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We studymodular properties of theAdS3 Wess-Zumino-Novikov-Wittenmodel. Although the Euclidean

partition function is modular invariant, the characters on the Euclidean torus diverge and the regularization

proposed in the literature removes information on the spectrum and the usual one to one map between

characters and representations of rational models is lost. Reconsidering the characters defined on the

Lorentzian torus and focusing on their structure as distributions, we obtain expressions that recover those

properties.We study theirmodular transformations and find a generalized Smatrix, depending on the sign of

the realmodular parameters, which has two diagonal blocks and one off-diagonal block,mixing discrete and

continuous representations, that we fully determine. We then explore the relations among the modular

transformations, the fusion algebra and the boundary states. We explicitly construct Ishibashi states for the

maximally symmetric D-branes and show that the generalized S matrix defines the one-point functions

associated to pointlike andH2-branes as well as the fusion rules of the degenerate representations of slð2;R)
appearing in the open string spectrum of the pointlike D-branes, through a generalized Verlinde theorem.
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I. INTRODUCTION

The formulation of a consistent string theory on AdS3 is
an active area of research since more than two decades ago.
Besides allowing to understand important aspects of strings
propagating on nontrivial backgrounds (see [1–3] and
references therein), this theory offers a controlled setting
where it is possible to verify the AdS/CFT correspondence
beyond the supergravity approximation as well as to grasp
several features of a non rational conformal field theory
(RCFT) with Lie algebra symmetry.

The world-sheet theory describing strings on Lorentzian
AdS3 is a Wess-Zumino-Novikov-Witten (WZNW) model
on the universal cover of the SLð2;RÞ group manifold. The
spectrum proposed in [1] was verified in [2] through the
computation of the one-loop partition function on a
Euclidean AdS3 background at finite temperature. Some
correlation functions were determined in [3] and the fusion
rules establishing the closure of the Hilbert space and the
unitarity of the full interacting string theory were obtained
in our previous work [4]. We showed that the spectral flow
symmetry of the model requires a truncation of the opera-
tor algebra whose physical origin has not been elucidated
yet. Although they satisfy several essential properties, the
full consistency of the fusion rules should follow from a
proof of factorization and crossing symmetry of the four-
point functions, still unavailable. The correlators that have
been analyzed in the literature so far are based on the
analytic continuation from those of the better understood

Euclidean version of the theory, the Hþ
3 � SLð2;CÞ

SUð2Þ WZNW

model [5,6]. But there are many subtleties in the relation

between the Euclidean and Lorentzian models [7] and
further work is necessary to put the fusion rules on a firmer
ground.
In RCFT, a practical derivation of the fusion rules can be

performed through the Verlinde theorem [8], often formu-
lated as the statement that the S matrix of modular trans-
formations diagonalizes the fusion rules. Moreover,
besides leading to a Verlinde formula, the S matrix allows
a classification of modular invariants and a systematic
study of boundary states. It would be interesting to explore
whether analogues of these properties can be found in the
AdS3 WZNWmodel. However, the relations among fusion
algebra, boundary states and modular transformations are
difficult to identify and have not been very convenient in
noncompact models [9]. In general, the characters have an
intricate behavior under the modular group [10–12] and, as
is often the case in theories with discrete and continuous
representations, these mix under S transformations.
In this paper we study the modular properties of the

AdS3 model. We start considering the characters of the
relevant representations. Since the standard Euclidean
characters diverge and lack good modular properties, ex-
tended characters were originally introduced in [13] (see
also [14]).1 A different approach was followed in [1] where
the standard characters were computed on the Lorentzian
torus and it was shown that the modular invariant partition
function of the Hþ

3 model obtained in [18] is recovered

after performing analytic continuation and discarding con-
tact terms. However, this trivial regularization removes
information on the spectrum and the usual one to one
map between characters and representations of rational
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1Similar problems in noncompact coset models have also been
considered in [15–17]
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models is lost. With the partial aim of overcoming these
problems, in Sec. II we review (and redefine) the characters
on the Lorentzian torus, focusing on their structure as
distributions. We also consider the characters of degenerate
representations of slð2;R), because they appear in the
boundary spectrum of pointlike D-brane solutions.

Then we study their modular transformations. One could
wonder about the meaning of modular transformations on a
Lorentzian world sheet. Of course there is no reason to
expect modular invariance of the Lorentzian partition func-
tion. However, as mentioned above, modular transforma-
tions in RCFT are intimately related to microscopic data
(fusion rules, one-point functions, etc.) and these powerful
relations are difficult to establish in non rational models.
Given that the Euclidean characters and their modular
transformations are ill defined, in Sec. III we examine the
modular properties of the Lorentzian expressions with the
purpose of determining the scope of those connections in
the AdS3 model. We find generalized modular maps which
play an important role in the microscopic description of the
theory. Real modular parameters are crucial to obtain an S
matrix which, unlike those of the Euclidean models, de-
pends on the sign of the modulus. We completely deter-
mine this generalized S matrix, which has two diagonal
blocks and one off-diagonal block mixing the characters of
discrete and continuous representations.

In order to explore the properties of this modular matrix,
in Sec. IV we consider the maximally symmetric D-branes
of the model. We explicitly construct the Ishibashi states
and show that the coefficients of the boundary states turn out
to be determined from the generalized Smatrix, suggesting
that aVerlinde-like formula could give some information on
the spectrum of open strings attached to certain D-branes.
Furthermore, we show in Appendix C that a generalized
Verlinde formula reproduces the fusion rules of the finite
dimensional degenerate representations of slð2;R) appear-
ing in the boundary spectrum of the pointlike D-branes.

Conclusions are offered in Sec. V, where we compare
our results with previous ones in the literature and we also
draw some directions for future work.

For the benefit of the reader, we include four appendices.
In Appendix A we discuss the properties of the moduli
space of the Lorentzian torus. Some details of the calcu-
lations leading to the generalized S matrix are presented in
Appendix B. A generalized Verlinde formula giving the
fusion rules of the degenerate representations is worked out
in Appendix C. Finally, in Appendix D we review the
results of the one-point functions for maximally symmetric
D-branes obtained in [19] and translate them to our con-
ventions, in order to compare with the expressions obtained
in the main body of the text.

II. CHARACTERS ON THE LORENTZIAN TORUS

The partition function of the AdS3 WZNW model was
computed on the Lorentzian torus in [1] because it diverges

on the Euclidean signature torus, and it was shown that a
modular invariant expression is obtained after analytic
continuation of the modular parameters.2 In this section
we rederive the characters of the relevant representations
and stress some important issues related to the regions of
convergence of the expressions involved, focussing on
their structure as distributions.
The spectrum of the AdS3 WZNW model was deter-

mined in [1]. It decomposes into direct products of the
normalizable continuous and lowest weight discrete repre-
sentations of the left- and right-moving current algebras of
slð2;RÞ generated by

JaðzÞ ¼ X1
n¼�1

Janz
�n; �Jað�zÞ ¼ X1

n¼�1
�Jan �z

�n; (2.1)

with a ¼ 3, �, obeying the following commutation
relations:

½J3n; J3m� ¼ � k

2
n�nþm;0; ½J3n; J�m � ¼ �J�nþm;

½Jþn ; J�m � ¼ �2J3nþm þ kn�nþm;0; (2.2)

with level k 2 R>2. The lowest principal discrete repre-

sentations D̂þ
j � D̂þ

j contain the states jj, m, �m> with

� k�1
2 < j <� 1

2 , m, �m 2 �jþ Z�0 and their affine de-

scendants. The principal continuous representations

Ĉ�j � Ĉ�j contain the states jj; �;m; �m> with j 2
� 1

2 þ iRþ, � 2 ½0; 1Þ, m, �m 2 �þ Z, and their affine

descendants. The spectrum also includes the spectral flow
images of these representations, which can be constructed
with the spectral flow operators Uw, �U �w, defined by their
action on the slð2;RÞ currents J3, J� as

U�wJ
3ðzÞUw¼J3ðzÞþk

2

w

z
; U�wJ

�ðzÞUw¼ z�wJ�ðzÞ;

�U� �w
�J3ð�zÞ �U �w¼ �J3ð�zÞþk

2

�w

�z
; �U� �w

�J�ð�zÞ �U �w¼ �z� �w �J�ð�zÞ;
(2.3)

where U�w ¼ U�1
w , �U� �w ¼ �U�1

�w and w ¼ �w 2 Z.3 Using
the Sugawara construction, the action of Uw, �U �w on the
zero modes of the Virasoro generators is found to be

U�wL0Uw ¼ L0 � wJ30 �
k

4
w2;

�U� �w
�L0

�U �w ¼ �L0 � �w �J30 �
k

4
�w2;

(2.4)

and the eigenvalues of L0, �L0 are, in general, not bounded
from below. For states in the discrete series it is often

2The same expression was independently obtained in [20]
where the Euclidean version of AdS3 was constructed from the
axial coset SLð2;RÞ=Uð1ÞA, using path integral techniques.

3The right and left spectral flow numbers w, �w are not
necessarily equal in the single cover of SLð2;RÞ where �w� w
is the winding number around the compact closed timelike
direction.
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convenient to work with spectral flow images of both
lowest and highest weight representations, which are

related by the identification D̂þ;w
j � D̂�;wþ1

�ðk=2Þ�j.

The characters on the Lorentzian signature torus are
defined from the standard expressions as

�V L
ð��; ��; u�Þ ¼ TrV L

e2�i��ðL0�ðc=24ÞÞe2�i��J30e�iu�K;

�V R
ð�þ; �þ; uþÞ ¼ TrV R

e2�i�þð �L0�ð �c=24ÞÞe2�i�þ �J3
0e�iuþK;

(2.5)

where ��, ��, u� are independent real parameters, c ¼ �c
are the left- and right-moving central charges and K is
the central element of the affine algebra. The traces are
taken over the left and right representation modules of the
Hilbert space of the theory,V L andV R, respectively. The
Euclidean version of (2.5) is obtained replacing the real
parameters by complex ones. For completeness, a descrip-
tion of the moduli space of the Lorentzian torus is pre-
sented in Appendix A.

In the remaining of this section we review (and redefine)
the complete set of characters of the relevant representa-
tions making up the spectrum of the bulk AdS3 conformal
field theory and of the finite dimensional representations

appearing in the open string spectrum of some brane
solutions.
To lighten notation, from now on �, �, u will denote the

real parameters ��, ��, u� and the following compact

notation will be used: ��;w
j

:¼ �D̂�;w
j
, ��;w

j
:¼ �Ĉ�;wj

.

A. Discrete representations

The naive computation of the characters (2.5) for the
discrete representations leads to � and � dependent diver-
gences. This is not a problem because the characters are
typically not functions but distributions. Indeed, similarly
as the characters of the continuous representations, which
contain a series of delta functions [1], those of the discrete
representations need also be interpreted as distributions.
Let us consider the distributions constructed from the

series defining the characters of the discrete representa-
tions. Shifting � ! �þ i�1 and � ! �þ i�w

2 in (2.5),

where �1, �
w
2 are two real non vanishing parameters, a

regular distribution can be defined. Indeed, the deformed
characters of discrete representations in an arbitrary spec-
tral flow sector w can be written in terms of those of
unflowed representations as

�þ;w
j;�w

2
;�1
ð�; �; uÞ ¼ ei�ku

X
n

�n < njU�we
2�ið�þi�1ÞðL0�ðc=24ÞÞe2�ið�þi�w

2
ÞJ3

0Uwjn>;

where jn> is a complete orthonormal basis in D̂þ;0
j , with norm �n ¼ �1 (recall that this model is not unitary). SinceUw is

unitary, Uwjn> defines an orthonormal basis in D̂þ;w
j and from (2.3) one can rewrite

�þ;w
j;�w

2
;�1

¼ ei�kue�2�i�ðk=4Þw2
e2�i�ðk=2Þw

X
n

�n < nje2�ið�þi�1ÞðL0�ðc=24ÞÞe2�ið��w�þið�w
2
�w�1ÞÞJ30 jn> : (2.6)

Choosing an orthonormal basis of eigenvectors of L0 and J30 , the following behavior of the sum is easy to see

�þ;w
j;�w

2
;�1

� X1
N;n¼0

	ðn; NÞe2�i½ð1þwÞ���þiðð1þwÞ�1��w
2
Þ�Ne2�i½��w�þið�w

2
�w�1Þ�n;

where 	ðn;NÞ gives the degeneracy of states.4 This expression is convergent for parameters in the ranges5

�1 > 0; ð1þ wÞ�1 > �w
2 >w�1; (2.7)

and it gives

�þ;w
j;�w

2
;�1

¼ ei�kue�2�ið�þi�1Þðk=4Þw2
e2�ið�þi�w

2
Þðk=2Þw e�ð2�ið�þi�1Þ=k�2Þðjþð1=2ÞÞ2e�2�ið�þi�w

2
�wð�þi�1ÞÞðjþð1=2ÞÞ

i#11ð�þ i�w
2 � wð�þ i�1Þ; �þ i�1Þ : (2.8)

This character defines a regular distribution and, given that the series of regular distributions are continuous with respect
to the weak limit, this implies

