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We develop a practical method to analyze the mixing structure of hadrons consisting of two components

of quark composite and hadronic composite. As an example, we investigate the properties of the axial

vector meson a1ð1260Þ and discuss its mixing properties quantitatively. We also make reference to the

large Nc procedure and its limitation for the classification of such a mixed state.
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Hadrons, interacting with the strong force, are compos-
ite objects of quarks and gluons. One of recent interests in
the hadron structure is whether hadrons are made up of
quarks and gluons confined in a single-particle potential as
described in the conventional quark model, or rather de-
velop subcomponents of quark-clusters inside hadrons. A
typical example of the latter is the deuteron, which is
composed of a proton and a neutron, not of six quarks in
a single confining potential [1]. It has been also suggested
that some hadronic resonances could have substantially
large components of hadronic composites [2,3]. Such re-
cursive (nesting-box) structures are also seen in nuclear
physics. For instance, the first 0þ excited state of 12C is
described as a three-� cluster state [4].

In general, it is not easy to clearly identify the quark-
cluster components, because the strong interaction scales
for quarks and hadrons are not well separated. To simplify
the situation, it would be a good starting point to set up a
model space of a state described by a single-particle po-
tential and one of several quark-clusters. The former may
be identified with the ‘‘elementary’’ component1 while the
latter with the (hadronic) composite, the situation which
was studied by Weinberg [1]. If hadronic resonant states
are unavoidably mixtures of hadronic and quark-
composites, an important issue is to clarify how these
components are mixed in a hadron.

One good example to study the two features and their
mixing is provided by the low-lying axial vector meson
a1ð1260Þ. The a1 meson is a candidate of the chiral partner
of the � meson [5–7] described as a q �q-composite, for
example, in the Nambu-Jona-Lasinio model [8,9] and in
the Lattice calculation [10]. It can also appear as a gauge
boson of the hidden local symmetry [11], which is
recently reconciled with the five-dimensional gauge field
of the holographic QCD [12,13]. On the other hand, in
coupled-channel approaches based on the chiral effective
theory [14,15], the a1 meson has been described as a
dynamically generated resonance in the �� scattering

without introducing its explicit pole term. The a1 nature
has been studied by calculating physical observables such
as the radiative decay width [16] or the � decay spectrum
into three pions [17,18]. Yet, the internal structure of the a1
meson is not well understood.
In this paper, we focus on hadron structure having two

components of quark-composite (we refer to it as the
elementary component) and hadronic composite. We pro-
pose a method to disentangle their mixture appearing in
the physically observed state by taking the a1 meson as an
example. The method provided here can be generally
applied to other mixed systems if the interaction is given
between the elementary component and possible constit-
uents making the composite state. Our ingredients for the
study of a1 are therefore � and � mesons2, which have
potential to generate the composite a1 meson with a
suitable �� interaction, and the elementary component
of the a1 meson (dominated by q �q), which couples to the
�� pair by a three-point interaction. We first solve the ��
scattering amplitude to find the poles corresponding to the
physical a1, and then develop a method to clarify the
mixing nature of the two components by introducing
appropriate bases for pure composite and elementary
components. As an extension, we apply our method to
the study of the large Nc behavior of the a1 state. The
large Nc limit is usually considered to give a guiding
principle for the classification of state, in which the
mass of the q �q bound state scales as Oð1Þ in powers of
Nc while that of a meson-meson molecule scales with
higher order of Nc [19,20]. Reference [21], however, has
brought caution for the use of large Nc argument for the
dynamically generated scalar resonances. We discuss
the validity of the classification for the mixed states of
hadronic composite and elementary components.
Let us start with the composite a1 meson, which is

dynamically generated in the s-wave �� scattering
through the nonperturbative dynamics. The scattering
amplitude t satisfies the Bethe-Salpeter equation,

1The elementary component was referred to as the CDD pole
or genuine quark state in the literature [3].

