing and
partial-mixing A4 model.

RHF 1 10 100 3

Flavons 3 3 3 1, 10, 100, 3S, 3A
e parameter 1 1 1 3

Type-II � G1 4

G2 4

G3 4

all 3

Type-I � G1 1þ 1 1þ 1 1þ 1 5þ 4
G2 1þ 1 1þ 1 1þ 1 5þ 4
G3 1þ 1 1þ 1 1þ 1 5þ 4
all 0þ 0 0þ 0 0þ 0 3þ 3
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In addition to showing that the solution to its equations
of motion are invariant eigenvectors, we shall also show
that alignments for A4 members of the same class have the
same Higgs energy. These general properties remain valid
if A4 is replaced by any simply reducible group G, as we
will see in the next section.

Such a potential has been considered before [9]. For the
quartic terms, if we choose to couple the two c ’s first, and
separately the two c �’s, then we obtain four terms depend-
ing on whether c c are coupled to 1, 10, 100, or 3. Using P �

to denote the projection operator for irreducible represen-
tation �, the most general V is

V¼hc c jf1P 1þf10P 10 þf100P 100 þf3P 3jc c i
�2hc jc i; (31)

where f� are the coupling constants.
With the help of explicit A4 CG coefficients given in

Appendix , V can be written as

V ¼ 1

3
ðf1jy1j2 þ f10 jy10 j2 þ f100 jy100 j2

þ 2f3ðk2 � jy3j2ÞÞ �2k; (32)

where

y1 ¼ a21 þ 2a2a3; y10 ¼ a23 þ 2a1a2;

y100 ¼ a22 þ 2a1a3; y3 ¼ a1a
�
2 þ a2a

�
3 þ a3a

�
1;

k ¼ ja1j2 þ ja2j2 þ ja3j2:
(33)

The equations of motion are obtained by setting
@V=@ai ¼ 0 and @V=@a�i ¼ 0. In this way, we obtain the
following equation and its complex conjugate:

0 ¼ f1y1

a�1
a�3
a�2

0
@

1
Aþ f10y10

a�2
a�1
a�3

0
@

1
Aþ f100y100

a�3
a�2
a�1

0
@

1
A

þ f3

2
42k a1

a2
a3

0
@

1
A� y3

a2
a3
a1

0
@

1
A� y�3

a3
a1
a2

0
@

1
A
3
5

� 3

2
2

a1
a2
a3

0
@

1
A: (34)

It is much easier to solve this cubic equation of ai by first
converting it to a quadratic equation in ya and k. To
accomplish that, we multiply (34) on the left, respectively,
by ða�1; a�2; a�3Þ, ða�3; a�1; a�2Þ, ða�2; a�3; a�1Þ to get

f1jy1j2þf10 jy10 j2þf100 jy100 j2þ2f3ðk2�jy3j2Þ
�ð3=2Þ2k¼0;

(35)

f1y1y
�
100 þf10y10y

�
1þf100y100y

�
10 þf3ðky�3�y23Þ

�ð3=2Þ2y�3¼0; (36)

f1y1y
�
10 þf10y10y

�
100 þf100y100y

�
1þf3ðky3�y�23 Þ

�ð3=2Þ2y3¼0: (37)

Substituting (35) into (32), we can simplify the Higgs
energy expression to

V ¼ � 1

2
2k: (38)

Subtracting the complex conjugate of (37) from (36), and
asking the equality to be true for all fa, we obtain

y1y
�
100 ¼ y�1y10 ¼ y�10y100 : (39)

Let us now proceed to solve (39).
(1) If y1 ¼ 0, then y10 or y100 must vanish. More gener-

ally, if one of the ysðs ¼ 1; 10; 100Þ vanishes, then one
or both of the other two must also vanish. In this
way, we obtain four possible solutions: y :¼
½y1; y10 ; y100 � / ½0; 0; 0�; ½1; 0; 0�; ½0; 1; 0�; ½0; 0; 1�.

(2) If none of the ys vanish, then it follows from (39)
that jy1j ¼ jy10 j ¼ jy100 j. Dividing (39) by y1y

�
1,

we get ðy100=y1Þ� ¼ ðy10=y1Þ ¼ ðy100=y1Þðy10=y1Þ�.
Hence ðy100=y1Þ3 ¼ 1, ðy10=y1Þ3 ¼ 1, and ðy100=y1Þ ¼
ðy10=y1Þ2. The solutions are therefore y ¼
y1½1; 1; 1�, y1½1; !;!2�, and y1½1; !2; !�.