�þ;w
j ð�; �; uÞ ¼ ei�ku

e�ð2�i�=k�2Þðjþð1=2Þ�wðk�2Þ=2Þ2e�2�i�ðjþð1=2Þ�wðk�2Þ=2Þ

i#11ð�þ i�w2 ; �þ i�1Þ ; (2.9)

4Notice the different letters’ styles: Roman type n labels a generic basis and italic n appears in the eigenvalues of J30 .
5Because of the degeneracy, these are sufficient (and not necessary) conditions. However, an explicit calculation in this region gives

the inverse #11 function having the same poles, which then turns them into necessary conditions.
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where we have used the identity

#11ð�þ i�w2 � wð�þ i�1Þ; �þ i�1Þ ¼ ð�Þwe��i�w2þ2�i�w#11ð�þ i�w2 ; �þ i�1Þ (2.10)

and the i�’s denote the usual i0 prescriptions, constrained as the corresponding finite parameters in (2.7), which dictate how
to avoid the poles of #�1

11 at n� 2 Z, m�þ � 2 Z, for n 2 N, m 2 Z. These poles are easily seen in the following
alternative expression for the elliptic theta function

1

#11ð�þ i�w2 ; �þ i�1Þ ¼
�e�ið�=4Þ�

sin½�ð�þ i�w2 Þ�
1Q1

n¼1½1� e2�inð�þi�1Þ�
1Q1

n¼1½1� e2�iðn���þi�n;w
3 Þ�½1� e2�iðn�þ�þi�n;w

4
Þ� ; (2.11)

with

�n;w3 ¼ n�1 � �w2 �n;w4 ¼ n�1 þ �w2 ; (2.12)

i.e., �n;w3 > 0ð<0Þ for n � 1þ wðn 	 wÞ and �n;w4 > 0ð<0Þ for n � �wðn 	 �1� wÞ.
Notice that, in the weak limit, one can take �1, �

w
2 ¼ 0 in the arguments of the exponential terms in (2.9) because they are

perfectly regular.
It is useful to rewrite (2.9) using the identity (B1), which allows to change the signs of �w2 , �

n;w
3 and �n;w4 , in order to get

the following expressions in terms of only one parameter, say �w
0

2 , with arbitrary w0:

�þ;w<w0
j ð�; �; uÞ ¼ ð�Þwei�ku e

�ð2�i�=k�2Þðjþð1=2Þ�wðk�2Þ=2Þ2e�2�i�ðjþð1=2Þ�wðk�2Þ=2Þ

i#11ð�þ i�w
0

2 ; �þ i�1Þ

� ð�Þwei�ku e
�ð2�i�=k�2Þðjþð1=2Þ�wðk�2Þ=2Þ2e�2�i�ðjþð1=2Þ�wðk�2Þ=2Þ


3ð�þ i�1Þ

� Xw0

n¼1þw

ð�Þne2i��ðn2=2Þ X1
m¼�1

ð�Þm�ð�� n�þmÞ (2.13)

and

�þ;w>w0
j ð�; �; 0Þ ¼ ð�Þwei�ku e

�ð2�i�=k�2Þðjþð1=2Þ�wðk�2Þ=2Þ2e�2�i�ðjþð1=2Þ�wðk�2Þ=2Þ

i#11ð�þ i�w
0

2 ; �þ i�1Þ

þ ð�Þwei�ku e
�ð2�i�=k�2Þðjþð1=2Þ�wðk�2Þ=2Þ2e�2�i�ðjþð1=2Þ�wðk�2Þ=2Þ


3ð�þ i�1Þ
� Xw

n¼1þw0
ð�Þne2i��ðn2=2Þ X1

m¼�1
ð�Þm�ð�� n�þmÞ: (2.14)

These expressions are in perfect agreement with the spectral flow symmetry, which implies �þ;w
j ð��; �; uÞ ¼

�þ;�w�1
�ðk=2Þ�jð�; �; uÞ. They lead to the following contribution to the partition function:

ZAdS3
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� 2

2ið�� � �þÞ

s
ei�kðu��uþÞe2�iðk�2Þ=4ðð����þÞ2=����þÞ

#11ð�� þ i�02; �� þ i�1Þ#

11ð�þ � i�02; �þ � i�1Þ

þ . . . ; (2.15)

where the ellipses stand for the contributions of the contact
terms. This expression differs formally from the equivalent
one in [1], where no � prescription or contact terms were
considered. Nevertheless, the ultimate goal in [1] was to
reproduce the Euclidean partition function continuing
the modular parameters away from the real axes and

discarding contact terms such as those of the characters
of the continuous representations.

B. Continuous representations

A similar analysis can be performed for the characters
of the continuous representations. Using (2.6), one can
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compute these characters in terms of those of the unflowed continuous representations. The result is

��;w
j ¼ ei�ku

�2 sin½�ð�� w�Þ�e�2�i�ðk=4Þw2
e2�i�ðk=2Þwe�ð2�i�=k�2Þðjþð1=2ÞÞ2e2�ið��w�Þ�

#11ð�� w�; �þ i�1Þ
X1

n¼�1
e2�ið��w�Þn

¼ ei�ku
e2�i�ððs2=k�2Þþðk=4Þw2Þ


3ð�þ i�1Þ
X1

m¼�1
e�2�imð�þðk=2ÞwÞ�ð�� w�þmÞ; (2.16)

where the following identity was usedX1
n¼�1

e2�ixn ¼ X1
m¼�1

�ðxþmÞ: (2.17)

One could be tempted to interpret this sum of delta
functions as the infinite volume of the target space. If it
were, then one should assume the volume factor is not
modular invariant. To see this, let us consider the limit
� � 0. In the w ¼ 0 case, the delta factors readP

me
�2�im��ð�þmÞ � �ð�Þ. So, after a modular trans-

formation one finds �ð��Þ ¼ j�j�ð�Þ. This prevents one

from simply taking the limit � ¼ 0 discarding the �
function. The modular transformation will differ from
the � � 0 case, and so it will not give the correct modular
S matrix (which must not depend on �).

In this case, the characters are defined as the weak limit
�1, �

w
2 ! 0, with the constraints

�1 > 0; �w2 � w�1 ¼ 0; (2.18)

and they give the following contribution to the partition
function:

ZAdS3
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� k

8ið�� � �þÞ

s
ei�kðu��uþÞ


3ð�� þ i�1Þ

3ð�þ � i�1Þ

� X1
m;w¼�1

e�2�iðk=4Þwð����þÞ

� �ð�� � w�� þmÞ�ð�þ � w�þ þmÞ; (2.19)

in agreement with the expression obtained in [1].

C. Degenerate representations

Degenerate representations are not contained in the
spectrum of the AdS3 WZNW model but they play an
important role in the description of the boundary CFT.

Indeed, using world-sheet duality, it was argued that they
make up the Hilbert space of open string excitations of S2

branes in the Hþ
3 model [21,22]. For the analysis that we

shall perform in the forthcoming sections, it is useful to
note the relation among their characters and those of dis-
crete and continuous representations of the universal cover
of SLð2;RÞ discussed above.
The finite dimensional degenerate representations

are labeled by the spin j�rs defined by 1þ 2j�rs ¼ �ðrþ
sðk� 2ÞÞ, with r, sþ 1 ¼ 1; 2; 3; . . . for the upper sign
and r, s ¼ 1; 2; 3; . . . for the lower one. Here we consider
J ¼ jþr0, with characters given by

�Jð�;�;uÞ ¼�2ei�kue�2�i�ðð2Jþ1Þ2=4ðk�2ÞÞ sin½��ð2Jþ 1Þ�
#11ð�þ i�2; �þ i�1Þ ;

(2.20)

where the �’s are restricted to

�1 > 0; j�2j< �1: (2.21)

Extrapolating the values of the spins in the expressions
obtained in the previous sections, (2.20) can be rewritten as

�Jð�; �; uÞ ¼ �þ;w¼0
J ð�; �; uÞ þ �þ;w¼�1

�ðk=2Þ�Jð�; �; uÞ
� ��¼fJg;w¼0

J ð�; �; uÞ; (2.22)

where fJg is the sawtooth function. Actually, this relation
could have been guessed from a simple inspection of the
spectrum (see Fig. 1). This can be seen as a nontrivial
check of the characters defined above and, simultaneously,
it shows the important role played by the i0 prescription in
the definition of the characters of discrete representations.
A naive computation of these characters, ignoring the i00s,
would yield the (wrong) conclusion �J ¼ �þ;w¼0

J þ
�þ;w¼�1
�ðk=2Þ�J.

FIG. 1. The weight diagram of the degenerate representations with spin J ¼ jþr0 ¼ r�1
2 , r ¼ 1; 2; 3 . . . can be decomposed as the sum

of the weight diagrams of the lowest and highest weight unflowed discrete representations minus that of the continuous representation
of spin J.
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III. MODULAR PROPERTIES

The modular transformation � ! a�þb
c�þd , with integer pa-

rameters a, b, c, d such that ad� bc ¼ 1, can be easily
extended to include �, u. Characters generating a repre-
sentation space of the modular group transform as [23]

��

�
�

c�þ d
;
a�þ b

c�þ d
; uþ c�2

2ðc�þ dÞ
�

¼ X
�

M�
���ð�; �; uÞ; (3.1)

M being the matrix associated to the group element.
Insofar as � and u are concerned, the sign of all the
parameters a, b, c, d may be simultaneously changed
without affecting the transformation. The modular group

PSLð2;ZÞ ¼ SLð2;ZÞ
Z2

is generated by

T ¼ 1 1

0 1

 !

and

S ¼ 0 �1

1 0

 !
:

These transformations map � ! � and � ! �
� , respec-

tively, but inverting the signs of a, b, c, d, the mapping
gives the opposite sign for �. Therefore, the space spanned
by the characters does not realize a good representation
space for the modular group unless the characters are
symmetric under � $ ��, e.g. for self-conjugate repre-
sentations. When this is not the case, the characters form a
representation of the double covering of the modular
group, where S2 is not the identity but the charge conju-
gation matrix. In fact, S2 produces time and parity inver-
sion on the torus geometry and, by CPT invariance, it
transforms a character into its conjugate.

A. The S matrix

Below wewill find explicit expressions for generalized S
transformations of the characters introduced in the pre-
vious section, setting u ¼ 0 for short, as6

��

�
�

�
;� 1

�
; 0

�
¼ e�2�iðk=4Þð�2=�ÞX

�

S�
���ð�; �; 0Þ; (3.2)

and we will show that, unlike standard expressions, they
contain a sign of � factor. This result can already be
inferred from the Smodular transformation of the partition
function. Indeed, ignoring the �’s and the contact

terms, one finds for the contributions from discrete repre-
sentations7

~ZAdS3
D ð�0�; �0�; u0�; �0þ; �0þ; u0þÞ
¼ sgnð���þÞ � ~ZAdS3

D ð��; ��; u�; �þ; �þ; uþÞ; (3.3)

while the contributions from the continuous series verify

Z
AdS3
C ð�0�; �0�; u0�; �0þ; �0þ; u0þÞ
¼ sgnð���þÞ � Z

AdS3
C ð��; ��; u�; �þ; �þ; uþÞ; (3.4)

where the primes denote the S modular transformed pa-
rameters. This suggests that the block Sdi

dj , di labeling

discrete representations, is given by sgnð�ÞSdi
dj with Sdi

dj

being unitary. Moreover, since the characters of the con-
tinuous representations contain purely contact terms, one
expects that they close among themselves. This together
with (3.4) suggest that the block Sci

cj , ci labeling continu-

ous representations, is given by sgnð�ÞSci
cj with Sci

cj

being unitary. We will explicitly show these features of
the generalized modular transformations in the next sec-
tion. In this sense, the characters of the AdS3 model on the
Lorentzian torus are pseudovectors with respect to the
standard modular S transformations.
A naive treatment of the Lorentzian partition function as

a Wick rotation of the Euclidean path integral, would
suggest the appearance of this sign after an S transforma-
tion from the measure, when one takes into account the
change in the metric (see Appendix A). However, it will be
clear from the results of the next section, that the failure in

the modular invariance of ZAdS3
D is less subtle than just the

sign appearing in (3.3).

1. Continuous representations

The S transformed characters of continuous representa-
tions can be written as

��;w
j

�
�

�
;� 1

�
; 0

�
¼ e�2�iððs2=k�2Þþðk=4Þw2Þ1=�

ð�i�Þ3=2
3ð�þ i�1Þ
� X1

m¼�1
e2�imð�þðk=2ÞwÞ�

�
�

�
þ w

�
�m

�
;

(3.5)

where 
ð�1
�þ i�1Þ�
ð� 1

�þi�1
Þ¼e�ði�=4Þ ffiffiffiffiffiffij�jp


ð�þ i�1Þ,
the upper (lower) sign holding for � > 0 (� < 0).
Using

e�2�iðs2=k�2Þð1=�Þ

¼e�ði�=4Þ
ffiffiffiffiffiffiffiffiffiffiffi
2j�j
k�2

s Z þ1

�1
ds0e�4�iðss0=k�2Þe2�i�ðs02=k�2Þ; (3.6)

6Some authors use the ~S matrix generating ��ð� �
� ;� 1

� ;
uþ �2

2�Þ. This is given by ~S�
� ¼ S�

�þ
, where �þ labels the

conjugate � representation.