2We regard the � meson as stable particles in the present
model setting.
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t ¼ vþ vGt, where v is a four-point�� interaction andG
the �� two-body propagator and its formal solution is
given by

t ¼ v

1� vG
: (1)

If the potential v is sufficiently attractive, the amplitude
develops a pole corresponding to a composite bound or
resonant state of the scattering system at the energy sat-
isfying 1� vG ¼ 0. In the present case of a1, the potential
v can be obtained from the s-wave projection of the
Weinberg-Tomozawa interaction [14], and the pole in the
�� scattering amplitude can appear above the �� thresh-
old as a resonance in the second Riemann sheet, which is a
consequence of the energy-dependent interaction. This
pole corresponds to the ��-composite a1 meson [14]
without q �q quark core [3,22].

Because the elementary a1 meson has a coupling to the
� and � mesons, it also contributes to the �� scattering
amplitude in the form of an effective �� interaction going
through the elementary a1 pole:

va1 ¼ g
1

s�m2
a1 þ i�

g; (2)

where g is the coupling to �� that can depend on s, and
ma1 the bare mass of the elementary a1 meson. The full

scattering amplitude T having both the �� four-point
interaction v and the a1 pole term va1 is then written by

T ¼ vþ va1

1� ðvþ va1ÞG
: (3)

This amplitude generates poles corresponding to physical
resonant states of the problem. They are expressed as a
superposition of the basis states associated with the two
poles of composite a1 in Eq. (1) and elementary a1 in
Eq. (2), respectively.

Now let us study the mixing nature of the physical states.
To this end, we first express equivalently the amplitude t in
Eq. (1) as

t � gRðsÞ 1

s� sp
gRðsÞ; (4)

where sp is the pole position of the amplitude t in Eq. (1).

In this form, we can interpret ðs� spÞ�1 as the one-particle

propagator of the composite a1 meson as shown in Fig. 1
by taking an analogy with the conventional discussion of
the bound-state problem [22]. The vertex function gRðsÞ
that is defined so as to reproduce Eq. (1) exactly is inter-
preted as the effective coupling of the composite a1 to ��.
This interpretation works well in the neighborhood of the
pole, s� sp. As s is further away from sp, gRðsÞ receives
more contributions from the nonresonant background [23].

Having the form of Eq. (4), we now rewrite the scatter-
ing amplitude T in Eq. (3) as

T ¼ ðgR; gÞ 1

D̂�1
0 � �̂

gR
g

� �
; (5)

where

D̂�1
0 ¼ s� sp

s�m2
a1

 !
; �̂ ¼ gRGg

gGgR gGg

 !
:

(6)

The diagonal elements of the matrix D̂0 are the free propa-
gators of the two a1’s, one for the composite and the other
for the elementary ones having the proper normalization,

and the matrix �̂ expresses the self-energy and interactions
for these modes. One can prove that Eq. (5) is identical
with Eq. (3) after some algebra.
We emphasize that the expression of Eq. (5) makes it

possible to analyze the mixing nature of the physical a1 in
terms of the original two bases. Having the amplitude in

the form of Eq. (5), the matrix D̂ � ðD̂�1
0 � �̂Þ�1 is iden-

tified with the propagators of the physical states repre-
sented by the bases of the elementary and composite
a1’s. The diagonal elementsDii indicate the dressed propa-
gators of the composite and the elementary a1’s as shown
in Fig. 2, which express the a1 mesons acquiring the
quantum effects: e.g., the elementary a1 introduced with-
out width in Eq. (2) now has a width owing to its decay into
�� system. The important features of the propagators are
that they have poles exactly at the same positions as the full
amplitude T in Eq. (3), and the residues of the diagonal
elements Diiði ¼ 1; 2Þ defined by

Dii ¼ ziia
s�M2

a

þ ziib
s�M2

b

þ ðregular termÞ (7)

have the meaning of the wave function renormalization and
then carry the information on the mixing rate of the physi-
cal resonant states. For instance, the residue z11a means the
probability of finding the original composite a1 component
in the resulting state having the mass Ma.

FIG. 1. Infinite set of diagrams that contributes to the meson-
meson scattering amplitude in Eq. (1) and the definition of the
propagator of the composite a1 meson in Eq. (4).