Substituting these solutions of ys into (33), we can
obtain the solutions of c ¼ ða1; a2; a3Þ. Because of the
Uð1Þ invariance, the solutions below can always be multi-
plied by an arbitrary phase factor of unit modulus.

(1)
(a) Suppose y10 ¼ y100 ¼ 0.

(i) One obvious solution is a2 ¼ a3 ¼ 0. In that
case, a1 ¼ 0 if and only if y1 ¼ 0.
The solution c ¼ ð0; 0; 0Þ gives rise to k ¼
y3 ¼ 0, and a Higgs energy V ¼ 0 from (38).
Obviously it also satisfies the equation of
motion (34).

The solution c ¼ ffiffiffi
k

p ð1; 0; 0Þ gives rise
to y3 ¼ 0 and y1 ¼ k. It satisfies (34) and
(35) if k ¼ 32=2ðf1 þ 2f3Þ. The Higgs
energy is then given by (38) to be V ¼
�34=2ðf1 þ 2f3Þ.

(ii) There is also a solution with a2 � 0. In that
case, y10 ¼ y100 ¼ 0 implies a1 ¼ �a23=2a2
anda22¼a33=a2. The latter yieldsa3 ¼ a2!

m

for m ¼ 0, 1, or 2, and the former demands
a1 ¼ �a2!

2m=2. From (33) we now obtain
y1 ¼ 9a22!

m=4, k ¼ 9ja2j2=4, and y3 ¼ 0.
We can now check that (34) is satisfied pro-
vided k ¼ 32=2ðf1 þ 2f3Þ, so the Higgs
energyV¼�34=2ðf1þ2f3Þ is degenerate
with that of the c ¼ ffiffiffi

k
p ð1; 0; 0Þ solution.

This solution (actually three solutions
corresponding to m ¼ 0; 1; 2) can then be

written as c ¼ ð ffiffiffi
k

p
=3Þð1;�2!m;�2!2mÞ,
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or more explicitly, c ¼ ð ffiffiffi
k

p
=3Þð1;�2;�2Þ,

ð ffiffiffi
k

p
=3Þð1;�2!;�2!2Þ, ð ffiffiffi

k
p

=3Þð1;�2!2;
�2!Þ.

(b) The solutions for y1 ¼ y100 ¼ 0, y10 � 0 can be
similarly obtained. It leads to the solutions

c ¼ ffiffiffi
k

p ð0; 1; 0Þ, ð ffiffiffiffiffiffiffiffi
k=3

p Þð�2; 1;�2Þ, ð ffiffiffi
k

p
=3Þ

ð�2!; 1;�2!2Þ, and ð ffiffiffi
k

p
=3Þð�2!2; 1;�2!Þ.

The values for k and V are respectively k ¼
32=2ðf10 þ 2f3Þ and V¼�34=2ðf10 þ2f3Þ

(c) The solutions for y1 ¼ y10 ¼ 0, y100 ¼ 0 are

c ¼ ffiffiffi
k

p ð0; 0; 1Þ, ð ffiffiffiffiffiffiffiffi
k=3

p Þð�2;�2; 1Þ, ð ffiffiffi
k

p
=3Þ

ð�2!;�2!2; 1Þ, ð ffiffiffi
k

p
=3Þð�2!2;�2!; 1Þ. The

values for k and V are respectively k¼
32=2ðf100 þ2f3Þ and V¼�34=2ðf100 þ2f3Þ.

(d) In short, the solutions of (b) and (c) are obtained
from (a) with appropriate permutations.

(2)
(a) y ¼ y1½1; 1; 1�. From (33), we need to have

a21þ2a2a3¼a23þ2a1a2¼a22þ2a1a3. The first

equality leads to ða1�a3Þða1þa3�2a2Þ¼0,
and the second equality leads to ða2 � a3Þða2 þ
a3 � 2a1Þ ¼ 0. The solution is a1 ¼ a2 ¼ a3,

hence c ¼ ð ffiffiffiffiffiffiffiffi
k=3

p Þð1; 1; 1Þ. Using (33), we get
y1 ¼ y10 ¼ y100 ¼ y3 ¼ k.
We can check that (34) is satisfied provided k ¼
32=2ðf1 þ f10 þ f100 Þ. The Higgs energy is
then V ¼ �34=4ðf1 þ f10 þ f100 Þ.