7 ~Z
AdS3
D is the contribution to the partition function for � and �

far from �þ n� 2 Z, 8n 2 Z.
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we find

��;w
j

�
�

�
;�1

�
;0

�
¼e�2�iðk=4Þð�2=�Þ

�

�
Z þ1

�1
ds0~Ss

s0 e
ð2�i=k�2Þ�s02


3ð�þ i�1Þ
� X1

m¼�1
e2�iðk=4Þ�m2

e2�im��

�
�

�
þw

�
�m

�
;

(3.7)

with ~Ss
s0 ¼ i

ffiffiffiffiffiffiffi
2

k�2

q
e�4�iðss0=k�2Þ.

From �ð�� þ w
� �mÞ ¼ j�j�ð�þ w�m�Þ and renaming

variables, one gets

��;w
j

�
�

�
;� 1

�
; 0

�
¼ e�2�iðk=4Þð�2=�Þsgnð�Þ

� X1
w0¼�1

Z þ1

�1
ds0~Ss

s0 e
2�i�ððs02=k�2Þþðk=4Þw02Þ


3ð�þ i�1Þ
� e2�iw

0��ð�� w0�þ wÞ: (3.8)

In order to reconstruct the character ��0;w0
j0 in the right-hand

side (r.h.s.), we use the identity

�ð�� w0�þ wÞ

¼ X1
m0¼�1

Z 1

0
d�0e2�iðw�0þðk=2Þww0Þ

� e�2�im0ð�0þðk=2Þw0Þ�ð�� w0�þm0Þ; (3.9)

and exchanging summation and integration,8 (3.8) can be
rewritten as

��;w
j

�
�

�
;�1

�
;0

�
¼e�2�iðk=4Þð�2=�Þsgnð�Þ

� X1
w0¼�1

Z þ1

0
ds0
Z 1

0
d�0Ss;�;w

s0;�0;w0
��0;w0
j0¼�ð1=2Þþis0 ð�;�;0Þ;

with

Ss;�;w
s0;�0;w0 ¼2i

ffiffiffiffiffiffiffiffiffiffiffi
2

k�2

s
cos

�
4�

ss0

k�2

�
e2�iðw�0þw0�þðk=2Þww0Þ;

(3.10)

which is symmetric and, as expected from (3.4), unitary,
i.e.

X1
w0¼�1

Z 1

0
ds0

Z 1

0
d�0Ss1;�1;w1

s0;�0;w0
Sy
s0;�0;w0

s2;�2;w2

¼ �ðs1 � s2Þ�ð�1 � �2Þ�w1;w2
: (3.11)

2. Discrete representations

The structure of the characters of the discrete represen-
tations is more involved than that of the continuous ones.
A priori, we expect that characters of both discrete and
continuous representations appear in the generalized
modular transformations. So, generically we can assume

�þ;w
j

�
�

�
;� 1

�
; 0

�
¼ e�2�iðk=4Þð�2=�Þsgnð�Þ

� X1
w0¼�1

�Z �ð1=2Þ

�ðk�1=2Þ
Sj;w

j0;w0
�þ;w0
j0 ð�; �; 0Þ

þ
Z 1

0
d�0 Z 1

0
ds0Sj;w

s0;�0;w0
��0;w0
j0¼�ð1=2Þþis0 ð�; �; 0Þ

�
:

Fortunately, it is easy to separate the contributions from
discrete and continuous representations. If one considers
generic values of � and � far from �þ n� 2 Z for n 2 Z,
the contributions of the continuous series in the r.h.s. can
be neglected as well as all contact terms and �’s. On the
other hand, if �þ n� 2 Z, 8n 2 Z then �

� � p 1
� 2 Z,

8p 2 Z and all contact terms and �’s of the left-hand
side (l.h.s.) can be neglected too. Thus, we obtain

�þ;w
j

�
�

�
;� 1

�
; 0

�
¼ ð�Þweð2�i=k�2Þ1=�ðjþð1=2Þ�wðk�2=2ÞÞ2e�2�ið�=�Þðjþð1=2Þ�wðk�2Þ=2Þ

i#11ð�� ;� 1
�Þ

¼ ð�Þwþ1 e
ð2�i=k�2Þ1=�ðjþð1=2Þ�ðwþ�Þk�2=2Þ2e�2�iðk=4Þ�2=�

i
ffiffiffiffiffi
i�

p
#11ð�; �Þ

; (3.12)

where the following identity was used for � 2 R:

#11

�
�

�
;� 1

�

�
¼ �e�ið�2=�Þe�ið�=4Þ ffiffiffiffiffiffi

j�j
p

#11ð�; �Þ; (3.13)

8Here, summation and integration can be exchanged because, for a fixed w0, the series always reduces to a finite sum when it is
considered as a distribution acting on a test function.
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the upper (lower) sign holding for � > 0 (� < 0). Inserting

eð2�i=k�2Þ1=�ðjþð1=2Þ�ðwþ�Þðk�2=2ÞÞ2

¼e�ið�=4Þ
ffiffiffiffiffiffiffiffiffiffiffi
2j�j
k�2

s

�
Z þ1

�1
d0eð4�i=k�2Þ0ðjþð1=2Þ�ðwþ�Þk�2=2Þe�ð2�i=k�2Þ�02

(3.14)

into (3.12), changing the integration variable to j0 þ 1
2 �

w0 k�2
2 and using (3.13), we get

�þ;w
j

�
�

�
;� 1

�
; 0

�
¼ e�2�iðk=4Þð�2=�Þsgnð�Þ

� X1
w0¼�1

Z �ð1=2Þ

�ðk�1Þ=2
dj0Sj;w

j0;w0
�þ;w0
j0 ð�; �; 0Þ; (3.15)

with

Sj;w
j0;w0 ¼ ð�Þwþw0þ1

ffiffiffiffiffiffiffiffiffiffiffi
2

k�2

s
�e4�i=k�2ðj0þð1=2Þ�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þ:

(3.16)

Notice that this block of the S matrix is symmetric and,
again as expected from (3.3), unitary.9

While the identity (3.14), which is essential to recon-
struct the discrete characters in the r.h.s. of (3.15), only
makes sense for Im � 	 0, the characters are only well
defined for Im � � 0. Therefore, to determine the gener-
alized S transformation, it is crucial that � 2 R.

Finding the block Sj;w
s0;�0;w0

mixing discrete with con-

tinuous representations is a much more technical issue,
which we discuss in Appendix B. Here we simply display
the result, namely

Sj;w
s0;�0;w0 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s
e�2�iðw0j�w�0�ww0ðk=2ÞÞ

�
�
eð4�=k�2Þs0ðjþð1=2ÞÞ

1þ e�2�ið�0�is0Þ þ
e�ð4�=k�2Þs0ðjþð1=2ÞÞ

1þ e�2�ið�0þis0Þ

�
:

(3.18)

This block prevents the full S matrix from being unitary.
Instead, we find S
S ¼ id. This implies that the full par-
tition function defined from the product of characters is not
modular invariant, not only due to the sign of the modular
parameters. Actually, after a modular transformation, the
mixing block introduces terms where the left modes are in
discrete representations and the right ones in continuous
series, and vice versa, as well as new terms containing left
and right continuous representations.
In Sec. III C, we explicitly check that the blocks of the S

matrix determined here have the correct properties.

3. Degenerate representations

The modular properties discussed above can be used to
write the S transformation of the characters of the degen-
erate representations with 1þ 2J 2 N as

�J

�
�

�
;� 1

�
; 0

�
¼ e�2�iðk=4Þð�2=�Þsgnð�Þ

� X1
w¼�1

�Z �ð1=2Þ

�ðk�1Þ=2
djSJ

j;w�þ;w
j ð�; �; 0Þ

þ
Z 1

0
d�

Z �ð1=2Þ

�ðk�1=2Þ
dsSJ

s;�;w��;w
j¼�ð1=2Þþisð�; �; 0Þ

�
;

where

SJ
j;w ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s
ð�Þwþ1 sin

�
�

k� 2
ð1þ 2j� wðk� 2ÞÞ

� ð2J þ 1Þ
�
; (3.19)

and

SJ
s;�;w ¼ �ið�Þ2Jw

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s
eð4�=k�2ÞsðJþð1=2ÞÞ

�
�
1þ 1

1þ e�2�ið��isÞ þ
1

1þ e2�ið�þisÞ

�
þ ðs $ �sÞ: (3.20)

B. The T matrix

Together with the S matrix, the T matrix defines a basis
over the space of modular transformations. Using

#11ð�; �þ 1Þ ¼ eð�i=4Þ#11ð�; �Þ;

ð�þ 1Þ ¼ eð�i=12Þ
ð�Þ; (3.21)

the characters of the discrete and continuous representa-
tions transform, respectively, with

Tj;w
j0;w0 ¼�w;w0�ðj�j0Þe�ð2�i=k�2Þðj0þð1=2Þ�w0ðk�2Þ=2Þ2�ð�i=4Þ

(3.22)

and

9Changing e�ið�=4Þ ffiffiffi
�

p
by

ffiffiffiffiffi
i�

p
, the validity of (3.14) can be

extended to the full lower half plane and that of (3.13) can be
extended to the upper half plane, giving

#11

�
�

�
;� 1

�

�
¼ �e�ið�2=�Þ

ffiffiffiffiffi
i�

p
#11ð�; �Þ: (3.17)

If one naively cancels the
ffiffiffiffiffi
i�

p
terms and ignores the sign factor

due to the different branches, a � independent expression is
obtained for the S matrix. However, such S matrix does not obey
the properties S2 ¼ ðSTÞ3 ¼ C, C being the charge conjugation
matrix, but the opposite ones.
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Ts;�;w
s0;�0;w0 ¼ �w;w0�ð�� �0Þ�ðs� s0Þ

� e2�iððs2=k�2Þ�ðk=4Þw2�w��ð1=8ÞÞ; (3.23)

while the T transformation of the characters of the degen-
erate representations is given by

�Jð�; �þ 1; 0Þ ¼ e�ð2�i=k�2ÞðJþð1=2ÞÞ2e�ð�i=4Þ�Jð�; �; 0Þ:
(3.24)

C. Properties of the S and T matrices

The expressions ðSTÞ3 and S2 must give the conjugation
matrix, C. We have found above that the characters of
the AdS3 model do not expand a representation space for
the modular group since the generators depend on the
sign of �. Nevertheless, in terms of the � independent
part of S, that we have denoted S, these identities read C ¼
ðSTÞ3 ¼ sgnð�þ 1Þsgnð �

�þ1Þsgnð� 1
�ÞðSTÞ3 ¼ �ðSTÞ3 and

C ¼ S2 ¼ sgnð�Þsgnð� 1
�ÞS2 ¼ �S2.

As a consistency check on the expressions found above
for S and T, an explicit computation gives

� ðSTÞ3j1;w1

j2;w2 ¼ �S2
j1;w1

j2;w2

¼ �w1þw2þ1;0�

�
j1 þ j2 þ k

2

�
; (3.25)

which corresponds to the conjugation matrix restricted to

the discrete sector, since D̂þ;w
j is the conjugate represen-

tation of D̂�;�w
j , which in turn can be identified with

D̂þ;�w�1
�ðk=2Þ�j using the spectral flow symmetry. Similarly,

for the block of continuous representations we get

�ðSTÞ3s1;�1;w1

s2;�2;w2 ¼ �S2
s1;�1;w1

s2;�2;w2

¼ �w1;�w2
�ðs1 � s2Þ�ð�1 þ �2 � 1Þ;

(3.26)

which is again the charge conjugation matrix, since

Ĉ1��;�w
j is the conjugate representation of Ĉ�;wj .

Of course, one also needs to show that the non
diagonal terms vanish. The equalities ðSTÞ3s1;�1;w1

j2;w2 ¼
S2
s1;�1;w1

j2;w2 ¼ 0 are trivially satisfied as a consequence

of Ss1;�1;w1

j2;w2 ¼ 0. One can also show that

ðSTÞ3j1;w1

s2;�2;w2 ¼ S2
j1;w1

s2;�2;w2 ¼ 0, but this computation

is more involved, so the details are left to Appendix B.

IV. REVISITING D-BRANES IN AdS3

D-branes can be characterized by the one-point func-
tions of the states in the bulk, living on the upper half plane.
In RCFT, these one-point functions can be determined
from the entries of the S matrix, a property that we will
call a Cardy structure. This property is closely related to
the Verlinde formula and, a priori, there is no reason for it

to hold in non RCFT. In this section we explore this
relation in the AdS3 model.
D-branes in AdS3 and related models have been studied

in several works (see for instance [21,22,24–36] and refer-
ences therein). Here, we shall restrict to the maximally
symmetric D-branes discussed in [26]. Because the
Lorentzian AdS3 geometry is obtained by sewing an infi-
nite number of SLð2;RÞ group manifolds, these D-brane
solutions can be trivially obtained from those of SLð2;RÞ.
Their geometry was considered semiclassically in [26],
where it was found that solutions of the Dirac-Born-
Infeld action stand for regular and twined conjugacy
classes of SLð2;RÞ. The model also has symmetry break-
ing D-brane solutions, but in this case, the open string
spectrum is not a sum of slð2;RÞ representations and
then we do not expect the one-point functions to be deter-
mined by the S matrix.
We begin this section with a short introduction to the

geometry of D-branes in AdS3. A very comprehensive
study about the (twined) conjugacy classes of SLð2;RÞ
and a semiclassical analysis of branes can be found in
[24,26]. Both can be easily extended to the universal cover-
ing. Here, we review the analysis of the conjugacy classes
in order to make the discussion self contained and discuss
the extension to the universal covering.
Then we turn to the explicit construction of the Ishibashi

states for regular and twisted boundary gluing conditions
which give rise to the maximally symmetric D-branes.
These equations were solved in the past for the single
cover of SLð2;RÞ (see [31] for twisted gluing conditions)
with different amounts of spectral flow in the left and right
sectors, namely wL ¼ �wR, and therefore, these solutions
are not contained in the spectrum of the AdS3 model (with
the obvious exception of w ¼ 0 discrete and w ¼ 0,
� ¼ 0, 12 continuous representations).