FIG. 2. Diagrams that contribute to the full amplitude in
Eq. (5) going through (a) the component of the dressed propa-
gator D11 and (b) that of D22. The dashed and solid internal lines
indicate the � and � propagators, while the curved and double
lines are those of the composite and elementary a1’s.
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The above discussions have close analogy to a two-level
problem, which is well realized when the energy s is not
very far away from the original two poles sp and m2

a1 . As s

is getting away from them, the orthogonality of the physi-
cal two-resonant states is lost and, furthermore, the resi-
dues can exceed unity. These problems arise owing to the

energy dependence of �̂, especially those of gR and g in �̂.
We note that the energy dependence of gR is unavoidable
for the resonant states generated dynamically.

So far, we have given a general framework to investigate
the mixing properties of hadrons consisting of multiple
components having different origins. To perform a con-
crete calculation, we shall employ a suitable model for a1.
Here we take only the single �� channel into account for
the composite a1 because other channels have been found
not important [14], but we can easily extend our framework
to coupled-channel cases. Our ingredients for the study of
the a1 system are, therefore, the � and � and (elementary)
a1 mesons, for which a suitable model is given.

In this paper, as for interaction Lagrangians, we adopt
the chiral Lagrangians induced by the holographic QCD
approach as the Sakai-Sugimoto model [12] that is con-
structed in the strong-coupling limit of large-Nc QCD. The
relevant Lagrangians [12] are given by

LWT ¼ 1

f2�
trð½��; @����½�; @���Þ; (8)

La1�� ¼ �iga1��
4

f�
ftrðð@�a1� � @�a1�Þ½@��; ���Þ

þ trðð@��� � @���Þ½@��; a�1�Þg; (9)

where �� � ~�� � ~�
2 , � � ~� � ~�

2 , and a
�
1 � ~a�1 � ~�

2 . The first

Lagrangian gives the four-point Weinberg-Tomozawa
(WT) interaction and the second gives the three-point
vertex of a1��.

The advantage of using the concept of the holographic
QCD approach is that the large-Nc condition ensures that
the a1 field in the Lagrangian does not contain hadronic
composite components, and hence we can avoid the
double-counting in the analysis of the mixing nature. The
model contains two inputs, f� ¼ 92:4 MeV and m� ¼
776 MeV, giving the mass of the elementary a1 meson
ma1 ¼ 1189 MeV and the a1�� coupling constant

ga1�� ¼ 0:26. In the present study, we consider the a1 field

appearing in the Lagrangian with these physical constants
to be the quark composite that survives in the large Nc

limit. For the mass of the pion, we employ the physical
value m� ¼ 138 MeV that is isospin-averaged. These in-
teractions in Eqs. (8) and (9) are essentially the same as
those of the hidden-local symmetry [11], except for the
actual values of ma1 and ga1��.

Using these interactions, we take the WT potential VWT

[14] and the a1 pole term Va1 as

VWT ¼ � � �0
4f2�

�
3s� 2ðm2

� þm2
�Þ � 1

s
ðm2

� �m2
�Þ2

�
; (10)

Va1 ¼ � 8

f2�
g2a1��

� � �0
s�m2

a1 þ i�
ðs�m2

�Þ2; (11)

after the s-wave projection with on-shell energies for
external � and � [14]. In actual calculations, we should
treat the polarization vectors � and �0 for the � meson
appropriately. As reported in detail in Ref. [14], by sub-
stituting the coefficient vWTðva1Þ defined by VWTðVa1Þ ��� � �0vWTðva1Þ for the potentials in Eq. (3), we can obtain
the scattering amplitude for the transverse polarization
mode, in which we can find poles dynamically generated.
In solving the scattering equation, we need to calculate

the propagator function G. Because the potentials in
Eqs. (10) and (11) are separable, the formal solution of
Eq. (1) becomes algebraic, and the function G is then
given by

Gð ffiffiffi
s

p Þ ¼ i
Z d4q

ð2�Þ4
1

ðP� qÞ2 �m2
� þ i�

1

q2 �m2
� þ i�

;

(12)

where P is the total four-momentum as P2 ¼ s. The inte-
gral (12) diverges, and hence, we regularize it by the
dimensional regularization, and for the finite part we in-
troduce a subtraction constant að�Þ as