(b) y ¼ y1½1; !;!2�. From (33), we need to have
a21 þ 2a2a3 ¼ !2ða23 þ 2a1a2Þ ¼ !ða22 þ
2a1a3Þ. The first equality leads to ða1 �!a3Þ�
ða1 þ!a3 � 2!2a2Þ ¼ 0, and the second
equality leads to ða2 �!2a3Þða2 þ!2a3 �
2!a1Þ ¼ 0. The solution is a1 ¼ !2a2 ¼
!a3, hence c ¼ ð ffiffiffiffiffiffiffiffi

k=3
p Þð1; !;!2Þ. Using (33),

we get y1 ¼ !2y10 ¼ !y100 ¼ y3 ¼ k.
We can check that (34) is satisfied provided k ¼
32=2ðf1 þ f10 þ f100 Þ. The Higgs energy is
then V ¼ �34=4ðf1 þ f10 þ f100 Þ.

(c) y ¼ y1½1; !2; !�. The solution is c¼ð ffiffiffiffiffiffiffiffi
k=3

p Þ�
ð1;!2;!Þ, with k¼32=2ðf1þf10 þf100 Þ. The
Higgs energy is t V¼�34=4ðf1þf10 þf100 Þ.

(3) In summary, the solutions can be classified accord-
ing to their energy into five categories:
(a) V ¼ 0. In this case c ¼ ð0; 0; 0Þ.
(b) V ¼ �34=4ðf1 þ 2f3Þ. In this case c ¼ffiffiffi

k
p ð1; 0; 0Þ, ð ffiffiffi

k
p

=3Þð1;�2;�2Þ, ð ffiffiffi
k

p
=3Þ�

ð1;�2!;�2!2Þ, or ð ffiffiffi
k

p
=3Þð1;�2!2;�2!Þ,

with k ¼ 32=2ðf1 þ f3Þ.
(c) V ¼ �34=4ðf10 þ 2f3Þ. In this case c ¼ffiffiffi

k
p ð0; 1; 0Þ, ð ffiffiffi

k
p

=3Þð�2; 1;�2Þ, ð ffiffiffi
k

p
=3Þ�

ð�2!; 1;�2!2Þ, or ð ffiffiffi
k

p
=3Þð�2!2; 1;�2!Þ,

with k ¼ 32=2ðf10 þ f3Þ.
(d) V¼�34=4ðf100 þ2f3Þ. In this case c ¼ffiffiffi

k
p ð0;0;1Þ, ð ffiffiffi

k
p

=3Þð�2;�2;1Þ, ð ffiffiffi
k

p
=3Þ�

ð�2!;�2!2; 1Þ, or ð ffiffiffi
k

p
=3Þð�2!2;�2!; 1Þ,

with k ¼ 32=2ðf100 þ f3Þ.
(e) V ¼ �33=4ðf1 þ f10 þ f100 Þ. In this case c ¼

ð ffiffiffi
k

p
=3Þð1; 1; 1Þ, ð ffiffiffi

k
p

=3Þð1; !;!2Þ, or ð ffiffiffi
k

p
=3Þ�

ð1; !2; !Þ, with k ¼ 32=2ðf1 þ f10 þ f100 Þ.
In particular, if f1, f10 , f100 , f3 are all positive, energetics

dictates that the solution c ¼ ð0; 0; 0Þ is disfavored. This is
the solution that leads to the A4 full-mixing matrix of
Cabibbo and Wolfenstein, rather than the experimentally
correct mixing of the tribimaximal type, obtainable using
the first solution of (b) in the charged-lepton sector, and the
first solution of (e) in the neutrino sector.
Moreover, if f1 < f10 and f100 , then it is (1, 0, 0), etc. that

is energetically favored, and not (0, 1, 0), (0, 0, 1), etc.
In this way, we see that there is a rational why A4 might

prefer partial-mixing, which may lead to a tribimaximal
matrix, rather than a full-mixing that leads to a Cabibbo-
Wolfenstein matrix.
We proceed now to discuss the connection between

these vacuum alignment solutions and the residual-
symmetry operators. Table X shows the vacuum alignment
solutions above, and the operator for which the alignment
is an invariant eigenvector. F,G0

1,G2,G
0
3 are the generators

of A4 in Table VIII, but with the subscript 0 omitted.
Here are some remarks concerning Table X.
(1) The first seven solutions in the left column are the

invariant eigenvectors of the 11 operators in the
right column, each of them responsible for a
partial-mixing. Together with the identity operator,
these 12 operators together form the A4 group.