We find that the one-point functions of states in discrete
representations coupled to pointlike and H2 branes exhibit
a Cardy structure and we propose a generalized Verlinde
formula giving the fusion rules of the degenerate represen-
tations with 1þ 2J 2 N.

A. Conjugacy classes in AdS3

Elements of SLð2;RÞ can be parametrized by four real
parameters X0; . . . ; X3 as

g ¼ 1

‘

X0 þ X1 X2 þ X3

X2 � X3 X0 � X1

 !
; (4.1)

with X2
0 � X2

1 � X2
2 þ X2

3 ¼ ‘2. This gives a representa-

tion of the SLð2;RÞ group manifold embedded in a
4 dimensional flat space. When the signature of this em-
bedding space is ð�1; 1; 1;�1Þ, it corresponds to a pseudo-
sphere whose covering space is AdS3.
A more convenient coordinate system is given by

X0þ iX3¼‘eitcosh	; X1þ iX2¼‘ei� sinh	; (4.2)
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where AdS3 is simply obtained by decompactifying the
timelike direction t.

As is well known [36], the world volume of a symmetric
D-brane on the SLð2;RÞ group manifold is given by the
(twined) conjugacy classes

W !
g ¼ f!ðhÞgh�1;8h 2 SLð2;RÞg; (4.3)

where ! determines the gluing condition connecting left-
and right-moving currents, !ðgÞ ¼ !�1g!. When ! is an
inner automorphism, W!

g can be seen as left group

translations of the regular conjugacy class (of the element
!g). So, one can restrict attention to the case ! ¼ id., and
the conjugacy classes are simply given by the solution to

trg ¼ 2
X0

‘
¼ 2 ~C: (4.4)

The geometry of the world volume is then parametrized

by the constant ~C as

� X1
2 � X2

2 þ X3
2 ¼ ‘2ð1� ~C2Þ: (4.5)

Different geometries can be distinguished for ~C2 bigger,
equal or smaller than 1. The former gives rise to a two
dimensional de Sitter space, dS2, the latter to a two dimen-

sional hyperbolic space, H2, and the case j ~Cj ¼ 1 splits
into three different geometries: the apex, the future and the
past of a light cone.

A more convenient way to parametrize these solutions is
given by the redefinition

~C ¼ cos�: (4.6)

For j ~Cj> 1, � ¼ irþ �v, r 2 Rþ, v 2 Z2. The world
volumes are given by

cosh	 cost ¼ � coshr: (4.7)

Each circular D-string is emitted and absorbed at the
boundary in a time interval of width � but does not reach
the origin unless r ¼ 0. Their lifetime is determined by v.

For j ~Cj< 1, � is real and

cosh	 cost ¼ cos�: (4.8)

If one restricts � 2 ð0; �Þ, there are two different solutions
for each �, for instance one with t 2 ð� �

2 ;��� and

another one with t 2 ½�; 3�2 Þ. To distinguish between these

two solutions we can take � ¼ þ �v,  2 ð��; 0Þ,
v 2 Z2, such that t ¼ arcosðcos�= cosh	Þ, taking the
branch where t ¼ � when it crosses over the origin.
Because these solutions have Euclidean signature, they
are identified as instantons in AdS3. In fact, they represent
constant time slices in hyperbolic coordinates.

For j ~Cj ¼ 1, � ¼ 0 or � and

cosh	 cost ¼ �1: (4.9)

For example, for ~C ¼ 1, this corresponds to a circular
D-string at the boundary at t ¼ ��=2 collapsing to the

instantonic solution in 	 ¼ 0 at t ¼ 0, and then expanding
again to a D-string reaching the boundary at t ¼ �=2.
All of these solutions are restricted to the single covering

of SLð2;RÞ. In the universal covering, t is decompactified
and the picture is periodically repeated. The general solu-
tions can be parametrized by a pair ð�; qÞ, q 2 Z,
or equivalently, the range of � can be extended to
� ¼ irþ q� for dS2 branes, � ¼ þ q� for H2 branes
or � ¼ q� for pointlike and light-cone branes.
Preparing for the discussions on one-point functions and

Cardy structure, it is interesting to note that these parame-
ters can be naturally identified with representations of the
model. For instance, one can label theD-brane solutions as

� ¼ 2�

k� 2

�
jþ 1

2
� w

k� 2

2

�
; (4.10)

with j ¼ � 1
2 þ is, s 2 Rþ, w 2 Z for dS2 branes, j 2

ð� k�1
2 ;� 1

2Þ, w 2 Z for H2 branes and finally � ¼ n�,

n 2 Z for the pointlike and light cone D-brane solutions.
The appearance of the level k in a classical regime could

seem awkward. However, it is useful to recall that � is just
a parameter labeling the conjugacy classes, and the factor
k� 2 can be eliminated by simply redefining j through a
change of variables. The important observation is that this
suggests � labels the exact solutions, e.g. the one-point
functions at finite k will be found to be parametrized
exactly by (4.10) and in fact, in the semiclassical regime
k ! 1, the domain of � does not change at all.
When ! is an outer automorphism, one can take

! ¼ 0 1

1 0

 !
up to group translations. In this case, the twined conjugacy
classes are given by

tr!g ¼ 2
X2

‘
¼ 2C: (4.11)

The world volume geometry now describes an AdS2 space
for all C since

X2
0 � X2

1 þ X2
3 ¼ ‘2ð1þ C2Þ: (4.12)

These are static open D-strings with endpoints fixed at the
boundary. This is obvious in cylindrical coordinates, i.e.

sinh	 sin� ¼ sinhr; (4.13)

where we have renamed C ¼ sinhr. So, after decompacti-
fying the timelike direction t, there is no need to extend the
domain of r.
Let us end this brief review with a word of caution. In

this section we have reviewed the twined conjugacy classes
and, although branes wrap conjugacy classes, extra restric-
tions appear when studying the semiclassical or exact
solutions. In particular, it was found in [26] that r becomes
a positive quantized parameter at the semiclassical level.
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B. Coherent states

Boundary states play a fundamental role in understand-
ing boundary conformal field theories. They store all the
information about possible D-brane solutions and their
couplings to bulk states. Even though there is no systematic
method to obtain all possible boundary states of an arbi-
trary model, if one works in the boundary theory of a
given WZNW model and looks for special D-brane
configurations with more symmetries than the conformal
one, e.g. the symmetry generated by a given subalgebra of
the original current algebra, then the procedure is more
tractable because these symmetries impose extra restric-
tions, which together with certain sewing constraints, can
be used to obtain exact solutions. Following these ideas,
one can study different gluing conditions for the left and
right current modes, consistent with the affine algebra [37]
as well as with the conformal symmetry via the Sugawara
construction [38].

In the case of AdS3, much of the progress reached in this
direction is based on the analytic continuation from Hþ

3

[22]. Gluing conditions were imposed as differential equa-
tions applied directly to find, with the help of certain
sewing constraints, the one-point functions of maximally
symmetricD-branes. It would be interesting to get the one-
point functions of the AdS3 model without reference to
other models, but the approach used so far cannot be easily
extended. In the first place, it was developed in the x basis
of the Hþ

3 model, which is not a good basis for the repre-

sentations of the universal covering of SLð2;RÞ. Suitable
bases instead are them- or t basis [1,7]. Moreover, there are
still some open questions about the fusion rules of theAdS3
model [4] which deserve further attention before analyzing
the sewing constraints. Therefore, we will not compute the
one-point functions in this way, but will give the first step
in this direction by finding the explicit expressions for the
Ishibashi states in the m basis for all the representations of
the Hilbert space of the bulk theory.

1. Coherent states for regular gluing conditions

Boundary states associated to dS2, H2, light cone and
pointlike D-branes in AdS3 must satisfy the following
regular gluing conditions [31]

ðJ3n � �J3�nÞjsi ¼ 0; ðJ�n þ �J��nÞjsi ¼ 0; (4.14)

where s labels the members of the family of branes allowed
by the gluing conditions.

These constraints are linear and leave each representa-
tion invariant, so that the boundary states must be ex-
panded as a sum of solutions in each module. The
solutions represent coherent states, usually called
Ishibashi states [38].

Let us begin introducing the following notation which
will be useful in the subsequent discussions. Let

jj; w; �; n;mi ¼ jj; w; �ifjni � jmig;
jj; w;þ; n;mi ¼ jj; w;þifjni � jmig; (4.15)

denote orthonormal bases for Ĉ�;wj � Ĉ�;wj and D̂þ;w
j �

D̂þ;w
j , respectively. They satisfy10

hj; w; �; n;mjj0; w0; �0; n0;m0i
¼ hj; w; �jj; w; �i � hnjn0i � hmjm0i
¼ �ðs� s0Þ�w;w0�ð�� �0Þ�n�n;n0�m�m;m0 ;

hj; w;þ; n;mjj0; w0;þ; n0;m0i
¼ hj; w;þjj; w;þihnjn0ihmjm0i
¼ �ðj� j0Þ�w;w0�n�n;n0�m�m;m0 ; (4.16)

fjn>g is an orthonormal basis in Ĉ�;wj (or D̂þ;w
j ) for which

the expectation values of J3n, J
�
n are real numbers and

�n ¼ �1 is its norm squared. It is constructed by the
action of the affine currents over the ket jj, m ¼ �,
w> ¼ Uwjj; m ¼ �> (jj; m ¼ �j; w > ).
The Ishibashi states for continuous and discrete repre-

sentations are found to be

jj; w; �  ¼ X
n

�n �Vjj; w; �; n; ni and

jj; w;þ  ¼ X
n

�n �Vjj; w;þ; n; ni; (4.17)

respectively, where V is defined as the linear operator
satisfying

V
Y
I

JaInI jj;m¼�j;wi¼Y
I


aIbIJ
bI
nI jj;m¼�j;wi;

V
Y
I

JaInI jj;m¼�;wi¼Y
I


aIbIJ
bI
nI jj;m¼�;wi;

(4.18)

with a ¼ 1, 2, 3, 
ab ¼ diagð�1;�1; 1Þ and the bar de-
notes action restricted to the antiholomorphic sector. It is
easy to see that this defines a unitary operator. The proof
that they are solutions to (4.14) follows similar lines as
those of [38]. As an example, let us consider an arbitrary
base state jj0; w0; �0; n0;m0 > :

< j0; w0; �0; n0;m0jJ3r � �J3�rjj; �; w 
¼ �ðs� s0Þ�w;w0�ð�� �0ÞX

n

�nhn0jJ3njnihm0j �V jni

� �nhn0jnihm0j �J3�n
�V jni

¼ �ðs� s0Þ�w;w0�ð�� �0ÞX
n

�nhn0jJ3njnihnjVjm0i

� �nhn0jnihnjVJ3njm0i ¼ 0:

10The separation between jj; w; �i or jj; w;þi and jni, jmi in
different kets is simply a matter of useful notation for calculus
and does not denote tensor product.
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The normalization fixed above for the Ishibashi states
implies

� j; w; �je�i�ðL0þ �L0�ðc=12ÞÞe�i�ðJ30þ �J3
0
Þjj0; w0; �0 

¼ �ðs� s0Þ�w;w0�ð�� �0Þ��;w
j ð�; �Þ;

� j; w;þje�i�ðL0þ �L0�ðc=12ÞÞe�i�ðJ30þ �J3
0
Þjj0; w0;þ 

¼ �ðj� j0Þ�w;w0�þ;w
j ð�; �Þ: (4.19)

2. Cardy structure and one-point
functions for pointlike branes

Assuming that after Wick rotation the open string parti-
tion function inAdS3 reproduces that of theH

þ
3 model and a

generalized Verlinde formula, we show in this section that
the one-point functions on localized branes in AdS3 pre-
viously found in [19] can be recovered. We also verify that
the one-point functions on pointlike and H2 D-branes ex-
hibit a Cardy structure. Usually, this structure is accompa-
nied by aVerlinde formula for the representations appearing
in the boundary spectrum. In fact, the Cardy structure is a
natural solution to the Cardy condition when the Verlinde
theorem holds. However, as we shall discuss, the latter does
not hold in the AdS3 WZNW model. The generalized
Verlinde formula proposed in Appendix C reproduces the
fusion rules of the degenerate representations, but it gives
contributions to the fusion rules of the discrete representa-
tions with an arbitrary amount of spectral flow, thus contra-
dicting the selection rules determined in [3]. Nevertheless,
we find a Cardy structure.