Gð ffiffiffi
s

p Þ ¼ 1

16�2

�
að�Þ þ ln

m2
�

�2
þm2

� �m2
� þ s

2s
ln
m2

�

m2
�

þ q0ffiffiffi
s

p ½lnðs� ðm2
� �m2

�Þ þ 2q0
ffiffiffi
s

p Þ

þ lnðsþ ðm2
� �m2

�Þ þ 2q0
ffiffiffi
s

p Þ
� lnðs� ðm2

� �m2
�Þ � 2q0

ffiffiffi
s

p Þ
� lnðsþ ðm2

� �m2
�Þ � 2q0

ffiffiffi
s

p Þ � 2�i�
�
; (13)

where� is the scale parameter that is set to be 900 MeV in

this paper and q0 ¼ �1=2ðs; m2
�; m

2
�Þ=2

ffiffiffi
s

p
. A crucial point

here is that the constant að�Þ is chosen to be a natural
value [3],which ensures that the resulting resonant states,
if they exist, are interpreted as a purely hadronic compos-
ite. Following the prescription in Ref. [3], we choose
að�Þ ¼ �0:2 at the renormalization scale �, which sat-
isfies the matching condition ReGð ffiffiffi

s
p ¼ m�Þ ¼ 0. A

choice of the subtraction constant að�Þ different from the
natural value is equivalent to the introduction of the CDD
(or elementary) pole that is not included in the model space
of the scattering problem [3].
The polarization vector of the intermediate � meson is

treated in the same way as reported in Ref. [14].
Now we can evaluate the scattering amplitude (3)

or (5) numerically. We find two poles at (a)
ffiffiffi
s

p ¼
1033� 107i MeV and at (b) 1728� 313i MeV, corre-
sponding to the physical states in the present model.
These pole positions are significantly different from those
of the two basis states,

ffiffiffiffiffi
sp

p ¼ 1012� 221i MeV and
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ma1 ¼ 1189 MeV, because of the mixing effect. For

further investigation, we vary the coupling strength of
a1�� by introducing a parameter xð0 � x � 1Þ and
ga1�� ! xga1��, which controls the mixing strength.

In Fig. 3(a), we show the resulting pole-flow in the
complex-energy plane by changing the mixing parameter
x. At x ¼ 0, the poles corresponding to the basis states of
the composite and elementary a1’s are found at the posi-
tions indicated by open square and open circle in Fig. 3(a),
respectively. When the mixing is turned on, the pole start-
ing from the composite a1 (we refer to it as ‘‘pole-a’’)
approaches the real axis, ending at 1033� 107i MeV
when x ¼ 1 (solid square), while that from the elementary
a1 pole (‘‘pole-b’’) goes far from the real axis and reaches
1728� 313i MeV when x ¼ 1 (solid circle).

In Fig. 3(b), we show the squared amplitude jTj2 in
Eq. (3) (or (5)) at x ¼ 1. As shown in the figure, a peak
structure is dominated by the pole-a, while a signal of the
pole-b cannot be seen clearly because of its huge width
(�600 MeV). Therefore, the pole expected to be observed
in experiments is the pole-a located at lower energy posi-
tion [solid square in Fig. 3(a)] that comes from the com-
posite a1 pole. Indeed, the contribution of the pole-b is
found to interfere destructively with the tail of the pole-a
(around Re

ffiffiffi
s

p � 1:7–1:8 MeV) as shown in Fig. 3(b). Our
present model setting, however, is rather simple and may
not be applicable to such a higher energy region where

contributions from higher coupled-channels neglected here
should be important. A detailed investigation for an evi-
dence of the second state of the a1 meson, namely, the
pole-b, is an interesting future work.
To study the mixing properties more quantitatively, we

show the absolute values of the residues as functions of the
mixing parameter x in Fig. 4 (left panel). We can verify
that, before turning on the mixing, the pole-a is purely the
composite a1(z