(2) The last solution is the simultaneous eigenvector of
G0

1, G2, and G0
3 relevant for full-mixing.

(3) Solutions under 3(c) and 3(d) are not listed in the
table because they are obtained from 3(b) by per-
mutations. They are the invariant eigenvectors of the
same A4 members expressed in a similarly permuted
basis.

(4) The first four solutions 3(b) have the same energy,
and the corresponding operators are all in class C3
or C4 of Table II. The next three solutions 3(e)
also have the same energy, and the corresponding

TABLE X. Dynamical alignments are invariant eigenvectors
of appropriate operators.

Alignment operator

(1, 0, 0) F, F2

ð1;�2;�2Þ FG2F, F
2G2F

2

ð1;�2!;�2!2Þ F2G2, G2F
ð1;�2!2;�2!Þ G2F

2, FG2

(1, 1, 1) G2

ð1; !;!2Þ G0
1 ¼ F2G2F

ð1; !2; !Þ G0
3 ¼ FG2F

2

(0, 0 ,0) ðG0
1; G2; G

0
3Þ
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operators are all in class C2. In other words, vacuum
alignments for operators in the same class always
have the same energy.

VI. GROUP THEORYAND DYNAMICS

We saw in the last section that, barring permutations that
serve only to relabel the neutrino mass eigenstates, every
minimizing solution of the scalar potential V is an invariant
eigenvector of some group element of A4. Moreover, con-
jugate group elements give rise to identical energy.

We shall present another derivation of these facts in the
first subsection below. This alternative derivation relies
more on the general property of groups, and is therefore
more amenable to generalization. The generalization will
be carried out in the second subsection.

The following simple fact will be used in this alternative
approach.

Lemma:—Let g� be the � irreducible representation of
g 2 G. Let 
� be an eigenvector of g� with eigenvalue
��. Let �� :¼ ð
�1
�2 � � �
�nÞ� denote a state in the
irreducible representation � obtained by coupling the n
states 
�j . Then either �� ¼ 0, or it is an eigenvector of
g� with eigenvalue � ¼ Q

n
j¼1 �

�j .

Proof:—This follows immediately from the fact that
g�ðQi


�iÞ� ¼ ðQiðg�i
�iÞÞ�.
The following is an immediate corollary of lemma 1.

A. Another derivation of the solution of Uð1Þ �A4

An alternative derivation of the result of the last section
is presented here. It has the advantage of being easily
generalizable from A4 to a general group G.

The main idea is the following. Start as before from the
Higgs potential V ¼ P

�f ��hc c jP ��jc c i �2hc jc i. Its
minimization is determined by six vectorial equations of
motion, @V=@c c ¼ 0 and @V=@c �

c ¼ 0. The last three is
the complex conjugate of the first three so they need not be
considered separately. We will show, using the lemma
proven above, that if c is an invariant eigenvector of an
element of A4, then every nonzero term in the three equa-
tions of motion is proportional to c , with a scalar coeffi-
cient common to the three equations. c is then a solution
of the equations of motion if we set this scalar coefficient to
be zero, a condition that would be used to determined the
normalization of the solution c . Once c is known, its
energy can be computed from the above expression of V.

Here are the details. The idea is simple but unfortunately
the notations are a bit cumbersome.