Boundary states:World-sheet duality allows to write the
one-loop partition function for open strings ending on
pointlike branes labeled by s1 and s2 as

e�2�iðk=4Þð�2=�ÞZAdS3
s1s2 ð�; �; 0Þ ¼ h�s1j~qHðPÞ

~zJ
3
0 js2i

¼ X1
w¼�1

Z �ð1=2Þ

�ðk�1=2Þ
djAs1

ðj;wÞA
s2
ðjþ;wþÞ�

þ;w
j ð~�; ~�; 0Þ þ ccr;

where � denotes the world-sheet CPT operator in the

bulk theory, ~q ¼ e2�i~�, ~z ¼ e2�i
~�, ~� ¼ �1=�, ~� ¼ �=�,

ðjþ; wþÞ refer to the labels of the ðj; wÞ-conjugate repre-
sentations, ccr denotes the contributions of continuous
representations and As

ðj;wÞ are the Ishibashi coefficients

of the boundary states.
The open string partition function for the ‘‘spherical

branes’’ of the Hþ
3 model was found in [21] for � ¼ 0

and extended to the case � � 0 in [34]. It reads

Z
Hþ

3
s1s2ð�; �; 0Þ ¼

XJ1þJ2

J3¼jJ1�J2j
�J3ð�; �; 0Þ; (4.20)

where si ¼ �
k�2 ð1þ 2JiÞ and 1þ 2Ji 2 N. This reveals

an open string spectrum of discrete degenerate
representations.

The Lorentzian partition function is expected to repro-
duce that of the Hþ

3 model after analytic continuation in �

and �. Then, if we concentrate on the one-point functions
of fields in discrete representations, we only need to con-
sider the case �þ n� =2 Z. Thus, using the generalized
Verlinde formula (see Appendix C for details), namely

XJ1þJ2

J3¼jJ1�J2j
�J3ð�; �; 0Þ

¼ X1
w¼�1

Z �ð1=2Þ

�ðk�1Þ=2
dj

SJ1
j;wSJ2

j;w

Sj;w0

� e2�iðk=4Þð�2=�Þ�þ;w
j

�
�

�
;� 1

�
; 0

�
; (4.21)

we obtain the following expression for the coefficients of
the boundary states:

As
ðj;wÞ ¼ fðj; wÞð�Þw

ffiffiffi
2

i

s �
2

k� 2

�
1=4

� sin½sð1þ 2j� wðk� 2ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin½ �

k�2 ð1þ 2jÞ�
q ; (4.22)

defined up to a function fðj; wÞ satisfying fðj; wÞ�
fð� k

2 � j;�w� 1Þ ¼ 1.

One-point functions To find the one-point functions
associated to these pointlike branes, let us make use of
the following definition of boundary states (see for instance
[39])11:

h�ðHÞðjj;m; �m;wi; z; �zÞis
¼
�
d�

dz

�
�j
�
d ��

d�z

� ��jh0j�ðPÞðjj; m; �m;wi;�; ��Þjsi; (4.23)

where �ðHÞðjj;m; �m;wi; z; �zÞ (�ðPÞðjj; m; �m;wi;�; ��Þ) is
the bulk field of the boundary (bulk) CFT corresponding
to the state inside the brackets,12 z, �z denote the coordinates
of the upper half plane and �, �� those of the exterior of the
unit disc.
Conformal invariance forces the l.h.s. of (4.23) to be

h�ðHÞðjj;m; �m;wi; z; �zÞis ¼
BðsÞj;wm; �m

jz� �zj�jþ ��j

; (4.24)

where the z-independent factor BðsÞj;wm; �m is not fixed by the

conformal symmetry. The solution (4.17) and (4.18)
implies

11Strictly speaking, this identity is valid on a Euclidean world
sheet. However, it is appropriate to use it here since we want to
explore the relation of our results with those of the Euclidean
model defined in [19] where the coefficients of the one-point
functions are assumed to coincide with those of the Lorentzian
AdS3.
12Here jj; m; �m;w> is a shorthand notation for jj; m;w >
�jj; �m;w> and it must be distinguished from the orthonormal
basis introduced in Sec. IVB 1.
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B ðsÞj;wm; �m ¼ ð�Þjþm�m; �mAs
j;w; (4.25)

from which the spectral flow symmetry determines f ¼ 1.
It is important to note that the normalization used here

differs from the one usually considered in the literature.
Our normalization is such that the spectral flow image of
the primary operator corresponding to the state
jj; m; �m;w> is normalized to 1. In particular, it implies
the following operator product expansions

J3ð�Þ�ðPÞðjj;m; �m;wi;�; ��Þ

¼mþ k
2w

���
�ðPÞðjj;m; �m;wi;�; ��Þþ . . .

J�ð�Þ�ðPÞðjj;m; �m;wi;�; ��Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jð1þjÞþmðm�1Þp

ð���Þ1�w
�ðPÞðjj;m�1; �m;wi;�; ��Þþ . . .

(4.26)

In Appendix D 1, we show that (4.25) agrees with the one-
point function obtained in [19].

3. Cardy structure in H2 branes

In Appendix D we review the results for the one-point
functions in maximally symmetric D-branes obtained
by applying the method of [19]. From the one-point func-
tions of fields in discrete representations on H2 branes we
find the following Ishibashi coefficients (see (D10) and
(D12))

A�0�ðj0;w0Þ
ðj;wÞ

¼ �ffiffiffi
k

p
�

2

k� 2

�
3=4

� ð�Þwe4�i=k�2ðj0þð1=2Þ�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin½ �

k�2 ð2jþ 1Þ�
q ;

(4.27)

satisfying

A j1;w1

ðj;wÞA
j2;w2

ðjþ;wþÞ � ð�Þw1þw2
Sj1w1

jwSj2w2

jþwþ

Sjw
0

; (4.28)

where � stands for equal up to the k� dependent factor
�i4�2

kðk�2Þ . This expression leads to the following degeneracy

for the open string spectrum of discrete representations

N j1;w1j2;w2

j3;w3 ¼ �i2�2ð�Þw3

kðk� 2Þ
X1

m¼�1
�

�
j2 þ j3 � j1

� ðw2 þ w3 � w1Þ k� 2

2
þm

�
;

where the divergent integral
R
1
0 d

e�2�iðmþð1=2ÞÞ
2i sinð�Þ has been

replaced by its principal value, 12 .

Two comments are in order. First, a non negative integer
times a Kronecker or Dirac delta function would be ex-
pected for the degeneracy. An integer can be obtained
through a small modification by an overall k-dependent
factor in the one-point functions, but the sign factor ð�Þw3

cannot be removed in this way, and it inevitably leads to
negative degeneracies. The second comment is about the
Verlinde theorem. Contrary to what happens in RCFT, here
the Cardy structure is not accompanied by a Verlinde
formula. Even, if we ignore the problems mentioned in
the first comment, the naive application of this formula
gives contributions to the fusion rules violating the spectral
flow number conservation by an arbitrary amount, in con-
tradiction with the selection rules determined in [3].

4. Coherent states for twined gluing conditions

The gluing conditions defining the coherent states
jj; w  for AdS2 branes [31], frequently called twisted
boundary conditions, are

ðJ3nþ �J3�nÞjj;w¼0; ðJ�n þ �J��nÞjj;w¼0: (4.29)

These constraints are highly restrictive. As we show below,
coherent states satisfying these conditions can only be
found for representations where the holomorphic and anti-
holomorphic sectors are conjugate of each other, i.e. only
forw ¼ 0,� ¼ 0, 12 continuous representations in theAdS3
model.
Let us assume jj; w  is an Ishibashi state associated to

the spectral flow image of a discrete or continuous repre-
sentation. The spectral flow transformation (2.3) allows to
translate the problem of solving (4.29) to that of solving

ðJ3n þ �J3�n þ kw�n;0Þjjiw ¼ 0;

ðJ�n þ �J��n�2wÞjjiw ¼ 0; (4.30)

where jjiw ¼ U�w
�U�wjj; w  is in an unflowed

representation.13

The special case n ¼ 0 in (4.30) implies 2�þ kw 2 Z
and �2jþ kw 2 Z for continuous and discrete represen-
tations, respectively. In particular, for w ¼ 0 continuous
representations there are two solutions with � ¼ 0, 1

2 ,

given by

jj; 0; �  ¼ X
n

�n �Ujj; w; �; n; ni; (4.31)

13Notice that in the case w ¼ � �w discussed in [31] for the
single covering of SLð2;RÞ, one gets (4.29) with the unflowed
jj>w; �w state replacing jj; w  instead of (4.30). Then, once an
Ishibashi state is found for w ¼ � �w ¼ 0, the solutions for
generic representations with w ¼ � �w are trivially obtained
applying the spectral flow operation, and coherent states in
arbitrary spectral flow sectors are found. This fails in AdS3
and thus the discussion in loc. cit. does not apply here, except
for w ¼ 0 discrete or w ¼ 0, � ¼ 0, 1

2 continuous
representations.
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where the antilinear operator U is defined by

U
Y
I

JaInI jj;m¼ �;w¼ 0i ¼Y
I

� JaInI jj;m¼��;w¼ 0i:

(4.32)

It can be easily verified that this defines an anti-unitary
operator and it is exactly the same Ishibashi state found in
SU(2) [38].

To understand why there are no solutions in other mod-
ules, let us expand the hypothetical Ishibashi state in the

orthonormal base jj; w; � > fjn> �jm>g, with � ¼ � or

þ and jn > , jm> eigenvectors of J30 , L0 and �J30,
�L0

respectively. The constraint that Ishibashi states are anni-

hilated by L0 � �L0 forces jn> , jm> to be at the same
level. But taking into account that all modules at a given
level are highest or lowest-weight representations of the
zero modes of the currents (with the only exception of
w ¼ 0 continuous representations) and the fact that the
eigenvalues of the highest (lowest) weight operators de-
crease (increase) after descending a finite number of levels,
the first equation in (4.29) with n ¼ 0 has no solution
below certain level. This implies that below that level there
are no contributions to the Ishibashi states and so, using for
instance the constraint ðJa1 þ �Ja�1Þjj; w ¼ 0, it is easy to
show by induction that no level contributes to the coherent
states.

The coherent states defined above are normalized as

� j; 0; �je�i�ðL0þ �L0�ðc=12ÞÞe�i�ðJ30� �J3
0
Þjj0; 0; �0 

¼ �ðs� s0Þ�ð�� �0Þ��;0
j ð�; �Þ; (4.33)

for � ¼ 0, 12 . The fact that it is only possible to construct

Ishibashi states associated to w ¼ 0 continuous represen-
tations is again in agreement with the one-point functions
found in [19] and the conjecture in [32] that only states in
these representations couple to AdS2 branes.

V. CONCLUSIONS

To conclude, let us summarize our results and contrast
them with previous works in the literature.

We have computed the characters of the relevant repre-
sentations of the AdS3 model on the Lorentzian torus and
studied their modular transformations. We fully deter-
mined the generalized S matrix, which depends on the
sign of �, and showed that real modular parameters are
crucial to find the modular maps.

We have seen that the characters of continuous represen-
tations transform among themselves under S while both
kinds of characters appear in the S transformation of the
characters of discrete representations. An important con-
sequence of this fact is that the Lorentzian partition func-
tion is not modular invariant [and the departure from
modular invariance is not just the sign appearing in (3.3)].
The analytic continuation to obtain the Euclidean partition

function (which must be invariant) is not fully satisfactory.
Following the road of [1] and simply discarding the contact
terms, one recovers the partition function of the Hþ

3 model

obtained in [18]. But even though modular invariant, this
expression has poor information about the spectrum. Not
only the characters of the continuous representations vanish
in all spectral flow sectors but also those of the discrete
representations are only well defined in different regions of
the moduli space, depending on the spectral flow sector, so
that it makes nomathematical sense to sum them in order to
find the modular S transformation. An alternative approach
was followed in [20], where an expression for the partition
function was found starting from that of the SLð2;RÞ=Uð1Þ
coset computed in [40] and using path integral techniques.
Although formally divergent, it is modular invariant and
allows to read the spectrum of the model.14 It was shown
that the partition function obtained in [1,18] is recovered
after some formal manipulations. It would be interesting to
better understand how the information is lost in the proce-
dure implemented in [20] and to explore if it is possible to
find an analytic continuation of the Lorentzian partition
function leading to the integral expression obtained in
loc. it. (or an equivalent one), in a controlled way in which
the knowledge on the spectrum is not removed.
The treatment of the boundary states presented in

Sec. IV differs from previous works. While we have ex-
pressed them as a sum over Ishibashi states, in other related
models such as Hþ

3 [22], Liouville [41] or the Euclidean

black hole [34], the boundary states have been expanded,
instead, in terms of primary states and their descendants.
The coefficients in the latter expansions directly give the
one-point functions of the primary fields. For instance, in
the Hþ

3 model, the gluing conditions were imposed in [22]

not over the Ishibashi states but over the one-point func-
tions. One of the reasons why this approach seems more
suitable for Hþ

3 is the observation that the expectation

values used to fix the normalization of the Ishibashi states
diverge in the hyperbolic model.15 As we have seen, this is
not the case in AdS3.
The generalization of the Verlinde formula proposed in

Sec. IV gives the fusion rules of the degenerate represen-
tations of SLð2;RÞ appearing in the spectrum of open
strings attached to the pointlike D-branes of the model
and the coefficients of their boundary states. The formula
holds for generic �, � far from �þ n� 2 Z. It would be
interesting to study the extension to generic �, �

14The spectrum was also obtained from a computation of the
Free Energy in [2].
15Notice that, contrary to the AdS3 or SU(2) models, the
continuous representations appearing in the Hilbert space of
the Hþ

3 model do not factorize as tensor products of a holomor-
phic times an antiholomorphic representation. So, instead of the
characters of the holomorphic sector appearing for instance in
(4.19), the analog ones in the hyperbolic model have a trace over
certain subspace of states satisfying J30 ¼ � �J30, depending on the
gluing conditions considered. And this trace is divergent.
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which requires to consider the S matrix block (3.20).
Furthermore, one could also study the modular transfor-
mations of the characters of other degenerate representa-
tions and their spectral flow images and explore the validity
of generalized Verlinde formulas in these cases.