11
a ¼ 1 and z22a ¼ 0 at x ¼ 0) and the pole-b

is the elementary a1 as we intended. One of the most
important messages can be read from the magnitude of
z11a and z22a at x ¼ 1, which are the residues of the possibly
observed a1 state. While we should carefully discuss the
meaning of the residues of complex-value for resonant
states, we can say that the pole-a at x ¼ 1, although its
location is close to the composite a1 pole, has a component
of the elementary a1 meson comparable to that of the
composite a1. This conclusion can be drawn only after
we look into the wave function by the residues z.
As for the pole-b, we find that the magnitude of the

residues z22b and z11b interchange at around x� 0:7, mean-

ing that the nature of the resonant state of pole-b changes
from the elementary particle-like structure to the compos-
ite one. For larger xð* 0:8Þ, z11b and z22b become larger than

unity because the energy dependence of the potentials
become stronger at the higher energy region where the
pole-b is located. Once again, in such a higher energy
region (Re

ffiffiffi
s

p
* 1:5 GeV), our present model may not be

applicable.
Next, we test the large Nc dependence of the pole

positions according to the scaling law of the pion-decay

constant f� as f� ! f�
ffiffiffiffiffiffiffiffiffiffiffi
Nc=3

p
. In Fig. 3(a), we also show

the trajectories of the pole positions by changing the Nc

value for fixed mixing strength. At x ¼ 0, as reported in
Ref. [24], we see the composite a1 pole tends to have a
heavier mass and a wider width as Nc is increased. For
small mixing parameter x & 0:6, we find a similar behavior
for the pole-a while the pole-b goes back to the elementary
a1 position. At x� 0:7, we find that the twoNc-trajectories
flip simultaneously. For x * 0:7, the pole-b goes away
from the real axis as the composite a1 does, while the
pole-a approaches the elementary pole as Nc is increased.
In this way, the result of the large Nc classification depends

FIG. 3 (color online). (a) Trajectories of the poles in the full
scattering amplitude in Eq. (3) by changing the mixing parame-
ter x (thick lines). The open square indicates the pole position of
the composite a1 and open circle indicates the elementary a1
pole (x ¼ 0). The other end points of solid circle and square
correspond to the physical points (x ¼ 1). Thin lines represent
the pole-flows as Nc is increased from Nc ¼ 3 for fixed x with
small dots at Nc ¼ 5. The vertical dashed line denotes the ��
threshold energy. (b) Squared amplitude jTj2 of �� ! ��
process on the real energy axis for the mixing parameter x ¼ 1.

FIG. 4. Absolute value of the residues defined in Eq. (7). The
left panel shows the mixing parameter x dependence at Nc ¼ 3
while the right panel is the Nc dependence at x ¼ 0:8. The
meaning of each line is indicated in the figure.
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strongly on the mixing parameter x, although the compo-
nent of the composite a1 is always larger than that of
elementary (z11a > z22a ) at Nc ¼ 3 as shown in Fig. 4 (left
panel).

In Fig. 4 (right panel), we show theNc dependence of the
residues of pole-a at x ¼ 0:8. There we find that the
magnitudes of the residues of the pole-a, z11a and z22a ,
interchange at Nc � 3:5. This indicates that the nature of
the resonance changes as Nc is varied. Thus, for the mixed
system of elementary and composite components, the large
Nc limit does not always reflect the world at Nc ¼ 3. This
is a consequence of there being two sources of the Nc

dependence, one from the a1�� three-point vertex, which
controls the mixing strength between the two basis states,
and the other from the WT interaction, which determines
the pole position (sp) of the basis state for the composite

a1. Their competition determines the nature of the a1
states. Actually, the a1�� interaction in Eq. (9) is of order

N�1=2
c and vanishes in the large Nc limit, where the two

states of q �q meson and hadronic composite states de-
couple. In the real world of Nc ¼ 3, however, the interac-
tion remains finite and gives an important contribution to
the mixing dynamics as we showed. Therefore, we con-
clude that the large Nc classification, which is often used to
identify the character of resonances, does not necessarily
work for such a mixed systems. In Ref. [25], we provide a
general discussion of a two-level effective model of large
Nc behavior.