A4 has four irreducible representations, 1, 10, 100, 3.
Other than the antisymmetric coupling 3� 3 ! 3A which
does not appear in (31), and will therefore be forgotten
from now on, each irreducible representation �� occurs at
most once in the decomposition of �� 	. The Clebsch-
Gordan coefficients h �� �a j�b; 	ci for �� 	 ! �� can be
expressed in terms of the 3j-symbol,

h �� �a j�b; 	ci ¼
ffiffiffiffiffiffiffi
½��

p � � 	
a b c

� �
;

where ½�� is the dimension of the irreducible representa-
tion �, and the 3j-symbol is completely symmetric in its
columns. The state j �� �ai is the complex-conjugated state of
j�ai. See Appendix for further details.
Consider a typical quartic term in the real Higgs poten-

tial V ¼ P
�f ��hc c jP ��jc c i �2hc jc i,

Q� :¼hc c jP ��jc c i

¼½�� X
a;b;c;e;f

hc ejhc fj
3 3 �

e f a

 !� � 3 3

a b c

 !
jc bijc ci:

(40)

Its contribution to the equation of motion is

@Q�

@c c

:¼Q�
c

¼2½�� X
a;b;c;e;f

hc ejhc fj
3 3 �

e f a

 !� � 3 3

a b c

 !
jc bi;

(41)

and its complex conjugate @Q�=@c �
c. In these formulas,

jc bi stands for the bth component of a three-dimensional
complex column vector c , and hc ej the complex conjugate
of jc ei.
We will use g� to denote IR� of a g 2 A4. Suppose g

�

has an orthonormal set of eigenvectors 
�mðm ¼
1; 2; � � � ; ½��Þ, with eigenvalues �m, then �ad ¼P

m

�m�
a 
�m

d , so (40) and (41) can be rewritten as

Q� ¼ ½��X
m

Y�m�Y�m; (42)

Q�
c ¼ 2½��X

m

Y�m���m
c :¼ 2½��X

m

Q�m
c ; (43)

where

Y�m ¼ X
abc

� 3 3
a b c

� �

�m

a c bc c; (44)

��m
c ¼ X

ab

� 3 3
a b c

� �

�m

a c b: (45)

It follows from the symmetry of the 3j-symbol that Y�m

transforms as 1, and ��m transforms as 3.
We can now start working toward the goal of showing

that invariant eigenvectors of g are solutions to the equa-
tions of motion derived from V.
Let c be an invariant eigenvector of g, i.e., g3c ¼ c .

Since g�
�m ¼ �m

�m, according to the lemma, either

Y�m ¼ 0, or g1Y�m ¼ �mY
�m. However, since g1 ¼ 1 for

every g in the identity representation 1, we must have
�m ¼ 1 in order for Y�m � 0.
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The lemma also implies that either ��m ¼ 0 or
g3��m ¼ �m�

�m. Consequently, if Q�m
c � 0, meaning

both Y�m and ��m nonzero, then it is necessary for ��m

to be an invariant eigenvector of g3. We know from
Table VIII that every g3 has one and only one invariant
eigenvector, hence ��m ¼ ��c for some �� � 0, if
Q�m

c � 0.
The importance of this observation is the following.

There are six equations of motion, namely, the following
three (c ¼ 1; 2; 3), and their three complex conjugates:X

�¼1101003
2½��f�

X
m

Q�m
c �2c c

¼ X
�¼1101003

2½��f�
X
m

Y�m���m
c �2c c ¼ 0: (46)

From the observation above, we see that if c is an invariant
eigenvector of g3, then every nonzero term in (46) is
proportional to c , hence all the six equations of motion
are satisfied provided the single scalar equationX

�¼1101003
2½��f�Y�m��� �2 ¼ 0 (47)

is obeyed. Note that the singlem in the equation is that one
for which ��m is the invariant eigenvector of g3. Since
every quantity in this equation is known, except the overall
normalization of c , this then is an equation to determine
the normalization of c . For that reason we shall sometimes
refer to (47) as the normalization equation.

Knowing that c is an invariant eigenvector of g with
known normalization computed in (47), we can substitute
this solution into the expression of V to compute its energy.

To summarize, we have shown that the invariant eigen-
vector c of every group element g of A4 is a dynamical
vacuum alignment, satisfying the equation of motion de-
rived from the Higgs potential V. We will now show that
conjugate elements in A4 give rise to the same energy V.

Let g0¼hgh�1 be an element conjugate to g. If
g3c ¼c , then g03c 0 ¼ c 0 for c 0 ¼ h3c . Similarly,
g0�
0�m ¼ �m


0�m if g�
�m ¼ �m

�m and 
0�m ¼

h�
�m. If we denote the quantities in (44) and (45) built
up of the primed quantities by Y0�m and�0�m

c , respectively,
then Y0�m ¼ Y�m and �0�m ¼ h3��m. Furthermore, if
��m ¼ ��c , then �0�m ¼ ��c 0, with the same ��, For
that reason, the normalization equation (47) is identical
for the primed as the unprimed quantities, so c and c 0
have the same normalization, thus both solutions give rise
to the same energy V.