We have shown that the one-point functions of fields in
discrete representations coupled to H2 branes are deter-
mined by one of the diagonal blocks of the generalized S
matrix, as usual in RCFT. However, a puzzle arises when
considering the open/closed duality which gives negative
degeneracies in the open string spectrum of these branes. In
contrast to general expectations, here the Cardy structure is
not accompanied by a Verlinde theorem. Moreover, the
Verlinde-like formula does not give the fusion rules of the
bulk AdS3 model. In particular, besides some undesirable
negative signs, it gives contributions of arbitrary spectral
flow numbers to the fusion of states in discrete representa-
tions, thus violating the selection rules established in [3].

Much remains to be understood on the modular proper-
ties and the role of the Verlinde theorem (or suitable
generalizations) in this non RCFT. In particular, more
work is necessary to understand what properties of the
physical theory determine the relations that we have found
between microscopic data and modular transformations. It
would also be interesting to put the fusion rules of theAdS3
WZNW model on a firmer ground, as puzzles such as the
absence of the trivial representation [42] or the mechanism
determining the truncation of states in the operator algebra
[4] are far from elucidated.
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APPENDIX A: THE LORENTZIAN TORUS

In this appendix we present a description of the moduli
space of the torus with Lorentzian metric.16 Although it
can be easily obtained from the Euclidean case, we include
it here for completeness.

Consider the two dimensional torus with world-sheet
coordinates �1, �2 obeying the identifications

ð�1; �2Þ ffi ð�1 þ 2�n;�2 þ 2�mÞ; n;m 2 Z: (A1)

By diffeomorphisms and Weyl transformations that leave
invariant the periodicity, a general two dimensional
Lorentzian metric can be taken to the form

ds2 ¼ ðd�1 þ �þd�2Þðd�1 þ ��d�2Þ; (A2)

where �þ, �� are two real independent parameters. Recall
that the metric of the Euclidean torus, namely ds2 ¼
jd�1 þ �d�2j2, is degenerate for � 2 R since detg ¼
ð�� �
Þ2. In contrast, here it is degenerate for �� ¼ �þ.
The linear transformation

~�1 ¼ �1 þ �þ�2; ~�2 ¼ ���2; �� ¼ �� � �þ
2

;

(A3)

takes (A2) to the Minkowski metric. The new coordinates
obey the periodicity conditions

ð~�1; ~�2Þ ffi ð~�1 þ 2�nþ 2�m�þ; ~�2 þ 2���mÞ;
n;m 2 Z;

(A4)

while the light-cone coordinates ~�� ¼ ~�1 � ~�2, obey

~�� ffi ~�� þ 2�nþ 2�m��: (A5)

In the Euclidean case, there are in addition global trans-
formations that cannot be smoothly connected to the iden-
tity, generated by Dehn twists. A twist along the a cycle of
a Lorentzian torus preserves the metric (A2) but changes
the periodicity to

ð~�1; ~�2Þ ffi ð~�1 þ 2�nþ 2�mð1þ �þÞ; ~�2 þ 2�m��Þ;
n;m 2 Z; (A6)

or

~�� ffi ~�� þ 2�nþ 2�mð�� þ 1Þ: (A7)

Thus it gives a torus with modular parameters ð�0þ; �0�Þ ¼
ð�þ þ 1; �� þ 1Þ. A twist along the b cycle leads to the
following periodicity conditions:

ð~�1; ~�2Þ ffi ð~�1 þ 2�nð1þ �þÞ þ 2�m�þ; ~�2

þ 2�n�� þ 2�m��Þ; n;m 2 Z; (A8)

or

~�� ffi ~�� þ 2�nð1þ ��Þ þ 2�m��: (A9)

As in the Euclidean case, this is equivalent to a torus with
ð�0þ; �0�Þ ¼ ð �þ

�þþ1 ;
��

��þ1Þ and conformally flat metric. But

there is a crucial difference. In the Euclidean case, the
overall conformal factor multiplying the flat metric is
positive definite, namely 1

ð1þ�Þð1þ�
Þ . On the contrary, in

the Lorentzian torus, the conformal factor 1
ð1þ��Þð1þ�þÞ is

not positive definite and so, it can not be generically
eliminated through a Weyl transformation.
Defining the modular S transformation as S�� ¼ � 1

��
,

we can write �0� ¼ ��
1þ��

¼ TST��, and then the problem

16Tori in 1þ 1 dimensions have been considered previously in
[43–46] in the context of string propagation in time dependent
backgrounds.
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can be reformulated in the following way. The T trans-
formation works as in the Euclidean case. Instead, under a
modular S transformation, the torus defined by (A1) and
(A2) is equivalent to a torus with the same periodicities but
with the following metric (after diffeomorphisms andWeyl
rescaling)

ds2¼ sgnð���þÞðd�01þ�þd�02Þðd�01þ��d�02Þ: (A10)

1. The fundamental region

In the Euclidean torus, one can find a coordinate system
preserving the periodicity conditions (A1), where the met-
ric takes the form ds2 ¼ jd�1 þ �d�2j2, with � 2 C.
Since it is invariant under complex conjugation, the
complex � plane can be restricted to Im � > 0 (discarding
Im � ¼ 0 because it gives a degenerate metric). Similarly,
in the Lorentzian case, the metric (A2) is invariant
under �þ $ �� and one can take �þ > �� (discarding
�þ ¼ ��).

Unlike the Euclidean case, where the S transformation
maps the interior to the exterior of the unit circle, in the
Lorentzian case it maps the interior of the hyperbola �þ ¼
���1� in the second quadrant to the exterior of the hyper-
bola in the fourth quadrant. But the symmetry �þ $ ��,
allows to identify this region of the fourth quadrant with
the exterior of the hyperbola in the second quadrant.
Similarly, using this symmetry, the S transformation
maps the exterior to the interior of the hyperbola in the
second quadrant (see Fig. 2) and leaves the points on the
hyperbola fixed. One of these points is ð��; �þÞ ¼ ð�1; 1Þ
which corresponds to theMinkowski metric. (Recall that in
the Euclidean case there is a single fixed point, � ¼ i,
giving a flat Euclidean metric).

APPENDIX B: THE MIXING BLOCK OF
THE S MATRIX

In this appendix we sketch the computation of the off-
diagonal block of the S matrix mixing the characters of
continuous and discrete representations.

1. A useful identity

It is convenient to begin displaying a useful identity.
Let hðx; �0Þ ¼ 1

1�e2�iðxþi�0Þ , with x 2 R, be the distribution
defined as the weak limit �0 ! 0 and Gðx; �1; �2; �3; . . .Þ a
generalized function having simple poles outside of the real
line,17 defined as theweak limit �i ! 0, i ¼ 1; 2; 3; . . . . The
nonvanishing infinitesimals �i are allowed to depend on the
x coordinate and they all differ from each other in an open
set around each simple pole. Then, the following identity
holds (in a distributional sense):

1

1�e2�iðxþi�0ÞGðx;�1;�2;�3; . . .Þ

¼ 1

1�e2�iðxþi~�0ÞGðx;�1;�2;�3; . . .Þ
þX

x#i

�ðx�x#iÞGðx;�1��0;�2��0;�3��0; . . .Þ

�X
x"i

�ðx�x"iÞGðx;�1��0;�2��0;�3��0; . . .Þ; (B1)

where ~�0 is a new infinitesimal parameter, x#i (x
"
i) is the real

part of the pulled down (up) poles, i.e. those poles where

�0ðx#iÞ< 0< ~�0ðx#iÞ (~�0ðx"iÞ< 0< �0ðx"iÞ). Of course, here
x#i; x

"
i 2 Z, but (B1) can be trivially generalized to other

functionals having simple poles, the only change being that
the residue has to multiply each delta function.
The proof of this identity follows from multiplying (B1)

by an arbitrary test function (fðxÞ 2 C1
0 ) and integrating

over the real line.
As an example, let us consider the simplest case G ¼ 1,

�0 ¼ 0þ, ~�0 ¼ 0�, where one recovers the well known
formula

1

1� e2�iðxþi0þÞ ¼
1

1� e2�iðxþi0�Þ �
X1

m¼�1
�ðxþmÞ: (B2)

2. The mixing block

Let us first consider the modular transformation of the
elliptic theta function

FIG. 2. A fundamental region F0 can be defined as
���� 1	 �þ<���þ 1, �� < 0, �þ � ���1� (�þ >���1� )
for �þ >��� (�þ <���). Other possible fundamental regions
are the images of F0 by S or T, denoted FS

0 , F
T
0 respectively.

17Gðx; 0; 0; 0; . . .Þ not necessarily has only simple poles. In the
most general case, it will have poles of arbitrary order.
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1

i#11ð�þ i�w2 ; �þ i�1Þ !
1

i#11ð�� þ i�w2 ;� 1
� þ i�1Þ

� 1

i#11

�
�þi�0w

2

�þi�0
1
;� 1

�þi�0
1

	
¼ �sgnð�Þe��ið�2=�Þe�sgnð�Þið�=4Þffiffiffiffiffiffij�jp 1

#11ð�þ i�0w2 ; �þ i�01Þ
; (B3)

�01 ¼ �2�1; �0w2 ¼ �ð�w2 þ ��1Þ; (B4)

and �1, �
w
2 satisfy (2.7). The identity (3.17) was used in the last line of (B3) and the limits �01, �

0w
2 ! 0were taken where it is

allowed.
Let us now concentrate on the last term in (B3). It is explicitly given by (2.11), where now the �’s are replaced by �01,

�0n;w3 , �0n;w4 satisfying �01 > 0,

�0n;w3

(
<0; �� n� 	 �1� w

>0; �� n� � �w
; �0n;w4

(
<0; �þ n� � �w

>0; �þ n� 	 �1� w
; � < 0; (B5)

�0n;w3

(
<0; �� n� � �w

>0; �� n� 	 �1� w
; �0n;w4

(
<0; �þ n� � �w

>0; �þ n� 	 �1� w
; � > 0: (B6)

By comparing with (2.12) and using (B1), one finds, for instance in the case w< 0, � < 0, after a straightforward but
tedious computation, the following identity:

1

i#11ð�þ i�0w2 ; �þ i�01Þ
¼ 1

i#11ð�þ i�w2 ; �þ i�1Þ �
1


3ð�þ i�1Þ
�
e�i��

X1
n¼0

X�w�1

m¼�1
ð�Þne�i�nð1þnÞ�ð��þ n�þmÞ

þ ei��
� X�w�1

n¼1

X1
m¼wþ1

� X1
n¼�w

Xw
m¼�1

�
ð�Þne�i�nð1þnÞ�ð�þ n�þmÞ

�
:

Repeating the same analysis for the other cases one finds, for arbitrary w,

1

i#11ð�þ i�0w2 ; �þ i�01Þ
¼ 1

i#11ð�þ i�w2 ; �þ i�1Þ þ
24 Xw

n¼�1

(P
w
m¼�1 �ð�� n�þmÞ; � < 0P1
m¼1þw �ð�� n�þmÞ; � > 0

� X1
n¼1þw

(P1
m¼1þw �ð�� n�þmÞ; � < 0P
w
m¼�1 �ð�� n�þmÞ; � > 0

35 ð�Þnþme2i��ðn2=2Þ


3ð�þ i�1Þ
Using (3.14) and summing or subtracting delta function terms like in (2.13) and (2.14), in order to construct the

characters of discrete representations, one finds

�þ;w
j

�
�

�
;� 1

�
; 0

�
¼ e�2�iðk=4Þð�2=�Þsgnð�Þ

8<: X1
w0¼�1

Z �ð1=2Þ

�ðk�1Þ=2
dj0

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s
ð�Þwþw0þ1e4�i=k�2ðj0þð1=2Þ�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þ

� �þ;w0
j0 ð�; �; 0Þ þ X

w0;n;m2Ið�Þ

Z �ð1=2Þ

�ðk�1=2Þ
dj0

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s
ð�Þwþ1e4�i=k�2ðj0þð1=2Þ�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þ

� e�ð2�i=k�2Þ�ðj0þð1=2Þ�w0ðk�2Þ=2Þ2e�2�i�ðj0þð1=2Þ�w0ðk�2Þ=2Þ


3ð�þ i�1Þ
ð�Þnþme2�i�ðn2=2Þ�ð�� n�þmÞ

9=;;
where

P
w0;n;m2Ið�Þ is expected to reproduce the contribution from the continuous representations and is explicitly given by