We have developed a general method to analyze the
mixing structure of hadrons consisting of two components
of quark and hadronic composites. As an example, the
nature of the a1ð1260Þ axial-vector meson has been ex-
plored. The present analysis points out theoretically that
the a1 meson has comparable amounts of the elementary a1
component to the �� composite a1. Quest for evidences of
the mixing nature in physical observables is an interesting
future work.
The method proposed in the present paper makes it

possible to discuss the validity of the classification in the
large Nc limit, which is considered to give a guiding
principle to identify the nature of hadronic resonances.
We have shown explicitly that the mixing nature of hadrons
in the large Nc limit could differ from that at finite Nc ¼ 3.
We conclude that the simple classification does not always
work when admixture of components having different
origins is important.
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[21] J. R. Peláez and G. Rı́os, Acta Phys. Pol. B 2, 215 (2009).
[22] D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816

(1964); D. Lurie, Particle and Fields (Interscience
Publishers, New York, 1968).

[23] M. Doring, C. Hanhart, F. Huang, S. Krewald, and U.G.
Meissner, Phys. Lett. B 681, 26 (2009).

[24] L. S. Geng, E. Oset, J. R. Pelaez, and L. Roca, Eur. Phys. J.
A 39, 81 (2009).

[25] K. Nawa, H. Nagahiro, S. Ozaki, D. Jido, and A. Hosaka
(unpublished).

COMPOSITE AND ELEMENTARY NATURES OF . . . PHYSICAL REVIEW D 83, 111504(R) (2011)

RAPID COMMUNICATIONS

111504-5

http://dx.doi.org/10.1103/PhysRev.130.776
http://dx.doi.org/10.1103/PhysRev.137.B672
http://dx.doi.org/10.1103/PhysRev.137.B672
http://dx.doi.org/10.1016/j.physletb.2004.01.088
http://dx.doi.org/10.1103/PhysRevC.78.025203
http://dx.doi.org/10.1103/PhysRevC.78.025203
http://dx.doi.org/10.1103/PhysRevC.67.051306
http://dx.doi.org/10.1103/PhysRevLett.18.507
http://dx.doi.org/10.1103/PhysRevD.12.792
http://dx.doi.org/10.1016/0550-3213(89)90346-5
http://dx.doi.org/10.1016/0550-3213(89)90346-5
http://dx.doi.org/10.1103/PhysRevLett.52.959
http://dx.doi.org/10.1103/PhysRevLett.52.959
http://dx.doi.org/10.1016/0370-2693(90)90329-5
http://dx.doi.org/10.1103/PhysRevLett.74.4596
http://dx.doi.org/10.1016/0370-1573(88)90019-1
http://dx.doi.org/10.1016/0370-1573(88)90019-1
http://dx.doi.org/10.1016/0375-9474(90)90431-K
http://dx.doi.org/10.1016/0375-9474(90)90431-K
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.114.1083
http://dx.doi.org/10.1103/PhysRevD.75.086003
http://dx.doi.org/10.1103/PhysRevD.75.086003
http://dx.doi.org/10.1103/PhysRevD.72.014002
http://dx.doi.org/10.1103/PhysRevD.72.014002
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.009
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.009
http://dx.doi.org/10.1016/j.physletb.2007.10.035
http://dx.doi.org/10.1016/j.physletb.2007.10.035
http://dx.doi.org/10.1103/PhysRevD.77.034017
http://dx.doi.org/10.1103/PhysRevD.77.034017
http://dx.doi.org/10.1103/PhysRevD.79.014015
http://dx.doi.org/10.1103/PhysRevD.78.053001
http://dx.doi.org/10.1103/PhysRevD.78.053001
http://dx.doi.org/10.1103/PhysRevD.69.073002
http://dx.doi.org/10.1103/PhysRevD.69.073002
http://dx.doi.org/10.1016/j.physletb.2010.01.059
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://dx.doi.org/10.1063/1.2823850
http://dx.doi.org/10.1103/PhysRev.136.B816
http://dx.doi.org/10.1103/PhysRev.136.B816
http://dx.doi.org/10.1016/j.physletb.2009.09.052
http://dx.doi.org/10.1140/epja/i2008-10689-y
http://dx.doi.org/10.1140/epja/i2008-10689-y