The eigenvalues of G3
i are þ1, �1, �1, and the eigen-

values of all other g� can be obtained from Table VIII.
Using this information, we can make a closer comparison
between the present derivation and the explicit calculation
in Sec. V.

If g is an order-3 element, then g� � 1 in the � ¼ 10, 100
representations, hence Y�m ¼ 0 for � ¼ 10, 100. This cor-
responds to the y10 ¼ y100 ¼ 0 solutions in the previous

section. Namely, the first four rows of Table X, or solution
3(b) before that table.
If g is order-2, for the singlet representations � ¼ 1, 10,

100, every g� ¼ þ1, hence according to the lemma, none of
these three Y�m (there is only one m) have to vanish, and
we can take 
�m ¼ 1 in all cases. This corresponds to the
solutions with jy1j ¼ jy10 j ¼ jy100 j ¼ 0 in the last section,
given by 3(e) and the next three rows of Table X.

B. Generalization to other groups G

The alternative derivation for A4 discussed above is so
general that it can be easily adapted to many other groups
G. For technical simplicity we shall confine ourselves here
to the simply reducible groups. The validity of the theorem
below certainly goes beyond the simply reducible groups,
as A4 itself is not simply reducible. For those groups, the
same idea should still be applicable, though generalization
and some modification in details may be necessary.
A simply reducible group is a group in which (i) g and

g�1 are always in the same class, and (ii) in the decom-
position of the Kronecker product �� 	 of any two irre-
ducible representations � and 	, every irreducible
representation �� occurs at most once. A consequence of
(i) is that all characters have to be real. A4 is not simply
reducible because it contains complex characters, but
groups like SUð2Þ, SOð3Þ, S3, S4, and the quaternion group,
are simply reducible.
The main property we need from a simply reducible

group is the existence of a symmetric or antisymmetric
3j-symbol. As before, if h �� �a j�b; 	ci is the Clebsch-
Gordan coefficient, then the 3j-symbol is defined by

h �� �a j�b; 	ci ¼
ffiffiffiffiffiffiffi
½��

p � � 	
a b c

� �
(48)

and is either symmetric or antisymmetric upon the inter-
change of columns. Here ( �� �a ) is the complex-conjugate
representation of (�a); whether the 3j-symbol is symmet-
ric or antisymmetric is a detail that does not concern us.
Most of the arguments used in A4 can now be carried

through to prove this theorem.
Theorem:—Let c be a complex variable vector in the �

irreducible representation of a simply reducible group G,
carrying a nontrivialUð1Þ quantum number opposite to that
of c �. Writing the most general ðUð1Þ � GÞ-invariant
renormalizable real Higgs potential as

V ¼ X
�

f ��hc c jP ��jc c i �2hc jc i; (49)

in which the sum is carried over all irreducible representa-
tions, with P � being the projection operator and f� the
Yukawa coupling constant of the � representation. Then
every unique invariant eigenvector c of g� for every
g 2 G is a solution of the equation of motion @V=@c c ¼
@V=@c �

c ¼ 0. Moreover, g’s in the same conjugacy class
have the same Higgs energy V.
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Proof:—The proof is essentially a copy of the procedure
discussed in the last subsection. The only thing we are not
sure without knowing more details about G is whether
every g� has one and only one eigenvector with eigenvalue
þ1. This is why the theorem is limited to those g� with
unique invariant eigenvectors. The only other difference is
that the 3j-symbol may be antisymmetric under a column
exchange rather than symmetric. The only place this sym-
metry is used was in (44) and (45) to show that they
transform as 1 and 3, respectively. Clearly an additional
minus sign under column exchange will not affect this
property. Finally, whether c belongs to 3 or some other
multidimensional irreducible representation � really does
not matter in the proof.

With these preliminary remarks, let us proceed with the
details.