X
w0;n;m2Ið�Þ

�� Xw�1

w0¼�1

Xw
n¼1þw0

X1
m¼�1

þ X1
w0¼1þw

Xw0

n¼1þw

X1
m¼�1

þ X1
w0¼�1

0@ Xw
n¼�1

8<:
P

w
m¼�1P1
m¼1þw

� X1
n¼1þw

8<:
P1

m¼1þwP
w
m¼�1

1A
¼ X1

w0¼�1

0@ Xw0

n¼�1

8<:
P

w
m¼�1P1
m¼1þw

� X1
n¼1þw0

8<:
P1

m¼1þwP
w
m¼�1

1A¼ X1
n¼�1

0@X1
w0¼n

8<:
P

w
m¼�1P1
m¼1þw

� Xn�1

w0¼�1

8<:
P1

m¼1þwP
w
m¼�1

1A;
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where the upper lines inside the brackets hold for � < 0 and the lower ones for � > 0. In the last line we have exchanged the
order of summations. The sum over w0 together with the integral over j0, the spin of the states in discrete representations,
match together to give, after analytic continuation, the integral over s0, the imaginary part of the spin of the states in the
principal continuous representations:

X1
w0¼n

Z �ð1=2Þ

�ðk�1Þ=2
dj0eð4�i=k�2Þðj0þð1=2Þ�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þe�ð2�i=k�2Þ�ðj0þð1=2Þ�w0ðk�2Þ=2Þ2e�2�i�ðj0þð1=2Þ�w0ðk�2Þ=2Þ

¼
Z 0

�1
de4�i=k�2ð�nðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þe�ð2�i=k�2Þ�ð�nðk�2Þ=2Þ2e�2�i�ð�nðk�2Þ=2Þ

¼
8<: i

R1
0 ds0e4�i=k�2ð�is0�nðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þe�ð2�i=k�2Þ�ð�is0�nðk�2Þ=2Þ2e�2�i�ð�is0�nðk�2Þ=2Þ; � < 0;

�i
R1
0 ds0e4�i=k�2ðis0�nðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þe�ð2�i=k�2Þ�ðis0�nðk�2Þ=2Þ2e�2�i�ðis0�nðk�2Þ=2Þ; � > 0:

After a similar analysis for the terms in the sum
P

n�1
w0¼�1 and relabeling the dummy index n ! w0, one finds the following

contribution from the continuous series

X1
w0¼�1

i

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s Z 1

0
ds0ð�Þwþw0þ1

� Xw
m¼�1

eð4�i=k�2Þð�is0�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þe�2�imðð1=2Þþis0þw0ðk�2Þ=2Þ

� X1
m¼1þw

e4�i=k�2ðis0�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þe�2�imðð1=2Þ�is0þw0ðk�2Þ=2Þ
�
e2�i�ððs02=k�2Þþðk=4Þw02Þ


3ð�þ i�1Þ
�ð�� w0�þmÞ

Finally, using (3.9), with the appropriate relabeling and
performing the sum overm (which then simply reduces to a
geometric series) one gets

X1
w0¼�1

Z 1

0
ds0

Z 1

0
d�0Sj;w

s0;�0;w0
��0;w0
s0 ð�; �; 0Þ; (B7)

with

Sj;w
s0;�0;w0 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s
e�2�iðw0j�w�0�ww0ðk=2ÞÞ

�
�
eð4�=k�2Þs0ðjþð1=2ÞÞ

1þ e�2�ið�0�is0Þ þ
e�ð4�=k�2Þs0ðjþð1=2ÞÞ

1þ e�2�ið�0þis0Þ

�
:

(B8)

It is interesting to note that (repeated indices denote
implicit sum)

Sj;w
s1;�1;w1Ss1;�1;w1

s0;�0;w0 ¼ �Sj;w
j1;w1Sj1;w1

s0;�0;w0

¼ ð�Þwþw0þ1

2�

X1
m¼�1

�
1

1
2 þ �0 � is0 �m

þ 1
1
2 þ �0 þ is0 �m

�
�

�
j� �0 � ðwþ w0Þ k� 2

2
þm

�
:

(B9)

The first line implies S2
j;w

s0;�0;w0 ¼ 0.

To show that ðSTÞ3j;ws0;�0;w0 ¼ 0 is a bit more involved.

This block is explicitly given by

S j;w
s1;�1;w1½ðTSTSTÞs1;�1;w1

s0;�0;w0 �
þ Sj;w

j1;w1½ðTSTSTÞj1;w1

s0;�0;w0 �: (B10)

The first term above coincides with the first one in (B9).
This is a consequence of (3.26), which implies

ðTSTSTÞs1;�1;w1

s0;�0;w0 ¼ Ss1;�1;w1

s0;�0;w0
. So, in order for

this block to vanish it is sufficient to show that the term
inside the second bracket is exactly the S matrix mixing
block.
The factor inside the last bracket splits into the sum

Tj1;w1

j2;w2Sj2;w2

s3;�3;w3Ts3;�3;w3

s4;�4;w4Ss4;�4;w4

s5;�5;w5Ts5;�5;w5

s0;�0;w0 þ Tj1;w1

j2;w2Sj2;w2

j3;w3Tj3;w3

j4;w4Sj4;w4

s5;�5;w5Ts5;�5;w5

s0;�0;w0
:

(B11)

These terms are very difficult to compute separately because each one gives the integral of a Gauss error function. So, we
show here how the sums can be reorganized in order to cancel all the intricate integrals when summing both terms and one
ends with the mixing block Sj1;w1

s0;�0;w0
. In fact, after some few steps, the first line can be expressed as
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ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s Z 1

0
ds

�
~Ss2;�2;w2

j1;w1

� X0
w¼�1

e�ið�=4Þe�ð2�i=k�2Þ½�is�wðk�2Þ=2�ðj1þð1=2ÞÞþis2�2e2�iwð�2þð1=2Þ�is2Þ

� X1
w¼1

e�ið�=4Þe2�i=k�2½�is�wðk�2Þ=2�ðj1þð1=2ÞÞþis2�2e2�iwð�2þð1=2Þ�is2Þ
�
þ ðs2 ! �s2Þ

�
; (B12)

where we have introduced ~Sj1;w1

s2;�2;w2 ¼ �i
ffiffiffiffiffiffiffi
2

k�2

q
e�2�iðw2j1�w1�2�w1w2ðk=2ÞÞe4�s2=k�2ðj1þð1=2ÞÞ.

On the other hand, the second line in (B11) takes the form

X1
w¼�1

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s Z �ð1=2Þ

�ðk�=2Þ
djeið�=2Þe�ð2�i=k�2Þ½jþð1=2Þ�wðk�2Þ=2�ðj1þð1=2ÞÞþis2�2e2�iwð�2þð1=2Þ�is2Þ

~Sj1;w1

s2;�2;w2

1þ e�2�ið�2�is2Þ þ ðs2 ! �s2Þ:

(B13)

Now notice that, for w 	 �1, the integral over j can be
replaced by an integral over � k�1

2 þ is minus an integral

over � 1
2 þ is with s 2 ð�1; 0�. For w � 1, the original

integral splits into the same two integrals, but now with
s 2 ½0;1Þ. Adding these terms to (B12) one ends, after
some extra contour deformations in the remaining inte-

grals, with Sj1;w1

s0;�0;w0
and we can conclude that

ðSTÞ3j;ws0;�0;w0 ¼ 0.

APPENDIX C: A GENERALIZED
VERLINDE FORMULA

As is well known, the Verlinde theorem allows to com-
pute the fusion coefficients in RCFT as

N ��
	 ¼ X

�

S�
�S�

�ðS	�Þ�1

S0
� ; (C1)

where the index ‘‘0’’ refers to the representation containing
the identity field. In the case of the fractional level

admissible representations of the dslð2Þ affine Lie algebra,
the negative integer fusion coefficients obtained from (8) in
[47] were interpreted as a consequence of the identification
j ! �1� j in [48],18 where it was also shown that fusions
are not allowed by the Verlinde formula if the fields
involved are not highest- or lowest-weight. Applications
to other non RCFT were discussed in [9], where general-
izations of the theorem were proposed for certain repre-
sentations in the Liouville theory, the Hþ

3 model and the

SLð2;RÞ=Uð1Þ coset.
In order to explore alternative expressions in the AdS3

model, let us consider the more tractable finite dimensional
degenerate representations. From the results for the char-
acters obtained in Sec. II, it is natural to propose the

following generalization of the Verlinde formula19

X
J3

N J1J2
J3�J3ð�; �; 0Þ ¼

X1
w¼�1

Z �ð1=2Þ

�ðk�1=2Þ
dj

SJ1
j;wSJ2

j;w

S0
j;w

� e2�iðk=4Þð�2=�Þ�þ;w
j

�
�

�
;� 1

�
; 0

�
;

(C2)

which holds for generic ð�; �Þ far from the points �þ n� 2
Z,8n 2 Z. In order to prove it, notice that, in the region of
the parameters where we claim it holds, one can neglect the
�0s and contact terms on both sides of the equation and
show that the fusion coefficients N J1J2

J3 coincide with

those obtained in the Hþ
3 model, namely

N J1J2
J3 ¼

8<: 1 jJ1 � J2j 	 J3 	 J1 þ J2;

0 otherwise:
(C3)

Let us denote the r.h.s. of (C2) as IðJ1; J2Þ and rewrite it
as (see (3.12))

IðJ1; J2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 2

s
eð2�i=k�2Þðk�2=2Þ2ð�2=�Þffiffiffiffiffi

i�
p

i#11ð�; �Þ

�
Z 1

�1
d

eð2�i=k�2Þð2=�Þe2�ið�=�Þ

e�i
ffiffiffiffiffiffiffiffiffiffi
2=k�2

p
 � e��i

ffiffiffiffiffiffiffiffiffiffi
2=k�2

p


�½eð2�i=k�2ÞN1 þ e�ð2�i=k�2ÞN1

� eð2�i=k�2ÞN2 � e�ð2�i=k�2ÞN2�; (C4)

where N1 ¼ 2ðJ1 þ J2 þ 1Þ and N2 ¼ 2ðJ1 � J2Þ.
Changing  ! � in the second and fourth terms, we get

IðJ1; J2Þ ¼ IðN1Þ � IðN2Þ;
IðNiÞ ¼ ~IðNi; �; �Þ þ ~IðNi;��; �Þ; (C5)

with
18Interestingly, it was shown in a recent detailed study of the
ŝlð2Þk¼1=2 model [49], that the origin of the negative signs is the
absence of spectral flow images of the admissible representations
in the analysis of [48].

19A similar expression was obtained in [9] for the Hþ
3 model

applying the Cardy ansatz.
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~IðNi;�;�Þ¼
ffiffiffiffiffiffiffi
2

k�2

q
ffiffiffiffiffi
i�

p
i#11ð�;�Þ

Z 1

�1
d

eð2�i=k�2Þð1=�Þðþ�ðk�2Þ=2Þ2e�i
ffiffiffiffiffiffiffiffiffiffi
2=k�2

p
Ni

e�i
ffiffiffiffiffiffiffiffiffiffi
2=k�2

p
�e��i

ffiffiffiffiffiffiffiffiffiffi
2=k�2

p


: (C6)

The divergent terms in this expression cancel in the
sum (C5).

Without loss of generality, let us assume J1 � J2. To
perform the  integral in (C6), it is convenient to split
the cases with odd and even Ni. Writing Ni þ 1 ¼ 2mi,
mi 2 N, in the first case we get

~IðNi; �; �Þ ¼
Xmi�1

L¼0

eð�2�i=k�2Þ�L2
e�2�i�L

i#11ð�; �Þ � e�iðk�2Þ=2ð�2=�Þffiffiffiffiffi
i�

p
i#11ð�; �Þ

�
Z 1

�1
d

e�ið2=�Þe2�i
ffiffiffiffiffiffiffiffiffiffi
k�2=2

p
ð�=�Þ

1� e2�i
ffiffiffiffiffiffiffiffiffiffi
2=k�2

p


; (C7)

where the second term diverges. For even Ni, take Ni þ
2 ¼ 2ni with ni 2 N, and then

~IðNi;�;�Þ¼
Xni�1

L¼0

eð�2�i=k�2Þ�ðL�ð1=2ÞÞ2e�2�i�ðL�ð1=2ÞÞ

i#11ð�;�Þ

�e�iðk�2Þ=2ð�2=�Þffiffiffiffiffi
i�

p
i#11ð�;�Þ

�
Z 1

�1
d

e�ið2=�Þe2�i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�2Þ=2

p
ð�=�Þe��i

ffiffiffiffiffiffiffiffiffiffi
2=k�2

p


1�e2�i
ffiffiffiffiffiffiffiffiffiffi
2=k�2

p


;

(C8)

where again the second term diverges.
Notice that N1 and N2 are either both even or odd, and

since the divergent term is the same in IðN1Þ and IðN2Þ,
it cancels in the sum IðJ1; J2Þ. Thus, putting all together
we get

IðJ1;J2Þ¼
XJ1þJ2

J3¼J1�J2

�eð�2�i=4ðk�2ÞÞ�ð2J3þ1Þ22sinð�i�ð2J3þ1ÞÞ
#11ð�;�Þ

¼ XJ1þJ2

J3¼J1�J2

�J3ð�;�;0Þ: (C9)

where we have defined J3 ¼ L� 1
2 for odd N1 and N2 and

J3 ¼ L� 1 for even N1 and N2.

From a similar analysis of the case J2 > J1, we obtain
(C2) and (C3).
In conclusion, consistently with the assumption that

correlation functions of fields in degenerate representa-
tions in the Hþ

3 and AdS3 models are related by analytic

continuation, the generalized Verlinde formula (C2) repro-
duces the fusion rules of degenerate representations
previously obtained in the Euclidean model. However,
even if it is not expected to reproduce the fusion rules of
continuous representations [48], applying it for discrete
representations also fails.

APPENDIX D: ONE-POINT FUNCTIONS

In this appendix we summarize the results for one-point
functions in maximally symmetric D-branes, obtained by
applying the method of [19]. The solution for one-point
functions in H2 D-branes found in loc. cit. holds for integer
level k. Here we work with an alternative expression,
equivalent to the one obtained in [19], but with a different
extension for generic k 2 R.
The method rests on the observation that, after doing a T

duality in the timelike direction, the N-th cover of
SLð2;RÞ, i.e. SLð2;RÞNk , is given by the orbifold

SLð2;RÞk=Uð1Þ �Uð1Þ�k

ZNk

: (D1)

Because now the timelike direction is a free compact
boson, the analytic continuation to Euclidean space is
simply obtained by replacing Uð1Þ�k ! Uð1ÞR2k. Thus,
one can construct arbitrary correlation functions in AdS3
from those in the cigar and the free compact boson theo-
ries, after taking the limits N ! 1, R2 ! �1. The effect
of the orbifold is to produce new (twisted) sectors. These
can be read in the following modification of the left and
right momentum modes in the coset and the free boson
models, respectively,

ðnþ k!; n� k!Þffiffiffiffiffi
2k

p ! ðnþ k!� �
N ; n� k!þ �

NÞffiffiffiffiffi
2k

p ; � 2 ZkN;

ð~nþ R2k ~!; ~n� R2k ~!Þ
R

ffiffiffiffiffi
2k

p ! ðnþ kNpþ R2k ~!þ R2�
N ; nþ kNp� R2k ~!� R2�

N Þ
R

ffiffiffiffiffi
2k

p ; (D2)

with p 2 Z and !; ~! being the winding numbers in the cigar and Uð1Þ respectively. In the N-th cover, k has to be an
integer, but in the universal covering, the theory can be defined for arbitrary real level k > 2 [19].

The vertex operators for the orbifold theory are the product of the vertices in each space, namely
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Vj
n!�p ~!ðz; �zÞ ¼ �slð2Þ=uð1Þ

j;n;!� �
kN
ðz; �zÞ�uð1Þ

nþkNp; ~!þð�=kNÞðz; �zÞ: (D3)

In the universal covering, the discrete momentum �
kN be-

comes a continuous parameter  2 ½0; 1Þ, the J30 ,
�J30

quantum numbers read

M ¼ � n

2
þ k

2
ð ~!þ Þ; �M ¼ n

2
þ k

2
ð ~!þ Þ; (D4)

and the winding number is given by

w ¼ !þ ~!: (D5)

1. One-point functions for pointlike
instanton branes

To obtain the one-point functions for the pointlike
branes, we simply take the ZkN orbifold action on the
product of the one-point functions associated to D branes
in the cigar [34] and to Neumann boundary conditions in
the Uð1Þ theories, respectively

h�slð2Þ=uð1Þ
j;n;! ðz; �zÞiD0

s ¼ �n;0ð�Þr!
jz� �zjhjnrþ �hjnr

�ð�jþ k
2!Þ�ð�j� k

2!Þ
�ð�2j�1Þ

�
�

k

k�2

�
1=4
�
sin½�b2�

4�

�
1=2

� sin½sð2jþ1Þ�
sin½�b2ð2jþ1Þ�

�ð1þb2Þ�1þj

�ð1�b2ð2jþ1ÞÞ ;

(D6)

and

h�uð1Þ
~n; ~! ðz; �zÞiNx0 ¼ �~n;0e

i ~!x0ð ffiffiffiffiffiffiffiffi
k=2

p
RÞ1=2

jz� �zjðk=2Þ ~!2 :

Here s ¼ �rb2, r 2 N, b2 ¼ 1
k�2 , � ¼ �

�ð1� 1
k�2Þ

�ð1þ 1
k�2Þ

, N

refers to Neumann boundary conditions20 and x0 is the
position of the D0 brane in the timelike direction. In the
single covering of SLð2;RÞ, the only possibilities are
x0 ¼ 0 and �, which represent the center of the group Z2

(see [24]). But in the universal covering, one can take x0 ¼
q� with q 2 Z (see Sec. IVA).

To compare these one-point functions with those ob-
tained in Sec. IV, it is convenient to consider the conven-

tions used in [4].21 There, the fields �j;w
m; �m represent the

spectral flow images of the primary fields �j;0
m; �m, i.e. they

are in correspondence with highest or lowest-weight states
depending if w< 0 or w> 0, and have J30 ,

�J30 eigenvalues
M ¼ mþ k

2w,
�M ¼ �mþ k

2w. They are related to the ver-

tex operators (D3) as

�j;w
m; �mðz; �zÞ ¼ ð�Þw

ffiffiffiffiffiffiffiffiffi
BðjÞ

q
V�1�j
n!�p ~!ðz; �zÞ;

BðjÞ ¼ k� 2

�

�ð1þ 1þ2j
k�2 Þ

�ð� 1þ2j
k�2 Þ

�ð1=2Þþj; (D7)

When looking for w ¼ 0 solutions, i.e. ! ¼ � ~!, one
expects to reproduce the one-point functions of pointlike
D-branes in the Hþ

3 model, which forces x0 ¼ r�. So,

h�j;w
m; �mðz; �zÞis ¼

�m; �m

jz� �zj�jþ ��j

�ð1þ j�mÞ�ð1þ jþmÞ
�ð2jþ 1Þ

� i
ffiffiffi
k

p ð�Þwþ1

2
5
4

sin½sðð2jþ 1Þ �wðk� 2ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin½ �

k�2 ð2jþ 1Þ�
q ;

(D8)

with the parameter s labeling the positions of the instanton
solutions.
Comparing the operator product expansions

J3ð�Þ�j;w
m; �mð�; ��Þ ¼

mþ k
2w

� � �
�j;w

m; �mð�; ��Þ þ . . .

J�ð�Þ�j;w
m; �mð�; ��Þ ¼

m� j

ð� � �Þ1�w
�j;w

m; �mð�; ��Þ þ . . . (D9)

and the antiholomorphic ones with those of the fields �ðPÞ
of Sec. IV, namely (4.26), we obtain the following relation,
valid for m ¼ �m 2 �jþ Z�0,

�j;w
m; �mð�; ��Þ ¼ �ð�Þjþm �ð1þ j�mÞ�ð1þ jþmÞ

�ð1þ 2jÞ
��ðPÞðjj;m; �m;wi;�; ��Þ; (D10)

where � is the normalization of �j;w
�j;�j. We find perfect

agreement between the expressions (4.25) and (D8) for

one-point functions, as long as � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ikðk�2Þ

16

q
.

2. One-point functions for H2, dS2 and
light-cone branes

All of the H2, dS2 and light-cone branes can be con-
structed from a D2-brane in the cigar and taking Neumann
boundary conditions in theUð1Þ. They are simply related to
each other by analytic continuation of a parameter labeling
the scale of the branes. Here, we discuss in detail the case
of the one-point functions of fields in discrete representa-
tions on H2 branes and show that the Cardy structure is
realized in this case. These one-point functions correspond
to H2 branes at X3 ¼ cons rather than X0 ¼ cons, so we

20Recall that we considered Dirichlet gluing conditions when
constructing the coherent states. Here we take Neumann bound-
ary conditions because this is the T dual version in the time
direction.
21Notice that here we take a different normalization in order to
explicitly realize the relation between the spectral flow image of
highest and lowest-weight representations.
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have to translate these solutions before comparing with the
results of Sec. IV.

The one-point functions for the D2-branes in the cigar
are given by [34]

h�slð2Þ=uð1Þ
j;n;! ðz; �zÞiD2

~� ¼
1
2�n;0ð�Þ!e�i~�!ðk�2Þðk�2

k Þ1=4
jz� �zjhjnrþ �hjnr

��ð1þ2jÞ�
�
1þ1þ2j

k�2

�
�ð1=2Þþj

�
�
�ð�jþ k

2!Þ
�ð1þjþ k

2!Þe
i ~�ð1þ2jÞ

þ �ð�j� k
2!Þ

�ð1þj� k
2!Þe

�i~�ð1þ2jÞ
�
: (D19)

Notice that this differs from the result in [34] by the !

dependent phase ð�Þ!e�i ~�!ðk�2Þ.22 The position of the
D-brane over the Uð1Þ is again fixed by the one-point
function of the Hþ

3 model. We find

h�j;w
m; �mðz; �zÞiH2;X

3

~� ¼ �m; �m

jz� �zj�jþ ��j

�1

25=4
ffiffi
i

p ðk� 2Þ1=4

� �e�i ~�wðk�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin½ �

k�2 ð2jþ 1Þ�
q

�
�
�ð1þ j�mÞ
�ð�j�mÞ e�i ~�ð1þ2jÞ

þ �ð1þ jþmÞ
�ð�jþmÞ ei ~�ð1þ2jÞ

�
: (D11)

For fields in discrete representations with m ¼
�jþ Z�0 and j =2 Z, only one factor survives in the last
line. Here ~� is a real parameter, determining the embed-
ding of the brane in AdS3 as X

3 ¼ cosh	 sin� ¼ sin ~�. So,
in order to compare with the solutions discussed in Sec. IV,
the identification ~� ¼ �þ �

2 and the global shift in the

timelike coordinate on the cylinder, namely t ! tþ �
2 ,

must be performed. The latter simply adds a phase

ei
�
2ðMþ �MÞ (in fact, J30 þ �J30 gives the energy in AdS3 and

so this combination is the generator of t translations).

From the analysis of conjugacy classes, it is natural to
relabel � ¼ �

k�2 ð2j0 þ 1Þ � w0�, with j0 2 ð� k�1
2 ;� 1

2Þ,
w0 2 Z,23 and

h�j;w
m; �mðz; �zÞiH2;X

0

�ðj0;w0Þ

¼ �m; �m

jz� �zj�jþ ��j

�ð1þ jþmÞ�ð1þ j�mÞ
�ð1þ 2jÞ

� ��
ffiffiffiffiffiffi�i

p

25=4ðk� 2Þ1=4

� ð�Þweð4�i=k�2Þðj0þð1=2Þ�w0ðk�2Þ=2Þðjþð1=2Þ�wðk�2Þ=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin½ �

k�2 ð2jþ 1Þ�
q :

(D12)

3. One-point functions for AdS2 branes

For completeness, we display here the one-point func-
tions for AdS2 branes obtained in [19], in our conventions.
These are constructed by gluing two one-point functions:
one for aD1-brane in the coset model and another one with
Dirichlet boundary conditions in the Uð1Þ model. The
result is

h�j;w
m; �mðz; �zÞiAdS2r ¼ �w;0�m;� �me

�ið�=4Þeinð�0þx0Þðk�2
2 Þ1=4

jz� �zj�jþ ��j

� �ð�1� 2jÞ
�ð�j�mÞ�ð�jþmÞ

� cos

�
ir

�
jþ 1

2

�
þm�

�
� �

�
1� 1þ 2j

k� 2

�
��ð1=2Þ�j; (D13)

where �0 is related to the angles (in cylindrical coor-
dinates) to which the branes asymptote when they get
close to the boundary of AdS3, x0 is the location of the
brane and r determines their scale. From the geometri-
cal point of view, r seems to be an arbitrary real
number, but as shown in [26], it becomes quantized at
the semiclassical level.
Let us end this appendix by noticing the perfect agree-

ment with the analysis of the coherent states presented in
Sec. IV. Because of the Gamma functions in the denomi-
nator of (D13), only states in the continuous representa-
tions couple to the AdS2 branes and, due to the delta
functions, only those with w ¼ 0 and m ¼ � �m have non
vanishing expectation values.

22This phase that we added by hand is required by the spectral
flow symmetry, when used to construct the one-point functions

for H2 branes, which demands h�j;w
j;j iH2 ¼ h��ðk=2Þ�j;w�1

ðk=2Þþj;ðk=2ÞþjiH2 , in

our conventions. The one-point function for D2 branes was
constructed in [34] beginning from the parent Hþ

3 model and
was found to have some sign problems. We claim this phase
cannot be deduced from the Hþ

3 model because of the absence of
spectral flowed states. It would be interesting to investigate the
implications of this modification in the sign. Unfortunately, this
information cannot be obtained from the w independent semi-
classical limit of the one-point functions.

23The one-point functions for dS2 branes are given by (D11)
with j0 2 f� 1

2 þ iRþg and for light-cone branes, they are given
by � ¼ n�, n 2 Z.
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