Consider a typical quartic term in the real Higgs poten-
tial V,

Q� :¼hc c jP ��jc c i

¼½�� X
a;b;c;e;f

hc ejhc fj
� � �

e f a

 !� � � �

a b c

 !
jc bijc ci:

(50)

Its contribution to the equation of motion is given by

@Q�

@c c

:¼Q�
c

¼2½�� X
a;b;c;e;f

hc ejhc fj
� � �

e f a

 !� � � �

a b c

 !
jc bi;

(51)

together with its complex conjugate @Q�=@c �
c.

Suppose g� has an orthonormal set of eigenvectors

�mðm ¼ 1; 2; � � � ; ½��Þ, with eigenvalues �m. Then
�ad ¼

P
m


�m�
a 
�m

d , so (50) and (51) can be rewritten as

Q� ¼ ½��X
m

Y�m�Y�m; (52)

Q�
c ¼ 2½��X

m

Y�m���m
c :¼ 2½��X

m

Q�m
c ; (53)

where

Y�m ¼ X
abc

� � �
a b c

� �

�m

a c bc c; (54)

��m
c ¼ X

ab

� � �
a b c

� �

�m

a c b: (55)

It follows from the symmetry of the 3j-symbol that Y�m

transforms as 1, and ��m transforms as �.
Suppose c is an invariant eigenvector of g, i.e., g�c ¼

c , and suppose this is the only eigenvector of g� with
eigenvalue þ1. Since g�
�m ¼ �m


�m, according to the

lemma, either Y�m ¼ 0 or g1Y�m ¼ �mY
�m. However,

since g1 ¼ 1 for every g in the identity representation 1,
we must have �m ¼ 1 in order for Y�m � 0.
The lemma also implies that either ��m ¼ 0 or

g���m ¼ �m�
�m. Consequently, if Q�m

c � 0, it is neces-
sary for ��m to be an invariant eigenvector of g�. Since
this is assumed to be unique, it follows that ��m ¼ ��c
for some �� if Q�m

c � 0.
Let us look at the equation of motion,X

�

2½��f�
X
m

Q�m
c �2c c

¼ X
�

2½��f�
X
m

Y�m���m
c �2c c ¼ 0: (56)

From the observation above, we see that if c is an invariant
eigenvector of g�, then every nonzero term in (56) is
proportional to c , hence equations of motion are satisfied
provided the single scalar equationX

�

2½��f�Y�m��� �2 ¼ 0 (57)

is obeyed. Note that the singlem in the equation is that one
for which ��m is the invariant eigenvector of g�. Since
every quantity in this equation is known, except the overall
normalization of c , this then is an equation to determine
the normalization of c . For that reason we shall sometimes
refer to (57) as the normalization equation.
This proves the first part of the theorem.What remains is

to show that conjugate elements in G give rise to the same
energy V.
Let g0 ¼ hgh�1 be an element conjugate to g. If g�c ¼

c , then g0�c 0 ¼ c 0 for c 0 ¼ h�c . Similarly, g0�
0�m ¼
�m


0�m if g�
�m ¼ �m

�m and 
0�m ¼ h�
�m. If we

denote the quantities in (54) and (55) built up of the primed
quantities by Y0�m and �0�m

c , respectively, then Y0�m ¼
Y�m and �0�m ¼ h���m. Furthermore, if ��m ¼ ��c ,
then �0�m ¼ ��c 0, with the same ��, For that reason,
the normalization equation (47) is identical for the primed
as the unprimed quantities, so c and c 0 have the same
normalization, thus both solutions give rise to the same
energy V.

VII. CONCLUSION

We have discussed in some detail the group-theoretical
connection between a neutrino mixing matrix and the
horizontal symmetry of left-handed leptons. Horizontal
symmetry groups can be derived from mixing matrices,
and mixing matrices can be obtained from horizontal
groups, all without invoking the Higgs or other dynamical
mechanisms, as long as we assume some trace of the
original symmetry remains to be found in the mass matri-
ces even after symmetry breaking. We have also shown that
this formulation is completely consistent with the dynami-
cal approach, in that the mixing matrices derived from a
symmetry group G can be obtained from a generic Higgs
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potential invariant under Uð1Þ � G, for many groups G.
Such a potential gives rise to vacuum alignments that are
invariant eigenvectors of the group elements. An alignment
should be assigned to the charged-lepton sector if the
corresponding group element has order � 3, but to the
neutrino sector if the corresponding group element has
order 2. Within this rule, alignments can be further dis-
criminated by their energies.

Other than Sec. IV, in which some S4 and A4 dynamical
models are constructed to illustrate the consistency of the
two approaches, we have not studied in detail in this article
how physical models should be constructed. The models
constructed in Sec. IV may not be optimal, in that mass
hierarchy is not natural in those models, and the successful
Koide mass relation of the charged leptons [10] is not
explained. More complicated dynamics including the pres-
ence of quadratic valon fields may be necessary.
Furthermore, although the Uð1Þ � G potential can give
rise to all the desired vacuum alignments, and although
their assignments to the two sectors can be discriminated
by the order of the associated residual-symmetry operator,
we have not found a purely dynamical way to do so without
invoking the residual-symmetry operators explicitly. That
may call for the introduction of driver valons [11] or other
dynamical mechanisms.

APPENDIX

In this appendix, we list the Clebsch-Gordon (CG) series
of A4 and its CG coefficients computed in the representa-
tion of Table VIII.

The CG series �� 	 ! �� can be computed from
Table II to be where the first row refers to IR	, the first
column refers to IR�, and the table entries refer to IR ��.
The CG coefficients h �� �a j�b; 	ci are zero if ð ��;�; 	Þ is
not contained in an entry of the table. It is also zero if the
product of F-eigenvalues of j�bi and j	ci is not equal to
that of j �� �ai. This last condition is a consequence of
Eq. (22) applied to g ¼ F. If we use A, B, C to denote
the three states in 1, 10, 100, and D, E, G to denote the three
states in 3, then the F-eigenvalue of A and D is 1, that of B
and E is !, and that of C and G is !2. The eigenvalue rule
is not shown in Table XI, but that is incorporated in the
expanded Table XII.

The complex conjugate j �� �ai of a state j�ai is defined to
be the state with the complex-conjugated F-eigenvalue.
Thus �X ¼ X if X ¼ A, D, but �B ¼ C, �C ¼ B, �E¼G,
�G¼E.

We will also write the CG coefficient simply as h �XjY; Zi
to represent the more complicated h �� �a j�b; 	ci.
The CG coefficients are related to the 3j-symbols via the

equation

h �� �a j�b; 	ci ¼ ffiffiffiffiffiffiffi½��p � � 	

a b c

 !
;

h �XjY; Zi ¼ ffiffiffiffiffiffiffi½X�p
X Y Z
� �

;

(A1)

where ½�� is the dimension of IR�, and ½X� is the dimen-
sion of the IR in which state X belongs to. The 3j-symbol
couples three states to a singlet; it vanishes unless the
product of the three F-eigenvalues is 1.
There are two 3j-symbols when � ¼ � ¼ 	 ¼ 3. The

one corresponding to �� ¼ 3A will be marked with a sub-
script A, and the one corresponding to �� ¼ 3S will carry no
subscript.
3j-symbols are more convenient because of their sym-

metry properties. The 3j-symbol

ðX Y Z ÞA

is antisymmetric upon the interchange of two columns, and
all the other 3j-symbols are symmetric upon such an
exchange.
The nonzero 3j-symbol

ðX Y Z Þ

is equal to 1 when X, Y, Z all belong to one-dimensional

IRs, is equal to 1=
ffiffiffi
3

p
if two of them belong to the three-

dimensional IR, and the third one belongs to a one-
dimensional IR. Finally, when all three of them belong to
the three-dimensional IR, then their values are

ðD E GÞA¼� 1ffiffiffi
2

p ; ðD E GÞ¼� 1ffiffiffi
6

p ;

ðD D DÞ¼ ðE E EÞ¼ ðG G GÞ¼
ffiffiffi
2

3

s
:

(A2)

It can be checked that the CG coefficients obey Eq. (22) for
g ¼ G2 as well.

TABLE XI. Clebsch-Gordan series of A4.

1 10 100 3

1 1 10 100 3

10 10 100 1 3

100 100 1 10 3

3 3 3 3 1, 10, 100, 3S, 3A

TABLE XII. Expanded Clebsch-Gordan series of A4.

A B C D E G

A A B C D E G
B B C A E G D
C C A B G D E
D D E G A, DS B, ES, EA C, GS, GA

E E G D B, ES, EA C, GS A, DS, DA

G G D E C, GS, GA A, DS, DA B, ES
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